一次函数--待定系数法求函数解析式
用待定系数法求一次函数的解析式
用待定系数法求一次函数的解析式
用待定系数法求一次函数的解析式
一次函数的解析式可以用待定系数法来求。
待定系数法是指,在未知系数的函数中假定各个未知系数都为一个常数,然后用它们来求解该函数,最后得出最终的解析式。
例如,一次函数为 y=2ax+b,那么可以用待定系数法求解解析式: (1) 先将未知系数 a 和 b 分别假定为常数 K1 和 K2。
即y=K1x + K2
(2) 用实验数据求出 K1 和 K2 的值。
例如,实验数据如下表:
x t1 t2 t3
y t3 t7 t11
由上表可知,当 x=1 时, y=K1*1 + K2=3;
当 x=2 时,y=K1*2 + K2=7;
当 x=3 时,y=K1*3 + K2=11.
设K1=2,代入上式可得K2=1,即K1=2,K2=1。
即K1+K2=2+1=3
(3) 将 K1 和 K2 带入原函数中,得出最终的解析式。
- 1 -。
待定系数法求一次函数解析式题目和解析过程
题目:用待定系数法求一次函数解析式的题目和解析过程在代数学中,待定系数法是一种常用的方法,用来求解未知系数的值。
当我们需要求一次函数的解析式时,待定系数法可以帮助我们找到正确的表达式。
下面,我将和你一起探讨待定系数法在求一次函数解析式中的应用。
1. 确定一次函数的一般形式我们知道一次函数的一般形式是 y = ax + b,其中a和b分别代表斜率和截距。
在使用待定系数法时,我们需要先确定这个一般形式,以便后续进行系数的求解。
2. 根据已知条件列出方程接下来,我们需要根据题目提供的已知条件来列出方程。
如果已知函数过点(1, 2)和斜率为3,我们可以写出方程 y = 3x + b,并代入点(1, 2)来求解b的值。
3. 求解待定系数使用待定系数法,我们将已知的条件代入一般形式中,得到一个包含未知系数a和b的方程。
根据已知条件进行求解,逐步确定待定系数的值。
在已知函数过点(1, 2)和斜率为3的情况下,我们可以设定方程y = 3x + b,代入点(1, 2),得到 2 = 3*1 + b,从而求解出b的值为-1。
4. 得出一次函数的解析式根据求解得到的待定系数,我们可以得出一次函数的解析式。
在本例中,我们已知斜率为3,截距为-1,因此得出的一次函数解析式为 y = 3x - 1。
总结回顾:待定系数法作为一种常用的代数方法,可以帮助我们求解一次函数的解析式。
在使用待定系数法时,我们需要先确定一次函数的一般形式,然后根据已知条件列出方程,逐步求解待定系数的值,最终得出一次函数的解析式。
个人观点与理解:通过使用待定系数法,我们可以更快速、更准确地求解一次函数的解析式,尤其在已知条件复杂或需要精确求解时,待定系数法可以发挥其优势。
掌握待定系数法也有助于我们在代数方程的求解过程中提高效率和准确性。
希望以上内容可以帮助你更全面、深刻地理解待定系数法在求一次函数解析式中的应用。
如果有任何问题或需要进一步探讨,欢迎随时与我联系。
知识卡片-待定系数法求一次函数解析式
待定系数法求一次函数解析式能量储备●确定一次函数的表达式y=k x+b(k≠0),只需要求出k,b的值即可,它需要两个独立的条件:这两个条件通常是两个点,或两对x,y的值.●用待定系数法确定一次函数的表达式:先设出一次函数的表达式,如y=k x+b(k≠0),再将两个已知点(通常情况下,其中一个点是与y轴的交点)的横、纵坐标或两对x,y的值分别代入y=kx+b中,建立关于k,b的两个方程,通过解这两个方程求出k和b的值,从而确定其表达式,这种方法即为待定系数法.通关宝典★基础方法点方法点1:用待定系数法确定一次函数的表达式例1在弹性限度内,弹簧的长度y(cm)是所挂物体质量x(kg)的一次函数.一根弹簧不挂物体时长9 cm;当所挂物体的质量为3 kg时,弹簧长12 cm.写出y与x之间的关系式,并求出所挂物体的质量为6 kg时弹簧的长度.分析:因为弹簧的长度y是所挂物体质量x的一次函数,所以可设函数关系式为y=k x+b(k≠0).解:设y=k x+b(k≠0),根据题意,得9=b,①12=3k+b.②所以k=1.所以y=x+9.当x=6时,y=6+9=15,即所挂物体的质量为6 kg时,弹簧的长度为15cm.★★易混易误点易混易误点1: 将正比例函数与一次函数表达式混淆例2已知y是x的一次函数,并且当x=0时,y=1;当x=2时,y=3,求它的表达式.解:设它的表达式为y=k x+b(k≠0),因为当x=0时,y=1,所以b=1.又因为当x=2时,y=3,所以2k+b=3.所以k=1.所以y=x+1.,分析:在利用待定系数法求一次函数表达式时,首先应设一次函数表达式为y=k x+b(k≠0).本题易把一次函数表达式设为y=k x,导致错误.蓄势待发考前攻略考查根据实际问题中的条件或图象确定一次函数(或正比例函数)的表达式.多以选择题或填空题的形式出现,难度较小.完胜关卡。
待定系数法求一次函数解析式题目和解析过程
待定系数法求一次函数解析式题目和解析过程摘要:1.待定系数法简介2.一次函数的概念和形式3.如何使用待定系数法求一次函数解析式4.解析过程示例5.总结正文:1.待定系数法简介待定系数法是一种数学方法,通过给定一些未知数的系数,然后根据已知条件建立方程组,求解这些系数,从而得到未知数的值。
这种方法在求解函数解析式时被广泛应用。
2.一次函数的概念和形式一次函数是指形如y=ax+b 的函数,其中a 和b 是常数,x 是自变量,y 是因变量。
在这个函数中,a 被称为斜率,它表示函数图像的倾斜程度;b 被称为截距,它表示函数图像与y 轴的交点。
3.如何使用待定系数法求一次函数解析式求解一次函数解析式的一般步骤如下:(1)确定函数的形式。
根据已知条件,先假设函数的形式为y=ax+b。
(2)列出方程组。
根据题目所给的条件,列出关于a 和b 的方程组。
(3)解方程组。
通过求解方程组,得到a 和b 的值。
(4)写出解析式。
将求得的a 和b 代入原假设的函数形式中,得到待求函数的解析式。
4.解析过程示例例如,如果已知函数经过点(1,2) 和(2,4),求该函数的解析式。
(1)假设函数形式为y=ax+b。
(2)列出方程组:a +b = 22a + b = 4(3)解方程组:将第一个方程变形为b = 2 - a,代入第二个方程得到2a + (2 - a) = 4,解得a = 2,再代入第一个方程得到b = 0。
(4)写出解析式:y = 2x。
5.总结待定系数法是求解一次函数解析式的有效方法,通过给定系数,建立方程组,求解系数,从而得到函数解析式。
(新人教版八年级数学下册)《 用待定系数法求一次函数解析式》
练一练
1. 已知一次函数的图象过点 (3,5) 与 (-4,-9),
求这个一次函数的解析式.
