2010年-2015年迎春杯试卷汇总(小高组)
2011年“迎春杯”数学解题能力展示复赛试卷(小高组)-含答案解析
2021年“迎春杯〞数学解题能力展示复赛试卷〔小高组〕一、填空题Ⅰ〔每题8分,共40分〕1.〔8分〕定义一种新运算a☆b满足:a☆b=b×10+a×2,那么2021☆130=.2.〔8分〕从1999年到2021年的12年中,物价涨幅为150%〔即1999年用100元能购置的物品,2021年要比原来多花150元才能购置〕.假设某个企业的一线员工这12年来工资都没有变,按购置力计算,相当于工资下降了%.3.〔8分〕如图中大圆的半径是20厘米,7个小圆的半径都是10厘米.那么阴影图形的面积是平方厘米〔π取3.14〕.4.〔8分〕某届“数学解题能力展示〞读者评选活动初试共有12000名学生参加,分为初中、小学高年级、小学中年级三个组别、小学的两个组共占总人数的,不是小学高年级组的占总人数的.那么小学中年级组参赛人数为人.5.〔8分〕如图是一个除法竖式,这个除法竖式的被除数是多少?二、填空题Ⅱ〔每题10分,共50分〕6.〔10分〕算式1!×3﹣2!×4+3!×5﹣4!×6+…+2021!×2021﹣2021!×2021+2021!的计算结果是.7.〔10分〕春节临近.从2021年1月17日〔星期一〕起工厂里的工人陆续回家过年,与家人团聚.假设每天离厂的工人人数相同,到1月31日,厂里还剩下工人121名,在这15天期间,统计工厂工人的工作量是2021个工作日〔一人工作一天为1个工作日,工人离厂当天及以后不需要统计〕,其中周六、日休息,且无人缺勤,那么截止到1月31日,回家过年的工人共有人.8.〔10分〕有一个整数,它恰好是它的约数个数的2021倍,这个整数的最小值是.9.〔10分〕一个新建5层楼房的一个单元每层有东西2套房:各层房号如下图,现已有赵、钱、孙、李、周五家入住,一天他们5人在花园中聊天:赵说:“我家是第3个入住的,第1个入住的就住我对门.〞钱说:“只有我一家住在最高层.〞孙说:“我家入住时,我家的同侧的上一层和下一层都已有人入住了.〞李说:“我家是五家中最后一个入住的,我家楼下那一层全空着.〞周说:“我家住在106号,104号空着,108号也空着.〞他们说的话全是真话,设第1、2、3、4、5家入住的房号的个位数依次为A、B、C、D、E,那么五位数=.10.〔10分〕6支足球队,每两队间至多比赛一场如果每队恰好比赛了2场,那么符合条件的比赛安排共有种.三、填空题Ⅲ〔每题12分,共60分〕11.〔12分〕0~9可以组成两个五位数A和B,如果A+B的和是一个末五位数字相同的六位数,那么A×B的不同取值共有个.12.〔12分〕甲乙两人分别从A、B两地同时出发,在A、B往返行走;甲出发的同时,丙也从A出发去B.当甲乙两人第一次迎面相遇在C地时,丙还有100米才到C;当丙走到C时,甲又往前走了108米;当丙到B时,甲乙正好第二次迎面相遇.那么A、B两地间的路程是多少米?13.〔12分〕如图,大正方形被分成了面积相等的五块.假设AB长为3.6厘米,那么大正方形的面积为平方厘米.14.〔12分〕用36个3×2×1的实心小长方体拼成一个6×6×6的大正方体,在各种拼法中,从大正方体外的某一点看过去最多能看到个小长方体.15.〔12分〕平面中有15个红点,在这些红点间连一些线段,一个红点连出了几条线段,就在这个红点上标几.所有标有相同数的红点之间互不连线,那么这15个红点间最多连了条线段.2021年“迎春杯〞数学解题能力展示复赛试卷〔小高组〕参考答案与试题解析一、填空题Ⅰ〔每题8分,共40分〕1.〔8分〕定义一种新运算a☆b满足:a☆b=b×10+a×2,那么2021☆130=5322.【解答】解:根据分析可得,2021☆130=130×10+2021×2=1300+4022=5322;故答案为:5322.2.〔8分〕从1999年到2021年的12年中,物价涨幅为150%〔即1999年用100元能购置的物品,2021年要比原来多花150元才能购置〕.假设某个企业的一线员工这12年来工资都没有变,按购置力计算,相当于工资下降了60%.【解答】解:100+100×150%=100+150=250〔元〕1﹣100÷250=1﹣40%=60%答:按购置力计算,相当于工资下降了60%.故答案为:60.3.〔8分〕如图中大圆的半径是20厘米,7个小圆的半径都是10厘米.那么阴影图形的面积是942平方厘米〔π取3.14〕.【解答】解:观察图象可知阴影局部的面积=7个小圆面积﹣一个大圆面积=7•π•102﹣π•202=300π=942,故答案为:942.4.〔8分〕某届“数学解题能力展示〞读者评选活动初试共有12000名学生参加,分为初中、小学高年级、小学中年级三个组别、小学的两个组共占总人数的,不是小学高年级组的占总人数的.那么小学中年级组参赛人数为5250人.【解答】解:1﹣=,﹣=,12000×=5250〔人〕;答:小学中年级组参赛人数为5250人.故答案为:5250.5.〔8分〕如图是一个除法竖式,这个除法竖式的被除数是多少?【解答】解:由题意,除数的两个倍数分别是2□□和91□,如果2□□是除数的2倍,根据余数为130,除数为131以上,149以下,这样91□只能是除数的7倍,131×7=917,那么第三个被除数为91□或81□,它等于除数的某个倍数减1,只能是7倍减1,即916,被除数等于131×277﹣1=36286,经检验符合题意;如果2□□是除数的1倍,那么91□是除数的4倍,可能是912或916,除数可能是228或229,第三个被除数为91□或81□,除以除数之后余数为130,可能是228×3+130=814或229×3+130=817,被除数相应为228×143+130=32734或229×143+130=32877,但无论哪种,第一个差都是两位数,所以不符合题意.综上所述,被除数等于36286,除数为131,商为276.二、填空题Ⅱ〔每题10分,共50分〕6.〔10分〕算式1!×3﹣2!×4+3!×5﹣4!×6+…+2021!×2021﹣2021!×2021+2021!的计算结果是1.【解答】解:分组找规律:2021!×2021﹣2021!×2021+2021!=2021!〔2021﹣2021×2021+2021×2021〕=2021!那么2007!×2021﹣2021!×2021+2021!=2007!〔2021﹣2021×2021+2021×2021〕=2007!由奇数项向前裂变抵消规律得原式=2021!×2021﹣2021!×2021+2021!+…+5!×7﹣4!×6+3!×5﹣2!×4+1!×3=1!=1故答案为:17.〔10分〕春节临近.从2021年1月17日〔星期一〕起工厂里的工人陆续回家过年,与家人团聚.假设每天离厂的工人人数相同,到1月31日,厂里还剩下工人121名,在这15天期间,统计工厂工人的工作量是2021个工作日〔一人工作一天为1个工作日,工人离厂当天及以后不需要统计〕,其中周六、日休息,且无人缺勤,那么截止到1月31日,回家过年的工人共有120人.【解答】解:依题意可知:设每天回家的人数为x人,那么15天共走15x人,其中有2个周六周日共4天休息不工作.周末剩余人数为9x〔周六〕,8x〔周日〕,2x〔周六〕,x〔周日〕.121×11+〔3+4+5+6+7+10+11+12+13+14〕x=2021∴x=8,15x=120〔人〕故答案为:1208.〔10分〕有一个整数,它恰好是它的约数个数的2021倍,这个整数的最小值是16088.【解答】解:用列举法因为2021×8=16088,所以,满足条件的最小整数为16088,故答案为16088.9.〔10分〕一个新建5层楼房的一个单元每层有东西2套房:各层房号如下图,现已有赵、钱、孙、李、周五家入住,一天他们5人在花园中聊天:赵说:“我家是第3个入住的,第1个入住的就住我对门.〞钱说:“只有我一家住在最高层.〞孙说:“我家入住时,我家的同侧的上一层和下一层都已有人入住了.〞李说:“我家是五家中最后一个入住的,我家楼下那一层全空着.〞周说:“我家住在106号,104号空着,108号也空着.〞他们说的话全是真话,设第1、2、3、4、5家入住的房号的个位数依次为A、B、C、D、E,那么五位数=69573.【解答】解:根据分析,因为104和108都空着,而孙的楼上楼下都有人了,所以孙住在左侧,只有钱一家住在最高层,说明剩余4人住在101,102,103,105,106,107,里面的6家,全空着的一层只能是第一层或第二层,这样才能使得孙和楼上楼下都有人.如果全空着的是第一层,那么李住在第二层的103,李氏最后入住的,所以孙住在107,且105和109都在这之前有人住了,赵是第三个入住的,所以孙一定是第四个入住的,根据钱的话,钱住在109,有对门的是105和106,周住在106,所以赵住在105,而且周的第一个入住的,故答案是:69573.10.〔10分〕6支足球队,每两队间至多比赛一场如果每队恰好比赛了2场,那么符合条件的比赛安排共有70种.【解答】解:6支球队分2组每组3支,这3支球队间相互比赛:分组方法:〔6×5×4〕÷〔3×2×1〕÷2=10〔选3支球队和剩3支球队重复,所以除2〕;6支球队围成圈,相邻的球队之间比赛:方法:5×4×3×2×1÷2=60 〔顺时针与逆时针重复,所以除2〕,所以符合条件的比赛安排共有10+60=70种.答:符合条件的比赛安排共有70种.故答案为:70.三、填空题Ⅲ〔每题12分,共60分〕11.〔12分〕0~9可以组成两个五位数A和B,如果A+B的和是一个末五位数字相同的六位数,那么A×B的不同取值共有384个.【解答】解:依题意可知:六位数字的首位一定是1,根据弃九法后5位都是7.所以这两个五位数的首位之和是17.后四个数字和为7的数字两两配对.把和为7的数字两两配对,首位是9的那个五位数有8×6×4×2=384〔种〕.根据不同情况下两个五位数的差不同,差小积大,这384个乘积也各不相同.故答案为:384.12.〔12分〕甲乙两人分别从A、B两地同时出发,在A、B往返行走;甲出发的同时,丙也从A出发去B.当甲乙两人第一次迎面相遇在C地时,丙还有100米才到C;当丙走到C时,甲又往前走了108米;当丙到B时,甲乙正好第二次迎面相遇.那么A、B两地间的路程是多少米?【解答】解:甲从A走到C时,丙走了100÷=1250〔米〕,AC的距离为1250×=1350〔米〕,甲乙速度之和是丙的速度的3倍,那么乙的速度是丙的〔3﹣〕倍,BC的距离为1250×〔3﹣〕=2400〔米〕,所以AB的距离为1350+2400=3750〔米〕答:A、B两地间的路程是3750米.13.〔12分〕如图,大正方形被分成了面积相等的五块.假设AB长为3.6厘米,那么大正方形的面积为1156平方厘米.【解答】解:根据分析,设正方形边长为一个单位,如图,因为正方形分成面积相等的五份,故每一份的面积都等于,故AG=,D到FH的距离=C到EF的距离=,因为A到左边EG的距离等于A到上边EF的距离的,所以C到EG的距离也等于C 到EF的距离的,即;C到FH的距离为1﹣=,类似,D到右边FH的距离为,因为C到EF的距离:C到右边FH的距离==10:21,故D到EF的距离也等于D到FH的距离的,即:×=,故D到GH的距离=1﹣=;又三角形BDH的面积=,故BH==,AB=1﹣﹣=÷=34〔厘米〕,正方形的面积=34×34=1156平方厘米.故答案是:1156.14.〔12分〕用36个3×2×1的实心小长方体拼成一个6×6×6的大正方体,在各种拼法中,从大正方体外的某一点看过去最多能看到31个小长方体.【解答】解:如图,为了从外面看到的个数最多,需要使外面看到的长方形尽可能“深入〞正方形里面,结果如下:共6×3+3×4+3×1+1=31〔个〕.故答案为:31.15.〔12分〕平面中有15个红点,在这些红点间连一些线段,一个红点连出了几条线段,就在这个红点上标几.所有标有相同数的红点之间互不连线,那么这15个红点间最多连了85条线段.【解答】解:将15个点分为5组,每组分别有1,2,3,4,5个点,〔1×14+2×13+3×12+4×11+5×10〕÷2=170÷2=85〔条〕答:这15个红点间最多连了85条线段.故答案为:85.。
迎春杯年年中高年级初赛复赛试题真题整理
迎春杯2011年-2017年中高年级初赛复赛试题真题整理2011年少儿迎春杯三年级初赛(试题)2010年12月19日“数学解题能力展示”读者评选活动三年级组初赛试题(活动时间:12月19日11:00—12:00;满分150)一、填空题Ⅰ(每题8分,共40分)1.计算:82-38+49-51=.2.超市中的某种汉堡每个10元,这种汉堡最近推出了“买二送一”的优惠活动,即花钱买两个汉堡,就可以免费获得一个汉堡,已知东东和朋友需要买9个汉堡,那么他们最少需要花元钱。
3.小亮家买了72个鸡蛋,他们家还养了一只每天都下一个蛋的母鸡;如果小亮家每天吃4个鸡蛋,那么,这些鸡蛋够他们家连续吃天。
个只由数字8组成的自然数之和为1000,其中最大的数与第二大的数之差是.5.已知:1×9+2=1112×9+3=111123×9+4=1111……△×9+○=111111那么△+○=.二、填空题Ⅱ(每题10分,共50分)6.四月份共有30天,如果其中有5个星期六和星期日,那么4月1日是星期.(星期一至星期日用数字1至7表示)7.小明把三支飞镖掷向下图所示的镖盘上,然后把三支飞镖的得分相加,镖盘上的数字代表这个区域的得分,未中镖盘记0分.那么小明不可能得到的总分最小是.8.一天中午,孙悟空吃了10个桃子,猪八戒吃了25个包子,孙悟空说猪八戒太能吃了,但猪八戒说自己的包子比桃子小得多,还是孙悟空吃的多.聪明的沙僧用天平得到了下面两种情况,(圆圈是桃子,三角是包子长方形表示重量为所标数值的砝码),那么1个桃子和1个包子共重克.9.在算式=2010中,不同的字母代表不同的数字.那么,A+B+C+D+E+F+G=.10.红星小学组织学生参加队列演练,一开始只有40个男生参加,后来调整队伍,每次调整减少3个男生,增加2个女生,那么调整次后男生女生人数就相等了.三、填空题Ⅲ(每题12分,共60分)11.如图1是一个3×3的方格表,每个方格(除了最后一个方格)都包含了1~9中某个数字和一个箭头,每一个方格中的箭头都正好指向了下一个数字所在方格的方向,如1号方格的箭头指向右方,代表2号方格在1号方格右方,2号方格指向斜下,代表3号方格在2号斜下方,3号方格指向上方,代表4号方格在3号方格上方,……(指向的方格可以不相邻),这样正好从1到9走完整个方格表。
2010年迎春杯四年级初赛试题详解
源-于-网-络-收-集2010年“数学解题能力展示”读者评选活动(四年级初赛详解)(测评时间:2010年1月3日11:00-12:00)姓名______ 分数_______ 一、填空题I (每题8分,共24分)1、 计算:1991288237734664⨯+⨯+⨯+⨯=______;答案:9670考点:整数的巧算解法一:原式=()()967046301430019283746192837461102222=-=+++-+++⨯;解法二:因为()()()()281810100091001091010a a a a a a a a -+=-⨯+=-⨯-,令a =1、2、3、4累加即可。
原式=()()9670567040004321814321810410002222=+=+++-+++⨯+⨯;评注:观察各个因数呈现的规律,同时转化为常用的公式计算。
2、 2010个连续自然数由小到大排成一排,排在奇数位上的各数的平均数是2345,那么偶数位上各数的平均数是______; 答案:2346考点:等差数列,平均数问题详解:2010个连续自然数,连续偶数有1005个,连续奇数有1005个,由于奇数个等差数列的平均数就是中间数,所以奇数位上的中间数为2345,那么偶数位上的数是2346;评注:本题如果告诉的不是奇数位上的各数的平均数为2345,而是奇数的平均数是2345,那么结果还可能是2344,就会出现两种结果,可见审题非常重要。
3、 小红去买水果。
如果买5千克苹果则少4元;如果买6千克梨则少3元。
已知苹果比梨每500克贵5角5分,那么小红买水果共带了______元; 答案:24考点:盈亏问题详解:都按买的是苹果分析,那么买6千克⨯2⨯6+3=-4=⨯5-4=24元; 评注:当物品不同时的盈亏可以转化为同一种物品分析。
二、填空题II (每题10分,共40分)4、 数一数,下边图形中有______个平行四边形;答案:6考点:计数问题详解:有公共边的两个三角形组成一个平行四边形,共6个;5、 有8名小朋友,他们每人头上戴着一顶红帽子或蓝帽子。
第1-29届历届小学“迎春杯”真题word版
目录第1届“迎春杯”数学竞赛刊赛试题... .............................................................. . 1 第2届“迎春杯”数学竞赛决赛试题... .............................................................. . 5 第3届“迎春杯”数学竞赛决赛试题... .............................................................. . 8 第4届“迎春杯”数学竞赛决赛试题... ............................................................ .. 10 第5届“迎春杯”数学竞赛决赛试题... ............................................................ .. 11 第6届“迎春杯”数学竞赛决赛试题... ............................................................ .. 13 第7届“迎春杯”数学竞赛决赛试题... ............................................................ .. 16 第8届“迎春杯”数学竞赛决赛试题... ............................................................ .. 18 第9届“迎春杯”数学竞赛决赛试题... ............................................................ .. 20 第10 届“迎春杯”数学竞赛决赛试题... .......................................................... (23)第11 届“迎春杯”数学竞赛初赛试题... ........................................................... (25)第11 届“迎春杯”数学竞赛决赛试题... ........................................................... (27)第12 届“迎春杯”数学竞赛决赛试题... .......................................................... (29)第12 届“迎春杯”数学竞赛决赛试题... .......................................................... (31)第13 届“迎春杯”数学竞赛初赛试题... .......................................................... (33)第13 届“迎春杯”数学竞赛决赛试题... .......................................................... (35)第14 届“迎春杯”数学竞赛决赛试题... .......................................................... (37)第14 届“迎春杯”数学竞赛决赛试题... .......................................................... (39)第15 届“迎春杯”数学竞赛初赛试题... .......................................................... (41)第15 届“迎春杯”数学竞赛决赛试题... .......................................................... (43)第16 届“迎春杯”数学科普活动日区县邀请赛试题... .................................. (45)第17 届“迎春杯”数学科普活动日队际交流试题... ....................................... . 47 第18 届“迎春杯”数学科普活动日队际交流试题... ....................................... . 50 第19 届“迎春杯”数学科普活动日计机交流试题... ....................................... . 52 第19 届“迎春杯”数学科普活动日队际交流试题... ....................................... . 54 第20 届“迎春杯”数学科普活动日试题... ....................................................... .. 55 第21 届“迎春杯”数学科普活动日解题能力展示初赛试题... ...................... (57)第21 届“迎春杯”数学解题能力展示读者评选活动复试计算机交流试题... (58)第22 届“迎春杯”数学解题能力展示读者评选活动中年级初试试题... ..... .. 60 第22 届“迎春杯”数学解题能力展示读者评选活动中年级复试试题... ..... .. 62 第22 届“迎春杯”数学解题能力展示评选活动高年级初试试题... .............. . 64第22 届“迎春杯”数学解题能力展示评选活动高年级复试试题... .............. . 66第23 届“迎春杯”数学解题能力展示评选活动中年级初试试题... .............. . 69第23 届“迎春杯”数学解题能力展示评选活动中年级复试试题... .............. . 71第23 届“迎春杯”数学解题能力展示评选活动高年级初试试题... .............. . 73第23 届“迎春杯”数学解题能力展示评选活动高年级复试试题... .............. . 75第24 届“迎春杯”数学解题能力展示评选活动三年级初试试题... .............. . 77第24 届“迎春杯”数学解题能力展示评选活动四年级初试试题... .............. . 79第24 届“迎春杯”数学解题能力展示评选活动中年级复试试题... .............. . 81第24 届“迎春杯”数学解题能力展示评选活动五年级初试试题... .............. . 83第24 届“迎春杯”数学解题能力展示评选活动六年级初试试题... .............. . 85第24 届“迎春杯”数学解题能力展示评选活动高年级复试试题... .............. . 88第25 届“迎春杯”数学解题能力展示评选活动三年级初试试题... .............. . 90第25 届“迎春杯”数学解题能力展示评选活动四年级初试试题... .............. . 92第25 届“迎春杯”数学解题能力展示评选活动中年级复试试题... .............. . 94第25 届“迎春杯”数学解题能力展示评选活动五年级初试试题... .............. . 96第25 届“迎春杯”数学解题能力展示评选活动六年级初试试题... .............. . 98第25 届“迎春杯”数学解题能力展示评选活动高年级复试试题... ........... .. 100 第26 届“迎春杯”数学解题能力展示评选活动三年级初试试题... ........... .. 102 第26 届“迎春杯”数学解题能力展示评选活动四年级初试试题... ........... .. 104 第26 届“迎春杯”数学解题能力展示评选活动中年级复试试题... ........... .. 106 第26 届“迎春杯”数学解题能力展示评选活动五年级初试试题... ........... .. 108 第26 届“迎春杯”数学解题能力展示评选活动六年级初试试题... ........... .. 110 第26 届“迎春杯”数学解题能力展示评选活动高年级复试试题... ........... .. 112 第27 届“迎春杯”数学解题能力展示评选活动三年级初试试题... ........... .. 114 第27 届“迎春杯”数学解题能力展示评选活动四年级初试试题... ........... .. 116 第27 届“迎春杯”数学解题能力展示评选活动中年级复试试题... ........... .. 118第 27届“迎春杯”数学解题能力展示评选活动六年级初试试题... .......... .. 122 第 27届“迎春杯”数学解题能力展示评选活动高年级复试试题... .......... .. 124 第 28届“迎春杯”数学解题能力展示评选活动三年级初试试题... .......... .. 126 第 28届“迎春杯”数学解题能力展示评选活动四年级初试试题... .......... .. 128 第 28届“迎春杯”数学解题能力展示评选活动中年级复试试题... .......... .. 130 第 28届“迎春杯”数学解题能力展示评选活动五年级初试试题... .......... .. 132 第 28届“迎春杯”数学解题能力展示评选活动六年级初试试题... .......... .. 134 第 28届“迎春杯”数学解题能力展示评选活动高年级复试试题... .......... .. 136 第 29届“迎春杯”数学解题能力展示评选活动三年级初试试题... .......... .. 138 第 29届“迎春杯”数学解题能力展示评选活动四年级初试试题... .......... .. 140 第 29届“迎春杯”数学解题能力展示评选活动中年级复试试题... .......... .. 141 第 29届“迎春杯”数学解题能力展示评选活动五年级初试试题... .......... .. 143 第 29届“迎春杯”数学解题能力展示评选活动六年级初试试题... .......... .. 144 第 29届“迎春杯”数学解题能力展示评选活动高年级复试试题... .......... .. 145第 1 届“迎春杯”数学竞赛刊赛试题1.天安门广场是世界上最大的广场,面积约44万平方米,合____亩。
迎春杯2015年高年级复赛(解析)
a b c a c ,故 (a b c) 必为 11 的倍数.
