平行四边形、矩形、菱形、正方形性质和判定归纳表
平行四边形、矩形、菱形、正方形定义 性质和判定归纳表
平行四边形、矩形、菱形、正方形定义,性质和判定归纳如表:类别概念性质判定对称性平行四边形两组对边分别平行的四边形叫平行四边形①对边平行②对边相等③对角相等④邻角互补⑤对角线互相平分①两组对边分别平行的四边形②两组对边分别相等的四边形③一组对边平行且相等的四边形④两组对角分别相等的四边形⑤对角线互相平分的四边形中心对称矩形有一个角是直角,一组邻边相等的平行四边形叫做正方形。
①具有平行四边形的一切性质②四个角都是直角③对角线相等①有一个角是直角的平行四边形②有三个角是直角的四边形③对角线相等的平行四边形轴对称中心对称菱形有一组邻边相等的平行四边形叫做菱形。
①具有平行四边形的一切性质②四条边都相等③对角线互相垂直平分每组对角①有一组邻边相等的平行四边形②四条边都相等的四边形③对角线互相垂直的平行四边形④对角线垂直且平分的四边形轴对称中心对称正方形有一个角是直角,一组邻边相等的平行四边形叫做正方形。
①具有平行四边形、矩形、菱形的一切性质②对角线与边的夹角为450①有一个角是直角一组邻边相等的平行四边形②一组邻边相等的矩形③一个角是直角的菱形④对角线垂直且相等的平行四边形轴对称中心对称四种特殊四边形的性质边角对角线对称性图形平行四边形对边平行且相等对角相等互相平分中心对称矩形对边平行且相等四个角都是直角互相平分且相等轴对称中心对称菱形对边平行四条边相等对角相等互相垂直平分且每条对角线平分对角轴对称中心对称正方形对边平行四条边相等四个角都是直角互相垂直平分且相等,每条对角线平分对角轴对称中心对称。
平行四边形的性质和判定 菱形梯形等腰梯形矩形正方形性质和判定
平行四边形的性质和判定菱形梯形等腰梯形矩形正方形性质和判定平行四边形的性质和判定定义:两组对边分别平行的四边形叫做平行四边形.性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分 .判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形 .注意:一组对边平行,一组对角相等的四边形是平行四边形;一组对边平行,另一组对边相等的四边形不一定是平行四边形,如:等腰梯形菱形是四边相等的四边形,属於特殊的平行四边形,除了这些图形的性质之外,它还具有以下性质:对角线互相垂直平分;四条边都相等;对角相等,邻角互补;每条对角线平分一组对角.判定:一组邻边相等的平行四边形是菱形对角线互相垂直的平行四边形是菱形四边相等的四边形是菱形依次连接四边形各边中点所得的四边形称为中点四边形。
不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。
菱形的中点四边形是矩形。
菱形面积:对角线相乘后除二或边长乘高;菱形周界为边长的四倍:顺次连接菱形各边中点为矩形正方形是特殊的菱形梯形是指一组对边平行而另一组对边不平行的四边形。
平行的两边叫做梯形的底,其中长边叫下底;不平行的两边叫腰;两底间的距离叫梯形的高。
一腰垂直于底的梯形叫直角梯形,两腰相等的梯形叫等腰梯形。
梯形的性质及判定:一组对边平行且另一组对边不平行的四边形是梯形,但要判断另一组对边不平行比较困难,一般用一组对边平行且不相等的四边形是梯形来判断。
等腰梯形性质:等腰梯形在同一底上的两个底角相等等腰梯形的两条对角线相等等腰梯形判定:1两腰相等的梯形是等腰梯形;2同一底上的两个角相等的梯形是等腰梯形;3对角线相等的梯形是等腰梯形.梯形的体积计算公式:V=〔S1+S2+开根号(S1*S2)〕/3*H注:V:体积;S1:上表面积;S2:下表面积;H:高。
1.3平行四边形,矩形,菱形,正方形的性质和判定
第三节 平行四边形,矩形,菱形,正方形的性质和判定(一)平行四边形的性质和判定 一.教学重难点:重点:平行四边形的性质证明. 难点:分析、综合思考的方法.二.知识点和考点:1.平行四边形的定义2.平行四边形的性质,面积3.平行四边形的判定4.三角形的中位线及其性质三.知识点讲解考点一: 平行四边形的定义考点二:平行四边形的性质(1)平行四边形的对边相等注:在证明题时使用格式是:∵四边形ABCD 是平行四边形,定义:有两组对边分别平行的四边形叫做平行四边形。
记做例1:如图:在中,如果E F ∥AD ,GH ∥CD ,EF 与GH 相交于点O ,那么图中的平行四边形一共有 ( ) A .4个 B 、5个 C 、8个 D 、9个例2:如图,E 、F 分别是边AD 、BC 上的点,并且AF ∥CE ,求证:∠AFB=∠DEC 。
∴AB=DC,AD=BC例1、如图,在平行四边形ABCD中,AE=CF,求证:AF=CE。
例2.平行四边形的周长等于56cm,两邻边长的比为3:1,那么这个平行四边形较长的边长为(2).平行四边形的对角相等注:在证明题时使用格式是:∵四边形ABCD是平行四边形∴∠A=∠C,∠B=∠D例1.已知中,E、F是对角线AC上的两点,且AE=CF。
求证:∠ADF=∠CBE。
例2、在中,∠A、∠B的度数之比为5:4,则∠C等于()A、 B、 C、 D、(3)、平行四边形的对角线互相平分注:在证明题时使用格式是:∵四边形ABCD是平行四边形∴OA=OC,OB=OD例3.如图,,过其对角线交点O,引一直线交BC于E,交AD于F,若AB=2.4cm,BC=4cm,OE=1.1cm,求四边形ABEF的周长。
例4.如图,已知:中,AC、BD相交于O点,OE⊥AD于E,OF⊥BC于F,求证:OE=OF。
例5.如图,如果的周长之差为8,而AB:AD=3:2,那么的周长为多少?例6.如图,已知的周长为60cm,对角线AC、BD相交于点O,的周长长8cm,求这个四边形各边长.(4)平行四边形的面积如图(1),,也就是边长×高=ah(2)、同底(等底)同高(等高)的平行四边形面积相等。
矩形、菱形、正方形的性质及判定(四边形)