解:设这个一次函数的解析式为 y = kx + b. 把点 (3,5) 与 (-4,-9) 分别代入,得:
3k b 5
4k b 9
解方程组得
k 2 b 1
∴这个一次函数的解析式为 y = 2x - 1.
{5x (0≤x≤2)
y= 4x + 2 (x > 2)
叫做分段函数. 注意:1.它是一个函数; 2.要写明自变量取值范围
{5x (0≤x≤2)
y=
的函数图象为:
4x + 2 (x > 2)
y
14
y = 4x + 2 (x > 2)
10
y = 5x (0≤x≤2)
O 123
x
思考:你能由上面的函数解析式或函数图
象解决以下问题吗?
(1) 7.5 元.
(1) 一次购买 1.5 kg 种子,需付款多少元?
(2) 30 元最多能购买多少种子?(2) 6 kg.
解析:由函数图象也能解决这些问题. (1) 过 x 轴上表示数 1.5 的点作 x 轴的垂线与函数图象 交于一点,这点的纵坐标就是需付款的钱数. (2) 过 y 轴上表示数 30 的点作 y 轴的垂线与函数图象 交于一点,这点的横坐标就是需购买种子的重量.
∴ b = 2.
∵ 一次函数的图象与 x 轴的交点是( 2 ,0),
则 1 2 2 2, 解得 k = 1 或 -1. k
2
k
故此一次函数的解析式为 y = x + 2 或 y = - x + 2.
知识点 2:一次函数与实际问题
人教版八年级下册数学教案19.2.2用待定系数法求一次函数的解析式
19.2.2一次函数--------第三课时:用待定系数法求一次函数的解析式.学习目标:1.学会用待定系数法确定一次函数的解析式.2.了解两个条件确定一个一次函数的解析式,一个条件确定一个正比例函数的解析式.3.掌握一次函数的简单应用.教学重难点重点:运用待定系数法求一次函数解析式.难点:能利用一次函数图象解决有关的实际问题.教学过程一、情镜引入思考:正比例函数y=kx(k≠0)解析式中,如果确定了k的值,正比例函数的解析式就确定了,那么必须知道什么样的条件?学生思考讨论交流后总结方法,学生回答:只需知道正比例函数的一对对应值或正比例函数图象上的一个点坐标代入解析式求出k的值.,本节课就是解决这一问题.(同时展示本节课的教学目标)二、新知探究,合作交流1.提问:当x=0时,y=6;当x=4时,y=7.2.你将如何求出上述问题中的函数关系式?学生独立完成后,交流展示:解:设y与x的函数关系式为y=kx+b.所以解得k=0.3 b=6因此这个一次函数的解析式为y=0.3x+6.方法总结:先设一次函数解析式,然后把两对对应值分别代入一次函数解析式,得到两个关于k,b的方程,构成方程组,解方程组求出k,b的值即可确定一次函数的解析式,这就是我们本节课要学习的求一次函数解析式的方法——待定系数法.2.用待定系数法求一次函数的解析式提问:用待定系数法确定函数解析式的一般步骤是怎样的?学生归纳:(1)设出函数解析式的一般形式为y=kx+b.(2)把自变量x与函数y的对应值(可能是以函数图象上点的坐标的形式给出)代入函数解析式中,得到关于待定系数的方程或方程组.(3)解方程或方程组,求出待定系数的值.(4)写出所求函数的解析式.例1.已知一次函数y=kx+b,当x=5时,y=4,当x=-2时,y=-3,求这个一次函数的解析式.分析:由于一次函数y=kx+b有k和b两个待定系数,因此用待定系数法,把x = 5时,y = 4和x=-2时,y=-3分别代入函数解析式,得到两个关于k和b的二元一次方程组成的二元一次方程组.解方程组后就能确定一次函数的解析式.解:由题意可知解得∴这个一次函数的解析式为y=x-1.例2.黄金1号”玉米种子的价格为5元∕kg,如果一次购买2 kg以上的种子,超过2 kg 部分的种子价格打8折.(1)填写下表:购买量∕kg0.5 11.522.533.54 …付款金额∕元…(2)写出付款金额关于购买量的函数解析式,并画出函数图象.探究:(1)付款金额与什么有关?种子价格是固定的吗?它与什么有关?种子的价格是如何确定的?(2)函数的图象是一条直线吗?为什么?学生独立思考,交流讨论,总结:(1)付款金额与种子价格相关.问题中种子价格不是固定不变的,它与购买量有关. 设购买种子数量为x kg,当0≤x≤2时,种子价格为5元/kg;当x>2时,其中有2 kg种子按5元/kg 计价,其余的(x-2)kg即超出2 kg的部分种子按4元/kg(即8折)计价.因此,写函数解析式与画函数图象时,应对0≤x≤2和x>2分段讨论.(2)在画实际问题中的一次函数图象时,要考虑自变量的取值范围,画出的图象往往不再是一条直线.学生完成解题过程,教师点评:解:(1)购买量∕kg0.5 11.522.533.54 …付款金额∕元2.5 57.510 12 14 16 18 …(2)设购买种子数量为x kg,付款金额为y元.当0≤x≤2时,y=5x;当x>2时,y=4(x-2)+10=4x+2. 函数图象如图所示.进一步引导学生根据函数图象思考:(1)一次购买1.5 kg种子,需付款多少元?(2)一次购买3 kg种子,需付款多少元?三.巩固练习1.已知一次函数的图象过点(3,5)与(-4,-9),求这个一次函数的解析式.2.已知一次函数y=kx+b的图象如图所示,则它的函数关系式为.3.已知y是x的一次函数,当x=3时,y=1;当x=-2时,y=-4.求这个一次函数的解析式. 四.总结拓展1.课堂小结:学生讨论交流回答下面的四个问题(1).求一次函数解析式的一般步骤有:①设出一次函数解析式y=kx+b(k≠0),②将两个点的坐标代入,得二元一次方程组,③解方程组求出k和b的值,④写出答案. (2).