.
若 a b c 11 ,则 a c b 1 , b 5 ,又 a、b、c 互不相同, a c ,故 a 4 , c 2 ,
abc 452 ;
若 a b c 22 ,则 a c b 12 , b 5 ,又 a、b、c 互不相同, a c ,故 a 9 , c 8 , 但此解并未满足 (a b c) [11(a c)] 的要求,故知此种情况无解. 综上,本题有唯一答案 452 12. 在右图的每个方格里填入数字 1~6 中的一个, 使得每行和每列的数字都不重复. 右边的数表示由 粗线隔开的前面三个数字组成的三位数、中间两个数字组成的两位数以及最后的一位数这三个数 之和.那么五位数 ABCDE .
2015年迎春杯小高组复赛详解
【分析】设普通型“生死水”的浓度为 x% ,初始重量为 100 ,连续两次加入的艾草浸液和水仙根粉末重量
综上,普通“生死水”的浓度为 11% . 二、填空题Ⅱ题(每小题 10 分,共 50 分)
你们考的怎么样啊?他们每人说了 3 句话(如下) . 甲:我对了两道题,而且比乙对的多,丙考的不如丁. 乙:我全对了,丙全错了,甲考的不如丁. 丙:我对了一道,丁对了两道,乙考的不如甲. 丁:我全对了,丙考的不如我,甲考的不如乙.
【分析】设剪下来的四个等腰直角三角形的直角边为 a ,则正方
帅
【考点】计数 【难度】☆☆☆ 【答案】 8
1 2 形的面积为 4a 2 100 a 2 12.5 ,剪下来的部分其面积为 a 2 4 2a 2 2 12.5 25 ,则余 2
下部分面积为 75 .
学习有意思
快乐思维
2015 年迎春杯五年级复赛
参考答案
题号 答案 题号 答案 1 2 3 4 5 6 7
1 8
75 9
1099
8 10 102
503 11 452
11 12
41244
1203 13
8369 14 132
3096
48
部分解析
1 1 1 1 1 1 1 1 1.算式 1 + + 的计算结果是__________. 2 40 分)
学习有意思
快乐思维
4.算式 2015
1999 1 2011 的计算结果是__________. 2015 4 2015
【考点】分数计算 【难度】☆☆☆ 【答案】 503 【分析】原式
20152 1999 2011 4 20152 6045 20152 2015 3 2015 2012 503 . 2015 4 2015 4 2015 4 2015 4 2015 4
2008-2015迎春杯小高组复赛试题原题汇总
2008“数学解题能力展示”读者评选活动高年级组复试题(活动时间:2008年2月4日9:00—10:30;满分130分)一、填空题(每小题10分,共100分): 1.将数字1至9分别填入右边竖式的方格内使算式成立(每个数字恰好使用一次),那么加数中的四位数最小是 . 2.如果三位数m 同时满足如下条件:(1)m 的各位数字之和是7;(2)m 2还是三位数,且各位数字之和为5.那么这样的三位数m 共有 个.3.爸爸买了三个不同的福娃送给三胞胎兄妹.打开包装前,哥哥猜:“一定有欢欢,而没有晶晶”;弟弟猜:“晶晶和欢欢当中至少有一个,一定没有迎迎”;妹妹猜:“一定有迎迎和妮妮,没有贝贝”;爸爸笑着回答:“你们每个人猜的两句话中,都恰好有一句是对的,有一句是错的”.请你把三个福娃的名字写下来: , , .4.如果一些不同质数的平均数为21,那么它们中最大的一个数的最大可能值为 .5.计算:)120071220061)2008(1200621200711(×+×+…+−×+…+×+×n n =×+…+−×+…+×+×−)120061)2007(1200521200611(20082007n n .6.有四个非零自然数a ,b ,c ,d ,其中b a c +=,c b d +=.如果a 能被2整除,b 能被3整除,c 能被5整除,d 能被7整除,那么d 最小是 .7.在图1的5×5的方格表中填入A 、B 、C 、D 四个字母,要求:每行每列中四个字母都恰出现一次;如果某行的左边标有字母,则它表示这行中第一个出现的字母;如果某行的右边标有字母,则它表示这行中最后一个出现的字母;类似地,如果某列的上边(或者下边)标有字母,则它表示该列的第一个(或者最后一个)出现的字母.那么A ,B ,C ,D 在第二行从左到右出现的次序是 .AD AB D A图112 0 0 8+8.记四位数abcd 为X ,由它的四个数字a ,b ,c ,d 组成的最小的四位数记为∗X ,如果999=−∗X X ,那么这样的四位数X 共有 个.9.一堆火柴有20根,甲乙二人轮流从中取出一些火柴,要求每次取的根数是前一个人所取根数的约数,谁取走最后一根谁就获胜.如果甲先取,并且第一次取的根数是一位数,那么为了确保自己获胜,他第一次应该取 根.10.如图2,已知AB=AE=4cm ,BC=DC ,∠BAE=∠BCD=90°,AC=10cm ,则S ⊿ABC +S ⊿ACE +S ⊿CDE = 2cm .(注:S ⊿ABC 表示三角形ABC 的面积)二、解答题(每小题15分,共30分):11.若干个同学排成一列纵队购买电影票,如果你观察后发现:除了前面的5个同学外,每个同学都要比从他往前数(不包括他)第5位的同学高;除了前面的3个同学外,每个同学都要比从他往前数(不包括他)第3位的同学矮.请问这支队伍最多有几个人?12.如图3,小明家和小强家相距10千米,小强家与公园相距25千米.小明20:9从家骑车出发去公园,40:10小强从家出发,步行去公园.当小明到达学校时,他立即弃车步行;又过了一会儿,当小强到达学校时,他立即开始骑车.两人同时于下午00:2到达公园.如果两人步行速度相同,骑车速度也相同,那么学校与公园相距多少千米?小明家公园 小强家 学校 图3 图22009“数学解题能力展示”读者评选活动高年级组复试题(活动时间:2009年2月4日9:00—10:30;满分150分)填空题(每小题10分,共150分,请将答案填入答题卡中):1. 计算:216471370216128625302829÷×= .2. 在方框中填入适当的数字,使得除法竖式成立.已知商为奇数,那么除数为 .3. 用数字0、0、1、1、2、2、3、3、4、4、5、5、6、6、7、7、8、8、9、9组成五个四位数,要求这5个数的和的各位数字都是奇数,那么这个和数最大是 .4. 在新年联欢会上,某班组织了一场飞镖比赛.如右图,飞镖的靶子分为三块区域,分别对应17分、11分和4分.每人可以扔若干次飞镖,脱靶不得分,投中靶子就可以得到相应的分数.若恰好投在两块(或三块)区域的交界线上,则得两块(或三块)区域中分数最高区域的分数.如果比赛规定恰好投中120分才能获奖,要想获奖至少需要投中 次飞镖.5. 在一个奇怪的动物村庄里住着猫、狗和其他一些动物.有20%的狗认为它们是猫;有20%的猫认为它们是狗.其余动物都是正常的.一天,动物村的村长小猴子发现:所有的猫和狗中,有32%认为自己是猫.如果这个奇怪的动物村庄里有狗比猫多180只.那么狗的数目是 只.6. 太平洋某岛国的一个部落里只有两种人:一种是永远说真话的老实人,一种是永远说假话的骗子.一天,这个部落的2009个人举行了一次圆桌会议,每个人都声称:“我左右的两个人都是骗子”.第二天,会议继续进行,但一人因病未能到会,因此只有2008个人参加第二天的会议.大家按照新的顺序坐了下来,此时,每个人都声称:“我左右的两个人都和我不是同一种人”.参加第一天圆桌会议的人之中共有 位老实人.4 11 177. A 、B 两地位于同一条河上,B 地在A 地下游100千米处.甲船从A 地、乙船从B 地同时出发,相向而行,甲船到达B 地、乙船到达A 地后,都立即按原来路线返航.水速为2米/秒,且两船在静水中的速度相同.如果两船两次相遇的地点相距20千米,那么两船在静水中的速度是 米/秒.8. 一个电子表用5个两位数(包括首位为0的两位数)表示时间,如15:23:45/06/18表示6月18日15点23分45秒.有一些时刻这个电子表上十个数字都不同,在这些时刻中,表示时间的5个两位数之和最大是 .9. 从1~999中选出连续6个自然数,使得它们的乘积的末尾恰有4个0,一共有种选法.10. 请将1,2,3,…,10这10个自然数填入图中的10个小圆圈内,使得图中的10条直线上圆圈内数字之和都相等.那么乘积A B C ××=. 11. 三个两两不同的正整数,和为126,则它们两两最大公约数之和的最大值为 .12. 如图,ABCD 是一个四边形,M 、N 分别是AB 、CD 的中点.如果△ASM 、△MTB 与△DSN 的面积分别是6、7和8,且图中所有三角形的面积均为整数,则四边形ABCD 的面积为 .13. 一条路上有东、西两镇.一天,甲、乙、丙三人同时出发,甲、乙从东镇向西而行,丙从西镇向东而行,当甲与丙相遇时,乙距他们20千米,当乙与丙相遇时,甲距他们30千米.当甲到达西镇时,丙距东镇还有20千米,那么当丙到达东镇时,乙距西镇 千米.14. 右图中的⑴⑵⑶⑷是同样的小等边三角形,⑸⑹也是等边三角形且边长为⑴的2倍,⑺⑻⑼⑽是同样的等腰直角三角形,⑾是正方形.那么,以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积是以⑴⑵⑶⑷为平面展开图的立体图形体积的 倍.15. 老师给前来参加“迎春晚会”的31位同学发放编号:1,2,…31. 如果有两位同学的编号的乘积是他们编号和的倍数,则称这两位同学是“好朋友”.从这31位同学中至少需要选出 人,才能保证在选出的人中一定可以找到两位同学是“好朋友”.C N B A DS T M2010年“数学解题能力展示”读者评选活动小学高年级组复试试卷(测评时间:2010年2月6日8:30—10:00)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议.签名:___________一、填空题Ⅰ(每题8分,共40分)1. =×−×+1457266.22010 . 2. 下表是人民币存款基准利率表 .小明现在有10000元人民币,如果他按照三年期整存整取的方式存款,三年后他连本带利一共能从银行拿到 元人民币.整存整取时间 三个月 半年 一年 三年 五年 年利率(%) 1.71 1.98 2.25 3.33 3.60 3. 如图所示,有大小不同的两个正方体,大正方体的棱长是小正方体棱长的6倍.将大正方体的6个面都染上红色,将小正方体的6个面都染上黄色,再将两个正方体粘合在一起.那么这个立体图形表面上红色面积是黄色面积的 倍.4. 有一块用于实验新品种水稻的试验田形状如图,面积共40亩,一部分种植新品种,另一部分种植旧品种(种植面积不一定相等),以方便比较成果.旧品种每亩产500千克;新的品种中有75%都没有成功,每亩只产400千克,但是另外25%试验成功,每亩产800千克.那么,这块试验田共产水稻 千克.5. 在每个方框中填入一个数字,使得乘法竖式成立.已知乘积有两种不同的得数,那么这两个得数的差是 . 二、填空题Ⅱ(每题10分,共50分) 6. 直角边长分别为18厘米,10厘米的直角△ABC 和直角边长分别为14厘米,4厘米的直角△ADE 如图摆放.M 为AE 的中点,则△ACM 的面积为 平方厘米.7. 黑板上一共写了10040个数字,包括2006个1,2007个2,2008个3,2009个4,2010个5.每次操作都擦去其中4个不同的数字并写上一个第5种数字(例如擦去1、2、3、4各1个,写上1个5;或者擦去2、3、4、5各一个,写上一个1;……). 如果经过有限次操作后,黑板上恰好剩下了两个数字,那么这两个数字的乘积是 .新品种 25% 旧品种8. 蜜蜂王国为了迎接2010年春节的到来,特地筑了一个蜂巢如下.每个正六边形蜂窝中,有由蜂蜜凝结而成的数字0、1或2.春节到来之时,群蜂将在巢上跳起舞步,舞步的每个节拍恰好走过的四个数字:2010(从某个2出发最后走完四步后又回到2,如图中箭头所示为一个舞步),且蜜蜂每一步都只能从一个正六边形移动到与之有公共边的正六边形上.蜜蜂要经过四个正六边形且所得数字依次为2010,共有 种方法.9. 在反恐游戏中,一名“恐怖分子”隐藏在10个排成一行的窗户后面,一位百发百中的“反恐精英”使用狙击枪射击这名“恐怖分子”.“反恐精英”只需射中“恐怖分子”所在的窗户就能射中这名“恐怖分子”.每次射击完成后,如果“恐怖分子”没有被射中,他就会向右移动一个窗户.一旦他到了最右边的窗户,就停止移动.为了确保射中这名“恐怖分子”,“反恐精英”至少需要射击 次.10. 如图所示,直线上并排放置着两个紧挨着的圆,它们的面积都等于1680平方厘米.阴影部分是夹在两圆及直线之间的部分.如果要在阴影部分内部放入一个尽可能大的圆,则这个圆的面积等于_________平方厘米.三、填空题Ⅲ(每题12分,共60分)11. 用1~9这9个数字各一次,组成一个两位完全平方数,一个三位完全平方数,一个四位完全平方数.那么,其中的四位完全平方数最小是 . 12. 现有一块L 形的蛋糕如图所示,现在要求一刀把它切成3部分,因此只能按照如图的方式切.要使得到的最小的那块面积尽可能大,那么最小的面积为 平方厘米.13. 小李开车从甲地去乙地,出发后2小时,车在丙地出了故障,修车用了40分钟,修好后,速度只为正常速度的75%,结果比计划时间晚2小时到乙地.若车在行过丙地72千米的丁地才出故障,修车时间与修车后的速度分别还是40分钟与正常速度的75%,则比计划时间只晚1.5小时.那么,甲乙两地全程 千米.14. 9000名同学参加一次数学竞赛,他们的考号分别是1000,1001,1002,…9999.小明发现他的考号是8210,而他的朋友小强的考号是2180.他们两人的考号由相同的数字组成(顺序不一样),差为2010的倍数. 那么,这样的考号(由相同的数字组成并且差为2010的倍数)共有 对.15. 小华编了一个计算机程序.程序运行后一分钟,电脑屏幕上首次出现一些肥皂泡,接下来每到整数分钟的时刻都会出现一些新的肥皂泡,数量与第一分钟出现的相同.第11次出现肥皂泡后半分钟,有一个肥皂泡破裂.以后每隔一分钟又会有肥皂泡破裂,且数量比前一分钟多1个(即第12次出现肥皂泡后半分钟,有2个肥皂泡破裂…).到某一时刻,已破裂的肥皂泡的总数恰好等于电脑屏幕上出现过的肥皂泡的总数,即此刻肥皂泡全部消失.那么在程序运行的整个过程中,在电脑屏幕上最多同时有 个肥皂泡出现.10厘米 20厘米 302011年“数学解题能力展示”读者评选活动小学高年级组复试试卷(测评时间:2011年1月30日8:00—9:30)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果,否则愿接受本次成绩无效的处罚.我同意遵守以上协议 签名:____________________一.填空题Ⅰ(每题8分,共40分)1. 定义一种新运算a ☆b 满足:a ☆b =b ×10+a ×2.那么2011☆130= .2. 从1999年到2010年的12年中,物价涨幅为150%(即1999年用100元能购买的物品,2010年要比原来多花150元才能购买).若某个企业的一线员工这12年来工资都没变,按购买力计算,相当于工资下降了 %.3. 右图中大圆的半径是20厘米,7个小圆的半径都是10厘米.那么阴影图形的面积是 平方厘米(π取3.14).4. 某届“数学解题能力展示”读者评选活动初试共有12000名学生参加,分为初中、小学高年级、小学中年级三个组别.小学的两个组共占总人数的1615,不是小学高年级组的占总人数的21.那么小学中年级组参赛人数为 .5. 右图是一个除法竖式.这个除法竖式的被除数是 . 二.填空题Ⅱ(每题10分,共50分) 6. 算式1!×3-2!×4+3!×5-4!×6+…+2009!×2011-2010!×2012+2011!的计算结果是 .7. 春节临近,从2011年1月17日(星期一)起工厂里的工人陆续回家过年,与家人团聚.若每天离厂的工人人数相同,到1月31日,厂里还剩下工人121名,在这15天期间,统计工厂工人的工作量是2011个工作日(一人工作一天为1个工作日,工人离厂当天及以后不需要统计).其中周六、日休息,且无人缺勤.那么截至到1月31日,回家过年的工人共有 人.1 3 08. 有一个整数,它恰好是它的约数个数的2011倍.这个整数的最小值是 .9. 一个新建5层楼房的一个单元每层有东西2套房;各层房号如右图所示,现已有赵、钱、孙、李、周五家入住.一天他们5人在花园中聊天:赵说:“我家是第3个入住的,第1个入住的就住我对门.”钱说:“只有我一家住在最高层.” 孙说:“我家入住时,我家同侧的上一层和下一层都已有人入住了.”李说:“我家是五家中最后一个入住的,我家楼下那一层全空着.” 周说:“我家住在106号,104号空着,108号也空着.” 他们说的话全是真话.设第1、2、3、4、5家入住的房号的个位数依次为A 、B 、C 、D 、E ,那么五位数ABCDE =____________.10. 6支足球队,每两队间至多比赛一场.如果每队恰好比赛了2场,那么符合条件的比赛安排共有 种.三.填空题Ⅲ(每题12分,共60分)11. 0~9可以组成两个五位数A 和B ,如果A +B 的和是一个末五位数字相同的六位数,那么A ×B 的不同取值共有 个.12. 甲、乙两人分别从A 、B 两地同时出发,在AB 间往返行走;甲出发的同时,丙也从A 出发去B .当甲、乙两人第一次迎面相遇在C 地时,丙还有100米才到C ;当丙走到C 时,甲又往前走了108米;当丙到B 时,甲、乙正好第二次迎面相遇.那么A 、B 两地间的路程是 米.13. 如右图,大正方形被分成了面积相等的五块.若AB 长为3.6厘米,则大正方形的面积为 平方厘米.14. 用36个3×2×1的实心小长方体拼成一个6×6×6的大正方体.在各种拼法中,从大正方体外的某一点看过去最多能看到__________个小长方体.15. 平面中有15个红点,在这些红点间连一些线段.一个红点连出了几条线段,就在这个红点上标几.已知所有标有相同数的红点之间互不连线,那么这15个红点间最多连了 条线段.五层 四层 三层 二层一层2012年“数学解题能力展示”读者评选活动小学高年级组复试试卷(测评时间:2012年2月4日8:30—10:00)一.填空题Ⅰ(每小题8分,共40分)1. ()3209753132233.14332012+×++++÷+××的计算结果是 .2. 在右图的乘法竖式中,两个乘数的和是 .3. 一袋大米,刘备单独吃5天吃完,关羽单独吃3天吃完;一袋小麦,关羽单独吃5天吃完,张飞单独吃4天吃完.刘备每天的饭量比张飞每天的饭量少 %.4. 有2012个小矮人,他们不是好人,就是坏人.每天他们都要参加一次聚会,每次聚会的人数是3或5.每次参与聚会的小矮人中,若好人占多数,则参加聚会的人全变成好人;若坏人占多数,则参加聚会的人全变成坏人.如果第三天聚会完毕后,全部2012人全成了好人,那么第一天聚会前好人的人数的最小值是 .5. 三个半圆、两个圆如图摆放,两个小半圆和两个小圆的半径都是10cm ,大半圆外的阴影面积比大半圆内的阴影面积大cm 2.(π取3.14)二.填空题Ⅱ(每小题10分,共50分)6. 右图由一个正五边形、五个长方形、五个等边三角形组成,它是一个立体图形的平面展开图,那么这个立体图形有 条棱.7. =−+−+−+−+−−+−+−+−+−1091110121113121413151416151716181719181011121231341451561671781891910 .8. 