生物统计学 拟合优度检验和列联表卡方检验28页PPT
合集下载
《卡方检验正式》课件
卡方检验的结果可以直接解释为实际意义 ,例如,如果卡方值较大,则说明观察频 数与期望频数存在显著差异。
缺点
对数据要求高
卡方检验要求数据量较大,且各分类的期望频数不能太小,否则可能 导致结果不准确。
对离群值敏感
卡方检验对离群值比较敏感,离群值可能会对结果产生较大的影响。
无法处理缺失值
卡方检验无法处理含有缺失值的数据,如果数据中存在缺失值,需要 进行适当的处理。
案例二:市场研究中的卡方检验
总结词
市场研究中,卡方检验用于评估不同市 场细分或产品特征与消费者行为之间的 关联。
VS
详细描述
在市场研究中,卡方检验可以帮助研究者 了解消费者对不同品牌、产品或服务的偏 好。例如,通过比较不同年龄段消费者对 某品牌的选择比例,企业可以更好地制定 市场策略和产品定位。
案例三:社会调查中的卡方检验
小,表示两者之间的差异越小。通常根据卡方值的概率水平来判断差异
是否具有统计学显著性。
02
卡方检验的步骤
建立假设
假设1
观察频数与期望频数无显著差异
假设2
观察频数与期望频数有显著差异
收集数据
从样本数据中获取观察频数 确定期望频数,可以使用理论值或预期频数
制作交叉表
将收集到的数据整理成二维表格形式,行和列分别表示分类变量
卡方检验的基本思想
01
基于假设检验原理
卡方检验基于假设检验的原理,通过构建原假设和备择假设,利用观测
频数与期望频数的差异来评估原假设是否成立。
02
比较实际观测频数与期望频数
卡方检验的核心是比较实际观测频数与期望频数,通过卡方值的大小来
评估两者之间的差异程度。
03
卡方拟合优度检验课件
卡方拟合优度检验与其他方法的结合应用
与贝叶斯方法结合
利用贝叶斯方法对数据进行先验信息的引入,提高卡方拟合优度 检验的准确性。
与主成分分析结合
通过主成分分析对多维数据进行降维处理,简化数据结构,再利用 卡方拟合优度检验进行模型检验。
与聚类分析结合
利用聚类分析将数据划分为不同的簇,再对每个簇进行卡方拟合优 度检验,提高检验的针对性。
实例三:教育程度分布的卡方检验
总结词
教育程度分布的卡方检验用于评估观察 到的教育程度分布与预期分布是否一致 。
VS
详细描述
教育程度分布的卡方检验可以用于比较不 同教育程度的人口比例是否符合预期。例 如,我们可以比较实际观察到的不同教育 程度的比例与理论预期的比例,以了解两 者是否存在显著差异。通过卡方统计量的 大小,可以判断实际教育程度分布与预期 分布的差异程度。
01
计算期望频数的公式:$期望频数 = frac{总频数 times 该类别的频 数}{该类别的观察数}$
02
根据期望频数对实际频数进行比 较,判断是否符合预期。
计算卡方值
卡方值的计算公式:$卡方值 = frac{(实际频数 - 期望频数)^2}{期望 频数}$
将计算出的卡方值与自由度进行比较 ,判断是否显著。
实例一:性别分布的卡方检验
总结词
性别分布的卡方检验用于评估观察到的性别分布与预期分布是否一致。
详细描述
假设我们有一个数据集,其中记录了某个地区的人口性别分布。通过卡方拟合优度检验,我们可以比较实际观察 到的性别分布与预期的均匀分布或某种理论分布是否存在显著差异。如果卡方统计量较小,说明实际分布与预期 分布较为接近;如果卡方统计量较大,则说明两者存在显著差异。
生物统计学—卡方检验PPT课件
0.5 2 301.63
Ei
(4)推断:由CHIDIST(301.63, 1)=1.45E-67,即P c 2 301.63 0.01
故应否定H0,接受HA,认为鲤鱼体色F2性状比不符合3:1比率
(4)推断:由CHIINV(0.025,
1)=5.02,
即
cc2