一次函数解析式的确定通常有下列几种情况:①利用待定系数法,根据两对x和y的值,列出方程组确定k,b的值,进而求出一次函数的解析式.②根据图象上两点坐标求出一次函数的解析式.2.拓展延伸一条平行于直线y=-3x的直线交x轴于点(2,0),则该直线与y轴的交点是.3.作业布置教材P99页习题7,8,9题.五.课堂效果测评1.一次函数的图象经过点A(-2,-1),且与直线y=2x-3平行,则此函数的解析式为( )A.y=x+1B.y=2x+3C.y=2x-1D.y=-2x-52.A(1,4),B(2,m),C(6,-1)在同一条直线上,则m的值为( )A.2B.3C.4D.53.已知一次函数y=kx+b的图象经过点A(2,4)和点B(-2,-8),这个一次函数的解析式为.4.已知一次函数y=kx+b,当x=-4时y=9,当x=6时y=-1,则此函数的解析式为.5.已知y是x的一次函数,当x=3时,y=1;当x=-2时,y=-4.求这个一次函数的解析式.6.A(1,4),B(2,m),C(6,-1)在同一条直线上,则m的值为( )A.2B.3C.4D.57.已知一条直线经过点A(0,6),且平行于直线y=-2x+1.(1)求这条直线的函数解析式;(2)若这条直线经过点B(m,2),求m的值.六.评价与反思(引导学生自己总结)1.你今天学习了什么?学到了什么?还有什么疑惑?有什么感受?在学生回答的基础上,教师点评并板书2.教学反思本节课主要学习了待定系数法及一次函数的应用,由前面的学习知道两点确定一条直线,以已知两点怎样确定这条直线即怎么样求出它的解析式.。
待定系数法求一次函数解析
感谢您的观看
THANKS
未知参数较多或未知参数之间的关系不明确
待定系数法更为适用,可以通过设立方程组求解。
与其他方法的结合使用
• 在某些情况下,可能需要结合待定系数法和点斜式或两点式来 求解一次函数的解析式。例如,已知一点和斜率,同时还需要 确定其他参数时,可以先使用点斜式得到初步的函数解析式, 再结合待定系数法求解其他参数。
实例二:已知与x轴交点求一次函数解析式
总结词
利用与x轴交点坐标求一次函数解析式
VS
详细描述
给定一次函数与x轴的交点$(x_0, 0)$,通 过待定系数法可以求出一次函数$y = kx + b$的解析式。首先,根据交点坐标计算斜 率$k = frac{0 - b}{x_0 - 0} = frac{b}{x_0}$,然后代入交点坐标$(x_0, 0)$求出截距$b = 0 - kx_0$,最终得到一 次函数解析式。
实例三:已知与y轴交点求一次函数解析式
总结词
利用与y轴交点坐标求一次函数解析式
详细描述
给定一次函数与y轴的交点$(0, y_0)$,通过 待定系数法可以求出一次函数$y = kx + b$ 的解析式。首先,根据交点坐标计算截距 $b = y_0$,然后根据斜率$k$和截距$b$ 的关系计算斜率$k = frac{y_0 - b}{0 - 0} = frac{y_0 - y_0}{0} = 0$,最终得到一次函 数解析式。
03
待定系数பைடு நூலகம்求一次函数解析 步骤
设定一次函数形式
一次函数的一般形式为 $y = kx + b$,其中 $k$ 和 $b$ 是待 求的系数。
根据题目条件,设定一次函数的具体形式,例如 $y = kx + b$。
用待定系数法求一次函数解析式(超赞)名师公开课获奖课件百校联赛一等奖课件
1
5 2 x
3k 6k b 4
b解得k b
1 3 4
一次函数因 k旳为解正此析负题式,中且为没一有次明函确
数y=kx+b(k≠0)只有 在k>0时,y随x旳
当k30时, 把(3,2),(6,5)分别代入y
得:
2 5
3k 6k b
b解得k b
1 3
3
增 0时k大x,而y增随b中大x旳,,增在大k<而
b=6 4k+b=7.2 解得
k=0.3 b=6
所以一次函数旳解析式为:y=0.3x+6
Page 20
一次函数y=kx+b(k≠0)旳自变量旳取值范围是-
3≤x≤6,相应函数值旳范围是-5≤y≤-2,求这个函数旳解 析式.
解: 当k0时, 把(3,5),(6,2)分别代入y kx b中,
得:
y
解:设过A,B两点旳直线旳体现式为y=kx+b.
由题意可知, 1 3k b,
2 0 b,
∴
k 1, b 2.
∴过A,B两点旳直线旳体现式为y=x-2.
∵当x=4时,y=4-2=2.
∴点C(4,2)在直线y=x-2上.
∴三点A(3,1), B(0,-2),C(4,2)在同一条直线上.
Page 22
请写出 y 与x之间旳关系式,并求当所挂物
体旳质量为4公斤时弹簧旳长度。
Page 18
在某个范围内,某产品旳购置量y(单位:kg)与单价x(单 位:元)之间满足一次函数,若购置1000kg,单价为800元;若 购置2023kg,单价为700元.若一客户购置400kg,单价是多 少?
解:设购置量y与单价x旳函数解析式为y=kx+b
待定系数法求一次函数解析式
待定系数法 变式1、一次函数y=kx+b满足x=2时,y=5; X=1时,y=3,求一次函数的解析式。
解:把x=2,y=5;X=1,y=3代入 y=kx+b 得: 5=2k+b 3=k+b 解得: K=2 b=1
所以,该函数解析式为:y=2x+1
八年级 数学
第十九章 函数
待定系数法
变式2 、已知一次函数y=kx+b的图象如图所示, 求函数表达式. 解:由图象可知,图象经过点(-1,0)和(0,-3) 两点,代入到y=kx+b中,得
0 k b, 3 0 b,
∴
k 3, b 3.
∴此函数的表达式为y=-3x-3.