有一个五位数,它分别除以1、2、3、4、5、6、7、8、9、10、11、13这12个自然数的余数互不相同,这个五位数是 .422102×9. 早上8:10,菲菲从家步行去上学.3分钟后,狗狗出发跑去追她,在离家200米的地方追上了她;追上后立刻往家跑去,到家后又立刻回头去追菲菲,在离家400米的地方再次追上了她.追上又立刻往家跑去,到家后又立刻去追菲菲,刚好在学校追上.菲菲到校时间是8点 分.10. 如右图所示,广场中央有一座漂亮的喷泉.小明从A 点出发,沿喷泉周围的小路不重复地绕喷泉走一周,最终回到A 点的走法共有 种.(图中的两个圆及两圆之间的线段均表示小路,绕喷泉一周指小明行走路线为封闭路线且喷泉在此路线内部)三.填空题Ⅲ(每小题12分,共60分)11. 有16张卡片,黑、白各8张,分别写有数字1~8.把它们象扑克牌那样洗过后,如右图那样排成四行.排列规则如下:每行中从左到右按从小到大的顺序排列;黑、白卡片上的数字相同时,黑卡片放在左边.已知每行4张卡片上的4个数之和都相等,左下角是2,右上角是7.请问:图中由左上至右下的对角线四张卡片上的数字依次是 .12. 如右图,在正方形环形道路的四个顶点各有编号为1、2、3、4的车站;甲、乙、丙、丁四个人分别从编号为A 、B 、C 、D 的车站同时出发(A 、B 、C 、D 互不相同),沿顺时针方向驾车匀速行驶,且从1、2、3、4号车站出发的车的速度分别为1、2、3、4,以后速度再不变化.行驶完毕后,他们有如下的话: 甲说:“我第一次追上乙时恰在车站①”.乙说:“我第一次追上丙时恰在车站②”.丙说:“我第一次追上丁时恰在车站③”.丁说:“我第一次追上甲时恰在车站④”. 已知其中有两人的话正确,两人说的话错误.那么四位数ABCD = .13. 如果正整数N 的每一个倍数都满足、也都是N 的倍数(其中a 、b 、c 都是0~9中的整数,并且约定表示123,028表示28,表示7),那么就称N 为“完美约数”(例如9就是一个“完美约数”).这样的“完美约数”一共有 个.14. 如右图,正十二边形和中心白色的正六边形的边长均为12,图中阴影部分的面积是 .15. 请参考《2012年“数学解题能力展示”读者评选活动复试试题评选方法》作答.2013年“数学解题能力展示”读者评选活动小学高年级组复试试卷(测评时间:2013年2月2日8:30—10:00)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果,否则愿接受本次成绩无效的处罚.我同意遵守以上协议 签名:____________________一.填空题Ⅰ(每小题8分,共40分)1.−×÷158342.22013的计算结果是 .2. 右图中,两个圆心角是90°的扇形盖在大圆上,小圆盖在两个扇形上,它们的圆心都在同一点.如果小圆、大圆、扇形的半径比是1:3:4,那么阴影图形面积占整个图形面积的 %.3. 老师将写有1~9的9张卡片发给甲、乙、丙3个学生,每人3张.甲说:我的三张卡片上的数字恰好是等差数列;乙说:我的也是; 丙说:就我的不是等差数列.如果他们说的都是对的,那么丙手中拿的三张卡片数字之和最小是__________.4. 迎春小学六年级同学在某次体育达标测试中,达标的有900人,参加测试但未达标的占参加测试的同学人数的25%,因故没有参加体育达标测试的占该年级全体同学人数的4%.没有参加体育达标测试的有 人.5. 在右图的除法竖式中,被除数是 .二.填空题Ⅱ(每小题10分,共50分) 6. 1111019111191514131513141312141213121113111××−++××−+××−+××−3的计算结果是 .7. 黑板上有1~2013共2013个数,每次可以擦掉其中两个数,并且写上这两数之和的数字和,已知最后黑板上剩下四个数,其乘积为27,那么这四个数的和是__________.8. 定义:(1)(2)(22)(21)a a a a a a ∆=+++++−+−3�,例如:556789∆=++++,那么1231920∆+∆+∆++∆+∆3�的计算结果是__________.9. 将1~16填入4×4的表格中,要求同一行右面的比左面的大;同一列下面的比上面的大.其中4和13已经填好,其余14个整数有 种不同的填法.10. n 名海盗分金币.第1名海盗先拿1枚金币,再拿剩下金币的1%;然后,第2名海盗先拿2枚,再拿剩下金币的1%;第3名海盗先拿3枚,再拿剩下金币的1%;……第n 名海盗先拿n 枚,再拿剩下金币的1%.结果金币全被分完,且每位海盗拿的金币都一样多.那么共有金币 枚. 三.填空题Ⅲ(每小题12分,共60分)11. 右图中,长方形ABCD 的面积是2013平方厘米.△AOD 、△BOC 、△ABE 、△BCF 、△CDG 、△ADH 都是等边三角形,M 、N 、P 、Q 分别是△ABE 、△BCF 、△CDG 、△ADH 的中心.那么阴影部分的面积是__________平方厘米.12. 甲、乙两人分别从A 、B 两地同时出发,相向匀速而行;当甲、乙在途中C 地相遇时,丙从B 地出发,匀速去A 地;当甲与丙在D 地相遇时,甲立即调头且速度降为原来的80%;当甲、丙同时到A 地时,乙离A地还有720米.如果CD 间的路程是900米,那么AB 间的路程是 米.13. 有16名学生,他们坐成一个4×4的方阵,某次考试中他们的得分互不相同,得分公布后,每位同学都将自己的成绩与相邻的同学(相邻指前、后、左、右,如坐在角上的同学只有2人与他相邻)进行比较,如果最多只有1名同学的成绩高于他,那么他会认为自己是“幸福的”.则最多有________名同学会认为自己是“幸福的”. 14. 现有一个立方体ABCD EFGH −,将其过B 点的三个表面的正方形染成红色,现在剪开其中的若干条棱得到它的平面展开图,若展开图中三个红色正方形都没有公共边,那么共有________种不同的剪法.(剪开的棱相同但剪的顺序不同的算作同一种剪法)15. 请参考《2013年“数学解题能力展示”读者评选活动复试试题评选方法》作答.B AC D E F G H 4 13。
2010-2015迎春杯试卷汇总(小高组)
2010年“数学解题能力展示”读者评选活动五年级组初试试卷(测评时间:2010 年1月3日9:00—10:00)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议.签名:___________填空题:(每题10分,共120分).2.小张有200支铅笔,小李有20支钢笔.每次小张给小李6支铅笔,小李还给小张1支钢笔.经过次这样的交换后,小张手中铅笔的数量是小李手中钢笔数量的11倍.3.如图,长方形ABCD中,BE=4,EC=4,CF=4,FD=1,则⊿AEF的面积是.5.一个等差数列的第3项是14,第18项是23,那么这个数列的前2010项中有项是整数.6.甲、乙两车同时从A城市出发驶向距离300千米远的B城市.已知甲车比乙车晚出发1个小时,但提前1个小时到达B城市.那么,甲车在距离B城市千米处追上乙车.7.已知一个五位回文数等于45与一个四位回文数的乘积(即),则这个五位回文数最大的可能值是.8.请从1, 2,3···,9,10 中选出若干个数,使得1,2,3···,19,20 中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和.那么,至少需要选出个数.9.如图,请沿虚线将7×7的方格表分割成若干个长方形,使得每个长方形中恰好包含一个数字,并且这个数字就是此长方形的面积.则第四列的小方格属于个不同的长方形.10. 九个大小相等的小正方形拼成了右图.现从A到B,每次只能沿着小正方形的对角线从一个顶点到另一个顶点,不允许走重复路线,如图的虚线就是一种走法.共有种不同的走法.11.如图,等腰直角三角形DEF的斜边在等腰直角三角形ABC的斜边上,连接AE、AD、AF,于是整个图形被分成五块小三角形.图中已标出其中三块的面积,则⊿ABC的面积是.12. C,D为AB的三等分点;甲8点整时从A出发匀速向B行走,8点12分乙从B点出发匀速向A行走,再过几分钟后丙也从B出发匀速向A行走;甲,乙在C点相遇时丙恰好走到D点,甲,丙8:30相遇时=+-+-++⨯+-⨯227213319)4131(12)3121(6.1deedabcba⨯=45乙恰好到A.那么,丙出发时是8点分2010年“数学解题能力展示”读者评选活动六年级组初试试卷(测评时间:2010 年1月3日9:00—10:00)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议.签名:___________填空题:(每题10分,共120分)2.小明带着一些钱去买签字笔,到商店后发现这种笔降价了12.5%,如果他带的钱恰好可以比原来多买13支,那么降价前这些钱可以买________支签字笔.3.满足图中算式的三位数abc最小值是________.4. 三个半径为100厘米且圆心角为60º的扇形如图摆放;那么,这个封闭图形的周长是________厘米.(π取3.14)5.用0~9这10个数字组成若干个合数,每个数字都恰好用一次,那么这些合数之和的最小值是________.6.梯形的上底为5,下底为10,两腰分别为3和4,那么梯形的面积为________.7. 有5个不同的正整数,它们中任意两数的乘积都是12的倍数,那么这5个数之和的最小值是________.8.一个大正方体、四个中正方体、四个小正方体拼成如图的立体图形,已知大、中、小三个正方体的棱长分别为5厘米、2厘米、1厘米.那么,这个立体图形的表面积是________平方厘米.9. 九个大小相等的小正方形拼成了右图.现从A点走到B点,每次只能沿着小正方形的对角线从一个顶点到另一个顶点,不允许走重复路线(如图的虚线就是一种走法).那么从A点走到B点共有________种不同的走法.10. 学校打算在1月4日或1月10日组织同学们看电影.确定好日期后,老师告诉了班长,但是由于“四”和“十”发音接近,班长有10%的可能性听错(把4听成10或者把10听成4).班长又把日期告诉了小明,小明也有10%的可能性听错.那么小明认为看电影的日期是正确日期的可能性为________%.11. 如图,C,D为AB的三等分点;8点整时甲从A出发匀速向B行走,8点12分乙从B出发匀速向A行走,再过几分钟后丙也从B出发匀速向A行走;甲,乙在C点相遇时丙恰好走到D点,甲,丙8:30相遇时乙恰好到A.那么,丙出发时是8点________分.12.图中是一个边长为1 的正六边形,它被分成六个小三角形.将4、6、8、10、12、14、16各一个填入7个圆圈之中.相邻的两个小正三角形可以组成6个菱形,把每个菱形的四个顶点上的数相加,填在菱形的中心A、B、C、D、E、F 位置上(例如:a+b+g+f=A).已知A、B、C、D、E、F依次分别能被2、3、4、5、6、7整除,那么a×g×d=___________.2010年“数学解题能力展示”读者评选活动小学高年级组复试试卷(测评时间:2010年2月6日8:30—10:00)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议.签名:___________一、填空题Ⅰ(每题8分,共40分)1.=⨯-⨯+1457266.22010 .2. 下表是人民币存款基准利率表 .小明现在有10000元人民币,如果他按照三年期整存整取的方式存款,3. 如图所示,有大小不同的两个正方体,大正方体的棱长是小正方体棱长的6倍.将大正方体的6个面都染上红色,将小正方体的6个面都染上黄色,再将两个正方体粘合在一起.那么这个立体图形表面上红色面积是黄色面积的 倍.4. 有一块用于实验新品种水稻的试验田形状如图,面积共40亩,一部分种植新品种,另一部分种植旧品种(种植面积不一定相等),以方便比较成果.旧品种每亩产500千克;新的品种中有75%都没有成功,每亩只产400千克,但是另外25%试验成功,每亩产800千克.那么,这块试验田共产水稻 千克.5.得数,那么这两个得数的差是 .二、填空题Ⅱ(每题10分,共50分)6. 直角边长分别为18厘米,10厘米的直角△ABC 和直角边长分别为14厘米,4厘米的直角△ADE 如图摆放.M 为AE 的中点,则△ACM 的面积为 平方厘米.7. 黑板上一共写了10040个数字,包括2006个1,2007个2,2008个3,2009个4,2010个5.每次操作都擦去其中4个不同的数字并写上一个第5种数字(例如擦去1、2、3、4各1个,写上1个5;或者擦去2、3、4、5各一个,写上一个1;……). 如果经过有限次操作后,黑板上恰好剩下了两个数字,那么这两个数字的乘积是 .8. 蜜蜂王国为了迎接2010年春节的到来,特地筑了一个蜂巢如下.每个新品种25%旧品种正六边形蜂窝中,有由蜂蜜凝结而成的数字0、1或2.春节到来之时,群蜂将在巢上跳起舞步,舞步的每个节拍恰好走过的四个数字:2010(从某个2出发最后走完四步后又回到2,如图中箭头所示为一个舞步),且蜜蜂每一步都只能从一个正六边形移动到与之有公共边的正六边形上.蜜蜂要经过四个正六边形且所得数字依次为2010,共有种方法.9.在反恐游戏中,一名“恐怖分子”隐藏在10个排成一行的窗户后面,一位百发百中的“反恐精英”使用狙击枪射击这名“恐怖分子”.“反恐精英”只需射中“恐怖分子”所在的窗户就能射中这名“恐怖分子”.每次射击完成后,如果“恐怖分子”没有被射中,他就会向右移动一个窗户.一旦他到了最右边的窗户,就停止移动.为了确保射中这名“恐怖分子”,“反恐精英”至少需要射击次.10.如图所示,直线上并排放置着两个紧挨着的圆,它们的面积都等于1680平方厘米.阴影部分是夹在两则这个圆的面积等于_________平方厘米.三、填空题Ⅲ(每题12分,共60分)11.用1~9这9个数字各一次,组成一个两位完全平方数,一个三位完全平方数,一个四位完全平方数.那么,其中的四位完全平方数最小是.12.现有一块L形的蛋糕如图所示,现在要求一刀把它切成3部分,因此只能按照如图的方式切,但不能斜着切或横着切.要使得到的最小的那块面积尽可能大,那么最小的面积为平方厘米.13.小李开车从甲地去乙地,出发后2小时,车在丙地出了故障,修车用了40分钟,修好后,速度只为正常速度的75%,结果比计划时间晚2小时到乙地.若车在行过丙地72千米的丁地才出故障,修车时间与修车后的速度分别还是40分钟与正常速度的75%,则比计划时间只晚1.5小时.那么,甲乙两地全程千米.14.9000名同学参加一次数学竞赛,他们的考号分别是1000,1001,1002,…9999.小明发现他的考号是8210,而他的朋友小强的考号是2180.他们两人的考号由相同的数字组成(顺序不一样),差为2010的倍数.那么,这样的考号(由相同的数字组成并且差为2010的倍数)共有对.15.小华编了一个计算机程序.程序运行后一分钟,电脑屏幕上首次出现一些肥皂泡,接下来每到整数分钟的时刻都会出现一些新的肥皂泡,数量与第一分钟出现的相同.第11次出现肥皂泡后半分钟,有一个肥皂泡破裂.以后每隔一分钟又会有肥皂泡破裂,且数量比前一分钟多1个(即第12次出现肥皂泡后半分钟,有2个肥皂泡破裂…).到某一时刻,已破裂的肥皂泡的总数恰好等于电脑屏幕上出现过的肥皂泡的总数,即此刻肥皂泡全部消失.那么在程序运行的整个过程中,在电脑屏幕上最多同时有个肥皂泡出现.10厘米20厘米302011“数学解题能力展示”读者评选活动五年级组初试试卷(测评时间:2010年12月19日8:30—9:30)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议 签名:____________________一.填空题(每题8分,共40分)1. 算式12345678910⨯+⨯+⨯+⨯+⨯的计算结果是 .2. 十二月份共有31天,如果某年12月1日是星期一,那么该年12月19日是星期 .(星期一至星期日用数字1至7表示)3. 右图的等腰梯形上底长度等于3,下底长度等于9,高等于4,那么这个等腰梯形的周长等于 .4. 某乐团女生人数是男生人数的2倍,若调走24名女生,则男生人数是女生人数的2倍,那么该乐团原有男女学生一共 人.5. 规定12010203=+=※...,232349=0+0+0=0※....,54567826=0+0+0+0=※......如果 15165a =※.,那么a 等于 .二.填空题(每题10分,共50分)6. 如图,蚂蚁从正方体的顶点A 沿正方体的棱爬到顶点B体每个顶点一次,那么蚂蚁一共有 种不同的爬法.7. 在右图每个方框中填入一个数字,使得乘法竖式成立.那么两个乘数的和是 .8. 两个正方形如图放置,图中的每个三角形都是等腰直角三角形.若其中方形的边长为12厘米,那么较大正方形的面积是 平方厘米.9. 如图的5×5的表格中有6个字母,请沿格线将右图分割为6个面积不同的小长方形(含正方形),使得每个长方形中恰好有一个字母,且每个字母都在小长方形角上的方格中.若这六个字母分别等于它所在小长方形的面积,那么五位数ABCDE = .10. 小人国有2011个小矮人,他们中的每个人不是戴红帽子就是戴蓝帽子.小矮人戴红帽子时说真话,戴蓝帽子时说假话;并且他们随时可以更换自己帽子的颜色.某一天,他们恰好每两人都见了一次面,并且都说对方戴蓝帽子.那么这一天他们总共最少改变了 次帽子的颜色.三.填空题(每题12分,共60分)11. 如图,一个大长方形被分成8个小长方形,其中长方形A 、B 、C 、D 、别是26厘米、28厘米、30厘米、32厘米、34方厘米.12. 如图是一个6×6的方格表,将数字1~6填入空白方格中,使得每一行、每一列数字1~6都只恰好出现一次,方格表还被粗线划分成了6块区域,每个区域数字1~6也恰好都只出现一次,那么最下面一行的 前4个数字组成的四位数ABCD 是 .13. 甲、乙两车同时从A 地出发开往B 地.出发的时候,甲车的速度比乙车的速度每小时快2.5千米.10分钟后,甲车减速了; 再过5分钟后,乙车也减速了,这时乙车比甲车每小时慢0.5千米.又过了25分钟后两车同时到达B 地.那么甲车当时速度每小时减少了 千米.14. 把同时满足下列两个条件的自然数称为“幸运数”:(1)从左往右数,第三位起,每一位的数字是它前面的两个数字的差(大数减去小数);(2)无重复数字.例如:132、871、54132都是“幸运数”;但8918(数字“8”重复)、990(数字“9”重复)都不是“幸运数”.那么最大“幸运数”从左往右的第二位数字是 .15. 一个由某些非零自然数所组成的数组具有以下的性质:(1)这个数组中的每个数(除了1以外),都可被2、3、5中的至少一个数整除.(2)对于任意非零自然数n ,若此数组中包含有2n 、3n 、5n 中的一个,则此数组中必同时包含有n 、2n 、3n 和5n .如果此数组中数的个数在300和400之间,那么此数组包含 个数.A B C D E FABDC EBA AACA D2011“数学解题能力展示”读者评选活动六年级组初试试卷(测评时间:2010年12月19日8:30—9:30)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议 签名:____________________一.