c2 0.05(1)
,即P
0.05
c2 1
和c
2
c
2
2
2
第10页/共31页
例:已知某农田受到重金属污染,经抽样测定铅浓度分别为:
4.2, 4.5, 3.6, 4.7, 4.0, 3.8, 3.7, 4.2 (ug/g),方差为0.150, 试检验受到
污染的农田铅浓度的方差是不是和正常浓度铅浓度的方差
(0.065)相同
分析:1)一个样本方差同质性检验
论值记为:Ei,即 k c2
Oi Ei 2 , (df k 1)
i1
Ei
第12页/共31页
卡方检验的原理和方法
Pearson定理的基本含义: 如果样本确实是抽自由(P1,P2,…,Pk)代
表的总体,Oi和Ei之间的差异就只是随机误差, 则Pearson统计量可视为服从卡方分布
反之,如果样本不是抽自由(P1,P2,…,Pk) 代表的总体,Oi和Ei之间的差异就不只是是随机 误差,从而使计算出的统计量有偏大的趋势
解:(1)假设 H0 : 鲤鱼体色F2性状分离符合3:1 对 H A : 鲤鱼体色F2性状分离不符合3:1
(2)选取显著水平 0.05
第17页/共31页
(3)检验计算: 计算鲤鱼体色的理论值
体色 F2理论尾数
青灰色 1201.5
生物统计学 第12讲 拟合优度检验和列联表分析
å c2 = r (Oi -Ti )2
i=1
Ti
χ2:
• 度量理论频数Ti和观察频数Oi之间距离 • 度量理论与数据吻合程度
• 1/Ti加权
O1 =3 T1 =2 O1 -T1 =1 O2 =300 T2 =299 O2 -T2 =1
吻合度
21
设变量 X 有 r 个取值或类,若
H0:P(Ai)=pi (i=1,2,…,r) 当n->∞时,有
不拒绝H0(P=0.556),子二代分离符合孟德尔 的9:3:3:1的规律。
例1 解答
27
当n->∞时,有
å c2 = r (Oi -Ti )2 ~ c2 (df )
i=1
Ti
(1)n > 50,Ti ≥ 5 (2)df = r - 1-m
(3)df =1时,建议使用Yate连续性校正以提高精度:
12.80
= 10.71
>
c2 1-0.01
(2)
=
9.2103
>
c2 1-0.05
(
2)
=
5.9915
0.01水平上拒绝H0,每微升培养液中的酵母细胞数 X 不服从泊松分布。
例2 解答
34
k 频数 理论频数 0 213 202.1 1 128 138.0 2 37 47.1 ≥3 22 12.8
X
判断的依据:差异的大小
2
P( X -0.5 ³c) = a
c
=
u1-a
2
0.01 12
0.012 X ~ N(0.5, )
12
x 0.5 c 0.5
μ≠0.5
μ=0.5
μ≠0.5
生物统计学-7
k
此统计量在n充分大时近 似服从2分布,要求每一 组内的理论数不得小于5。
表
实际观察次数Oi
犊牛性别实际观察次数与理论次数
理论次数Ti
Oi - Ti
4
( Oi - Ti )2/
Ti
38(O1) 34(T1) 0.4706
30(O2) 68
34(T2) 68
-4 0
0.4706 0.9412
返回本节
间无差异。即认为有效或无效与给药方式无关联。
2)求理论值:根据事件的概率法则,若事件A和事件B
是相互独立的,则有
P( AB) P( A) P( B)
98 122 P( BA) P( B) P( A) ( )( ) 193 193
在零假设的基础上,有:
其理论数T1可由理论频数乘以总数得出:同样可求出 其它理论数。
共获得n个独立的观测值,第i类观测值的数目为Oi,
O
i 1
k
i
n
k
O
i 1
k
i
38 30 68
第i类的概率为pi 。
p
i 1
i
1
p1=1/2, p2=1/2.