矩形、菱形、正方形的性质及判定一、知识提要1.矩形定义有一个角是直角的平行四边形叫做矩形;性质①矩形的四个角都是直角;②矩形的对角线相等.判定①有一个角是直角的平行四边形叫做矩形;②对角线相等的平行四边形是矩形;③有三个角是直角的四边形是矩形.2.直角三角形斜边的中线等于斜边长的一半.3.菱形定义有一组邻边相等的平行四边形叫做菱形.性质①菱形的四条边都相等;②菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.判定①有一组邻边相等的平行四边形叫做菱形;②对角线互相垂直的平行四边形是菱形;③四边相等的四边形是菱形.4.菱形的面积等于对角线乘积的一半.5.正方形定义四条边都相等、四个角都是直角的四边形是正方形.性质正方形拥有平行四边形、矩形、菱形的所有性质;判定①由一个角是直角的菱形是正方形;②有一组邻边相等的矩形是正方形.二、精讲精练1.矩形ABCD的对角线AC,BD相交于点O,则边与对角线组成的直角三角形的个数是________.2.(2011浙江)如图,在矩形ABCD中,对角线AC,BD交于点O.已知∠AOB= 60°,AC=16,则图中长度为8的线段有( ) A.2条B.4条ODC BA60°C .5条D .6条3. 矩形ABCD 中,AB =2BC ,E 为CD 上一点,且AE =AB ,则∠BEC = ___.4. 已知矩形ABCD ,若它的宽扩大2倍,且它的长缩小四分之一,那么新矩形的面积等于原矩形ABCD 面积的__________.5. (2011四川)下列关于矩形的说法中正确的是( )A .对角线相等的四边形是矩形B .对角线互相平分的四边形是矩形C .矩形的对角线互相垂直且平分D .矩形的对角线相等且互相平分6. (2011江苏)在四边形ABCD 中,AB=DC ,AD=BC .请再添加一个条件,使四边形ABCD 是矩形.你添加的条件是_______________(写出一种即可) 7. (2011山东)如图,△ABC 中,AC 的垂直平分线分别交AC 、AB 于点D 、F ,BE ⊥DF 交DF 的延长线于点E ,已知∠A =30°,BC =2,AF =BF ,则四边形BCDE 的面积是( )A .23B .33C .4D .438. 如图,将□ABCD 的边DC 延长到点E ,使CE =DC ,连接AE ,交BC 于点F .(1)求证:△ABF ≌△ECF(2)若∠AFC =2∠D ,连接AC 、BE .求证:四边形ABEC 是矩形.9. (2011江苏)在菱形ABCD 中,AB=5cm ,则此菱形的周长为( )A. 5cmB. 15cmC. 20cmD. 25cm10. (2011河北)如图,已知菱形ABCD ,其顶点A ,B 在数轴对应的数分别为-4和1,则BC =_______.EFDCBAD CBAHFGE ADBC11. 菱形的一边与两条对角线夹角的差是20°,则菱形的各角的度数为___________.12. (2011重庆)如图,菱形ABCD 的对角线AC 、BD 相交于点O ,且AC =8,BD =6,过点O 作OH ⊥AB ,垂足为H ,则点O 到边AB 的距离OH =_________.13. 已知菱形周长是24cm ,一个内角为60°,则菱形的面积为______.14. 菱形ABCD 中,AE ⊥BC 于E ,若S 菱形ABCD =24cm 2,则AE =6cm ,则菱形ABCD的边长为_______.15. (2011山东)已知一个菱形的周长是20cm ,两条对角线的比是4:3,则这个菱形的面积是( )A .12cm 2B . 24cm 2C . 48cm 2D . 96cm 2 16. 菱形有____条对称轴,对称轴之间具有________的位置关系. 17. 菱形具有而一般平行四边形不具有的性质是( )A .两组对边分别平行B .两组对边分别相等C .一组邻边相等D .对角线相互平分18. (2011四川)如图,点E 、F 、G 、H 分别是任意四边形ABCD 中AD 、BD 、BC 、CA 的中点,当四边形ABCD 的边至少满足__________条件时,四边形EFGH 是菱形.19. (2011浙江)如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,过点A 作AG ∥DB 交CB 的延长线于点G . (1)求证:DE ∥BF ;(2)若∠G =90°,求证:四边形DEBF 是菱形.F E B C A D 20. (2011湖州)如图,已知E 、F 分别是□ABCD 的边BC 、AD 上的点,且BE =DF . (1)求证:四边形AECF 是平行四边形;(2)若BC =10, BAC =90,且四边形AECF 是菱形,求BE 的长.21. (2011湖南)下列四边形中,对角线相等且互相垂直平分的是( ) A.平行四边形 B.正方形 C.等腰梯形 D.矩形22. 有一组邻边_______并且有一个角是________的平行四边形,叫做正方形. 23. (2010湖北)已知正方形ABCD ,以CD 为边作等边△CDE ,则∠AED 的度数是 .24. 已知正方形ABCD 中,AC ,BD 交于点O ,OE ⊥BC 于E ,若OE =2,则正方形的面积为____.25. 如图,已知,正方形ABCD 的对角线交于O ,过O 点作OE ⊥OF ,分别交AB 、BC 于E 、F ,若AE =4,CF =3,则EF 等于( )A .7B .5C .4D .326. (2011贵州)如图,点E 是正方形ABCD 内一点,△CDE 是等边三角形,连接EB 、EA ,延长BE 交边AD 于点F . (1)求证: △ADE ≌△BCE ; (2)求∠AFB 的度数.FED CBA FE ODCBA三、测试提高【板块一】菱形的性质1. 若菱形两邻角的比为1:2,周长为24 cm ,则较短对角线的长为_____. 【板块二】菱形的判定2. (2011湖南)如图,小聪在作线段AB 的垂直平分线时,他是这样操作的:分别以A 和B 为圆心,大于12AB 的长为半径画弧,两弧相交于C 、D ,则直线CD 即为所求.根据他的作图方法可知四边形ADBC 一定是( ) A .矩形B .菱形C .正方形D .等腰梯形 3. (2011湖北)顺次连接四边形ABCD 各边的中点所得四边形是菱形,则四边形ABCD 一定是( ) A.菱形 B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形【板块三】菱形余矩形的性质4. (2011江苏)菱形具有而矩形不一定具有的性质是( )A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角互补 【板块四】特殊四边形的判定5. 下列命题中,正确命题是( )A .两条对角线相等的四边形是平行四边形;B .两条对角线相等且互相垂直的四边形是矩形;C .两条对角线互相垂直平分的四边形是菱形;D .两条对角线平分且相等的四边形是正方形;四、课后作业1. 矩形ABCD 中,对角线AC ,BD 相交于点O ,∠AOB =60°,若BD =10 cm ,则AD =_____.2. 矩形周长为72cm ,一边中点与对边两个端点连线的夹角为直角,此矩形的长边为_______.3. 矩形的边长为10和15,其中一个内角平分线分长边为两部分,这两部分的长度分别为_________.4. 过矩形ABCD 的顶点D ,作对角线AC 的平行线交BA 的延长线于E ,则△DEB 是( ).A . 不等边三角形B . 等腰三角形C . 等边三角形D . 等腰直角三角形BACD5. 矩形ABCD 的对角线AC 的垂直平分线与边AD ,BC 分别交于E ,F ,则四边形AFCE 是___________.6. 菱形一个内角为120°,平分这个内角的一条对角线长12 cm ,则菱形的周长为_____.7. 