填空题(每题8分,共40分)1. 今天是2010年12月19日,欢迎同学们参加北京第27届“数学解题能力展示”活动.那么,算式1027100121910002010++的计算结果的整数部分是 .2. 某校有2400名学生,每名学生每天上5节课,每位教师每天教4节课,每节课是一位教师给30名学生讲授.那么该校共有教师 位.3. 张老师带着一些钱去买签字笔,到商店后发现这种笔降价了25%,结果他带的钱恰好可以比原来多买25支.那么降价前这些钱可以买签字笔 支.4. 右图为某婴幼儿商品的商标,由两颗心组成,每颗心都是由一个正方形和两个半圆拼成.若两个正方形的边长分别为40毫米、20毫米,则阴影图形的面积是 平方毫米.(π取3.14)5. 用 4.02乘以一个两位整数,得到的乘积是一个整数,这个乘积的10倍是 .二.填空题(每题10分,共50分)6. 某支球队现在的胜率为45%,接下来的8场比赛中若有6场获胜,则胜率将提高到50%.那么现在这支球队共取得了 场比赛的胜利.7. 定义运算:a b a b a b ⨯♥=+,算式920102010201020102010♥♥♥♥♥♥共颗“”的计算结果是 .(题中共9个“♥”,计算顺序从左到右)8. 在△ABC 中,BD =DE =EC ,CF : AC =1 : 3.若△ADH 的面积比△HEF 的面积多24平方厘米,则△ABC 的面积是 平方厘米. 9. 一个正整数,它的2倍的约数恰好比它自己的约数多2个,它的3倍的约数恰好比它自己的约数多3个.那么这个正整数是 .10. 如图,一个6×6的方格表,现将数字1~6填入空白方格中,使得每一行、每一列数字1~6都恰好出现一次.图中已经填了一些数字,那么剩余空格满足要求的填写方法一共有 种.三.填空题(每题12分,共60分)11.有一个圆柱体,高是底面半径的3倍,将它如图分成大、小两个圆柱体.如果大圆柱体的表面积是小圆柱体的表面积的3倍,那么大圆柱体的体积是小圆柱体的体积的倍.12.某岛国的一家银行每天9:00~17:00营业.正常情况下,每天9:00准备现金50万元,假设每小时的提款量都一样,每小时的存款量也都一样,到17:00下班时有现金60万元.如果每小时提款量是正常情况的4倍,而存款量不变的话,14:00银行就没现金了.如果每小时提款量是正常情况的10倍,而存款量减少到正常情况一半的话,要使17:00下班时银行还有现金50万元,那么9:00开始营业时需要准备现金万元.13.40根长度相同的火柴棍摆成右图,如果将每根火柴棍看作长度为1的线段,那么其中可以数出30个正方形来.拿走5根火柴棍后,A,B,C,D,E五人分别作了如下的判断:A:“1×1的正方形还剩下5个.”B:“2×2的正方形还剩下3个.”C:“3×3的正方形全部保留下来了.”D:“拿走的火柴棍所在直线各不相同.”E:“拿走的火柴棍中有4根在同一直线上.”已知这5人中恰有2人的判断错了,那么剩下的图形中还能数出个正方形.14.甲、乙、丙三人同时从A出发去B,甲、乙到B后调头回A,并且调头后速度减少到各自原来速度的一半.甲最先调头,调头后与乙在C迎面相遇,此时丙已行2010米;甲又行一段后与丙在AB中点D迎面相遇;乙调头后也在C与丙迎面相遇.那么AB间路程是米.15.如果算式19.1220102=-+-IGHFDEABC中的A,B,C,D,E,F,G,H,I表示1~9中各不相同的数字,那么五位数ABCDE=.2011年“数学解题能力展示”读者评选活动小学高年级组复试试卷(测评时间:2011年1月30日8:00—9:30)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果,否则愿接受本次成绩无效的处罚.我同意遵守以上协议签名:____________________一.填空题Ⅰ(每题8分,共40分)1.定义一种新运算a☆b满足:a☆b=b×10+a×2.那么2011☆130=.2.从1999年到2010年的12年中,物价涨幅为150%(即1999年用100元能购买的物品,2010年要比原来多花150元才能购买).若某个企业的一线员工这12年来工资都没变,按购买力计算,相当于工资下降了 %.3.右图中大圆的半径是20厘米,7个小圆的半径都是10厘米.那么阴影图形的面积是 平方厘米(π取3.14).4. 某届“数学解题能力展示”读者评选活动初试共有12000名学生参加,分为初中、小学高年级、小学中年级三个组别.小学的两个组共占总人数的1615,不是小学高年级组的占总人数的21.那么小学中年级组参赛人数为 .5. 右图是一个除法竖式.这个除法竖式的被除数是 .二.填空题Ⅱ(每题10分,共50分)6. 算式1!×3-2!×4+3!×5-4!×6+…+2009!×2011-2010!×2012+2011!的计算结果是 .7. 春节临近,从2011年1月17日(星期一)起工厂里的工人陆续回家过年,与家人团聚.若每天离厂的工人人数相同,到1月31日,厂里还剩下工人121名,在这15天期间,统计工厂工人的工作量是2011个工作日(一人工作一天为1个工作日,工人离厂当天及以后不需要统计).其中周六、日休息,且无人缺勤.那么截至到1月31日,回家过年的工人共有 人.8. 有一个整数,它恰好是它的约数个数的2011倍.这个整数的最小值是 .9. 一个新建5层楼房的一个单元每层有东西2套房;各层房号如右图所示,现已有赵、钱、孙、李、周五家入住.一天他们5人在花园中聊天:赵说:“我家是第3个入住的,第1个入住的就住我对门.” 钱说:“只有我一家住在最高层.”孙说:“我家入住时,我家同侧的上一层和下一层都已有人入住了.”李说:“我家是五家中最后一个入住的,我家楼下那一层全空着.” 周说:“我家住在106号,104号空着,108号也空着.”他们说的话全是真话.设第1、2、3、4、5家入住的房号的个位数依次为A 、BC 、D 、E ,那么五位数ABCDE = .10. 6支足球队,每两队间至多比赛一场.如果每队恰好比赛了2场,那么符合条件的比赛安排共 有 种.三.填空题Ⅲ(每题12分,共60分)11. 0~9可以组成两个五位数A 和B ,如果A+B 的和是一个末五位数字相同的六位数,那么A×B 的不同取值共有 个.12. 甲、乙两人分别从A 、B 两地同时出发,在AB 间往返行走;甲出发的同时,丙也从A 出发去B .当甲、乙两人第一次迎面相遇在C 地时,丙还有100米才到C ;当丙走到C 时,甲又往前走了108米;当丙到B 时,甲、乙正好第二次迎面相遇.那么A 、B 两地间的路程是 米.13. 如右图,大正方形被分成了面积相等的五块.若AB 长为3.6厘米,则大正方形的面积为 平方厘米.五层 四层三层 二层 一层1 3 014. 用36个3×2×1的实心小长方体拼成一个6×6×6的大正方体.在各种拼法中,从大正方体外的某一点看过去最多能看到 个小长方体.15. 平面上有15个红点,在这些红点间连一些线段.一个红点连出了几条线段,就在这个红点上标几.已知所有标有相同数的红点之间互不连线,那么这15个红点间最多连了 条线段.2012“数学解题能力展示”读者评选活动五年级组初试试卷(测评时间:2011年12月17日9:00—10:00)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议 签名:____________________一.填空题(每小题8分,共32分)1. 算式50311111212012101÷÷⨯⨯的计算结果是 .2. 在右图中,BC = 10,EC = 6,直角三角形EDF 的面积比直角三角形FAB 的面积小5.那么长方形ABCD 的面积是 .3. 龙腾小学五年级共有四个班.五年级一班有学生42人,五年级二班是一班人数的76,五年级三班是二班人数的65,五年级四班是三班人数的1.2倍.五年级共有 人.4. 在右图中,共能数出 个三角形.二.填空题(每小题10分,共40分)5. 一个电子钟表上总把日期显示为八位数,如2011年1月1日显示为.如果2011年最后一个能被101整除的日子是ABCD 2011,那么=ABCD . 6. 在右图的除法竖式中,被除数是 . 7. 五支足球队比赛,每两个队之间比赛一场;每场比赛胜者积3分,负者积0分,平局则各积1分.比赛完毕后,发现这五个队的积分恰好是五个连续的自然数.设第1、2、3、4、5名分别平了A 、B 、C 、D 、E 场,那么五位数= .8. 今天是2011年12月17日,在这个日期中有4个1、2个2、1个0、1个7.用这8个数字组成若干个合数再求和(每个数字恰用一次,首位数字不能为0,例如21110与217的和是21327),这些合数的和的最小值是 .三.填空题(每小题12分,共48分)9. 甲、乙两人分别从A 、B 两地同时出发,相向而行.第一次迎面相遇在距离B 地100米处,相遇后甲的速度提高到原来的2倍;甲到B 后立即调头,追上乙时,乙还有50米才到A .那么,A 、B 间的路程长 米.10. 在右图中,线段AE 、FG 将长方形ABCD 分成了四块;已知其中两块的面积分别是2 cm 2、11cm 2,且E 是BC 的中点,O 是AE 的中点,那么长方形ABCD 的面积是 cm 2.11. 在算式 2011=⨯⨯⨯+H G F E ABCD 中,A 、B 、C 、D 、E 、F 、G 、H 代表1~8中不同的数字(不同的字母代表不同的数字).那么四位数ABCD = .12. 有一个6×6的正方形,分成36个1×1的正方形.选出其中一些1×1的正方形并画出它们的对角线,使得所画出的任何两条对角线都没有公共点,那么最多可以画出 条对角线.2012“数学解题能力展示”读者评选活动六年级组初试试卷(测评时间:2011年12月17日9:00—10:00)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议 签名:____________________一.填空题(每小题8分,共32分)1. 算式11111(97531)1226122030++++⨯的计算结果是_________.2. 将棱长为5的大正方体切割成125个棱长为1的小正方体.这些小正方体的表面积总和是原大正方体表面积的_________倍.3. 一辆玩具汽车,第一天按100%的利润定价,无人来买;第二天降价10%,还是无人买;第三天再降价360元,终于卖出.已知卖出的价格是进价的1.44倍,那么这辆玩具汽车的进价是_________元.4. 在右图中的竖式除法中,被除数为________.二.填空题(每小题10分,共40分)。
迎春杯历年试题全集(上)
迎春杯历年试题全集学而思在线目录北京市第 1 届迎春杯小学数学竞赛决赛试题 (3)北京市第 2 届迎春杯小学数学竞赛决赛试题 (7)北京市第 3 届迎春杯小学数学竞赛决赛试题 (15)北京市第 4 届迎春杯小学数学竞赛决赛试题 (16)北京市第 5 届迎春杯小学数学竞赛决赛试题 (18)北京市第 6 届迎春杯小学数学竞赛决赛试题 (20)北京市第 7 届迎春杯小学数学竞赛决赛试题 (23)北京市第 8 届迎春杯小学数学竞赛决赛试题 (25)北京市第 9 届迎春杯小学数学竞赛决赛试题 (28)北京市第 10 届迎春杯小学数学竞赛决赛试题 (31)北京市第 1 届迎春杯决赛试题1.天安门广场是世界上最大的广场,面积约 44 万平方米,合____亩。
2.计算:3.计算:4.一个五位数与 9 的和是最小的六位数,这个五位数是____。
5.某数的小数点向右移动一位,比原来的数大 18,原来的数是____。
6.甲、乙两数的和是 305.8,乙数的小数点向右移动一位就等于甲数,甲数等于____。
7.最大的四位数比最大的两位数多____倍。
8.在一个减法算式里,被减数、减数与差的和等于 120,而差是减数的 3 倍,那么差等于____。
9.在 8 个不同约数的自然数中,最小的一个是____。
10.甲数是 36,甲乙两数的最小公倍数是 288,最大公约数是 4,乙数应该是____。
11.一个三位数,个位与百位上的数字的和与积都是 4,三个数字相乘的积还是 4,这个三位数是____。
12.一个三位数能同时被 2、5、7 整除,这样的三位数按由小到大的顺序排成一列,中间的一个是____。
13.一个分母是最小质数的真分数,如果这个分数的分子增加了 4 倍,分母加上 8 得到一个新的分数,那么这两个分数的和是____。
14.一个人步行每小时走 5 公里,如果骑自行车每 1 公里比步行少用 8 分钟,那么他骑自行车的速度是步行速度的____倍。
2010-2015迎春杯试卷汇总(小高组)
2010年“数学解题能力展示”读者评选活动五年级组初试试卷(测评时间:2010 年1月3日9:00—10:00)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议.签名:___________填空题:(每题10分,共120分).2.小张有200支铅笔,小李有20支钢笔.每次小张给小李6支铅笔,小李还给小张1支钢笔.经过次这样的交换后,小张手中铅笔的数量是小李手中钢笔数量的11倍.3.如图,长方形ABCD中,BE=4,EC=4,CF=4,FD=1,则⊿AEF的面积是.5.一个等差数列的第3项是14,第18项是23,那么这个数列的前2010项中有项是整数.6.甲、乙两车同时从A城市出发驶向距离300千米远的B城市.已知甲车比乙车晚出发1个小时,但提前1个小时到达B城市.那么,甲车在距离B城市千米处追上乙车.7.已知一个五位回文数等于45与一个四位回文数的乘积(即),则这个五位回文数最大的可能值是.8.请从1, 2,3···,9,10 中选出若干个数,使得1,2,3···,19,20 中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和.那么,至少需要选出个数.9.如图,请沿虚线将7×7的方格表分割成若干个长方形,使得每个长方形中恰好包含一个数字,并且这个数字就是此长方形的面积.则第四列的小方格属于个不同的长方形.10. 九个大小相等的小正方形拼成了右图.现从A到B,每次只能沿着小正方形的对角线从一个顶点到另一个顶点,不允许走重复路线,如图的虚线就是一种走法.共有种不同的走法.11.如图,等腰直角三角形DEF的斜边在等腰直角三角形ABC的斜边上,连接AE、AD、AF,于是整个图形被分成五块小三角形.图中已标出其中三块的面积,则⊿ABC的面积是.12. C,D为AB的三等分点;甲8点整时从A出发匀速向B行走,8点12分乙从B点出发匀速向A行走,再过几分钟后丙也从B出发匀速向A行走;甲,乙在C点相遇时丙恰好走到D点,甲,丙8:30相遇时=+-+-++⨯+-⨯227213319)4131(12)3121(6.1deedabcba⨯=45乙恰好到A.那么,丙出发时是8点分2010年“数学解题能力展示”读者评选活动六年级组初试试卷(测评时间:2010 年1月3日9:00—10:00)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议.签名:___________填空题:(每题10分,共120分)2.小明带着一些钱去买签字笔,到商店后发现这种笔降价了12.5%,如果他带的钱恰好可以比原来多买13支,那么降价前这些钱可以买________支签字笔.3.满足图中算式的三位数abc最小值是________.4. 三个半径为100厘米且圆心角为60º的扇形如图摆放;那么,这个封闭图形的周长是________厘米.(π取3.14)5.用0~9这10个数字组成若干个合数,每个数字都恰好用一次,那么这些合数之和的最小值是________.6.梯形的上底为5,下底为10,两腰分别为3和4,那么梯形的面积为________.7. 有5个不同的正整数,它们中任意两数的乘积都是12的倍数,那么这5个数之和的最小值是________.8.一个大正方体、四个中正方体、四个小正方体拼成如图的立体图形,已知大、中、小三个正方体的棱长分别为5厘米、2厘米、1厘米.那么,这个立体图形的表面积是________平方厘米.9. 九个大小相等的小正方形拼成了右图.现从A点走到B点,每次只能沿着小正方形的对角线从一个顶点到另一个顶点,不允许走重复路线(如图的虚线就是一种走法).那么从A点走到B点共有________种不同的走法.10. 学校打算在1月4日或1月10日组织同学们看电影.确定好日期后,老师告诉了班长,但是由于“四”和“十”发音接近,班长有10%的可能性听错(把4听成10或者把10听成4).班长又把日期告诉了小明,小明也有10%的可能性听错.那么小明认为看电影的日期是正确日期的可能性为________%.11. 如图,C,D为AB的三等分点;8点整时甲从A出发匀速向B行走,8点12分乙从B出发匀速向A行走,再过几分钟后丙也从B出发匀速向A行走;甲,乙在C点相遇时丙恰好走到D点,甲,丙8:30相遇时乙恰好到A.那么,丙出发时是8点________分.12.图中是一个边长为1 的正六边形,它被分成六个小三角形.将4、6、8、10、12、14、16各一个填入7个圆圈之中.相邻的两个小正三角形可以组成6个菱形,把每个菱形的四个顶点上的数相加,填在菱形的中心A、B、C、D、E、F 位置上(例如:a+b+g+f=A).已知A、B、C、D、E、F依次分别能被2、3、4、5、6、7整除,那么a×g×d=___________.2010年“数学解题能力展示”读者评选活动小学高年级组复试试卷(测评时间:2010年2月6日8:30—10:00)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议.签名:___________一、填空题Ⅰ(每题8分,共40分)1.=⨯-⨯+1457266.22010 .2. 下表是人民币存款基准利率表 .小明现在有10000元人民币,如果他按照三年期整存整取的方式存款,3. 如图所示,有大小不同的两个正方体,大正方体的棱长是小正方体棱长的6倍.将大正方体的6个面都染上红色,将小正方体的6个面都染上黄色,再将两个正方体粘合在一起.那么这个立体图形表面上红色面积是黄色面积的 倍.4. 有一块用于实验新品种水稻的试验田形状如图,面积共40亩,一部分种植新品种,另一部分种植旧品种(种植面积不一定相等),以方便比较成果.旧品种每亩产500千克;新的品种中有75%都没有成功,每亩只产400千克,但是另外25%试验成功,每亩产800千克.那么,这块试验田共产水稻 千克.5.得数,那么这两个得数的差是 .二、填空题Ⅱ(每题10分,共50分)6. 直角边长分别为18厘米,10厘米的直角△ABC 和直角边长分别为14厘米,4厘米的直角△ADE 如图摆放.M 为AE 的中点,则△ACM 的面积为 平方厘米.7. 黑板上一共写了10040个数字,包括2006个1,2007个2,2008个3,2009个4,2010个5.每次操作都擦去其中4个不同的数字并写上一个第5种数字(例如擦去1、2、3、4各1个,写上1个5;或者擦去2、3、4、5各一个,写上一个1;……). 如果经过有限次操作后,黑板上恰好剩下了两个数字,那么这两个数字的乘积是 .8. 蜜蜂王国为了迎接2010年春节的到来,特地筑了一个蜂巢如下.每个新品种25%旧品种正六边形蜂窝中,有由蜂蜜凝结而成的数字0、1或2.