第i类的理论数为Ti,Ti=npi.则T1=T2=34。 于机会造成的
i 1 Oi与Ti进行比较,判断Oi与Ti之间总的不符合程度有否由
对二项分布的检验- p 未知
表中理论概率由二项分布概率计算公式:计算,如 10! 0 0 10 C10 p q 0.21750 0.782510 0.0861 10!0!
10! C pq 0.21751 0.78259 0.2392 9!1!
此统计量在n充分大时近 似服从2分布,要求每一 组内的理论数不得小于5。
表
实际观察次数Oi
犊牛性别实际观察次数与理论次数
理论次数Ti
Oi - Ti
4
( Oi - Ti )2/
Ti
38(O1) 34(T1) 0.4706
30(O2) 68
34(T2) 68
-4 0
0.4706 0.9412
返回本节
间无差异。即认为有效或无效与给药方式无关联。
2)求理论值:根据事件的概率法则,若事件A和事件B
是相互独立的,则有
P( AB) P( A) P( B)
98 122 P( BA) P( B) P( A) ( )( ) 193 193
在零假设的基础上,有:
其理论数T1可由理论频数乘以总数得出:同样可求出 其它理论数。
共获得n个独立的观测值,第i类观测值的数目为Oi,
O
i 1
k
i
n
k
O
i 1
k
i
38 30 68
第i类的概率为pi 。
p
i 1
i
1
p1=1/2, p2=1/2.
第i类的理论数为Ti,Ti=npi.则T1=T2=34。 于机会造成的
i 1 Oi与Ti进行比较,判断Oi与Ti之间总的不符合程度有否由
对二项分布的检验- p 未知
表中理论概率由二项分布概率计算公式:计算,如 10! 0 0 10 C10 p q 0.21750 0.782510 0.0861 10!0!
10! C pq 0.21751 0.78259 0.2392 9!1!
《卡方检验》课件
制作交叉表
确定交叉表的行列变量
根据研究目的和内容,选择合适的行列变量,构建交叉表。
制作交叉表
将分组后的数据按照行列变量制作成交叉表,以便于进行卡 方检验。
计算理论频数
确定期望频数
根据交叉表中的数据,结合各组 的概率计算期望频数。
计算理论频数
根据期望频数和实际频数计算理 论频数,为后续的卡方检验提供 依据。
计算卡方值
计算卡方值
使用卡方检验的公式计算卡方值,该 值反映了实际频数与理论频数的差异 程度。
自由度的确定
在计算卡方值时,需要确定自由度, 自由度通常为行数与列数的减一。
显著性水平的确定
选择显著性水平
显著性水平是衡量卡方值是否显著的指标,通常选择0.05或0.01作为显著性水 平。
判断显著性
根据卡方值和自由度,结合显著性水平判断卡方检验的结果是否显著,从而得 出结论。
3.84、6.63等),可以确定观测频数与期望频数之间的差异是否具有统
计学显著性。
02
卡方检验的步骤
收集数据
确定研究目的
制定调查问卷或收集程序
在开始收集数据之前,需要明确研究 的目的和假设,以便有针对性地收集 相关数据。
根据研究目的和内容,制定合适的调 查问卷或建立数据收集程序,确保数 据的完整性和准确性。
详细描述
例如,在市场调研中,我们可以通过卡方检验来分析不同年龄段、性别、职业等 人群对于某产品的态度或购买意愿是否有显著差异,从而为产品定位和营销策略 提供依据。
实际案例二:医学研究中的应用
总结词
在医学研究中,卡方检验常用于病例 对照研究和队列研究中的分类变量关 联性分析。
详细描述
例如,在病例对照研究中,我们可以 通过卡方检验来比较病例组和对照组 在某些基因型、生活方式或暴露因素 上的分布是否有统计学差异,从而探 讨病因或危险因素。
2373列联表卡方检验生物统计学
▪ 事件的独立性判断规则
P(AB) P(A) P(B)
▪ 每一分类属性组合 = 列联表的一个单元格
pij pi p j
Ri C j
n
n
Eij n pij n
Ri n
Cj n
R2值 反映实测频数与理论频数间总差异度
R
2
C (Oij Eij )2
▪ 统计假设 H0 各总体(R) 目标事件(C) 发生率相等
▪
统计思想
➢ 以样本率作为总体率的估计;
Eij
Oi
pj
Oi
Oj n
Oi
Oj n
➢ 计算理论频数和χ2统计量值;
R
2
C (Oij Eij )2
➢ χ2 检验与推断。
i1 j1
Eij
▪ 注意 2×2表数据 f=(r-1)(c-1)=1 n 、Eij
10
11
The End
12
7-3
7-非参数假设检验
列联表χ2检验
1、列联表
Contingency table R×C列联表 R×C表 ▪ 反映多重分类的频数分布表 ▪ 常用于定性/类数据分析 ▪ 将每个观测对象按行和列两方面的属性分类
行属性-R种分类;列属性-C种分类 ▪ 2×2表/四格表 fourfold table
2
列联表资料的统计检验
▪ 交叉分类资料 一个抽样总体
独立性检验 行/列所代表的分类属性是否相互独立?