若菱形两条对角线长分别为6 cm 和8 cm ,则它的周长是________,面积是_______.8. 菱形的一个角是60°,边长是8 cm ,那么菱形的两条对角线的长分别是_________.9. 已知菱形的一条对角线与边长相等,则菱形的邻角度数分别为_____. 10. 在菱形ABCD 中,AE ⊥BC , AF ⊥CD ,且BE =EC , CF =FD ,则∠AEF 等于_______.11. 如图,小华剪了两条宽为2的纸条,交叉叠放在一起,且它们交角为45°,则它们重叠部分的面积为( ). A.22 B.1 C.332 D.2 12. (2011广东)如图,两条笔直的公路1l 、2l 相交于点O ,村庄C 的村民在公路的旁边建三个加工厂A 、B 、D ,已知AB =BC =CD =DA =5公里,村庄C 到公路1l 的距离为4公里,则村庄C 到公路2l 的距离是( ). A .3公里 B .4公里C .5公里D .6公里13. 正方形的对角线__________且_________,每条对角线平分_____. 14. 如图,AC 是菱形ABCD 的对角线,点E 、F 分别在边AB 、AD 上,且AE =AF . 求证:△ACE ≌△ACF .FE BCDA15. (2011山东)如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,过点O 作直线EF ⊥BD ,分别交AD 、BC 于点E 和点F ,求证:四边形BEDF 是菱形.OFEDCBA。
特殊平行四边形性质及判定方法
特殊平行四边形——菱形、矩形、正方形
【菱形】
定义:有一组邻边相等的平行四边形是菱形
性质:菱形的四条边相等。
菱形的对角线互相垂直。
判定:对角线互相垂直的平行四边形是菱形。
四边相等的四边形是菱形。
有一组邻边相等的平行四边形是菱形。
【矩形】
定义:有一个角是直角的平行四边形叫做矩形。
性质:矩形的四个角都是直角。
矩形的对角线相等。
&&直角三角形斜边上中线等于斜边的一半。
判定:对角线相等的平行四边形是矩形。
有三个角是直角的四边形是矩形。
有一个角是直角的平行四边形叫做矩形。
【正方形】
定义:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形。
性质:正方形的四个角都是直角,四条边相等。
正方形的对角线相等且互相垂直平分。
判定:有一组邻边相等的矩形是正方形。
对角线互相垂直的矩形是正方形。
有一个角是直角的菱形是正方形。
对角线相等的菱形是正方形。
有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形。
正方形的性质及判定
正方形的性质及判定
学习目标
1.掌握正方形的概念,理解平行四边形、矩形、菱形、正方形之间的关系,发展思维能力.
2.经历从矩形、菱形类比,归纳总结正方形的性质和判定定理的过程,掌握正方形的性质和判定定理,能够综合运用正方形的性质和判定定理进行计算或证明,提高抽象概括和逻辑推理能力.
教学过程
活动一:正方形的定义
定义:条边都,四个角都是的四边形叫做正方形.
活动二:正方形的性质
1.平行四边形的性质
(1)边:对边(2)角:邻角,对角(3)对角线:对角线
2.菱形的性质
(1)边:四条边(2)对角线:对角线,并且每一条对角线平分一组
3.矩形的性质
(1)角:四个角都是(2)对角线:对角线
归纳总结:正方形的性质
正方形既是菱形,又是矩形,因此正方形具有菱形和矩形所有的性质。
(1)边:对边,且四条边 ;
(2)角:四个角都是 ;
(3)对角线:对角线且互相,
每条对角线一组对角.。
平行四边形、菱形、矩形、正方形性质和判定归纳如表
平行四边形、菱形、矩形、正方形性质和判定归纳如表:
定义:两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线的距离。
注意:平行线间的距离处处相等。
二、矩形的一条对角线把矩形分成两个直角三角形,与之相联系的还有以下性质:(1)直角三角形的两个锐角互余。
(2)直角三角形两直角边的平方和等于斜边的平方。
(即勾股定理)
(3)直角三角形斜边上的中线等于斜边的一半。
(4)直角三角形中30 角所对的直角边等于斜边的一半。
四种特殊四边形的性质
四种特殊四边形常用的判定方法:
一组邻
一组邻
边相等对角线相
对角线
垂直
对角线
相等
对角线垂
直。
四边形的分类与判定方法
四边形的分类与判定方法四边形是几何学中一种常见的图形,它由四条边和四个角组成。
在不同的边长和角度的组合下,四边形可以被划分为多个不同的类型。
本文将介绍四边形的分类以及判定方法,以帮助读者更好地理解和应用几何学知识。
一、四边形的分类四边形的分类主要根据其边长和角度来进行划分,常见的四边形类型包括正方形、矩形、菱形、平行四边形、梯形和不规则四边形。
1. 正方形正方形是一种特殊的矩形,它的四条边相等且四个角均为直角。
可以通过边长或对角线长相等来判定一个四边形是否为正方形。
2. 矩形矩形也是一种边长相等的四边形,但它的四个角并不一定都为直角。
判定一个四边形是否是矩形的方法是检查它的对角线是否相等。
3. 菱形菱形是一种具有边长相等但角度不一定相等的四边形。
一个四边形若两对相邻边相等,则可以被判定为菱形。
4. 平行四边形平行四边形具有两对相对平行的边,它的对边长度相等。
要判断一个四边形是否为平行四边形,可以检查它的对边是否平行。
5. 梯形梯形是只有一对对边平行的四边形,其余两条边不平行。
通过检查四边形的边是否满足其中两条边平行的条件,即可判定它是否为梯形。
6. 不规则四边形不规则四边形是指不属于上述任何一种特殊类型的四边形。
它的边和角都没有特殊的限制条件,因此可以被视为一般性的四边形。
二、四边形的判定方法判定一个四边形的类型有多种方法,下面将介绍针对常见四边形类型的判定方法。
1. 正方形的判定方法(描述正方形判定方法)2. 矩形的判定方法(描述矩形判定方法)3. 菱形的判定方法(描述菱形判定方法)4. 平行四边形的判定方法(描述平行四边形判定方法)5. 梯形的判定方法(描述梯形判定方法)6. 不规则四边形的判定方法(描述不规则四边形判定方法)三、四边形的应用四边形在几何学中具有广泛的应用。
它们的性质和特点可以用于解决各种几何问题,例如计算面积、判断形状等。
1. 面积计算根据不同类型的四边形,可以通过不同的公式计算其面积。
1.3平行四边形,矩形,菱形,正方形的性质和判定6
教学目标
1.会证明平行四边形的判定定理; 2.会用判定定理解决有关问题;
回忆
平行四边形的判定有哪些方法? 1.定义:两组对边分别_____的四边形叫做平 行四边形; 2.两组对边分别_____的四边形是平行四边形; 3.一组对边____且____的四边形是平行四边 形; 4.两组对角分别____的四边形是平行四边形; 5.对角线_____的四边形是平行四边形;
如何证明?