春节到来之时,群蜂将在巢上跳起舞步,舞步的每个节拍恰好走过的四个数字:2010(从某个2出发最后走完四步后又回到2,如图中箭头所示为一个舞步),且蜜蜂每一步都只能从一个正六边形移动到与之有公共边的正六边形上.蜜蜂要经过四个正六边形且所得数字依次为2010,共有种方法.9.在反恐游戏中,一名“恐怖分子”隐藏在10个排成一行的窗户后面,一位百发百中的“反恐精英”使用狙击枪射击这名“恐怖分子”.“反恐精英”只需射中“恐怖分子”所在的窗户就能射中这名“恐怖分子”.每次射击完成后,如果“恐怖分子”没有被射中,他就会向右移动一个窗户.一旦他到了最右边的窗户,就停止移动.为了确保射中这名“恐怖分子”,“反恐精英”至少需要射击次.10.如图所示,直线上并排放置着两个紧挨着的圆,它们的面积都等于1680平方厘米.阴影部分是夹在两则这个圆的面积等于_________平方厘米.三、填空题Ⅲ(每题12分,共60分)11.用1~9这9个数字各一次,组成一个两位完全平方数,一个三位完全平方数,一个四位完全平方数.那么,其中的四位完全平方数最小是.12.现有一块L形的蛋糕如图所示,现在要求一刀把它切成3部分,因此只能按照如图的方式切,但不能斜着切或横着切.要使得到的最小的那块面积尽可能大,那么最小的面积为平方厘米.13.小李开车从甲地去乙地,出发后2小时,车在丙地出了故障,修车用了40分钟,修好后,速度只为正常速度的75%,结果比计划时间晚2小时到乙地.若车在行过丙地72千米的丁地才出故障,修车时间与修车后的速度分别还是40分钟与正常速度的75%,则比计划时间只晚1.5小时.那么,甲乙两地全程千米.14.9000名同学参加一次数学竞赛,他们的考号分别是1000,1001,1002,…9999.小明发现他的考号是8210,而他的朋友小强的考号是2180.他们两人的考号由相同的数字组成(顺序不一样),差为2010的倍数.那么,这样的考号(由相同的数字组成并且差为2010的倍数)共有对.15.小华编了一个计算机程序.程序运行后一分钟,电脑屏幕上首次出现一些肥皂泡,接下来每到整数分钟的时刻都会出现一些新的肥皂泡,数量与第一分钟出现的相同.第11次出现肥皂泡后半分钟,有一个肥皂泡破裂.以后每隔一分钟又会有肥皂泡破裂,且数量比前一分钟多1个(即第12次出现肥皂泡后半分钟,有2个肥皂泡破裂…).到某一时刻,已破裂的肥皂泡的总数恰好等于电脑屏幕上出现过的肥皂泡的总数,即此刻肥皂泡全部消失.那么在程序运行的整个过程中,在电脑屏幕上最多同时有个肥皂泡出现.10厘米20厘米302011“数学解题能力展示”读者评选活动五年级组初试试卷(测评时间:2010年12月19日8:30—9:30)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议 签名:____________________一.填空题(每题8分,共40分)1. 算式12345678910⨯+⨯+⨯+⨯+⨯的计算结果是 .2. 十二月份共有31天,如果某年12月1日是星期一,那么该年12月19日是星期 .(星期一至星期日用数字1至7表示)3. 右图的等腰梯形上底长度等于3,下底长度等于9,高等于4,那么这个等腰梯形的周长等于 .4. 某乐团女生人数是男生人数的2倍,若调走24名女生,则男生人数是女生人数的2倍,那么该乐团原有男女学生一共 人.5. 规定12010203=+=※...,232349=0+0+0=0※....,54567826=0+0+0+0=※......如果 15165a =※.,那么a 等于 .二.填空题(每题10分,共50分)6. 如图,蚂蚁从正方体的顶点A 沿正方体的棱爬到顶点B体每个顶点一次,那么蚂蚁一共有 种不同的爬法.7. 在右图每个方框中填入一个数字,使得乘法竖式成立.那么两个乘数的和是 .8. 两个正方形如图放置,图中的每个三角形都是等腰直角三角形.若其中方形的边长为12厘米,那么较大正方形的面积是 平方厘米.9. 如图的5×5的表格中有6个字母,请沿格线将右图分割为6个面积不同的小长方形(含正方形),使得每个长方形中恰好有一个字母,且每个字母都在小长方形角上的方格中.若这六个字母分别等于它所在小长方形的面积,那么五位数ABCDE = .10. 小人国有2011个小矮人,他们中的每个人不是戴红帽子就是戴蓝帽子.小矮人戴红帽子时说真话,戴蓝帽子时说假话;并且他们随时可以更换自己帽子的颜色.某一天,他们恰好每两人都见了一次面,并且都说对方戴蓝帽子.那么这一天他们总共最少改变了 次帽子的颜色.三.填空题(每题12分,共60分)11. 如图,一个大长方形被分成8个小长方形,其中长方形A 、B 、C 、D 、别是26厘米、28厘米、30厘米、32厘米、34方厘米.12. 如图是一个6×6的方格表,将数字1~6填入空白方格中,使得每一行、每一列数字1~6都只恰好出现一次,方格表还被粗线划分成了6块区域,每个区域数字1~6也恰好都只出现一次,那么最下面一行的 前4个数字组成的四位数ABCD 是 .13. 甲、乙两车同时从A 地出发开往B 地.出发的时候,甲车的速度比乙车的速度每小时快2.5千米.10分钟后,甲车减速了; 再过5分钟后,乙车也减速了,这时乙车比甲车每小时慢0.5千米.又过了25分钟后两车同时到达B 地.那么甲车当时速度每小时减少了 千米.14. 把同时满足下列两个条件的自然数称为“幸运数”:(1)从左往右数,第三位起,每一位的数字是它前面的两个数字的差(大数减去小数);(2)无重复数字.例如:132、871、54132都是“幸运数”;但8918(数字“8”重复)、990(数字“9”重复)都不是“幸运数”.那么最大“幸运数”从左往右的第二位数字是 .15. 一个由某些非零自然数所组成的数组具有以下的性质:(1)这个数组中的每个数(除了1以外),都可被2、3、5中的至少一个数整除.(2)对于任意非零自然数n ,若此数组中包含有2n 、3n 、5n 中的一个,则此数组中必同时包含有n 、2n 、3n 和5n .如果此数组中数的个数在300和400之间,那么此数组包含 个数.A B C D E FABDC EBA AACA D2011“数学解题能力展示”读者评选活动六年级组初试试卷(测评时间:2010年12月19日8:30—9:30)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议 签名:____________________一.填空题(每题8分,共40分)1. 今天是2010年12月19日,欢迎同学们参加北京第27届“数学解题能力展示”活动.那么,算式1027100121910002010++的计算结果的整数部分是 .2. 某校有2400名学生,每名学生每天上5节课,每位教师每天教4节课,每节课是一位教师给30名学生讲授.那么该校共有教师 位.3. 张老师带着一些钱去买签字笔,到商店后发现这种笔降价了25%,结果他带的钱恰好可以比原来多买25支.那么降价前这些钱可以买签字笔 支.4. 右图为某婴幼儿商品的商标,由两颗心组成,每颗心都是由一个正方形和两个半圆拼成.若两个正方形的边长分别为40毫米、20毫米,则阴影图形的面积是 平方毫米.(π取3.14)5. 用 4.02乘以一个两位整数,得到的乘积是一个整数,这个乘积的10倍是 .二.填空题(每题10分,共50分)6. 某支球队现在的胜率为45%,接下来的8场比赛中若有6场获胜,则胜率将提高到50%.那么现在这支球队共取得了 场比赛的胜利.7. 定义运算:a b a b a b ⨯♥=+,算式920102010201020102010♥♥♥♥♥♥共颗“”的计算结果是 .(题中共9个“♥”,计算顺序从左到右)8. 在△ABC 中,BD =DE =EC ,CF : AC =1 : 3.若△ADH 的面积比△HEF 的面积多24平方厘米,则△ABC 的面积是 平方厘米. 9. 一个正整数,它的2倍的约数恰好比它自己的约数多2个,它的3倍的约数恰好比它自己的约数多3个.那么这个正整数是 .10. 如图,一个6×6的方格表,现将数字1~6填入空白方格中,使得每一行、每一列数字1~6都恰好出现一次.图中已经填了一些数字,那么剩余空格满足要求的填写方法一共有 种.三.填空题(每题12分,共60分)11.有一个圆柱体,高是底面半径的3倍,将它如图分成大、小两个圆柱体.如果大圆柱体的表面积是小圆柱体的表面积的3倍,那么大圆柱体的体积是小圆柱体的体积的倍.12.某岛国的一家银行每天9:00~17:00营业.正常情况下,每天9:00准备现金50万元,假设每小时的提款量都一样,每小时的存款量也都一样,到17:00下班时有现金60万元.如果每小时提款量是正常情况的4倍,而存款量不变的话,14:00银行就没现金了.如果每小时提款量是正常情况的10倍,而存款量减少到正常情况一半的话,要使17:00下班时银行还有现金50万元,那么9:00开始营业时需要准备现金万元.13.40根长度相同的火柴棍摆成右图,如果将每根火柴棍看作长度为1的线段,那么其中可以数出30个正方形来.拿走5根火柴棍后,A,B,C,D,E五人分别作了如下的判断:A:“1×1的正方形还剩下5个.”B:“2×2的正方形还剩下3个.”C:“3×3的正方形全部保留下来了.”D:“拿走的火柴棍所在直线各不相同.”E:“拿走的火柴棍中有4根在同一直线上.”已知这5人中恰有2人的判断错了,那么剩下的图形中还能数出个正方形.14.甲、乙、丙三人同时从A出发去B,甲、乙到B后调头回A,并且调头后速度减少到各自原来速度的一半.甲最先调头,调头后与乙在C迎面相遇,此时丙已行2010米;甲又行一段后与丙在AB中点D迎面相遇;乙调头后也在C与丙迎面相遇.那么AB间路程是米.15.如果算式19.1220102=-+-IGHFDEABC中的A,B,C,D,E,F,G,H,I表示1~9中各不相同的数字,那么五位数ABCDE=.2011年“数学解题能力展示”读者评选活动小学高年级组复试试卷(测评时间:2011年1月30日8:00—9:30)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果,否则愿接受本次成绩无效的处罚.我同意遵守以上协议签名:____________________一.填空题Ⅰ(每题8分,共40分)1.定义一种新运算a☆b满足:a☆b=b×10+a×2.那么2011☆130=.2.从1999年到2010年的12年中,物价涨幅为150%(即1999年用100元能购买的物品,2010年要比原来多花150元才能购买).若某个企业的一线员工这12年来工资都没变,按购买力计算,相当于工资下降了 %.3.右图中大圆的半径是20厘米,7个小圆的半径都是10厘米.那么阴影图形的面积是 平方厘米(π取3.14).4. 某届“数学解题能力展示”读者评选活动初试共有12000名学生参加,分为初中、小学高年级、小学中年级三个组别.小学的两个组共占总人数的1615,不是小学高年级组的占总人数的21.那么小学中年级组参赛人数为 .5. 右图是一个除法竖式.这个除法竖式的被除数是 .二.填空题Ⅱ(每题10分,共50分)6. 算式1!×3-2!×4+3!×5-4!×6+…+2009!×2011-2010!×2012+2011!的计算结果是 .7. 春节临近,从2011年1月17日(星期一)起工厂里的工人陆续回家过年,与家人团聚.若每天离厂的工人人数相同,到1月31日,厂里还剩下工人121名,在这15天期间,统计工厂工人的工作量是2011个工作日(一人工作一天为1个工作日,工人离厂当天及以后不需要统计).其中周六、日休息,且无人缺勤.那么截至到1月31日,回家过年的工人共有 人.8. 有一个整数,它恰好是它的约数个数的2011倍.这个整数的最小值是 .9. 一个新建5层楼房的一个单元每层有东西2套房;各层房号如右图所示,现已有赵、钱、孙、李、周五家入住.一天他们5人在花园中聊天:赵说:“我家是第3个入住的,第1个入住的就住我对门.” 钱说:“只有我一家住在最高层.”孙说:“我家入住时,我家同侧的上一层和下一层都已有人入住了.”李说:“我家是五家中最后一个入住的,我家楼下那一层全空着.” 周说:“我家住在106号,104号空着,108号也空着.”他们说的话全是真话.设第1、2、3、4、5家入住的房号的个位数依次为A 、BC 、D 、E ,那么五位数ABCDE = .10. 6支足球队,每两队间至多比赛一场.如果每队恰好比赛了2场,那么符合条件的比赛安排共 有 种.三.填空题Ⅲ(每题12分,共60分)11. 0~9可以组成两个五位数A 和B ,如果A+B 的和是一个末五位数字相同的六位数,那么A×B 的不同取值共有 个.12. 甲、乙两人分别从A 、B 两地同时出发,在AB 间往返行走;甲出发的同时,丙也从A 出发去B .当甲、乙两人第一次迎面相遇在C 地时,丙还有100米才到C ;当丙走到C 时,甲又往前走了108米;当丙到B 时,甲、乙正好第二次迎面相遇.那么A 、B 两地间的路程是 米.13. 如右图,大正方形被分成了面积相等的五块.若AB 长为3.6厘米,则大正方形的面积为 平方厘米.五层 四层三层 二层 一层1 3 014. 用36个3×2×1的实心小长方体拼成一个6×6×6的大正方体.在各种拼法中,从大正方体外的某一点看过去最多能看到 个小长方体.15. 平面上有15个红点,在这些红点间连一些线段.一个红点连出了几条线段,就在这个红点上标几.已知所有标有相同数的红点之间互不连线,那么这15个红点间最多连了 条线段.2012“数学解题能力展示”读者评选活动五年级组初试试卷(测评时间:2011年12月17日9:00—10:00)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议 签名:____________________一.填空题(每小题8分,共32分)1. 算式50311111212012101÷÷⨯⨯的计算结果是 .2. 在右图中,BC = 10,EC = 6,直角三角形EDF 的面积比直角三角形FAB 的面积小5.那么长方形ABCD 的面积是 .3. 龙腾小学五年级共有四个班.五年级一班有学生42人,五年级二班是一班人数的76,五年级三班是二班人数的65,五年级四班是三班人数的1.2倍.五年级共有 人.4. 在右图中,共能数出 个三角形.二.填空题(每小题10分,共40分)5. 一个电子钟表上总把日期显示为八位数,如2011年1月1日显示为.如果2011年最后一个能被101整除的日子是ABCD 2011,那么=ABCD . 6. 在右图的除法竖式中,被除数是 . 7. 五支足球队比赛,每两个队之间比赛一场;每场比赛胜者积3分,负者积0分,平局则各积1分.比赛完毕后,发现这五个队的积分恰好是五个连续的自然数.设第1、2、3、4、5名分别平了A 、B 、C 、D 、E 场,那么五位数= .8. 今天是2011年12月17日,在这个日期中有4个1、2个2、1个0、1个7.用这8个数字组成若干个合数再求和(每个数字恰用一次,首位数字不能为0,例如21110与217的和是21327),这些合数的和的最小值是 .三.填空题(每小题12分,共48分)9. 甲、乙两人分别从A 、B 两地同时出发,相向而行.第一次迎面相遇在距离B 地100米处,相遇后甲的速度提高到原来的2倍;甲到B 后立即调头,追上乙时,乙还有50米才到A .那么,A 、B 间的路程长 米.10. 在右图中,线段AE 、FG 将长方形ABCD 分成了四块;已知其中两块的面积分别是2 cm 2、11cm 2,且E 是BC 的中点,O 是AE 的中点,那么长方形ABCD 的面积是 cm 2.11. 在算式 2011=⨯⨯⨯+H G F E ABCD 中,A 、B 、C 、D 、E 、F 、G 、H 代表1~8中不同的数字(不同的字母代表不同的数字).那么四位数ABCD = .12. 有一个6×6的正方形,分成36个1×1的正方形.选出其中一些1×1的正方形并画出它们的对角线,使得所画出的任何两条对角线都没有公共点,那么最多可以画出 条对角线.2012“数学解题能力展示”读者评选活动六年级组初试试卷(测评时间:2011年12月17日9:00—10:00)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议 签名:____________________一.填空题(每小题8分,共32分)1. 算式11111(97531)1226122030++++⨯的计算结果是_________.2. 将棱长为5的大正方体切割成125个棱长为1的小正方体.这些小正方体的表面积总和是原大正方体表面积的_________倍.3. 一辆玩具汽车,第一天按100%的利润定价,无人来买;第二天降价10%,还是无人买;第三天再降价360元,终于卖出.已知卖出的价格是进价的1.44倍,那么这辆玩具汽车的进价是_________元.4. 在右图中的竖式除法中,被除数为________.二.填空题(每小题10分,共40分)。
2010年少儿迎春杯五年级初赛试题及答案-精选教学文档
2019年少儿迎春杯五年级初赛(时间60分钟,满分150)班级 姓名 分数 学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论,我确定以下的答案均为我个人独立完成的成果,否则愿接受本次成绩无效的处罚。
我同意遵守以上协议 签名:一、填空题(每题8分,共40分)1.计算1×2+3×4+5×6+7×8+9×10的结果是 。
2.十二月份共有31天,如果某年12月1日是星期一,那么该年12月19日是星期 。
3.如图的等腰梯形上底长度等于3,下底长度等于9,高等于4,这个等腰梯形的周长等于 。
4.某乐团女生人数是男生人数的2倍;若调走24名女生,那么男生人数是女生人数的2倍,该乐团原有男女学生一共 人。
5.规定1※2=0.1+0.2=0.3,2※3=0.2+0.3+0.4=0.9,5※4=0.5+0.6+0.7+0.8=2.6,如果a ※15=16.5,那么a 等于 。
二.填空题(每题10分,共50分)6.从如图正方体的顶点A 沿正方体的棱到顶点B ,每个顶点恰好经过一次,一共有 种不同的走法。
7.在下左图每个方框中填入一个数字,使得乘法竖式成立.那么,两个乘数的和是 。
8.两个正方形如上中图放置,图中的每个三角形都是等腰直角三角形;若其中较小正方形的边长为12cm ,那么较大正方形的面积是 cm2。
19.如上右图的5×5的表格中有6个字母,请沿格线将图分割为6个面积不同的小长方形(含正方形),使得每个长方形中恰好有一个字母,且每个字母都在小长方形角上的方格中。
若这六个字母分别等于它所在小长方形的面积,那么五位数ABCDE =10.一个村庄有2019个小矮人,他们每个人不是戴红帽子,就是戴蓝帽子。
戴红帽子时说真话;戴蓝帽子时说假话。
他们可以改变帽子的颜色。
某一天,他们恰好每两人都见了一次面,并且都说对方戴蓝帽子。
历年迎春杯高年级决赛(5年级)经典试题汇编
数论
21. (2009 年数学解题能力展示中年级组初试试题)将 1、2、3、4、5、6、7、8、9 这九个数排成一 行,使得第一个数是第二个数的整数倍,前两个数的和是第三个数的整数倍,前三个数的和是第 四个数的整数倍,……,前八个数的和是第九个数的整数倍.如果第一个数是 6,第四个数是 2, 第五个数是 1,最后一个数是_____________.