▪ 多组分类资料 多个总体独立抽样
多个总体率的比较 多个分类在构成上是否一致?
χ2 检验 根据列联表数据,对实际频数与理论频数 的一致性进行检验。
3
2、列联表的χ2 独立性检验
卡方检验与列联表
生物统计学·卡方检验与列联表
适合性检验
1. 零假设与备择假设 H0:实际观察次数之比符合9:3:3:1的理论比例。 HA:实际观察次数之比不符合9:3:3:1的理论比例。
2. 选择计算公式 由于本例的属性类别分类数 k=4, 自由 度df = k-1 = 4-1 = 3 > 1,故利用(1)式计算X2。
生物统计学 第10讲 卡方检验与列联表
2012.10
生物统计学·卡方检验与列联表
内容
卡方检验(Chi Squared Test, 2 Test) •2检验基本概念
• 适合性检验 • 独立性检验
- 列联表 (Contingency Table) - 2×2列联表 - R×C列联表
*总体 2检验 * 两两比较 2检验
n 1 S2
2
n 1 S 2
2
~
2 n 1
生物统计学·卡方检验与列联表
2分布
随自由度的增大, 曲线由偏斜渐趋于对称。df≥30
时, 2分布近似正态分布
生物统计学·卡方检验与列联表
2检验基本概念
计数资料2 检验的基本思想: 首先假设观察频数(O)与期望频数(E)没有差别,而X2 值表 示观察值与理论值的偏差程度。当n较大时,X2 统计量近似服 从n-1个自由度的2 分布。
多个因子属性类别数的不同而构成R×C列联表. 而适合性检验 只按某一因子的属性类别将如性别、表现型等次数资料归组。 2. 适合性检验按已知的属性分类理论或学说计算理论次数。独立 性检验在计算理论次数时没有现成的理论或学说可资利用,理 论次数是在两因子相互独立的假设下进行计算。 3. 在适合性检验中确定自由度时,只有一个约束条件:各理论次 数之和等于各实际次数之和,自由度为属性类别数减1; 独立性 检验的自由度为(R-1)(C-1)
适合性检验
1. 零假设与备择假设 H0:实际观察次数之比符合9:3:3:1的理论比例。 HA:实际观察次数之比不符合9:3:3:1的理论比例。
2. 选择计算公式 由于本例的属性类别分类数 k=4, 自由 度df = k-1 = 4-1 = 3 > 1,故利用(1)式计算X2。
生物统计学 第10讲 卡方检验与列联表
2012.10
生物统计学·卡方检验与列联表
内容
卡方检验(Chi Squared Test, 2 Test) •2检验基本概念
• 适合性检验 • 独立性检验
- 列联表 (Contingency Table) - 2×2列联表 - R×C列联表
*总体 2检验 * 两两比较 2检验
n 1 S2
2
n 1 S 2
2
~
2 n 1
生物统计学·卡方检验与列联表
2分布
随自由度的增大, 曲线由偏斜渐趋于对称。df≥30
时, 2分布近似正态分布
生物统计学·卡方检验与列联表
2检验基本概念
计数资料2 检验的基本思想: 首先假设观察频数(O)与期望频数(E)没有差别,而X2 值表 示观察值与理论值的偏差程度。当n较大时,X2 统计量近似服 从n-1个自由度的2 分布。