八年表写出y与x的函数关系式。
x -1 0 1 2
y
2
0
-2
-4
解:由表格数据可知y是 x的正比例函数 设该正比例函数解析式为:y=kx+b 把x=-1,y=2 代入解析式得2=-k 解得k=-2 所以,该函数解析式为:y=-2x
直线y kx 4与坐标轴所围成的面积 为4 1 4 4 4 2 k
解得: k
2
直线解析式为: y 2x 4或y 2x 4
八年级 数学
第十九章 函数
待定系数法
10、已知直线 l1 : y 2 x 4 与直线 l2 : y mx n 关于y轴对称,求直线 l 2 的解析式
解:因为一次函数的图象与直线y=-x平行 所以,设一次函数解析式为:y=-x+b 把(4,-3)代入一次函数得:-3=-4+b 解得: b=1 所以,该函数解析式为:y=-x+1
八年级 数学
201.待定系数法求一次函数解析式(谢)
待定系数法求一次函数解析式【要点梳理】确定一次函数解析式的方法主要有两种: 一种是根据公式、基本数量关系确定函数解析式;一种是运用待定系数法来求解. 待定系数法求解析式的步骤:(1)设出一次函数的解析式y =kx +b ; (2)根据条件列出关于k 、b 的二元一次方程组;(3)解二元一次方程组;(4)把k 、b 的值代入y =kx +b 中即得一次函数的解析式.【典型例题】例1 已知一次函数的图像过点(3,5)与(-4,-9),求这个一次函数的解析式. 答案:设这个一次函数的解析式是 y=kx +b ,则5=3k+b94+b k ⎧⎨-=-⎩,解得k 21b =⎧⎨=-⎩ 所以解析式是y=2x -1.例2 如图所示,直线l 是一次函数的图象. (1) 求这个函数的解析式; (2) 当x =4时,y 的值为多少?答案:设这个函数的解析式是y=kx +b ,则2=2k+02b k b ⎧⎨=-+⎩,解得12b 1k ⎧=⎪⎨⎪=⎩, 所以解析式是y=12x +1; (2)当x =4时,y=3.例3 如果一次函数y =kx +b (k≠0)的自变量的取值范围是-3≤x ≤6,相应的函数值的取值范围是-5≤y ≤-2,求一次函数的解析式.答案:设这个一次函数的解析式是 y=kx +b ,则-2=-3k 56b k b +⎧⎨-=+⎩或-5=-3k+b26k b⎧⎨-=+⎩, 解得1k 31b ⎧=-⎪⎨⎪=-⎩或1k 34b ⎧=⎪⎨⎪=-⎩, 所以解析式是y=-13x -1或y=13x -4.例4 已知直线1l 经过点A (2,3)和B (-1,-3),直线2l 与1l 相交于点C (-2,m ),与y 轴交点的纵坐标为1. (1)试求直线1l 和2l 的解析式;(2)求出1l 、2l 与x 轴围成的三角形面积; (3)x 取什么值时,1l 的函数值大于2l 的函数值.答案:(1)设直线1l 和2l 的解析式分别是 y=k 1x +b 1,y=k 2x +b 2,则由于直线1l 经过点A (2,3)和B (-1,-3),有3=2k 3bk b+⎧⎨-=-+⎩,解得k 21b =⎧⎨=-⎩,直线1l 的解析式是y=2x-1,由于点C (-2,m )在直线1l 上,有m=2×(-2)-1=-5, 于是-5=-2k 1bb+⎧⎨=⎩,解得k 31b =-⎧⎨=⎩,所以直线2l 的解析式是y=-3x +1; (2)2512;例5 直线y =k x +b 经过点(23-,0)且与坐标轴所围成的直角三角形的面积为415,求直线的解析式. 答案:由已知得 0=-32k +b , 12×32×|b |=154, 解得103b 5k ⎧=⎪⎨⎪=⎩,或103b 5k ⎧=-⎪⎨⎪=-⎩, 直线的解析式为y=103x +5,或y=-103x -5【课堂操练】1.如果一次函数y =k x -3k +6的图象经过原点,那么k 的值为_________. 答案:22.一次函数y =-2x +b 图象过点(1,-2),则b 的值为_________. 答案:03.一次函数y =k x +b 的图象过点(1,-2),且与x 轴的交点的横坐标为35,那么k= ,b = .答案:3,-54.一次函数y =k x +b 在x =1时y =-2,且其图象与y 轴交点的纵坐标为-5,其解析式为 . 答案:y=3x -55.直线y =k x +b 经过点A (-2,0)和y 轴正半轴上的一点B ,如果△ABO 的面积为2,则则b 的值为_________. 答案:16.直线y =2x +m 与直线y =3x -4的交点在x 轴上,则m 的值为_________. 答案:-837.已知一次函数的图象与y =-3x 平行,且与y=x+5的图象交于y 轴的同一个点,•则此函数的解析式是 . 答案:y =-3x +58.求下图中直线的函数解析式答案:y=2x9.已知一次函数y =k x +b (k≠0)在x =1时y=5,且它的图象与x 轴交点的横坐标是6,求这个一次函数的解析式.答案:设这个一次函数的解析式是y=kx +b , 则5=k+b06k b ⎧⎨=+⎩,解得k=-1,b=6,有y=-x +6.10.已知:函数y = (m +1) x +2 m -6 (1)若函数图象过(-1 ,2),求此函数的解析式.(2)若函数图象与直线 y = 2 x + 5 平行,求其函数的解析式.(3)求满足(2)条件的直线与直线y = -3 x +1 的交点,并求这两条直线 与y 轴所围成的三角形面积 答案:(1)由已知有2=(m +1)×(-1)+2 m -6,解得m=9,此函数的解析式为y=10x +12; (2)由已知有m +1=2,即m=1, 函数的解析式y=2x -4; (3)由方程组y 2431x y x =-⎧⎨=-+⎩解得x 12y =⎧⎨=-⎩,即交点是(1,-2), 三角形面积是12(4+1)×1=52【课后练习】 1.一次函数y =k x +b 的图象过点(1,-1),且与直线y =—2x +5平行,则此一次函数的解析式为 . 答案:y =—2x +12.