22. (2009 年迎春杯高年级决赛试题)三个两两不同的正整数,和为 126,则它们两两最大公约数之 和的最大值为 .
23. (1993 年第 9 届迎春杯决赛试题) 设 a 与 b 是两个不相等的自然数, 如果它们的最小公倍数是 72, 那么 a 与 b 之和可以有 种不同的值.
9 历年数学解题能力展示高年级经典试题汇编(1984?~2010)
11 历年数学解题能力展示高年级经典试题汇编(1984?~2010)
31. 从甲地到乙地,需先走一段下坡路,再走一段平路,最后再走一段上坡路。其中下坡路与上坡路 的距离相等。陈明开车从甲地到乙地共用了 3 小时,其中第一小时比第二小时多走 15 千米,第二 小时比第三小时多走 25 千米。如果汽车走上坡路比走平路每小时慢 30 千米,走下坡路比走平路 每小时快 15 千米。那么甲乙两地相距多少千米?
C
B
A
E D
4 历年数学解题能力展示高年级经典试题汇编(1984?~2010)
11. (迎春杯模拟题)如图,求 x 的度数。
80° 20°
20° 20°
12. (2010 年数学解题能力高年级复试试题)现有一块 L 形的蛋糕如图所示,现在要求一刀把它切成 3 部分,因此只能按照如图的方式切,但不能斜着切或横着切.要使得到的最小的那块面积尽可能 大,那么最小的面积为 平方厘米. 10 厘米
2015迎春杯数学竞赛试题
2015年全国“迎春杯”科普活动小学高年级组决赛试卷B ·武汉(测评时间:2015年1月31日8:00—9:30)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议 签名:____________________一.填空题Ⅰ(每小题8分,共40分)1. 今天是2015年1月31日,欢迎参加2015“迎春杯”决赛.算式 2015201510.3110.31++的计算结果是_________. 【答案:6500】2. 如果一个大正六边形的边长等于一个小等边三角形的周长,那么这个大正六边形的面积是小等边三角形面积的_________倍.【答案:54】3. 为适应市场竞争,某品牌方便面实行“加量不加价”的销售策略.具体实施办法为:给每袋方便面都增加25%的重量,但每袋方便面的售价保持不变;那么这相当于每袋方便面降价__________%销售.【答案:20】4. A ,B ,C 三个人住进编号为1,2,3的三个房间,每个房间恰住一人;那么B 不住2号房间的住法共有__________种.【答案:4】5. 右图除法竖式中的商是___________.【答案:556】二.填空题Ⅱ(每小题10分,共50分)6. 有2015位美女,每位美女不是天使,就是恶魔;天使总说真话,恶魔有时说真话,有时说假话.第1位说:我们之中恰有1位天使. 第2位说:我们之中恰有2位恶魔. 第3位说:我们之中恰有3位天使. 第4位说:我们之中恰有4位恶魔. ……第2013位说:我们之中恰有2013位天使.第2014位说:我们之中恰有2014位恶魔.最后一位说:你们真无聊.那么这2015位美女中,至多有__________位天使.【答案:3】7. 在右面算式的3个“□”内各填入一个运算符号,使计算结果为质数,共有__________种不同的填法.(不允许添加括号)【答案:8】8. 如图,在两张相同的圆形纸片上,按图中方式分别剪出一个尽可能大的正方体平面展开图;如果左边的小正方形的边长是10,那么右边的小正方形的面积是________.【答案:68】9. 聪聪表演数学魔术,在黑板上写下1、2、3、4、5、6、7,让别人从中选定5个数,然后把这5个数的乘积算出来告诉他,聪聪猜这个人选的数.如果轮到笨笨选时,聪聪竟然连这5个数之和是奇数还是偶数都无法确定.那么笨笨选的5个数乘积是________.【答案:420】10. 42根长度相同的火柴棍摆成右图.若将每根火柴棍看作长度为1的线段,则图中可以数出38个三角形来.如果要使得剩下的图中再也找不到三角形,那么至少需要拿走________根火柴棍.【答案:12】三.填空题Ⅲ(每小题15分,共60分)11. 计算:222222222211111111112345101111111111234510⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+⨯+⨯+⨯+⨯⨯+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯-⨯⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 【答案:55】12. 早上8 : 00,小成和小陈分别从甲、乙两地出发,相向而行.9 : 40两人在途中相遇.小成说:“如果我每小时多行10千米,那么我们会提前10分钟相遇.” 小陈说:“如果我早出发半小时,那么我们会提前20分钟相遇.”若两人说的都是正确的,则甲、乙两地相距__________千米.【答案:150】13. 右面算式中的A ,B ,C ,D ,E ,F ,G ,H ,I 分别代表1~9中的不同数字.那么X 的最小值是 .【答案:2369】14. 在每个方格里填入数字1~6中的一个,使得每行和每列的数字都不重复.右边的数表示由粗线隔开的前面三个数字组成的三位数、中间两个数字组成的两位数以及最后的一位数这三个数之和.那么五位数ABCDE = .【答案:62363】XI GH EF ABCD =-⨯+。
迎春杯小学数学历年试题全集
迎春杯历年试题全集学而思在线http://目录北京市第1届迎春杯小学数学竞赛决赛试题 (3)北京市第2届迎春杯小学数学竞赛决赛试题 (7)北京市第3届迎春杯小学数学竞赛决赛试题 (15)北京市第4届迎春杯小学数学竞赛决赛试题 (16)北京市第5届迎春杯小学数学竞赛决赛试题 (18)北京市第6届迎春杯小学数学竞赛决赛试题 (20)北京市第7届迎春杯小学数学竞赛决赛试题 (23)北京市第8届迎春杯小学数学竞赛决赛试题 (25)北京市第9届迎春杯小学数学竞赛决赛试题 (28)北京市第10届迎春杯小学数学竞赛决赛试题 (31)北京市第1届迎春杯决赛试题1.天安门广场是世界上最大的广场,面积约44万平方米,合____亩。
2.计算:3.计算:4.一个五位数与9的和是最小的六位数,这个五位数是____。
5.某数的小数点向右移动一位,比原来的数大18,原来的数是____。
6.甲、乙两数的和是305.8,乙数的小数点向右移动一位就等于甲数,甲数等于____。
7.最大的四位数比最大的两位数多____倍。
8.在一个减法算式里,被减数、减数与差的和等于120,而差是减数的3倍,那么差等于____。
9.在8个不同约数的自然数中,最小的一个是____。
10.甲数是36,甲乙两数的最小公倍数是288,最大公约数是4,乙数应该是____。
11.一个三位数,个位与百位上的数字的和与积都是4,三个数字相乘的积还是4,这个三位数是____。
12.一个三位数能同时被2、5、7整除,这样的三位数按由小到大的顺序排成一列,中间的一个是____。
13.一个分母是最小质数的真分数,如果这个分数的分子增加了4倍,分母加上8得到一个新的分数,那么这两个分数的和是____。
14.一个人步行每小时走5公里,如果骑自行车每1公里比步行少用8分钟,那么他骑自行车的速度是步行速度的____倍。
15.水果店卖出库存水果的五分之一后,又运进水果66000斤,这时库存水果比原库存量多六分之一,原来库存水果____万斤。
2015决赛小高年级组B卷作者答案
结果是________. 〖答案〗 6500 2.
如果一个大正六边形的边长等于一个小等边三角形的周长,那么 这个大正六边形的面积是小等边三角形面积的________倍. 〖答案〗 54 〖供题〗北京 乔宇 3. 为适应市场竞争,某品牌方便面实行“加量不加价”的销售策 略.具体实施办法为:给每袋方便面都增加 25%的重量,但每袋方便面的售价保持不 变;那么这相当于每袋方便面降价__________%销售. 〖答案〗 20 〖供题〗北京 成俊锋 4. A,B,C 三个人住进编号为 1,2,3 的三个房间,每个房间恰 住一人;那么 B 不住 2 号房间的住法共有__________种. 〖答案〗 4 〖供题〗北京 杨东 5. 右图除法竖式中的商是________. 〖答案〗 5个数的乘积算出来告诉他,聪聪猜这个人选的数.如果轮到笨笨选时,聪聪竟 然连这 5 个数之和是奇数还是偶数都无法确定.那么笨笨选的 5 个数乘积是________. 〖答案〗 420 〖供题〗北京 黄璜 10. 42 根长度相同的火柴棍摆成右图. 若将每根火柴棍看作长度为 1 的线段,则图中可以数出 38 个三角形来.如果要使得剩下的图 中再也找不到三角形,那么至少需要拿走________根火柴棍. 〖答案〗 12 〖供题〗北京 陈平
三.填空题Ⅲ(每小题 12 分,共 60 分)
1 1 1 1 1 1 1 1 2 3 4 5 11. 计算: 1 1 1 1 1 2 1 2 1 2 1 2 2 3 4 5
2 2 2 2
1 1 10 1 1 2 10
2
.
〖答案〗 55
2010年“迎春杯”数学解题能力展示复赛试卷(小高组)
2010年“迎春杯”数学解题能力展示复赛试卷(小高组)一、填空题(共15小题,每小题0分,满分0分)1.2010+2.6×26﹣×14=.2.下表是人民币存款基准利率表.小明现在有10000元人民币,如果他按照三年期整存整取的方式存款,三年后他连本带利一共能从银行拿到元人民币.整存整取时间三个月半年一年三年五年年利率(%) 1.71 1.98 2.25 3.33 3.603.如图所示,有大小不同的两个正方体,大正方体的棱长是小正方体棱长的6倍.将大正方体的6个面都染上红色,将小正方体的6个面都染上黄色,再将两个正方体粘合在一起.那么这个立体图形表面上红色面积是黄色面积的倍.4.有一块用于实验新品种水稻的试验田形状如图,面积共40亩,一部分种植新品种,另一部分种植旧品种(种植面积不一定相等),以方便比较成果.旧品种每亩产500千克;新的品种中有75%都没有成功,每亩只产400千克,但是另外25%试验成功,每亩产800千克.那么,这块试验田共产水稻千克.5.在每个方框中填入一个数字,使得乘法竖式成立.已知乘积有两种不同的得数,那么这两个得数的差是.6.直角边长分别为18厘米,10厘米的直角△ABC和直角边长分别为14厘米,4厘米的直角△ADE如图摆放.M为AE的中点,则△ACM的面积为平方厘米.7.黑板上一共写了10040个数字,包括2006个1,2007个2,2008个3,2009个4,2010个5,每次操作都擦去其中4个不同的数字并写上第5种数字(例如,擦去1、2、3、4各1个,写上1个5;或者擦去2、3、4、5各1个,写上1个1…).如果经过若干次有限的操作后,黑板上恰好有两个数字,则这两个数字的乘积是多少?8.蜜蜂王国为了迎接2010年春节的到来,特地筑了一个蜂巢如下.每个正六边形蜂窝中,有由蜂蜜凝结而成的数字0、1或2.春节到来之时,群蜂将在巢上跳起舞步,舞步的每个节拍恰好走过的四个数字:2010(从某个2出发最后走完四步后又回到2,如图中箭头所示为一个舞步),且蜜蜂每一步都只能从一个正六边形移动到与之有公共边的正六边形上.蜜蜂要经过四个正六边形且所得数字依次为2010,共有种方法.9.在反恐游戏中,一名“恐怖分子”隐藏在10个排成一行的窗户后面,一位百发百中的“反恐精英”使用狙击枪射击这名“恐怖分子”.“反恐精英”只需射中“恐怖分子”所在的窗户就能射中这名“恐怖分子”.每次射击完成后,如果“恐怖分子”没有被射中,他就会向右移动一个窗户.一旦他到了最右边的窗户,就停止移动.为了确保射中这名“恐怖分子”,“反恐精英”至少需要射击次.10.如图所示,直线上并排放置着两个紧挨着的圆,它们的面积都等于1680平方厘米.阴影部分是夹在两圆及直线之间的部分.如果要在阴影部分内部放入一个尽可能大的圆,则这个圆的面积等于多少平方厘米?11.用1﹣9这9个数字各一次,组成一个两位完全平方数,一个三位完全平方数,一个四位完全平方数,那么,其中四位完全平方数最小是.12.现有一块L形的蛋糕如图所示,现在要求一刀把它切成三部分,因此只能按照如图的方式切,但不能斜着切或横着切.要使得到的最小的那块面积尽可能大,那么最小的面积为平方厘米.13.小李开车从甲地去乙地,出发后2小时,车在丙地出了故障,修车用了40分钟,修好后,速度只为正常速度的75%,结果比计划时间晚2小时到乙地.若车在行过丙地72千米的丁地才出故障,修车时间与修车后的速度分别还是40分钟与正常速度的75%,则比计划时间只晚了1.5小时.那么,甲、乙两地全程千米.14.9000名同学参加一次数学竞赛.他们的考号分别是1000,1001,1002,…9999.小明发现他的考号是8210,而他的朋友小强的考号是2180他们两人的考号由相同的数字组成(顺序不样)差为2010的倍数,那么,这样的考号(由相同的数字组成并且差为2010的倍数)共有对.15.小华编了一个计算机程序.程序运行后一分钟,电脑屏幕上首次出现一些肥皂泡,接下来每到整数分钟的时刻都会出现一些新的肥皂泡,数量与第一分钟出现的相同.第11次出现肥皂泡后半分钟,有一个肥皂泡破裂.以后每隔一分钟又会有肥皂泡破裂,且数量比前一分钟多1个(即第12次出现肥皂泡后半分钟,有2个肥皂泡破裂…).到某一时刻,已破裂的肥皂泡的总数恰好等于电脑屏幕上出现过的肥皂泡的总数,即此刻肥皂泡全部消失.那么在程序运行的整个过程中,在电脑屏幕上最多同时有个肥皂泡出现.2010年“迎春杯”数学解题能力展示复赛试卷(小高组)参考答案与试题解析一、填空题(共15小题,每小题0分,满分0分)1.2010+2.6×26﹣×14=2058.【解答】解:2010+2.6×26﹣×14=2010+67.6﹣19.6=2077.6﹣19.6=2058故答案为:2058.2.下表是人民币存款基准利率表.小明现在有10000元人民币,如果他按照三年期整存整取的方式存款,三年后他连本带利一共能从银行拿到10999元人民币.整存整取时间三个月半年一年三年五年年利率(%) 1.71 1.98 2.25 3.33 3.60【解答】解:10000+10000×3.33%×3=10000+999=10999(元)答:三年后他连本带利一共能从银行拿到10999元人民币.故答案为:10999.3.如图所示,有大小不同的两个正方体,大正方体的棱长是小正方体棱长的6倍.将大正方体的6个面都染上红色,将小正方体的6个面都染上黄色,再将两个正方体粘合在一起.那么这个立体图形表面上红色面积是黄色面积的43倍.【解答】解:假设小正方体棱长是1,大正方体棱长就是6,大正方体露在外面的表面积是6×6×6﹣1=215,小正方体露在外面的表面积是5,所以有215÷5=43倍.故答案为43.4.有一块用于实验新品种水稻的试验田形状如图,面积共40亩,一部分种植新品种,另一部分种植旧品种(种植面积不一定相等),以方便比较成果.旧品种每亩产500千克;新的品种中有75%都没有成功,每亩只产400千克,但是另外25%试验成功,每亩产800千克.那么,这块试验田共产水稻20000千克.