两组对边分别相等的四边形是平行四边形; 一组对边平行且相等的四边形是平行四边形; 两组对角分别相等的四边形是平行四边形;
五种方法的书写格式
D C D O A B A B C
典型例题
例一; 例二;
试试看,掌握了吗?
1.简单一点; 2.提高一下(课本P20练习2);
本课学到了什么?
1.定义:两组对边分别_____的四边形叫做 平行四边形; 2.两组对边分别_____的四边形是平行四边 形; 3.一组角分别____的四边形是平行四边 形; 5.对角线_____的四边形是平行四边形;
数学平行四边形、菱形、矩形、正方形的定理、性质、判定
1. 定义: 两组对边分别平行的四边形叫做平行四边形。
2.性质:⑴如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。
(简述为“平行四边形的对边相等”)⑵如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。
(简述为“平行四边形的对角相等”)⑶夹在两条平行线间的平行线段相等。
⑷如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
(简述为“平行四边形的两条对角线互相平分”)⑸平行四边形是中心对称图形,对称中心是两条对角线的交点。
3.判定:(1)如果一个四边形的两组对边分别相等,那么这个四边形是平行四边形。
(简述为“两组对边分别相等的四边形是平行四边形”)(2)如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形。
(简述为“一组对边平行且相等的四边形是平行四边形”)(3)如果一个四边形的两条对角线互相平分,那么这个四边形是平行四边形。
(简述为“对角线互相平分的四边形是平行四边形”)(4)如果一个四边形的两组对角分别相等,那么这个四边形是平行四边形。
(简述为“两组对角分别相等的四边形是平行四边形”(5)如果一个四边形的两组对边分别平行,那么这个四边形是平行四边形。
(简述为“两组对边分别平行的四边形是平行四边形”)矩形的性质和判定定义:有一个角是直角的平行四边形叫做矩形.性质:①矩形的四个角都是直角;②矩形的对角线相等 .注意:矩形具有平行四边形的一切性质 .判定:①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形 .菱形的性质和判定定义:有一组邻边相等的平行四边形叫做菱形.性质:①菱形的四条边都相等;②菱形的对角线互相垂直,并且每一条对角线平分一组对角 .注意:菱形也具有平行四边形的一切性质 .判定:①有一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形(4).有一条对角线平分一组对角的平行四边形是菱形正方形的性质和判定定义:有一组邻边相等并且有一角是直角的平行四边形叫做正方形.性质:①正方形的四个角都是直角,四条边都相等;②正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 .判定:因为正方形具有平行四边形、矩形、菱形的一切性质,所以我们判定正方形有三个途径①四条边都相等的平行四边形是正方形②有一组临边相等的矩形是正方形③有一个角是直角的菱形是正方形梯形及特殊梯形的定义梯形:一组对边平行而另一组对边不平行的四边形叫做梯形.(一组对边平行且不相等的四边形叫做梯形.)等腰梯形:两腰相等的梯形叫做等腰梯形. 直角梯形:一腰垂直于底的梯形叫做直角梯形.等腰梯形的性质1、等腰梯形两腰相等、两底平行;2、等腰梯形在同一底上的两个角相等;3、等腰梯形的对角线相等;4、等腰梯形是轴对称图形,它只有一条对称轴,一底的垂直平分线是它的对称轴. 等腰梯形的判定1、两腰相等的梯形是等腰梯形;2、在同一底上的两个角相等的梯形是等腰梯形;3、对角线相等的梯形是等腰梯形.平行四边形性质定理1 平行四边形的对角相等平行四边形性质定理2 平行四边形的对边相等且平行平行四边形性质定理3 平行四边形的对角线互相平分平行四边形判定定理1 两组对角分别相等的四边形是平行四边形平行四边形判定定理2 两组对边分别相等的四边形是平行四边形平行四边形判定定理3 对角线互相平分的四边形是平行四边形平行四边形判定定理4 一组对边平行相等的四边形是平行四边形矩形性质定理1 矩形的四个角都是直角矩形性质定理2 矩形的对角线相等矩形判定定理1 有一个角是直角的平行四边形是矩形矩形判定定理2 对角线相等的平行四边形是矩形正方形性质定理1正方形的四个角都是直角,四条边都相等正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角菱形性质定理1 菱形的四条边都相等菱形性质定理2 菱形的对角线互相垂直菱形面积=对角线乘积的一半,即S=(a×b)÷2菱形判定定理1 四边都相等的四边形是菱形菱形判定定理2 对角线互相垂直的平行四边形是菱形菱形判定定理3是对称轴图形的平行四边形是菱形。
特殊的四边形(归纳)
特殊的平行四边形知识点一:矩形的定义要点诠释:有一个角是直角的平行四边形叫做矩形。
(嘿嘿嘿)知识点二:矩形的性质要点诠释:矩形具有平行四边形所有的性质。
此外,它还具有如下特殊性质:1.矩形的四个角都是直角;2.矩形的对角线相等;推论:直角三角形斜边上的中线等于斜边的一半。
3.矩形是轴对称图形也是中心对称图形。
知识点三:矩形的判定方法要点诠释:1. 用矩形的定义:一个角是直角的平行四边形是矩形;2.有三个角是直角的四边形是矩形;3.对角线相等的平行四边形是矩形;4.对角线互相平分且相等的四边形是矩形。
知识点四:菱形的定义要点诠释:有一组邻边相等的平行四边形叫做菱形.知识点五:菱形的性质要点诠释:菱形具有平行四边形一切性质,此外,它还具有如下特殊性质:1.菱形的四条边相等。
2.菱形的两条对角线互相垂直,且每一条对角线平分一组对角。
3.菱形是轴对称图形也是中心对称图形,两条对角线所在的直线是它的两条对称轴。
知识点六:菱形的判定办法要点诠释:1.用菱形的定义:有一组邻边相等的平行四边形是菱形;2.四条边都相等的四边形是菱形;3.对角线垂直的平行四边形是菱形;4.对角线互相垂直平分的四边形是菱形。
知识点七:正方形的定义要点诠释:有一组邻边相等且有一个角是直角的平行四边形叫做正方形。
知识点八:正方形的性质要点诠释:1.正方形的四个角都是直角,四条边都相等;2.正方形的对角线相等,并且互相垂直平分,每条对角线平分一组对角;3.正方形既是轴对称图形也是中心对称图形。
知识点九:正方形的判定方法要点诠释:1.正方形的定义:有一组邻边相等且有一个角是直角的平行四边形叫做正方形。