若直线y =3x +a 与两坐标轴围成的三角形的面积为6,则a = . 答案:±63.若点A (6,-1)、B (1,4)、C (2,m )在一条直线上,则m 的值为 . 答案:34.若直线y =-x +a 和直线y = x +b 的交点坐标为(m ,8),则a +b = . 答案:165.已知直线过点(9,10)和(24,20),求直线的解析式.答案:设解析式是y=kx +b ,则10=9k 2024b k b +⎧⎨=+⎩,解得2k 34b ⎧=⎪⎨⎪=⎩, 直线的解析式为y=23x +4.6.如图,在平面直角坐标系中,已知长方形OABC 的两个顶点坐标为A (3,0),B (3,2),对角线AC 所在的直线为l ,求直线l 的解析式.答案:设直线l 的解析式是y=kx +b ,则有 2=k ×0+b 且0=3k +b , 解得b=2,k=-23直线l 的解析式是y=-23x +2.7.如果一次函数y =kx +b 的自变量x 的取值范围是-2≤x ≤6,相应函数的取值范围是-11≤y ≤9,求函数解析式.答案:由已知有-2k 1169b k b +=-⎧⎨+=⎩,或-2k 9611b k b +=⎧⎨+=-⎩,解得5k 26b ⎧=⎪⎨⎪=-⎩,或5k 24b ⎧=-⎪⎨⎪=⎩,故函数解析式为y=52x -6或y=-52x +4.8.已知一次函数y =kx +b 的图象过点(-2,5),并且与y 轴交于P 点,直线y =-12x +3与y 轴交于Q 点,Q 点恰与P 点关于x 轴对称,求这个一次函数解析式.答案:由直线y =-12x +3与y 轴交于Q 点, 知:点Q (0,3),由Q 点恰与P 点关于x 轴对称, 知:点P (0,-3), 故有-2k 53b b +=⎧⎨=-⎩,解得k 43b =-⎧⎨=-⎩,这个一次函数解析式是y=-4x -39.柴油机在工作时油箱中的余油量Q(千克)与工作时间t (小时)成一次函数关系,当工 作开始时油箱中有油40千克,工作3.5小时后,油箱中余油22.5千克(1)写出余油量Q 与时间t 的函数关系式; (2)画出这个函数的图象. 答案:(1)Q=40-5t (其中0≤t ≤8); (2)(图象略). 10.有两条直线1l :b ax y +=和2l :5+=cx y .学生甲解出它们的交点为(3,-2);学生乙因把c 抄错而解出它们的交点为(4143,),试写出这两条直线的解析式.答案:对于直线1l :3a+b=-23144a b ⎧⎪⎨+=⎪⎩,解得a 11b =-⎧⎨=⎩; 对于直线2l :3c +5=-2,解得c=-73,这两条直线的解析式分别为y=-x +1, y=-73x +5. 11.(2011黑龙江绥化,25,8分)某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲、乙两厂的印刷费用y (千元)与证书数量x (千个)的函数关系图象分别如图中甲、乙所示.(1) 请你直接写出甲厂的近制版费y 甲与x的函数解析式,并求出其证书印刷单价.(2) 当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元?(3) 如果甲厂想把8千个证书的印制工作承揽下来,在不降低制版费的情况下,每个证书最少降低多少元?答案:(1)制版费1千元,y 甲=112x +,证书单价0.5元.(2)把x=6代入y 甲=112x +中得y=4,当x ≥2时,由图象可设y 乙与x 的函数关系式为y=kx+b, 由已知得2364k b k b +=⎧⎨+=⎩,解得5214b k ⎧=⎪⎪⎨⎪=⎪⎩,所以y 乙=1542x +,当x=8时,y甲18152⨯+=,y 乙=1598422⨯+=,950.52-=(千元),即,当印制8千张证书时,选择乙厂,节省费用500元;(3)设甲厂每个证书的印刷费用应降低a 元,8000a=500,所以a=0.0625.34【拓展延伸】12.(2011浙江丽水,11,10分)某班师生组织植树活动,上午8时从学校出发,到植树地点后原路返校,如图为师生离校路程S 与时间t 之间的图象,请回答下列问题: (1) 求师生何时回到学校?(2) 如果运送树苗的三轮车比师生迟半小时出发,与师生同路匀速前进,早半小时到达植树地点,请在图中,画出该三轮车运送树苗时,离校路程S 与时间t 之间的图象,并结合图象直接写出三轮车追上师生时,离学校的路程;(3) 如果师生骑自行车上午8时出发,到植树地点后,植树需2小时,要求14时前返回到学校,往返平均速度分别为每时10km 、8km ,现有A 、B 、C 、D 四个植树点与学校的路程分别是13km 、15km 、17km 、19km ,试通过计算说明哪几个植树点符合要求。
初中数学人教八年级下册第十九章一次函数-(定)用待定系数法求一次函数解析式
y
4•
3•
2•
1•
•
•
••
•
O 12 345
x
3.若直线y=kx+b平行直线y=-3x+2,且过y轴上的点(0,-5) 则k= -3 ,b= -5 .
4. 已知直线l与直线y=-2x平行,且与y轴交于点(0,2), 则直线l的解析式为_y_=_-_2_x_+_2___.
5.已知一次函数的图象经过点(-4,9)和(6,3),求这 个函数的解析式.
解:设这个一次函数的解析式为y=kx+b.
把点(-4,9)与(6,3)分别代入y=kx+b,得:
-4k+b=9 6k+b=3
3
解方程组得:
K= b=
-
33
5
5
∴这个一次函数的解析式为y=-
3
x+ 33
5
5
6.已知y-3与x成正比例,且x=2时,y=7.
(1)写出y与x之间的函数关系式;
(2)x=4时,y的值;
(3)y=4时,x的值.
解:(1)∵y-3与x成正比例, ∴设y-3=kx,
又∵x=2时,y=7, ∴7-3=2k,即k=2. ∴y-3=2x,即y=2x+3.
故y与x之间的函数关系式y=2x+3.
(2)当x=4时,y=2×4+3=11.
故y的值为11.