【解答】解:根据分析,设新品种有X亩,产量为75%×400X+25%×800千克,则旧品种有40﹣X亩,产量为(40﹣X)×500千克,试验田共产水稻总量=新品种产量+旧品种产量=75%×400X+25%×800+(40﹣X)×500=20000(千克).故答案是:20000.5.在每个方框中填入一个数字,使得乘法竖式成立.已知乘积有两种不同的得数,那么这两个得数的差是1080.【解答】解:依题意可知:首先根据乘积的四位数的结果的个位数字是0可知第一个乘数的个位可能是5或者0.第一个乘数的首位数字是大于4的数字.所以第二个乘数的十位只能是1才能满足乘积的结果是三位数.所以第一个乘数的十位数字是1.根据第一个四位数乘积的百位数字是0,那么第一个乘数的首位数字只能是5.那么满足条件的有510×216=110160.515×216=111240.111240﹣110160=1080.(或者直接用个位数字差是5×216=1080)故答案为:10806.直角边长分别为18厘米,10厘米的直角△ABC和直角边长分别为14厘米,4厘米的直角△ADE如图摆放.M为AE的中点,则△ACM的面积为53平方厘米.【解答】解:S△ABC+S△ADE=(18×10+14×4)÷2=(180+56)÷2=118(平方厘米)根据△DEF∽△BCF得:BF:DF=BC:DE=10:4=2.5BF+DF=4,解得DF=,BF=,∵AM=ME,∴S阴=(S△ABC+S△ADE+S△DEF﹣S△BCF)÷2=(118+0.5××4﹣0.5××10)÷2=53 (平方厘米)故答案为53.7.黑板上一共写了10040个数字,包括2006个1,2007个2,2008个3,2009个4,2010个5,每次操作都擦去其中4个不同的数字并写上第5种数字(例如,擦去1、2、3、4各1个,写上1个5;或者擦去2、3、4、5各1个,写上1个1…).如果经过若干次有限的操作后,黑板上恰好有两个数字,则这两个数字的乘积是多少?【解答】解:由于每一次操作后,每一种数字个数的奇偶性改变,原来有奇数个的变成了偶数个,原来有偶数个的变成了奇数个.即无论如何操作,原来2个奇数个数的奇偶性相同,原来3个偶数个数的奇偶性也相同.最后剩下2个数(1、1),说明剩下的是原来数字个数奇偶性相同的数,那么只能是原来的2个奇数(2007、2009),2和4.2×4=8,结果就是8.8.蜜蜂王国为了迎接2010年春节的到来,特地筑了一个蜂巢如下.每个正六边形蜂窝中,有由蜂蜜凝结而成的数字0、1或2.春节到来之时,群蜂将在巢上跳起舞步,舞步的每个节拍恰好走过的四个数字:2010(从某个2出发最后走完四步后又回到2,如图中箭头所示为一个舞步),且蜜蜂每一步都只能从一个正六边形移动到与之有公共边的正六边形上.蜜蜂要经过四个正六边形且所得数字依次为2010,共有30种方法.【解答】解:图中标2的六边形分两类,第一类如左图所示,第二类如右图所示.从第一类六边形出发,每个六边形都只有1种走法,因此共有6种走法.从第二类六边形出发,每个六边形有4种不同的走法,其中两种是环形回路(细线表示),两种是原路返回(粗线表示),因此共有4×6=24种走法.综上所述,共有24+6=30种不同的走法.故答案为30.9.在反恐游戏中,一名“恐怖分子”隐藏在10个排成一行的窗户后面,一位百发百中的“反恐精英”使用狙击枪射击这名“恐怖分子”.“反恐精英”只需射中“恐怖分子”所在的窗户就能射中这名“恐怖分子”.每次射击完成后,如果“恐怖分子”没有被射中,他就会向右移动一个窗户.一旦他到了最右边的窗户,就停止移动.为了确保射中这名“恐怖分子”,“反恐精英”至少需要射击6次.【解答】解:第一次射击1号窗口,恐怖分子不可能在2号窗口出现;第二次射击3号窗口,恐怖分子不可能在4号窗口出现;第三次射击5号窗口,恐怖分子不可能在6号窗口出现;第四次射击7号窗口,恐怖分子不可能在8号窗口出现;第五次射击9号窗口,恐怖分子有可能早在10号窗口,所以还要射第6次.根据上面的分析,至少要射6次.10.如图所示,直线上并排放置着两个紧挨着的圆,它们的面积都等于1680平方厘米.阴影部分是夹在两圆及直线之间的部分.如果要在阴影部分内部放入一个尽可能大的圆,则这个圆的面积等于多少平方厘米?【解答】解:如图,,A、B、C分别是3个圆的圆心,设大圆的半径是R厘米,小圆的半径是r厘米,则AC=R+r(厘米),CD=R﹣r(厘米);因为AD2+CD2=AC2,所以R2+(R﹣r)2=(R+r)2,整理,可得R=4r,所以R2=16r2,所以πR2=16πr2,所以πr2=πR2÷16=1680÷16=105(平方厘米)答:这个圆的面积等于105平方厘米.11.用1﹣9这9个数字各一次,组成一个两位完全平方数,一个三位完全平方数,一个四位完全平方数,那么,其中四位完全平方数最小是1369.【解答】解:32×32=1024,含有0,不合要求33×33=1089,含有0,不合要求34×34=1156,含有两个1,不合要求35×35=1225,含有两个2,不合要求36×36=1296,剩下数字3、4、5、7、8没有哪两个数字可以组成两位完全平方数,不合要求37×37=1369,剩下数字2、4、5、7、8,其中25=5×5,784=28×28符合要求故填136912.现有一块L形的蛋糕如图所示,现在要求一刀把它切成三部分,因此只能按照如图的方式切,但不能斜着切或横着切.要使得到的最小的那块面积尽可能大,那么最小的面积为80平方厘米.【解答】解:如图,因为在图中两个三角形相似,大三角形是小三角形对应边的2倍,2x×(30﹣10)÷2=10×10﹣10x÷2解此方程得x=4,2×4×(30﹣20)=8×10=80(平方厘米)或(10﹣4+10)×10÷2=16÷10÷2=80(平方厘米)故答案为:80.13.小李开车从甲地去乙地,出发后2小时,车在丙地出了故障,修车用了40分钟,修好后,速度只为正常速度的75%,结果比计划时间晚2小时到乙地.若车在行过丙地72千米的丁地才出故障,修车时间与修车后的速度分别还是40分钟与正常速度的75%,则比计划时间只晚了1.5小时.那么,甲、乙两地全程288千米.【解答】解:丙、丁两地以两个不同速度走,用时为3:4,这段路原用时0.5×3=1.5小时,车原速为72÷1.5=48千米/小时,现速为48×=36千米,丙到乙以不同速度走,用时比为:3:4,从丙到乙原计划用时:(2﹣)×3=×3=4(小时)(4+2)×48=6×48=288(千米)答:甲、乙两地全程288千米.故答案为:288.14.9000名同学参加一次数学竞赛.他们的考号分别是1000,1001,1002,…9999.小明发现他的考号是8210,而他的朋友小强的考号是2180他们两人的考号由相同的数字组成(顺序不样)差为2010的倍数,那么,这样的考号(由相同的数字组成并且差为2010的倍数)共有50对.【解答】解:设与由相同的数字组成,且2010|(﹣)由于与的数字和相同,它们除以9的余数相同,即9|(﹣),从而6030|(﹣).考虑到0<﹣<9000,于是﹣=6030,=+6030.从末位数字可知d=h ,﹣603=.若c≥3,﹣603=,但(a﹣6)+b+(c﹣3)=a+b+c﹣9≠a+b+c ,≠,﹣603=,不成立.若c≤2,b=0,﹣603=﹣603=,同上知这种情况也不成立.因此,b≥1.﹣603=.c+7在这里可能等于a或者b.如果a=c+7,则b=c+1,此时(a,b,c)可以等于(7,1,0)、(8,2,1)以及(9,3,2);如果b=c+7,则a =c+6,此时(a,b,c)可以等于(7,8,1)和(8,9,2).(a,b,c)确定之后,再考虑d,d可以等于0,1,2,…9中的任何一个数字.这样,可以得到50个不同的abcd,继而可得到相应的efgh.于是,一共有50对这样的考号,由相同的数字组成,并且差为2010的倍数.故答案为50.15.小华编了一个计算机程序.程序运行后一分钟,电脑屏幕上首次出现一些肥皂泡,接下来每到整数分钟的时刻都会出现一些新的肥皂泡,数量与第一分钟出现的相同.第11次出现肥皂泡后半分钟,有一个肥皂泡破裂.以后每隔一分钟又会有肥皂泡破裂,且数量比前一分钟多1个(即第12次出现肥皂泡后半分钟,有2个肥皂泡破裂…).到某一时刻,已破裂的肥皂泡的总数恰好等于电脑屏幕上出现过的肥皂泡的总数,即此刻肥皂泡全部消失.那么在程序运行的整个过程中,在电脑屏幕上最多同时有1026个肥皂泡出现.【解答】解:设每次出现的肥皂泡数是k个,第m次肥皂泡破裂之后,已破裂的肥皂泡的总数恰好等于电脑屏幕上出现过的肥皂泡的总数,在此之前,已经出现了m+10次肥皂泡,依据已破裂的肥皂泡的总数恰好等于电脑屏幕上出现过的肥皂泡的总数,可得:(10+m)k=化简得:2(10+m)k=m(m+1),因为m,k都是正整数,所以得:所以m+10=15,18,30,45,90第11页(共13页)所以m=5,8,20,35,80,相应的,k=1,2,7,14,36当破裂的肥皂破数量小于新出现的肥皂泡数量时,电脑屏幕上的肥皂泡总数增加,当破裂的肥皂泡数量大于新出现肥皂泡数量时,电脑屏幕上的肥皂泡总数在减少,只有当破裂的肥皂破数量等于新出现的肥皂泡数量时,电脑屏幕上的肥皂泡总数才最多于是,当破裂的肥皂泡为k个的前半分钟电脑屏幕同时出现的肥皂最多,此时电脑上显示的(10+k)k ﹣=,k越大,显示的肥皂泡个数越多,当k=36 时,易验证满足条件,此时显示的肥皂泡个数是1026 个.故答案为:1026.第12页(共13页)第13页(共13页)。
2010迎春杯试题及答案
2010迎春杯试题及答案【篇一:2010年迎春杯6年级初赛试题详解】2010年数学解题能力展示初赛详解(六年级)姓名______ 分数_______ 一、填空题1、 11?1?22?2?44?4?2010计算结果的数字和是______; ?????????100个150个225个4答案:303考点:多位数的计算详解:要求100位数的数字和,需要搞清楚每位上的数字,重点看有没有进位。
原式?11?133?377?7?2010?11?133?377?79787, ???????????? ??????50个125个225个450个125个221个4数字和为1?50?3?25?7?21??9?7?8?7?303;评注:常见的求数字和的题目要把结果具体求出来,也往往利用a?99其中a?99?9?a00?0?a,?9,?????????n个9n个0n个9数字和为9n;2、小明带着一些钱去买签字笔,到商店后发现这种笔降价了12.5%,如果他带的钱恰好可以比原来多买13支,那么降价前这些钱可以买______支签字笔;答案:91考点:百分数问题解法一:设每支签字笔原价100元,原来买x支,则100x?100??1?12.5%???x?13?12.5x?87.5?13x?91解法二:设每支签字笔原价100元,每支降价后减少12.5元,现价为87.5元,由于12.5?7?87.5,即原来买7支的钱,现在可以多买1支。
现在多买13支,故原来可以买13?7?91支。
评注:本题也可以看作和差倍中的不变量(和)问题,数量与单价成反比。
a b c3、满足图中算式的三位数abc最小值是______;答案:102考点:数字谜问题详解:为了使得abc最小,那么a?1,由于三个积的十位数字为0、1、0,那么b?0,个位上可以进位、不进位都必须出现,那么c?2,所以abc?102;1 0 2评注:这是有极值要求的残缺数字谜问题,如果没有abc最小的限制,那么方法很多,即使在abc最小时,也有很多填法。
2010年迎春杯五年级初赛试题详解
2010年“数学解题能力展示”读者评选活动(五年级初赛详解)(测评时间:2010年1月3日9:00-10:00)姓名______ 分数_______一、填空题I (每题8分,共32分)1、 计算:22721331941311231216+-+-+⎪⎭⎫ ⎝⎛+⨯+⎪⎭⎫ ⎝⎛-⨯=______; 答案:30考点:整数、分数的混合运算详解:原式=3022721331971=+-+-++;评注:遇到小减大时,可以使用加法的交换律改变顺序。
2、 小张有200支铅笔,小李有20支钢笔。
每次小张给小李6支铅笔,小李还给小张1支钢笔。
经过______次这样的交换后,小张手中铅笔的数量是小李手中钢笔数量的11倍;答案:4 考点:和差倍问题 解法一:为了使得每次都交换6支,那么设小李有钢笔20⨯6=120支,每次交换后的差不变。
(1)如右表,调整不变量(差);(2)共交换了(200-11⨯16)÷6=4次。
解法二:设需要给x 次,那么200-6x =11⨯(20-x ),x =4。
评注:如果思路不清楚,可以采用“试验法”,交换次数即可找到。
3、 在长方形ABCD 中,BE =5,EC =4,CF =4,FD =1,如图所示,那么△AEF 的面积是______; 答案:20考点:图形的面积 详解:要求的△AEF 的面积等于整体长方形的面积减去三个三角形的面积。
9⨯5-5⨯5÷2-4⨯4÷2-9⨯1÷2=20;评注:本题的解题启示是:当一个问题正面难以解决时,就可以从侧面来“围攻”它。
4、 20092010200920092009个⨯⨯⨯的个位数字是______;答案:1考点:尾数问题详解:个位数字只有多位数的个位来决定,即有2010个9乘积的个位确定,发现两个9乘积的个位都是1,那么2010个9乘积的个位数字还是1;评注:对于n a 的个位数字,r m a+4与r a 的个位数字相同,特别地:a 的个位数字为0,1,5,6时,n 为任何自然数,n a 的个位数字分别还是0、1、5、6。
2020年“春笋杯”数学花园探秘科普活动试卷(小高组决赛a卷)
根粉末和艾草浸液配成,“生死水”的浓度是指水仙根粉末占整个药剂的百分比).他首
先在普通型“生死水”中加入一定量的艾草浸液,使“生死水”的浓度变为 9%;如果再
加入同等量的水仙根粉末,这时“生死水”的浓度变为 23%;那么普通型“生死水”的
浓度为
%.
二、填空题Ⅱ(每题 10 分,共 50 分)
6.(10 分)一次考试有 3 道题,四个好朋友考完后核对答案,发现四人分别对了 3、2、1、
乙:我全对了,丙全错了,甲考的不如丁.
丙:我对了一道,丁对了两道,乙考的不如甲.
丁:我全对了,丙考的不如我,甲考的不如乙.
如果每人都是对了几道题就说几句真话.设甲、乙、丙、丁依次对了 A、B、C、D 道
题,那么四位数 = 1203 . 【解答】解:根据分析,全队的人不会说自己对的题少于 3,所以只有乙、丁可能全对. 若乙全对,则排名是乙、丁、甲、丙,与丙所说的:“丁对了两道”是假话矛盾;
题,那么四位数 =
.
7.(10 分)如图算式中,不同的汉字代表不同的数字.如果
=2015,且 是
第 1页(共 12页)
质数,那么
=
.
8.(10 分)如图的图案由 1 个圆和 2 个大小相同的正方形组成(2 个正方形的公共部分为正
八边形).如果圆的半径为 60 厘米,那么阴影部分的面积是
平方厘米.(π取 3.14)
2015 年“迎春杯”数学花园探秘科普活动试卷(小高组决赛 A
卷)
一、填空题Ⅰ(每题 6 分,共 30 分)
1.(6 分)算式(1﹣ + ﹣ + ﹣ )÷( + + )的计算结果是
.