多个因子属性类别数的不同而构成R×C列联表. 而适合性检验 只按某一因子的属性类别将如性别、表现型等次数资料归组。 2. 适合性检验按已知的属性分类理论或学说计算理论次数。独立 性检验在计算理论次数时没有现成的理论或学说可资利用,理 论次数是在两因子相互独立的假设下进行计算。 3. 在适合性检验中确定自由度时,只有一个约束条件:各理论次 数之和等于各实际次数之和,自由度为属性类别数减1; 独立性 检验的自由度为(R-1)(C-1)
生物统计学课件--9拟合优度检验
二、测验的目的:
通过实测值判断试验结果是否与某总体分布、某理论、模型或 假说等相吻合。
三、自由度的确定: df = k-1,其中 k 为属性性状的分组数,在例1中, 按花色将大豆分成两组,则 k = 2,df = 1。 四、应用实例:
例3:以紫花大豆和白花大豆品种杂交,在 F2 代共得到 289株,其中紫花208 株,白花81株,如果花色受一对等 位基因控制,则根据遗传学理论, F2 代紫花与白花植株 的分离比应为3:1,问现在的试验结果是否符合一对等 位基因的遗传规律? 分析:①属性性状:紫花、白花,
例4:黄圆豌豆与绿皱豌豆杂交,第二代分离数目如下:
Y-R黄圆 315 Y-rr 黄皱 101 yyR绿圆 108 yyrr 绿皱 32 总数 556
问试验结果是否符合自由组合律?
解:若性状间相互独立,根据孟德尔的自由组合律,则可以
有:
Y R : Y rr : yyR : yyrr 9 : 3 : 3 : 1
这一类数据的特点是都属于离散型数据,是通过数 数的办法获得的原始数据,它们不再符合基于正态 分布的 u分布、t分布和 F分布等,因此也就不能再 用基于正态分布的u检验、t检验、F检验等对数据进 行统计推断,而必须引入新的检验方法,这就是我 们即将给大家介绍的新内容:
拟和优度检验
第六章
一、什么是拟合优度检验 1、概念
208 216.75
216.75
2
81 72.25
72.25
2
1.4129
查表,df = k-1 = 2-1 =1 时, ∵
2 1, 0.05
3.841
2
2 1, 0.05
∴接受 H0:O =T,
通过实测值判断试验结果是否与某总体分布、某理论、模型或 假说等相吻合。
三、自由度的确定: df = k-1,其中 k 为属性性状的分组数,在例1中, 按花色将大豆分成两组,则 k = 2,df = 1。 四、应用实例:
例3:以紫花大豆和白花大豆品种杂交,在 F2 代共得到 289株,其中紫花208 株,白花81株,如果花色受一对等 位基因控制,则根据遗传学理论, F2 代紫花与白花植株 的分离比应为3:1,问现在的试验结果是否符合一对等 位基因的遗传规律? 分析:①属性性状:紫花、白花,
例4:黄圆豌豆与绿皱豌豆杂交,第二代分离数目如下:
Y-R黄圆 315 Y-rr 黄皱 101 yyR绿圆 108 yyrr 绿皱 32 总数 556
问试验结果是否符合自由组合律?