(3)当y=4时,4=2x+3,则x=
故x的值为
8.从A向B地打长途电话,通话时间不超过3min收费 2.4元,超过3min后每分钟加收1元. (1)根据题意,填写下表:
通话时间min 1 2 3 4 5 6 …
通话费用/元 2.4 2.4 2.4 3.4 4.4 5.4 …
一次函数待定系数法求解析式
一次函数待定系数法求解析式一次函数待定系数法是一种计算机科学的数值解法,它可以用于求解不可微分的不等式函数中出现的多变量函数未知参数,但不进行拟合和模拟操作。
这一方法能够找到合适的参数使得一次函数结果最小化,以最小代价求解多项式函数参数。
一、原理:一次函数待定系数法的基本原理是求解输入输出函数中出现的未知参数。
该方法最先使用一组特定的输入和输出的误差平方和,然后解出未知参数,最终求得满足条件的参数,使误差平方和最小化。
一次函数待定参数法只能处理一维问题,通常需要多次迭代求解,每次迭代优化。
二、求解准备:1、确定一次函数形式:通常,采用一次函数形式,即y=ax + b,其中a和b分别是一次函数的两个未知参数。
2、准备有效数据:要求拟合的点的坐标,数据要足够精确,能够满足一次函数形式。
3、将输入输出数据记录下来:根据有效的输入数据,将输出结果每组输入记录在表中,让系数法可以有足够的数据做计算,方便求解迭代。
三、求解方法:1、根据有效数据计算误差平方和:首先,根据每组有效的输入数据采用一次函数形式估计一次函数的输出结果,并计算每组估计的误差的平方和E。
2、采用梯度下降法解二元一次方程组:对误差平方和采用梯度下降法求得一次函数的参数a和b,梯度下降法可以使误差平方和迅速降低,实现更小的误差值。
3、迭代进行参数优化:采用梯度下降法求得参数后,实施一次函数进行迭代优化,来找到使误差最小的参数。
四、结果及分析:实施一次函数待定系数法后,可以迅速得到满足一次函数形式的未知参数,使得函数的输出更加精确。
同时,一次函数待定系数法可以节省类似拟合和模拟操作较大的计算量,提高求解效率。
用待定系数法求一次函数解析式精品课件ppt
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
2、已知直线y=kx+b经过点 (2.5,0),且与坐标轴所围 成的三角形的面积为6.25,求 该直线的解析式。 3、判断点A(3,2)、B(-3,1)、 C(1,1)是否在一直线上?
Page 1
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
例1:已知正比例函数 y= kx,(k≠0) 的图象经过点(-2,4).
求这个正比例函数的解析式.
解:设这个一次函数的解析式为y=kx.
变式3:已知一次函数y=2x+b 的 图象过点(2,-1).求这个一次函数 的解析式.
解:
∵ y=2x+b 的图象过点(2,-1).
∴ -1=2×2 + b 解得 b=-5 ∴这个一次函数的解析式为y=2x-5
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
变式7:一次函数y=kx+b(k≠0)的自 变量的取值范围是-3≤x≤6,相应函 数值的范围是-5≤y≤-2,求这个函数的 解析式.
2.分段函数 从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。 在一个变化过程中,函数 y 随自变量 x 变化的函数解析式
《待定系数法求解一次函数解析式》说课
教学过程
教材分析 学情分析 教学目标分析 教学重难点 教法学法 教学过程
知识目标
能力目标
情感目标
教材分析 学情分析 教学目标分析 教学重难点 教法学法 教学过程
1、理解待一定次系函数法和。正比例函数的 概 2、念会,用以待及定它系们数之法间求的一关次系函;数的表 3达、式能。根据已知条件写出一次函数 表达式 。
1、(必做题)已知一次函数,当时 y 的值为4,当时 y 的值为-2,求 k 与 b. 2、(必做题) 已知一次函数的图象经过点(-4, 9)和点(6, 3),求这个函 数的解析式. 3、(选做题)求与直线y=2x+5平行,且与x轴相交于点M(-2,0)的 直线的解析式。
【设计意图】以作业的形式反馈本节课内容的 掌握情况,并加以巩固提高。设置选做题则让 学有余力的同学有发挥的空间,使学生在课外 通过具有层次性的训练得到不同程度的发展。
y=3x-1 y=-2x+4
两点法——两点确定一条直线
【设计意图】 通过让学生动手画图的方式 巩固、 复习上节课的知识点。 同时为接下来所 要学的新知识“热身”。
二、学习目标
1、学会用待定系数法确定一次函数的解析式。
2、能根据函数的图象确定一次函数的解析式,体验 数形结合思想在一次函数中的应用。
函数解析式
1、求一次函数解析式的方法 ——待定系数法
2、待定系数法的一般步骤:
一设、二代、三解、四写
函数解析式
y =kx+b
选取
解出
满足条件的两 画出
定点(x1,y1) 与(x2,y2) 选取
待定系数法求一次函数解析式题目和解析过程
一次函数是指一个函数的最高幂次为1的多项式函数,也可以称为线性函数。
它的解析式的一般形式为 y = ax + b,其中 a 和 b 是常数。
本文将介绍通过待定系数法求解一次函数的解析式的方法。
待定系数法的基本原理待定系数法是通过给定的数据点来确定一次函数的解析式。
假设已知两个点(x₁, y₁) 和(x₂, y₂),我们可以通过待定系数法求解一次函数的解析式。
假设一次函数的解析式为 y = ax + b,那么我们可以得到以下两个等式:y₁ = ax₁ + b ...(1) y₂ = ax₂ + b (2)通过解这个方程组,我们可以得到一次函数的解析式。
解析过程假设我们已经知道两个点的坐标为 (3, 5) 和 (7, 9),并且要求解出一次函数的解析式。
我们可以将这两个点的坐标代入方程组 (1) 和 (2):5 = 3a + b ...(3) 9 = 7a + b (4)为了解方程组,我们可以使用消元法或代入法。
在这个例子中,我们将使用消元法。
首先,我们将方程 (3) 乘以 7,方程 (4) 乘以 3,以使得系数 a 的系数相等:35 = 21a + 7b ...(5) 27 = 21a + 3b (6)然后,我们将方程 (6) 从方程 (5) 中减去,消除系数 a:8 = 4b解得 b = 2。