2.有一组邻边相等的矩形是正方形;3.有一个角是直角的菱形是正方形.归纳整理,形成认知体系1.复习概念,理清关系2.集合表示,突出关系3.性质判定,列表归纳平行四边形矩形菱形正方形性质边对边平行且相等对边平行且相等对边平行,四边相等对边平行,四边相等角对角相等四个角都是直角对角相等四个角都是直角对角线互相平分互相平分且相等互相垂直平分,且每条对角线平分一组对角互相垂直平分且相等,每条对角线平分一组对角判定·两组对边分别平行;·两组对边分别相等;·一组对边平行且相等;·两组对角分别相等;·两条对角线互相平分.·有三个角是直角;·是平行四边形且有一个角是直角;·是平行四边形且两条对角线相等.·四边相等的四边形;·是平行四边形且有一组邻边相等;·是平行四边形且两条对角线互相垂直。
特殊的平行四边形专题(题型详细分类)要点
特殊的平⾏四边形专题(题型详细分类)要点特殊的平⾏四边形讲义知识点归纳矩形,菱形和正⽅形之间的联系如下表所⽰:四边形分类专题汇总专题⼀:特殊四边形的判定矩形菱形正⽅形性质边对边平⾏且相等对边平⾏,四边相等对边平⾏,四边相等⾓四个⾓都是直⾓对⾓相等四个⾓都是直⾓对⾓线互相平分且相等互相垂直平分,且每条对⾓线平分⼀组对⾓互相垂直平分且相等,每条对⾓线平分⼀组对⾓判定 ·有三个⾓是直⾓; ·是平⾏四边形且有⼀个⾓是直⾓; ·是平⾏四边形且两条对⾓线相等. ·四边相等的四边形;·是平⾏四边形且有⼀组邻边相等;·是平⾏四边形且两条对⾓线互相垂直。
·是矩形,且有⼀组邻边相等; ·是菱形,且有⼀个⾓是直⾓。
对称性既是轴对称图形,⼜是中⼼对称图形(1)______________ (2)______________ (3)______________ (4)______________ (5)______________2.矩形的判定⽅法:(1)______________ (2)______________ (3)______________3.菱形的判定⽅法:(1)______________ (2)______________ (3)______________4.正⽅形的判定⽅法:(1)______________ (2)______________ (3)______________5.等腰梯形的判定⽅法:(1)______________ (2)______________ (3)______________【练⼀练】⼀.选择题1.能够判定四边形ABCD是平⾏四边形的题设是().A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠DC.AB=CD,AD=BC D.AB=AD,CB=CD2.具备下列条件的四边形中,不能确定是平⾏四边形的为().A.相邻的⾓互补 B.两组对⾓分别相等C.⼀组对边平⾏,另⼀组对边相等 D.对⾓线交点是两对⾓线中点3.下列条件中,能判定四边形是平⾏四边形的条件是( )A.⼀组对边平⾏,另⼀组对边相等B.⼀组对边平⾏,⼀组对⾓相等C.⼀组对边平⾏,⼀组邻⾓互补D.⼀组对边相等,⼀组邻⾓相等4.如下左图所⽰,四边形ABCD的对⾓线AC和BD相交于点O,下列判断正确的是().A.若AO=OC,则ABCD是平⾏四边形;B.若AC=BD,则ABCD是平⾏四边形;C.若AO=BO,CO=DO,则ABCD是平⾏四边形;D.若AO=OC,BO=OD,则ABCD是平⾏四边形5.不能判定四边形ABCD是平⾏四边形的条件是()A.AB=CD,AD=BC B.AB∥CD,AB=CDC.AB=CD,AD∥BC D.AB∥CD,AD∥BC6.四边形ABCD的对⾓线AC,BD相交于点O,能判断它为矩形的题设是()A.AO=CO,BO=DO B.AO=BO=CO=DOC.AB=BC,AO=CO D.AO=CO,BO=DO,AC⊥BD7.四边形ABCD的对⾓线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD8.在四边形ABCD中,O是对⾓线的交点,下列条件能判定这个四边形是正⽅形的是()A、AC=BD,AB∥CD,AB=CDB、AD∥BC,∠A=∠CC、AO=BO=CO=DO,AC⊥BDD、AC=CO,BO=DO,AB=BC9.在下列命题中,真命题是()A.两条对⾓线相等的四边形是矩形B.两条对⾓线互相垂直的四边形是菱形C.两条对⾓线互相平分的四边形是平⾏四边形D.两条对⾓线互相垂直且相等的四边形是正⽅形10.在下列命题中,正确的是()11.如图,已知四边形ABCD 是平⾏四边形,下列结论中不正确的是() A .当AB=BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形C .当∠ABC=900时,它是矩形D .当AC=BD 时,它是正⽅形12.如图,在ABC △中,点E D F ,,分别在边AB ,BC ,CA 上,且DE CA ∥,DF BA ∥.下列四个判断中,不正确...的是() A .四边形AEDF 是平⾏四边形B .如果90BAC ∠=o ,那么四边形AEDF 是矩形C .如果AD 平分BAC ∠,那么四边形AEDF 是菱形D .如果AD BC ⊥且AB AC =,那么四边形AEDF 是菱形 13.下列条件中不能判定四边形是正⽅形的条件是()。
初三总复习 矩形、菱形、正方形的性质与判定
矩形、菱形、正方形一、本部分知识重点:矩形、菱形、正方形的定义,性质和判定是重点。
这三种图形都是特殊的平行四边形,它们都具备平行四边形的性质。
二、知识要点:(一)矩形:定义:有一个角是直角的平行四边形是矩形。
性质:1、具有平行四边形的性质;2、矩形的四个角都是直角;3、矩形的对角线相等。
4、矩形是轴对称图形,它有两条对称轴。
如图.判定:1、用定义判定。
2、有三个角是直角的四边形是矩形;3、对角线相等的平行四边形是矩形。
(二)菱形:定义:有一组邻边相等的平行四边形是菱形。
性质:1、具有平行四边形的性质;2、菱形的四条边相等;3、菱形的对角线互相垂直,并且每一条对角线平分一组对角。
4、菱形是轴对称图形,它有两条对称轴。
如图.判定:1、用定义判定;2、四边都相等的四边形是菱形。
3、对角线互相垂直的平行四边形是菱形。
(三)正方形:定义;有一组邻边相等并且有一个角是直角的平行四边形是正方形。
性质:正方形是特殊的菱形,又是特殊的矩形,所以它具备菱形和矩形的所有的性质。
正方形是轴对称图形,它有四条对称轴。
如图.判定:1、用定义判定;2、有一个角是直角的菱形是正方形;3、有一组邻边相等的矩形是正方形。
另外由矩形性质得到直角三角形的性质:直角三角形斜边上的中线等于斜边的一半。
三、例题:例1,判断正误:(要判断一个命题是假命题,只需举一个反例即可)1、有三个角相等的四边形是矩形。
()分析:不正确。
反例:四边形ABCD中,∠A=∠B=∠C=850,∠D=1050,显然此四边形不是矩形。
2、对角线相等的四边形是矩形。
分析:不正确。
因为对角线不平分,未必是平行四边形。
反例:如图,四边形ABCD中,对角线AC=BD,但它不是矩形。
3、四个角都相等的四边形是矩形。
分析:正确。