2.(6 分)一张边长为 10 厘米的正方形纸片,如图对折两次,再沿两遍的中点连线剪掉一
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年“数学解题能力展示”读者评选活动五年级组初试试卷(测评时间:2010 年1月3日9:00—10:00)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议.签名:___________填空题:(每题10分,共120分).2. 小张有200支铅笔,小李有20支钢笔.每次小张给小李6支铅笔,小李还给小张1支钢笔.经过 次这样的交换后,小张手中铅笔的数量是小李手中钢笔数量的11倍.3. 如图,长方形ABCD 中,BE=4,EC=4,CF=4,FD=1,则⊿AEF 的面积是 .5. 一个等差数列的第3项是14,第18项是23,那么这个数列的前2010项中有 项是整数.6. 甲、乙两车同时从A 城市出发驶向距离300千米远的B 城市.已知甲车比乙车晚出发1个小时,但提前1个小时到达B 城市.那么,甲车在距离B 城市 千米处追上乙车.7. 已知一个五位回文数等于45与一个四位回文数的乘积(即),则这个五位回文数最大的可能值是 .8. 请从1, 2,3···,9,10 中选出若干个数,使得1,2,3···,19,20 中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和.那么,至少需要选出 个数.9. 如图,请沿虚线将7×7的方格表分割成若干个长方形,使得每个长方形中恰好包含一个数字,并且这个数字就是此长方形的面积.则第四列的小方格属于 个不同的长方形.=+-+-++⨯+-⨯227213319)4131(12)3121(6.1deed abcba ⨯=4510. 九个大小相等的小正方形拼成了右图.现从A到B,每次只能沿着小正方形的对角线从一个顶点到另一个顶点,不允许走重复路线,如图的虚线就是一种走法.共有种不同的走法.11.如图,等腰直角三角形DEF的斜边在等腰直角三角形ABC的斜边上,连接AE、AD、AF,于是整个图形被分成五块小三角形.图中已标出其中三块的面积,则⊿ABC的面积是.12.C,D为AB的三等分点;甲8点整时从A出发匀速向B行走,8点12分乙从B点出发匀速向A行走,再过几分钟后丙也从B出发匀速向A行走;甲,乙在C点相遇时丙恰好走到D点,甲,丙8:30相遇时乙恰好到A.那么,丙出发时是8点分2010年“数学解题能力展示”读者评选活动六年级组初试试卷(测评时间:2010 年1月3日9:00—10:00)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议.签名:___________填空题:(每题10分,共120分)2.小明带着一些钱去买签字笔,到商店后发现这种笔降价了12.5%,如果他带的钱恰好可以比原来多买13支,那么降价前这些钱可以买________支签字笔.3.满足图中算式的三位数abc最小值是________.4. 三个半径为100厘米且圆心角为60º的扇形如图摆放;那么,这个封闭图形的周长是________厘米.(π取3.14)5.用0~9这10个数字组成若干个合数,每个数字都恰好用一次,那么这些合数之和的最小值是________.6.梯形的上底为5,下底为10,两腰分别为3和4,那么梯形的面积为________.7. 有5个不同的正整数,它们中任意两数的乘积都是12的倍数,那么这5个数之和的最小值是________.8.一个大正方体、四个中正方体、四个小正方体拼成如图的立体图形,已知大、中、小三个正方体的棱长分别为5厘米、2厘米、1厘米.那么,这个立体图形的表面积是________平方厘米.9. 九个大小相等的小正方形拼成了右图.现从A点走到B点,每次只能沿着小正方形的对角线从一个顶点到另一个顶点,不允许走重复路线(如图的虚线就是一种走法).那么从A点走到B点共有________种不同的走法.10. 学校打算在1月4日或1月10日组织同学们看电影.确定好日期后,老师告诉了班长,但是由于“四”和“十”发音接近,班长有10%的可能性听错(把4听成10或者把10听成4).班长又把日期告诉了小明,小明也有10%的可能性听错.那么小明认为看电影的日期是正确日期的可能性为________%.11. 如图,C,D为AB的三等分点;8点整时甲从A出发匀速向B行走,8点12分乙从B出发匀速向A行走,再过几分钟后丙也从B出发匀速向A行走;甲,乙在C点相遇时丙恰好走到D点,甲,丙8:30相遇时乙恰好到A.那么,丙出发时是8点________分.12.图中是一个边长为1 的正六边形,它被分成六个小三角形.将4、6、8、10、12、14、16各一个填入7个圆圈之中.相邻的两个小正三角形可以组成6个菱形,把每个菱形的四个顶点上的数相加,填在菱形的中心A、B、C、D、E、F 位置上(例如:a+b+g+f=A).已知A、B、C、D、E、F依次分别能被2、3、4、5、6、7整除,那么a×g×d=___________.2010年“数学解题能力展示”读者评选活动小学高年级组复试试卷(测评时间:2010年2月6日8:30—10:00)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议.签名:___________一、填空题Ⅰ(每题8分,共40分)1.=⨯-⨯+1457266.22010 .2. 下表是人民币存款基准利率表 .小明现在有10000元人民币,如果他按照三年期整存整取的方式存款,3. 如图所示,有大小不同的两个正方体,大正方体的棱长是小正方体棱长的6倍.将大正方体的6个面都染上红色,将小正方体的6个面都染上黄色,再将两个正方体粘合在一起.那么这个立体图形表面上红色面积是黄色面积的 倍.4. 有一块用于实验新品种水稻的试验田形状如图,面积共40亩,一部分种植新品种,另一部分种植旧品种(种植面积不一定相等),以方便比较成果.旧品种每亩产500千克;新的品种中有75%都没有成功,每亩只产400千克,但是另外25%试验成功,每亩产800千克.那么,这块试验田共产水稻千克.5.在每个方框中填入一个数字,使得乘法竖式成立.已知乘积有两种不同的得数,那么这两个得数的差是.二、填空题Ⅱ(每题10分,共50分)6. 直角边长分别为18厘米,10厘米的直角△ABC 和直角边长分别为14厘米,4厘米的直角△ADE 如图摆放.M 为AE的中点,则△ACM 的面积为 平方厘米.新品种25% 旧品种7. 黑板上一共写了10040个数字,包括2006个1,2007个2,2008个3,2009个4,2010个5.每次操作都擦去其中4个不同的数字并写上一个第5种数字(例如擦去1、2、3、4各1个,写上1个5;或者擦去2、3、4、5各一个,写上一个1;……). 如果经过有限次操作后,黑板上恰好剩下了两个数字,那么这两个数字的乘积是 .8. 蜜蜂王国为了迎接2010年春节的到来,特地筑了一个蜂巢如下.每个正六边形蜂窝中,有由蜂蜜凝结而成的数字0、1或2.春节到来之时,群蜂将在巢上跳起舞步,舞步的每个节拍恰好走过的四个数字:2010(从某个2出发最后走完四步后又回到2,如图中箭头所示为一个舞步),且蜜蜂每一步都只能从一个正六边形移动到与之有公共边的正六边形上.蜜蜂要经过四个正六边形且所得数字依次为2010,共有 种方法.9. 在反恐游戏中,一名“恐怖分子”隐藏在10个排成一行的窗户后面,一位百发百中的“反恐精英”使用狙击枪射击这名“恐怖分子”.“反恐精英”只需射中“恐怖分子”所在的窗户就能射中这名“恐怖分子”.每次射击完成后,如果“恐怖分子”没有被射中,他就会向右移动一个窗户.一旦他到了最右边的窗户,就停止移动.为了确保射中这名“恐怖分子”,“反恐精英”至少需要射击 次.10. 如图所示,直线上并排放置着两个紧挨着的圆,它们的面积都等于1680平方厘米.阴影部分是夹在两圆及直线之间的部分.则这个圆的面积等于_________平方厘米.三、填空题Ⅲ(每题12分,共60分)11. 用1~9这9个数字各一次,组成一个两位完全平方数,一个三位完全平方数,一个四位完全平方数.那么,其中的四位完全平方数最小是 .12. 现有一块L 形的蛋糕如图所示,现在要求一刀把它切成3部分,因此只能按照如图的方式切,但不能斜着切或横着切.要使得到的最小的那块面积尽可能大,那么最小的面积为 平方厘米.13. 小李开车从甲地去乙地,出发后2小时,车在丙地出了故障,修车用了40分钟,修好后,速度只为正常速度的75%,结果比计划时间晚2小时到乙地.若车在行过丙地72千米的丁地才出故障,修车时间与修车后的速度分别还是40分钟与正常速度的75%,则比计划时间只晚1.5小时.那么,甲乙两地全程 千米.10厘米 20厘米 3014.9000名同学参加一次数学竞赛,他们的考号分别是1000,1001,1002,…9999.小明发现他的考号是8210,而他的朋友小强的考号是2180.他们两人的考号由相同的数字组成(顺序不一样),差为2010的倍数.那么,这样的考号(由相同的数字组成并且差为2010的倍数)共有对.15.小华编了一个计算机程序.程序运行后一分钟,电脑屏幕上首次出现一些肥皂泡,接下来每到整数分钟的时刻都会出现一些新的肥皂泡,数量与第一分钟出现的相同.第11次出现肥皂泡后半分钟,有一个肥皂泡破裂.以后每隔一分钟又会有肥皂泡破裂,且数量比前一分钟多1个(即第12次出现肥皂泡后半分钟,有2个肥皂泡破裂…).到某一时刻,已破裂的肥皂泡的总数恰好等于电脑屏幕上出现过的肥皂泡的总数,即此刻肥皂泡全部消失.那么在程序运行的整个过程中,在电脑屏幕上最多同时有个肥皂泡出现.2011“数学解题能力展示”读者评选活动五年级组初试试卷(测评时间:2010年12月19日8:30—9:30)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议 签名:____________________一.填空题(每题8分,共40分)1. 算式12345678910⨯+⨯+⨯+⨯+⨯的计算结果是 .2. 十二月份共有31天,如果某年12月1日是星期一,那么该年12月19日是星期 .(星期一至星期日用数字1至7表示)3. 右图的等腰梯形上底长度等于3,下底长度等于9,高等于4,那么这个等腰梯形的周长等于 .4. 某乐团女生人数是男生人数的2倍,若调走24名女生,则男生人数是女生人数的2倍,那么该乐团原有男女学生一共 人.5. 规定12010203=+=※...,232349=0+0+0=0※....,54567826=0+0+0+0=※......如果 15165a =※.,那么a 等于 .二.填空题(每题10分,共50分)6. 如图,蚂蚁从正方体的顶点A 沿正方体的棱爬到顶点B ,并且恰好经过正方体每个顶点一次,那么蚂蚁一共有 种不同的爬法.7. 在右图每个方框中填入一个数字,使得乘法竖式成立.那么两个乘数的和是 .8. 两个正方形如图放置,图中的每个三角形都是等腰直角三角形.若其中小正方形的边长为12厘米,那么较大正方形的面积是 平方厘.19. 如图的5×5的表格中有6个字母,请沿格线将右图分割为6个面积不同的小长方形(含正方形),使得每个长方形中恰好有一个字母,且每个字母都在小长方形角上的方格中.若这六个字母分别等于它所在小长方形的面积,那么五位数ABCDE = .10. 小人国有2011个小矮人,他们中的每个人不是戴红帽子就是戴蓝帽子.小矮人戴红帽子时说真话,戴蓝帽子时说假话;并且他们随时可以更换自己帽子的颜色.某一天,他们恰好每两人都见了一次面,并且都说对方戴蓝帽子.那么这一天他们总共最少改变了 次帽子的颜色.三.填空题(每题12分,共60分)11. 如图,一个大长方形被分成8个小长方形,其中长方形A 、B 、C 、D 、E 的周长分别是26厘米、28厘米、30厘米、32厘米、34厘米.那么大长方形的面积最大是 平方厘米.12. 如图是一个6×6的方格表,将数字1~6填入空白方格中,使得每一行、每一列数字1~6都只恰好出现一次,方格表还被粗线划分成了6块区域,每个区域数字1~6也恰好都只出现一次,那么最下面一行的 前4个数字组成的四位数ABCD 是 .13. 甲、乙两车同时从A 地出发开往B 地.出发的时候,甲车的速度比乙车的速度每小时快2.5千米.10分钟后,甲车减速了; 再过5分钟后,乙车也减速了,这时乙车比甲车每小时慢0.5千米.又过了25分钟后两车同时到达B 地.那么甲车当时速度每小时减少了 千米.14. 把同时满足下列两个条件的自然数称为“幸运数”:(1)从左往右数,第三位起,每一位的数字是它前面的两个数字的差(大数减去小数);(2)无重复数字.例如:132、871、54132都是“幸运数”;但8918(数字“8”重复)、990(数字“9”重复)都不是“幸运数”.那么最大“幸运数”从左往右的第二位数字是 .15. 一个由某些非零自然数所组成的数组具有以下的性质:(1)这个数组中的每个数(除了1以外),都可被2、3、5中的至少一个数整除.(2)对于任意非零自然数n ,若此数组中包含有2n 、3n 、5n 中的一个,则此数组中必同时包含有n 、2n 、3n 和5n .如果此数组中数的个数在300和400之间,那么此数组包含 个数.A B DC EBAACD2011“数学解题能力展示”读者评选活动六年级组初试试卷(测评时间:2010年12月19日8:30—9:30)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议 签名:____________________一.填空题(每题8分,共40分)1. 今天是2010年12月19日,欢迎同学们参加北京第27届“数学解题能力展示”活动.那么,算式1027100121910002010++的计算结果的整数部分是 .2. 某校有2400名学生,每名学生每天上5节课,每位教师每天教4节课,每节课是一位教师给30名学生讲授.那么该校共有教师 位.3. 张老师带着一些钱去买签字笔,到商店后发现这种笔降价了25%,结果他带的钱恰好可以比原来多买25支.那么降价前这些钱可以买签字笔 支. 4. 右图为某婴幼儿商品的商标,由两颗心组成,每颗心都是由一个正方形和两个半圆拼成.若两个正方形的边长分别为40毫米、20毫米,则阴影图形的面积是 平方毫米.(π取3.14)5. 用4.02乘以一个两位整数,得到的乘积是一个整数,这个乘积的10倍是 .二.填空题(每题10分,共50分)6. 某支球队现在的胜率为45%,接下来的8场比赛中若有6场获胜,则胜率将提高到50%.那么现在这支球队共取得了 场比赛的胜利.7. 定义运算:a ba b a b ⨯♥=+,算式920102010201020102010♥♥♥♥♥♥L 144444424444443共颗“”的计算结果是 .(题中共9个“♥”,计算顺序从左到右)8. 在△ABC 中,BD =DE =EC ,CF : AC =1 : 3.若△ADH 的面积比△HEF 的面积多24平方厘米,则△ABC 的面积是 平方厘米.9. 一个正整数,它的2倍的约数恰好比它自己的约数多2个,它的3倍的约数恰好比它自己的约数多3个.那么这个正整数是 .10. 如图,一个6×6的方格表,现将数字1~6填入空白方格中,使得每一行、每一列数字1~6都恰好出现一次.图中已经填了一些数字,那么剩余空格满足要求的填写方法一共有 种.三.填空题(每题12分,共60分)11. 有一个圆柱体,高是底面半径的3倍,将它如图分成大、小两个圆柱体.如果大圆柱体的表面积是小圆柱体的表面积的3倍,那么大圆柱体的体积是小圆柱体的体积的 倍.12. 某岛国的一家银行每天9:00~17:00营业.正常情况下,每天9:00准备现金50万元,假设每小时的提款量都一样,每小时的存款量也都一样,到17:00下班时有现金60万元.如果每小时提款量是正常情况的4倍,而存款量不变的话,14:00银行就没现金了.如果每小时提款量是正常情况的10倍,而存款量减少到正常情况一半的话,要使17:00下班时银行还有现金50万元,那么9:00开始营业时需要准备现金 万元.13. 40根长度相同的火柴棍摆成右图,如果将每根火柴棍看作长度为1的线段,那么其中可以数出30个正方形来.拿走5根火柴棍后,A ,B ,C ,D ,E 五人分别作了如下的判断: A :“1×1的正方形还剩下5个.” B :“2×2的正方形还剩下3个.”C :“3×3的正方形全部保留下来了.”D :“拿走的火柴棍所在直线各不相同.”E :“拿走的火柴棍中有4根在同一直线上.”已知这5人中恰有2人的判断错了,那么剩下的图形中还能数出 个正方形.14. 甲、乙、丙三人同时从A 出发去B ,甲、乙到B 后调头回A ,并且调头后速度减少到各自原来速度的一半.甲最先调头,调头后与乙在C 迎面相遇,此时丙已行2010米;甲又行一段后与丙在AB 中点D 迎面相遇;乙调头后也在C 与丙迎面相遇.那么AB 间路程是 米.15. 如果算式19.1220102=-+-I GHF DE ABC 中的A ,B ,C ,D ,E ,F ,G ,H ,I 表示1~9中各不相同的数字,那么五位数ABCDE = .2011年“数学解题能力展示”读者评选活动小学高年级组复试试卷(测评时间:2011年1月30日8:00—9:30)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果,否则愿接受本次成绩无效的处罚.我同意遵守以上协议 签名:____________________一.填空题Ⅰ(每题8分,共40分)1. 定义一种新运算a ☆b 满足:a ☆b =b ×10+a ×2.那么2011☆130= .2. 从1999年到2010年的12年中,物价涨幅为150%(即1999年用100元能购买的物品,2010年要比原来多花150元才能购买).若某个企业的一线员工这12年来工资都没变,按购买力计算,相当于工资下降了 %.3. 右图中大圆的半径是20厘米,7个小圆的半径都是10厘米.那么阴影图形的面积是 平方厘米(π取3.14).4. 某届“数学解题能力展示”读者评选活动初试共有12000名学生参加,分为初中、小学高年级、小学中年级三个组别.小学的两个组共占总人数的1615,不是小学高年级组的占总人数的21.那么小学中年级组参赛人数为 .5. 右图是一个除法竖式.这个除法竖式的被除数是 .二.填空题Ⅱ(每题10分,共50分)6. 算式1!×3-2!×4+3!×5-4!×6+…+2009!×2011-2010!×2012+2011!的计算结果是 .7. 春节临近,从2011年1月17日(星期一)起工厂里的工人陆续回家过年,与家人团聚.若每天离厂的工人人数相同,到1月31日,厂里还剩下工人121名,在这15天期间,统计工厂工人的工作量是2011个工作日(一人工作一天为1个工作日,工人离厂当天及以后不需要统计).其中周六、日休息,且无人缺勤.那么截至到1月31日,回家过年的工人共有 人.8. 有一个整数,它恰好是它的约数个数的2011倍.这个整数的最小值是 .1 3 09. 一个新建5层楼房的一个单元每层有东西2套房;各层房号如右图所示,现已有赵、钱、孙、李、周五家入住.一天他们5人在花园中聊天:赵说:“我家是第3个入住的,第1个入住的就住我对门.”钱说:“只有我一家住在最高层.” 孙说:“我家入住时,我家同侧的上一层和下一层都已有人入住了.”李说:“我家是五家中最后一个入住的,我家楼下那一层全空着.”周说:“我家住在106号,104号空着,108号也空着.” 他们说的话全是真话.设第1、2、3、4、5家入住的房号的个位数依次为A 、B 、C 、D 、E ,那么五位数ABCDE = .10. 6支足球队,每两队间至多比赛一场.如果每队恰好比赛了2场,那么符合条件的比赛安排共 有 种.三.填空题Ⅲ(每题12分,共60分)11. 0~9可以组成两个五位数A 和B ,如果A +B 的和是一个末五位数字相同的六位数,那么A ×B 的不同取值共有 个.12. 甲、乙两人分别从A 、B 两地同时出发,在AB 间往返行走;甲出发的同时,丙也从A 出发去B .当甲、乙两人第一次迎面相遇在C 地时,丙还有100米才到C ;当丙走到C 时,甲又往前走了108米;当丙到B 时,甲、乙正好第二次迎面相遇.那么A 、B 两地间的路程是 米.13. 如右图,大正方形被分成了面积相等的五块.若AB 长为3.6厘米,则大正方形的面积为 平方厘米.14. 用36个3×2×1的实心小长方体拼成一个6×6×6的大正方体.在各种拼法中,从大正方体外的某一点看过去最多能看到 个小长方体.15. 平面上有15个红点,在这些红点间连一些线段.一个红点连出了几条线段,就在这个红点上标几.已知所有标有相同数的红点之间互不连线,那么这15个红点间最多连了 条线段.五层 四层 三层 二层一层2012“数学解题能力展示”读者评选活动五年级组初试试卷(测评时间:2011年12月17日9:00—10:00)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议 签名:____________________一.填空题(每小题8分,共32分)1. 算式50311111212012101÷÷⨯⨯的计算结果是 .2. 在右图中,BC = 10,EC = 6,直角三角形EDF 的面积比直角三角形F AB 的面积小5.那么长方形ABCD 的面积是 .3. 龙腾小学五年级共有四个班.五年级一班有学生42人,五年级二班是一班人数的76,五年级三班是二班人数的65,五年级四班是三班人数的1.2倍.五年级共有 人.4. 在右图中,共能数出 个三角形.二.填空题(每小题10分,共40分)5. 一个电子钟表上总把日期显示为八位数,如2011年1月1日显示为20110101.如果2011年最后一个能被101整除的日子是ABCD 2011,那么=ABCD .6. 在右图的除法竖式中,被除数是 .7. 五支足球队比赛,每两个队之间比赛一场;每场比赛胜者积3分,负者积0分,平局则各积1分.比赛完毕后,发现这五个队的积分恰好是五个连续的自然数.设第1、2、3、4、5名分别平了A 、B 、C 、D 、E 场,那么五位数ABCDE = .8.今天是2011年12月17日,在这个日期中有4个1、2个2、1个0、1个7.用这8个数字组成若干个合数再求和(每个数字恰用一次,首位数字不能为0,例如21110与217的和是21327),这些合数的和的最小值是.三.填空题(每小题12分,共48分)9.甲、乙两人分别从A、B两地同时出发,相向而行.第一次迎面相遇在距离B地100米处,相遇后甲的速度提高到原来的2倍;甲到B后立即调头,追上乙时,乙还有50米才到A.那么,A、B间的路程长米.10.在右图中,线段AE、FG将长方形ABCD分成了四块;已知其中两块的面积分别是2cm2、11cm2,且E是BC的中点,O是AE的中点,那么长方形ABCD的面积是cm2.11.在算式2011=⨯⨯⨯+HGFEABCD中,A、B、C、D、E、F、G、H代表1~8中不同的数字(不同的字母代表不同的数字).那么四位数ABCD=.12.有一个6×6的正方形,分成36个1×1的正方形.选出其中一些1×1的正方形并画出它们的对角线,使得所画出的任何两条对角线都没有公共点,那么最多可以画出条对角线.2012“数学解题能力展示”读者评选活动六年级组初试试卷(测评时间:2011年12月17日9:00—10:00)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议 签名:____________________一.填空题(每小题8分,共32分)1. 算式11111(97531)1226122030++++⨯的计算结果是_________.2. 将棱长为5的大正方体切割成125个棱长为1的小正方体.这些小正方体的表面积总和是原大正方体表面积的_________倍.3. 一辆玩具汽车,第一天按100%的利润定价,无人来买;第二天降价10%,还是无人买;第三天再降价360元,终于卖出.已知卖出的价格是进价的1.44倍,那么这辆玩具汽车的进价是_________元.4. 在右图中的竖式除法中,被除数为________.二.填空题(每小题10分,共40分)5. 一个电子钟表上总把日期显示为八位数,如2011年1月1日显示为20110101.那么2011年最后一个能被101整除的日子是2011ABCD ,那么ABCD =_________.6. 一个n 位正整数x ,如果把它补在任意..两个正整数的后面,所得两个新数的乘积的末尾还是x ,那么称x 是“吉祥数”.例如:6就是一个“吉祥数”;但16不是,因为11621625056⨯=,末尾不再是16.所有位数不超过3位的“吉祥数”之和是_________.7. 有一个足够深的水槽,底面是长为16厘米、宽为12厘米的长方形,原本在水槽里盛有6厘米深的水和6厘米深的油(油在水的上方).如果在水槽中放入一个长、宽、高分别为8厘米、8厘米、12厘米的铁块,那么油层的层高是_________厘米.水 油。