解:若性状间相互独立,根据孟德尔的自由组合律,则可以
有:
Y R : Y rr : yyR : yyrr 9 : 3 : 3 : 1
这一类数据的特点是都属于离散型数据,是通过数 数的办法获得的原始数据,它们不再符合基于正态 分布的 u分布、t分布和 F分布等,因此也就不能再 用基于正态分布的u检验、t检验、F检验等对数据进 行统计推断,而必须引入新的检验方法,这就是我 们即将给大家介绍的新内容:
拟和优度检验
第六章
一、什么是拟合优度检验 1、概念
208 216.75
216.75
2
81 72.25
72.25
2
1.4129
查表,df = k-1 = 2-1 =1 时, ∵
2 1, 0.05
3.841
2
2 1, 0.05
∴接受 H0:O =T,
卡方-拟合优度检验PPT课件
求各组内的理论次数不小于5。若某组的理论次数小 于5,则应把它与其相邻的一组或几组合并,直到理 论次数大 于5 为止。
精选ppt课件最新
13
• 统计量:
2 r (Oi Ti )2
i1
Ti
• 使用条件:
– 各理论值均大于5。 – 若自由度为1,则应作连续性矫正:
r
2
(Oi Ti 0.5)2
i1
精选ppt课件最新
27
(二)拟合优度检验按已知的属性分类理论或学说, 计算理论次数。独立性检验在计算理论次数时没有现 成的理论或学说可资利用,理论次数是在两因子相互 独立的假设下进行计算。
(三)在拟合优度检验中确定自由度时,只有一个 约束条件:各理论次数之和等于各实际次数之和,自 由度为属性类别数减1。而在r×c列联表的独立性检 验中,共有rc个理论次数,但受到以下条件的约束:
而另一组实际观察次数为26理论次数为21相差亦为了弥补b这一不足将各差数平方除以相应的理论次数后再相加并记之为也就是说2是度量实际观察次数与理论次数偏离程度的一个统计量2越小表明实际观察次数与理论次数越接近
生物统计学
第七章 拟合优度检验- 2检验
精选ppt课件最新
1
§7.1、拟合优度检验的一般原理
若20.05≤2 (或2c)<20.01, 若2 ( 或2c)≥20.01,
精选ppt课件最新
18
7.2.2 对二项分布的检验(P93)
下面结合实例说明适合性检验方法。
(总体参数已知 )
【例】 在研究牛的毛色和角的有无两对相对性状分离
现象时 ,用黑色无角牛和红色有角牛杂交 ,子二代出 现黑色无角牛192头,黑色有角牛78头,红色无角牛72 头,红色有角牛18头,共360头。试 问这两对性状是否 符合孟德尔遗传规律中9∶3∶3∶1的遗传比例?
精选ppt课件最新
13
• 统计量:
2 r (Oi Ti )2
i1
Ti
• 使用条件:
– 各理论值均大于5。 – 若自由度为1,则应作连续性矫正:
r
2
(Oi Ti 0.5)2
i1
精选ppt课件最新
27
(二)拟合优度检验按已知的属性分类理论或学说, 计算理论次数。独立性检验在计算理论次数时没有现 成的理论或学说可资利用,理论次数是在两因子相互 独立的假设下进行计算。
(三)在拟合优度检验中确定自由度时,只有一个 约束条件:各理论次数之和等于各实际次数之和,自 由度为属性类别数减1。而在r×c列联表的独立性检 验中,共有rc个理论次数,但受到以下条件的约束:
而另一组实际观察次数为26理论次数为21相差亦为了弥补b这一不足将各差数平方除以相应的理论次数后再相加并记之为也就是说2是度量实际观察次数与理论次数偏离程度的一个统计量2越小表明实际观察次数与理论次数越接近
生物统计学
第七章 拟合优度检验- 2检验
精选ppt课件最新
1
§7.1、拟合优度检验的一般原理
若20.05≤2 (或2c)<20.01, 若2 ( 或2c)≥20.01,
精选ppt课件最新
18
7.2.2 对二项分布的检验(P93)
下面结合实例说明适合性检验方法。
(总体参数已知 )
【例】 在研究牛的毛色和角的有无两对相对性状分离
现象时 ,用黑色无角牛和红色有角牛杂交 ,子二代出 现黑色无角牛192头,黑色有角牛78头,红色无角牛72 头,红色有角牛18头,共360头。试 问这两对性状是否 符合孟德尔遗传规律中9∶3∶3∶1的遗传比例?
相关主题