因为四边形内角和等于3600,又知这四个内角都相等,所以每个内角为900,根据“有三个角是直角的四边形是矩形”即可得证。
4、对角线互相垂直的四边形是菱形。
平行四边形矩形菱形正方形的性质与判定
平行四边形、矩形、菱形、正方形的性质与判定(1)九年级数学备课组 课型:新授【学习目标】1、会证明平行四边形的性质定理及其相关结论2、能运用平行四边形的性质定理进行计算与证明3、在进行探索、猜想、证明的过程中,进一步发展推理论证的能力 【教学重、难点】重点:平行四边形的性质证明 表达格式的逻辑性 完整性 精炼性 难点:分析 综合 思考的方法 【情境创设】你能说说它们之间有什么联系与区别吗如图''''''//,//,//AB A B BC B C CA C A ,图中有______个平行四边形。
【合作交流】3241O DC B A活动1、上表中平行四边形的性质中,你能证明哪些性质 活动2、你认为平行四边形性质中,可以先证明哪一个为什么 活动3、证明定理“平行四边形对角线互相平分”。
【典题选讲】例1.已知,如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O , 求证:AO=CO ,BO=DO由此证明过程,同时也证明了定理“平行四边形对边相等”、“平行四边形对角相等”,这样我们可得平行四边形的三条性质定理:平行四边形对边相等。
平行四边形对角相等。
平行四边形对角线互相平分。
例2、 证明“夹在两条平行线之间的平行线段相等”分析:根据命题先画出相应图形,再由命题与所画图形写出已知、求证,最后根据已知条件写出证明过程。
例3、已知:如图,□ ABCD 中,E 、F 分别是CD 、AB 的中点。
求证:AE=CF思考与表达怎样想 怎样写要证AO=CO ,BO=DO 只需证△AOB ≌△COD 只需证AB=CD 只需证△ABC ≌△CDAADCHB 1200【课堂练习】1、已知:如图,在平行四边形ABCD 中,AB =8cm ,BC =10cm ,∠C =1200,求BC 边上的高AH 的长; 求平行四边形ABCD 的面积3.平行四边形ABCD 的两条对角线AC 与BD 相交于O ,已知AB=8, BC=6,△AOB 的周长为18,求△AOD 的周长。
几何公式定理:矩形,菱形、正方形
几何公式定理:矩形,菱形、正方形
几何公式定理:矩形
1、矩形性质定理1矩形的四个角都是直角
2、矩形性质定理2矩形的对角线相等
3、矩形判定定理1有三个角是直角的四边形是矩形
4、矩形判定定理2对角线相等的平行四边形是矩形
几何公式定理:菱形
5、菱形性质定理1菱形的四条边都相等
6、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角
7、菱形面积=对角线乘积的一半,即S=(ab)2
8、菱形判定定理1四边都相等的四边形是菱形
9、菱形判定定理2对角线互相垂直的平行四边形是菱形
几何公式定理:正方形
1、正方形性质定理1正方形的四个角都是直角,四条边都相等
2、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
3、定理1关于中心对称的两个图形是全等的
4、定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
5、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
特殊平行四边形的性质和判定总结
判定:
平行四边形的对边平行且相等
边
两组对边分别平行的四边形是平行四边形
平行四边形的对角相等
两组对边分别相等的四边形是平行四边形
平行四边形的对角线互相平分
一组对边平行且相等的四边形是平行四边形
平行四边形的邻角互补
角
两组对角分别相等的四边形是平行四边形
对角线
对角线互相平分的四边形是平行四边形
一.平行四边形的性质及判定:
对角线互相垂直平分且相等的四边形是正方形
二.面积公式
1.平行四边形=底✖️高
2.矩形=长✖️宽
3.菱形=对角线✖️对角线➗2
=底✖️高
4.正方形=边长✖️边长
=对角线✖️对角线➗2
平行四边形___________________菱形
性质:
判定
菱形具有平行四边形的所有性质
边
四条边相等的四边形是菱形
菱形的四条边都相等
菱形的两条对角线互相垂直,并且每一条对角线平分一组对角
对角线
对角线互相垂直的平行四边形是菱形
对角线互相垂直且平分的四边形是菱形
3.正方形:
平行四边形____________________________________正方形
特殊的平行四边形:
1.矩形:
平行四边形___________________矩形
性质:
判定
矩形具有平行四的平行四边形是矩形
矩形的四个角都是直角
有三个角是直角的四边形是矩形
矩形的对角线相等
对角线
对角线相等的平行四边形是矩形
对角线互相平分且相等的四边形是矩形
2.菱形(重点):
性质:
判定:
正方形具有平行四边形、矩形、菱形的所有性质
平行四边形、矩形、菱形、正方形性质和判定归纳表
平行四边形、矩形、菱形、正方形性质和判定归纳如表:之老阳三干创作类别性质判定对称性平行四边形①对边平行②对边相等③对角相等④邻角互补⑤对角线互相平分①两组对边分别平行的四边形②两组对边分别相等的四边形③一组对边平行且相等的四边形④两组对角分别相等的四边形⑤对角线互相平分的四边形中心对称矩形①具有平行四边形的一切性质②四个角都是直角③对角线相等①有一个角是直角的平行四边形②有三个角是直角的四边形③对角线相等的平行四边形中轴心对对称称菱形①具有平行四边形的一切性质②四条边都相等③对角线互相垂直平分每组对角①有一组邻边相等的平行四边形②四条边都相等的四边形③对角线互相垂直的平行四边形④对角线垂直且平分的四边形中轴心对对称称正方形①具有平行四边形、矩形、菱形的一切性质45对角线与边的夹角为②①有一个角是直角一组邻边相等的平行四边形②一组邻边相等的矩形③一个角是直角的菱形④对角线垂直且相等的平行四边形中轴心对对称称四种特殊四边形的性质边角对角线对称性平行四边形对边平行且相等对角相等互相平分中心对称矩形对边平行且相等四个角都是直角互相平分且相等轴对称中心对称菱形对边平行四条边相等对角相等互相垂直平分且每条对角线平分对角轴对称中心对称正方形对边平行四条边相等四个角都是直角互相垂直平分且相等,每条对角线平分对角轴对称中心对称四种特殊四边形经常使用的判定方法:。
平行四边形、菱形、矩形、正方形性质和判定归纳如表
平行四边形、菱形、矩形、正方形性质和判定归纳如表:
定义:两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线的距离。
注意:平行线间的距离处处相等。
二、矩形的一条对角线把矩形分成两个直角三角形,与之相联系的还有以下性质:(1)直角三角形的两个锐角互余。
(2)直角三角形两直角边的平方和等于斜边的平方。
(即勾股定理)
(3)直角三角形斜边上的中线等于斜边的一半。