将 b 的解代入方程 (3) 或 (4) 中,我们可以求解 a:5 = 3a + 2 3a = 5 - 2 3a = 3 a = 1所以,我们得到了 a = 1 和 b = 2,代入一次函数的解析式 y = ax + b:y = x + 2因此,通过待定系数法,我们求解出了一次函数的解析式 y = x + 2。
总结待定系数法是一种通过给定的数据点来求解一次函数的解析式的方法。
它的基本原理是通过将数据点代入方程组,然后通过消元法或代入法解方程组,得到一次函数的解析式。
这种方法在实际应用中非常常见,可以用于拟合数据以及预测未知数据点的值。
待定系数法求一次函数解析式题目和解析过程
待定系数法求一次函数解析式题目和解析过程
(原创实用版)
目录
1.待定系数法的概念
2.一次函数的概念
3.如何用待定系数法求一次函数的解析式
4.解析过程的步骤
正文
待定系数法是数学中一种求解问题的方法,它的主要思想是先设定一个函数的形式,然后通过已知条件来确定函数中的待定系数。
一次函数是指形如 y=ax+b 的函数,其中 a 和 b 是常数,x 是自变量。
求一次函数的解析式,就是找到函数中的 a 和 b 的值。
而待定系数法正是用来解决这个问题的。
首先,我们需要设定一次函数的形式,即 y=ax+b。
然后,根据题目给出的条件,我们可以列出方程组。
例如,如果已知函数在点 (1,2) 和点 (2,4) 处的函数值,我们可以列出如下方程组:
2 = a * 1 + b
4 = a * 2 + b
解这个方程组,我们就可以得到 a 和 b 的值,从而得到一次函数的解析式。
这就是待定系数法求一次函数解析式的基本过程。
在具体的解析过程中,我们需要注意以下几点:
1.首先,要正确设定函数的形式,即 y=ax+b。
如果已知函数的形式,那么这一步就很简单。
如果未知,就需要根据题目的条件进行推导。
2.其次,要正确列出方程组。
这需要根据题目的条件,将函数中的 a
和 b 表示成 x 的函数,然后与已知条件进行比较,列出方程组。
3.最后,要正确解方程组。
这需要使用代数方法,如消元、代入等,解出 a 和 b 的值。
以上就是待定系数法求一次函数解析式的基本步骤和注意事项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《一次函数------待定系数法》教学设计授课教师:王家桥中学冉晨露教材:人教版八年级数学下册一、教学目标分析1、知识与技能(1)会用待定系数法求解一次函数的解析式.体会二元一次方程组的实际应用.了解两个条件确定一个一次函数。
(2)能结合一次函数的图像和性质,灵活运用待定系数法求一次函数解析式;进而推广的利用给定的信息求一次函数的解析式,发展解决问题的能力。
2、过程与方法经历探索求一次函数解析式的过程,感悟数学中的数与形的结合,并初步形成“数形结合”的思想方法,培养学生分析问题和解决问题的能力。
3、情感、态度与价值观培养抽象的数学思维和与人合作的学习习惯,形成良好的学习态度.二、学情分析1、本班大部分学生双基比较扎实,对于一次函数的图像和性质掌握的比较好,能通过解析式画出函数图像,会用待定系数法计算简单的正比例函数的解析式,对于求解二元一次方程组掌握也比较好。
利用待定系数法求一次函数的解析式,由于两个式子相减,b就可以抵消,所以计算问题难度不大。
另外,学生在练习的过程中,对新题型比较陌生,特别是没有直接给出点的坐标,这样的题目学生掌握的不够好。
2、学生已经学过解二元一次方程组,并会用待定系数法计算简单的正比例函数的解析式,初步认识过待定系数法,以前也接触过数形结合的思想。
在此基础上,可以先让学生知道什么是待定系数法,具体步骤有哪些,进而体会数形结合的思想,然后举例说明从形到数和从数到形的相互渗透。
3、如何根据所给的信息找到条件,确定一次函数的解析式,是学生学习的障碍,对于这个问题,主要利用两种题型(图像式、两点式)和学生一起探寻条件(主要是找两个点),从而突破这个障碍。
三、教学内容分析(一)、教材分析:一次函数这部分内容是在学生学习了变量与函数、一次函数的概念等基础上,继续对某些特殊的变量关系的考察和认识。
从知识衔接的角度看,有着承上启下的作用,符合学生的认知规律。
确定一次函数解析式,关键在于确定出一次函数y kx b =+中的k 、b 的值,用待定系数法确定一次函数解析式,不仅要求学生能正确地确定出解析式,还重在让学生对一次函数式与函数图像、函数式中的变量与函数图像上点的坐标之间关系的理解,将数与形联系起来,形成数形结合的思想意识。
为后面学习反比例函数、二次函数打下基础。
(二)、重点、难点与关键1.重点:待定系数法求一次函数解析式.2.难点:培养数形结合分析问题和解决问题的能力.3.关键:熟练应用二元一次方程组的代入和加减消元法求解一次函数中的待定系数.四、教学过程设计(一)回顾复习1、函数y=-0.5x 经过__________象限,y 随x 的增大而______.2、函数y=2x+1经过_____________象限,y 随x 的增大而______.3、函数y=-x-1不经过______象限,y 随x 的增大而______.4、正比例函数y kx =的图像经过点(-1,2),则k =______,该函数的解析式为:_______5、如图,是 函数图象,它的解析式是 。
(二)、课前预习(1)预习课本P93-94(2)思考:什么是待定系数法?待定系数法求解一次函数解析式的一般步骤是什么?古人云:“凡事预则立,不预则废”。
讲课要备课,学生上课更要备学,也就是预习。
预习是数学全过程中的第一环节,是学习数学新知识的起点。
其最大的好处是能培养学生自学习惯的养成,提高学生独立思考问题的能力,使学生运用已有的知识和技能弄懂新课的内容和概念,获得成就感,激发学习兴趣,为老师上课做好准备。
通过课前学生自主完成这个小题,有利于学生明确本节课学习的主题。
(一)、创设情境,引入新课引导学生思考:在上节课中我们学习了再给定一次函数表达式的前提下,可以说出它的图像的特征及有关性质;反之,如果给你函数的图像,你能不能求出函数的表达式呢?(二)、合作交流,探索发现(学生自行对例题进行研究,并在课堂上展示研究成果)例4:已知一次函数的图像过点(3,5)与(-4,-9),求这个一次函数的解析式.⎩⎨⎧=-=-148336y x y x 、解方程组【思路点拨】求一次函数b kx y +=的解析式,关键是求出k 、b 的值,从已知条件可以列出关于k 、b 的二元一次方程组,并求出k 、b .解:设这个一次函数的解析式为y kx b =+.依题意得:352491k b k k b b +==⎧⎧⎨⎨-+=-=-⎩⎩解得 这个一次函数的解析式为12-=x y1、 待定系数法:2、用待定系数法求解一次函数解析式的一般步骤:例:已知一次函数在x=1 时,y=5,且它的图象与x 轴交点的横坐标是6,求这个一次函数的解析式。