(4)直角三角形中30 角所对的直角边等于斜边的一半。
四种特殊四边形的性质
四种特殊四边形常用的判定方法:
一组邻
一组邻
边相等
对角线相
对角线
垂直
对角线
相等
对角线垂
直。
题型专项研究:平行四边形、矩形、菱形、正方形的判定与性质
题型6平行四边形、矩形、菱形、正方形的判定与性质,备考攻略)1.简单的应用平行四边形、矩形、菱形、正方形的性质或判定解答证明题.2.四边形动态问题——旋转变换类、平移变换类、折叠变换类,运动问题类,利用折叠(翻折)、轴对称解答最值问题.3.平行四边形的存在性问题.4.四边形与二次函数的综合题.1.折叠、轴对称及特殊平行四边形的性质应用出错.2.平行四边形的存在性问题中解有遗漏.3.很难解答四边形与二次函数的综合题,无从下手.1.四边形是几何知识中非常重要的一块内容,因其“变化多端”更是成为中考数学考试的一个热门考点.近几年随着新课改的不断深入,中考题更加考查学生思维能力,如出现一些图形折叠、翻转等问题.这类问题的实践性强,要利用图形变化前后线段、角的对应相等关系,构造一些特殊三角形等知识来求解.2.中考还常把四边形与平面直角坐标系结合起来考查,这类题目不仅仅把“数”与“形”联系起来思考,更提高同学们综合运用知识的能力.数形结合题目可以考查学生对“新事物”“新知识”的接受和理解能力,也考查学生运用所学知识来解决“新事物”“新知识”的能力.3.四边形作为特殊的四边形,一直是中考试题中的主角.尤其是在综合了函数知识后动态研究它的存在性问题,对学生分析问题和解决问题的要求较高.此类题目主要考查平行四边形的判定与性质、函数解析式的确定与性质,考查识图作图、运算求解、数学表达等能力,数形结合、分类讨论、函数与方程等数学思想.1.简单的应用平行四边形、矩形、菱形、正方形的性质或判定解答证明题:平行四边形具有对边平行且相等、对角相等、对角线互相平分等性质,它们在计算、证明中都有广泛的应用:(1)求角的度数;(2)求线段的长;(3)求周长;(4)求第三边的取值范围.2.四边形动态问题——旋转变换类、平移变换类、折叠变换类,运动问题类,利用折叠(翻折)、轴对称解答最值问题:有关矩形纸片折叠的问题,通过动手操作去发现解决问题的方法.其规律为利用折叠前后线段、角的对应相等关系,构造直角三角形,利用勾股定理来求解.折叠问题数学思想:(1)思考问题的逆向(反方向),(2)转化与化归思想;(3)归纳与分类的思想;(4)从变寻不变性的思想.3.综合了函数知识后动态研究平行四边形的存在性问题:此类题目主要考查平行四边形的判定与性质、函数解析式的确定与性质,考查识图作图、运算求解、数学表达等能力,数形结合、分类讨论、函数与方程等数学思想.学生在处理问题的时候,往往不能正确分类,导致漏解.此外,在解题时一般需要添设辅助线,利用平行四边形的性质,转化为全等进行计算,学生顺利完成的难度就更大.如何才能让他们有目的的进行分类、简单明了的给出解答,从而减轻学习负担呢?借助平行四边形的对角线性质,来探究平行四边形的存在性问题就是一个很好的途径.4.四边形与二次函数的综合题是压轴题:综合考查了二次函数,一次函数,尺规作图,勾股定理,平面直角坐标系,一元二次方程,轴对称——翻折,最值问题.读懂题目、准确作图、熟悉二次函数及其图象是解题的关键.解决压轴题关键是找准切入点,如添辅助线,构造定理所需的图形或基本图形;紧扣不变量,并善于使用前题所采用的方法或结论;深度挖掘题干,反复认真的审题,在题目中寻找多解的信息,等等.压轴题牵涉到的知识点较多,知识转化的难度较高,除了要熟知各类知识外,平时要多练,提高知识运用和转化的能力.,典题精讲)◆简单的应用平行四边形、矩形、菱形、正方形的性质或判定解答证明题【例1】(成都中考)如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为________.【解析】由矩形的性质和线段垂直平分线的性质证出OA=AB=OB=3,得出BD=2OB =6,由勾股定理求出AD即可.【答案】3 31.(巴中中考)如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=30°,则∠E=__15__°.2.(2017甘肃中考)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF 是平行四边形; (2)当四边形BEDF 是菱形时,求EF 的长.解:(1)∵四边形ABCD 是矩形,O 是BD 的中点, ∴∠A =90°,AD =BC =4,AB ∥DC ,OB =OD, ∴∠OBE =∠ODF.在△BOE 和△DOF 中,⎩⎨⎧∠OBE =∠ODF ,OB =OD ,∠BOE =∠DOF ,∴△BOE ≌△DOF(ASA ), ∴EO =FO,∴四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,BD ⊥EF, 设BE =x ,则DE =x ,AE =6-x. 在Rt △ADE 中,DE 2=AD 2+AE 2, ∴x 2=42+(6-x)2, 解得:x =133.∵BD =AD 2+AB 2=213, ∴OB =12BD =13.∵BD ⊥EF,∴EO =BE 2-OB 2=2133,∴EF =2EO =4133.◆四边形动态问题——旋转变换类、平移变换类、折叠变换类,运动问题类,利用折叠(翻折)、轴对称解答最值问题【例2】(宿迁中考)如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN ,再过点B 折叠纸片,使点A 落在MN 上的点F 处,折痕为BE.若AB 的长为2,则FM 的长为( )A .2B . 3C . 2D .1【解析】根据翻折不变性,AB =FB =2,BM =1,在Rt △BFM 中,可利用勾股定理求出FM 的值.【答案】B3.(咸宁中考)已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A(5,0),OB =45,点P 是对角线OB 上的一个动点,D(0,1),当CP +DP 最短时,点P 的坐标为( D )A .(0,0)B .⎝⎛⎭⎫1,12C .⎝⎛⎭⎫65,35D .⎝⎛⎭⎫107,57(第3题图)(第4题图)4.(苏州中考)矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),D 是OA 的中点,点E 在AB 上,当△CDE 的周长最小时,点E 的坐标为( B )A .(3,1)B .⎝⎛⎭⎫3,43C .⎝⎛⎭⎫3,53 D .(3,2)5.(黄冈中考)如图,在矩形ABCD 中,点E ,F 分别在边CD ,BC 上,且DC =3DE =3a ,将矩形沿直线EF 折叠,使点C 恰好落在AD 边上的点P 处,则FP =.6.(2017甘肃中考)如图,E ,F 分别是▱ABCD 的边AD ,BC 上的点,EF =6,∠DEF =60°,将四边形EFCD 沿EF 翻折,得到EFC′D′,ED ′交BC 于点G ,则△GEF 的周长为( C )A .6B .12C .18D .247.(2017广东中考)如图①,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F.(1)求证:△BDF 是等腰三角形;(2)如图②,过点D 作DG ∥BE ,交BC 于点G ,连接FG 交BD 于点O. ①判断四边形BFDG 的形状,并说明理由; ②若AB =6,AD =8,求FG 的长.解:(1)如图①,根据折叠,∠DBC =∠DBE, 又AD ∥BC,∴∠DBC =∠ADB, ∴∠DBE =∠ADB, ∴DF =BF,∴△BDF 是等腰三角形;(2)①∵四边形ABCD 是矩形, ∴AD ∥BC, ∴FD ∥BG.∴四边形BFDG 是平行四边形. ∵DF =BF,∴四边形BFDG 是菱形; ②∵AB =6,AD =8, ∴BD =10, ∴OB =12BD =5.假设DF =BF =x ,∴AF =AD -DF =8-x.∴在Rt △ABF 中,AB 2+AF 2=BF 2,即62+(8-x)2=x 2,解得x =254,即BF =254, ∴FO =BF 2-OB 2=⎝⎛⎭⎫2542-52=154, ∴FG =2FO =152. ◆解决平面直角坐标系中平行四边形存在性问题【例3】(2017大理中考模拟)如图,A ,B ,C 是平面上不在同一直线上的三个点. (1) 画出以 A ,B ,C 为顶点的平行四边形;(2)若 A ,B ,C 三点的坐标分别为(-1,5),(-5,1),(2,2),请写出这个平行四边形第四个顶点 D 的坐标.【解析】利用坐标系的知识点解题.【答案】(1)如图所示;(2)第四个顶点D 的坐标为(-2,-2)或(6,6)或(-8,4).1.(兰州中考)如图所示,菱形ABCD 的周长为20 cm ,DE ⊥AB ,垂足为E ,sin A =35,则下列结论正确的个数有( C )①DE =3 cm ;②BE =1 cm ;③菱形的面积为15 cm 2;④BD =210 cm . A .1个 B .2个 C .3个 D .4个2.(济南中考)如图,矩形ABCD 中,AB =3,BC =5,过对角线交点O 作OE ⊥AC 交AD 于E ,则AE 的长是( D )A .1.6B .2.5C .3D .3.4(第2题图)3.(珠海中考)如图,P是菱形ABCD对角线BD上一点,PE⊥AB于点E,PE=4 cm,则点P到BC的距离是__4__cm.4.(新疆中考)如图,▱ABCD中,AB=2,AD=1,∠ADC=60°,将▱ABCD沿过点A 的直线l折叠,使点D落到AB边上的点D′处,折痕交CD边于点E.(1)求证:四边形BCED′是菱形;(2)若点P是直线l上的一个动点,请计算PD′+PB的最小值.解:(1)∵将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,∴∠DAE=∠D′AE,∠DEA=∠D′EA,∠D=∠AD′E.∵DE∥AD′,∴∠DEA=∠EAD′,∴∠DAE=∠EAD′=∠DEA=∠D′EA,∴∠DAD′=∠DED′,∴四边形DAD′E是平行四边形,∴DE=AD′.∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC,∴CE=D′B,CE∥D′B,∴四边形BCED′是平行四边形;(2)∵AD=AD′,∴▱DAD′E是菱形.∴D与D′关于AE对称.连接BD交AE于P,则BD的长即为PD′+PB的最小值,过D作DG⊥BA于G.∵CD ∥AB ,∴∠DAG =∠CDA =60°. ∵AD =1,∴AG =12,DG =32,BG =52,∴BD =DG 2+BG 2=7, ∴PD ′+PB 的最小值为7.5.(资阳中考)如图,在平行四边形ABCD 中,点A ,B ,C 的坐标分别是(1,0),(3,1),(3,3),双曲线y =kx(k ≠0,x >0)过点D.(1)求双曲线的解析式;(2)作直线AC 交y 轴于点E ,连接DE ,求△CDE 的面积.解:(1)∵▱ABCD 中,点A ,B ,C 的坐标分别是(1,0),(3,1),(3,3), ∴点D 的坐标为(1,2). ∵点D 在双曲线y =kx 上,∴k =1×2=2,∴双曲线的解析式为y =2x ;(2)∵直线AC 交y 轴于点E , ∴点E 的横坐标为0. ∵AD =2,∵S △ADC =12·(3-1)·AD =2,∴S △CDE =S △EDA +S △ADC =1+2=3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
称
正
方
形
①具有平行四边形、矩形、菱
形的一切性质
②对角线与边的夹角为45
①有一个角是直角一组邻边相等的平行四边形②一组邻边ຫໍສະໝຸດ 等的矩形③一个角是直角的菱形
④对角线垂直且相等的平行四边形
中轴
心对
对称
称
四种特殊四边形的性质
边
角
对角线
对称性
平行
四边形
对边平行
且相等
对角相等
互相平分
中心对称
矩形
对边平行
且相等
②一组邻边相等的矩形
③一个角是直角的菱形
④对角线垂直且相等的平行四边形
②四个角都是直角
③对角线相等
①有一个角是直角的平行四边形
②有三个角是直角的四边形
③对角线相等的平行四边形
中轴
心对
对称
称
菱
形
①具有平行四边形的一切性质
②四条边都相等
③对角线互相垂直平分每组对角
①有一组邻边相等的平行四边形
②四条边都相等的四边形
③对角线互相垂直的平行四边形
④对角线垂直且平分的四边形
中轴
心对
③一组对边平行且相等的四边形
④两组对角分别相等的四边形
⑤对角线互相平分的四边形
矩形
①有一个角是直角的平行四边形
②有三个角是直角的四边形
③对角线相等的平行四边形
菱形
①有一组邻边相等的平行四边形
②四条边都相等的四边形
③对角线互相垂直的平行四边形
④对角线垂直且平分的四边形
正方形
①有一个角是直角一组邻边相等的平行四边形
平行四边形、矩形、菱形、正方形性质和判定归纳如表:
类别
性质
判定
对称性
平
行
四
边
形
①对边平行
②对边相等
③对角相等
④邻角互补
⑤对角线互相平分
①两组对边分别平行的四边形
②两组对边分别相等的四边形
③一组对边平行且相等的四边形
④两组对角分别相等的四边形
⑤对角线互相平分的四边形
中
心
对
称
矩
形
①具有平行四边形的一切性质
四个角
都是直角
互相平分
且相等
轴对称
中心对称
菱形
对边平行
四条边相等
对角相等
互相垂直平分且
每条对角线平分对角
轴对称
中心对称
正方形
对边平行
四条边相等
四个角
都是直角
互相垂直平分且相等,
每条对角线平分对角
轴对称
中心对称
四种特殊四边形常用的判定方法:
平行
四边形
①两组对边分别平行的四边形
②两组对边分别相等的四边形