(1)通过组织学生展示研究成果,激发学生的学习兴趣,锻炼学生的语言表达能力,思维能力,培养学生的独立思考,解决问题的能力。
(2)通过例题展示,规范学生的表达,引导学生根据所给的信息找到条件,确定一次函数的解析式,克服学习的障碍,使所学知识在学生的思维中内化。
同时引导学生自己归纳解方程组的步骤以及帮助其进一步内化知识,将一般性的问题程序化以构建解决问题模式以突出本节课的重点。
(三)、变式训练(让学生上黑板演练,并对解答进行评析)1、已知某个一次函数的图像与x 轴、y 轴的交点坐标分别是(-2,0)、(0,4),求这个函数的解析式。
2、已知一次函数图像经过点(﹣1,3),且与直线y=﹣5x+3平行,求这个函数的解析式。
3、已知一次函数图象经过A(2,-1) 和点B ,其中点B 是另一条直线y= 5x+3与y 轴的交点,求这个一次函数的解析式.4、如图,一个正比例函数的图像和一个一次函数的图像交于点 A (-1,2),且△ABO 的面积为 4,当点B 在X 轴负半轴上时,求这两个函数的解析式。
B O在学生形成解题思维之后,放手让学生完成,让学生上黑板演练,给学生自我展示的空间。
点评解答过程出现的问题和遇到的障碍,并及时更正,使学生少走弯路并巩固所学的知识。
1、用待定系数法求解一次函数解析式的一般步骤:2、我的其他收获。
课堂小结,是及时引导学生把所学知识系统化、结构化在加强双基的同时培养学生的能力开发学生的智力的重要教学环节。
要充分发挥课堂小结的作用。
重视开展课堂小结,对初中学生尤为重要,通过课堂小结可以使学生在老师指导下进行思维再加工,掌握科学的学习方法,用以巩固萌发的学习兴趣。
一个正比例函数的图像和一个一次函数的图像交于点 A(-1,2),点B在一次函数图像上,且△ABO 的面积为 4,(1)当点B在X轴上时,求一次函数的解析式。
(2)当点B在坐标轴上时,求一次函数的解析式。
1、预习:P94例题52、必做题:学案达标测试3、选做题:如图所示,将一张矩形纸片ABCD那样折起,使顶点C落在C′处,其中AB=4,若∠C′ED=30°,若以E点为坐原点建立平面直角坐标系,求直线E C′及D C′的解析式。
课后作业,它是反映学生对这堂课的知识点、重难点是否理解,能否灵活应用知识解决实际应用问题,是检验学生对当堂知识掌握程度,也是检验教师备课、上课知识点是否遗漏,重难点讲解是否到位的一种手段。
分层次布置作业,有效实施因材施教的方法,让不同层次的学生得到不同的发展。
通过完成课后作业,可以巩固学生对本节课的学习,并且使所学的知识系统化。
五、教学反思本节课内容选自人教版八年级下册第十九章《一次函数》第二节。
用待定系数法求一次函数的解析式是初中数学的重点内容之一,是学习了一次函数概念与图像性质知识的延续和提高。
在本节课是在学习一次函数的有关概念之后讲授的,用求一次函数解析式的基本方法之一,它既是对一次函数的延伸与拓展,又是为以后学习反比例函数和二次函数的解析式奠定了基础,具有非常重要的作用。
同时让学生在经历探索求一次函数解析式的过程中,感悟数学中的数与形的结合,并初步形成“数形结合”的思想方法,培养学生分析问题和解决问题的能力。
根据教材的特点,本节课将从知识与技能、过程与方法、情感与态度层面确定了相应的教学目标以及教学重难点。
为了适应素质教育,培养学生的能力,本节课我将主要采用探究式教学方法。
我不会将既有的知识以填鸭式直接灌输给学生,而从学生熟悉的问题导入,在活动中尽力激发学生求知的欲望,引导他们解决问题,并掌握解决问题的规律和方法。
同时我要关注学生的个体差异,有效的实施有差异的教学。
如:多层次对待学生的问答,分层次布置作业。
在本节课的教学过程中,我将通过让学生相互交流,上台展示研究成果等模式引导学生亲身经历知识的发生、发展、形成的认知过程。
通过观察、比较、思考、探索、交流、应用等活动,灵活地运用旧知识去研究新问题,在潜移默化中领会学习方法。
使学生从“学会”到“会学”,最后到“乐学”。
所以,根据本节课的特点,采用自主探究、合作交流的探究式学习方法。
《一次函数------待定系数法》学案班别:姓名:1、会用待定系数法求解一次函数的解析式.2、经历探索求一次函数解析式的过程,感悟数学中的数与形的结合.1、重点:待定系数法求一次函数解析式.2、难点:解决抽象的函数问题.3、关键:熟练应用二元一次方程组的代入法、加减法解一次函数中的待定系数.(一)回顾复习1、函数y=-0.5x经过__________象限,y随x的增大而______.2、函数y=2x+1经过_____________象限,y 随x 的增大而______.3、函数y=-x-1不经过______象限,y 随x 的增大而______.4、正比例函数y kx =的图像经过点(-1,2),则k =______,该函数的解析式为:_______5、如图,是 函数图象,它的解析式是 。
(二)、创设情境,引入新课【例1】已知一次函数的图像过点(3,5)与(-4,-9),求这个一次函数的解析式.1、 待定系数法:象这样先 ,再根据条件确定解析式中未知的 ,从而具体写出这个式子的方法,叫做待定系数法.2、用待定系数法求解一次函数解析式的一般步骤:【例2】已知一次函数在x=1 时,y=5,且它的图象与x 轴交点的横坐标是6,求这个一次函数的解析式。
【变式训练】1、已知某个一次函数的图像与x 轴、y 轴的交点坐标分别是(-2,0)、(0,4),求这个函数的解析式。
⎩⎨⎧=-=-148336y x yx 、解方程组2、已知一次函数图像经过点(﹣1,3),且与直线y=﹣5x+3平行,求这个函数的解析式。
3、已知一次函数图象经过A(2,-1) 和点B,其中点B是另一条直线y= 5x+3与y轴的交点,求这个一次函数的解析式.4、如图,一个正比例函数的图像和一个一次函数的图像交于点 A(-1,2),且△ABO 的面积为 4,当点B在X轴负半轴上时,求这两个函数的解析式。