高考物理动能势能动能定理复习

合集下载

动能定理与弹性势能知识点总结

动能定理与弹性势能知识点总结

动能定理与弹性势能知识点总结一、动能定理动能定理是高中物理中一个非常重要的定理,它描述了力对物体做功与物体动能变化之间的关系。

动能是物体由于运动而具有的能量。

一个质量为 m 、速度为 v 的物体,其动能可以表示为:$E_k =\frac{1}{2}mv^2$ 。

动能定理指出:合外力对物体所做的功等于物体动能的变化量。

即:$W_{合} =\Delta E_k = E_{k2} E_{k1}$。

这里的合外力做功可以是多个力做功的代数和。

如果一个力做功为正,意味着它增加了物体的动能;如果一个力做功为负,就表示它减少了物体的动能。

例如,一个在光滑水平面上的物体,受到一个水平恒力 F 的作用,发生了一段位移 s 。

力 F 所做的功为 W = Fs ,根据牛顿第二定律 F= ma ,以及运动学公式$v^2 v_0^2 = 2as$ (其中$v_0$ 为初速度,v 为末速度,a 为加速度),可以推导出动能定理的表达式。

在应用动能定理时,需要注意以下几点:1、明确研究对象和研究过程。

2、分析物体所受的合外力以及各力做功的情况。

3、确定初、末状态的动能。

动能定理的优点在于,它不涉及加速度等中间量,对于一些变力做功或者曲线运动的问题,往往能更简便地解决。

比如,一个物体在粗糙水平面上运动,摩擦力做功,同时还有一个变力作用在物体上。

如果用牛顿运动定律和运动学公式来求解,会非常复杂,但用动能定理就可以避开这些困难。

二、弹性势能弹性势能是发生弹性形变的物体各部分之间,由于有弹力的相互作用而具有的势能。

当物体发生弹性形变时,它具有恢复原状的趋势,这种趋势使得物体具有了弹性势能。

对于一个弹簧,其弹性势能的表达式为:$E_p =\frac{1}{2}kx^2$ ,其中 k 是弹簧的劲度系数,x 是弹簧的形变量。

弹性势能的大小与弹簧的劲度系数和形变量有关。

劲度系数越大,形变量越大,弹性势能就越大。

在研究弹性势能的变化时,通常会结合胡克定律 F = kx 。

新人教版高考物理总复习第五章机械能《动能定理及其应用》

新人教版高考物理总复习第五章机械能《动能定理及其应用》

Wf=
1 2
m
v
2 B
-0,解得Wf=
=1×10×5 J-
1 2
×1×62 J=32 J,故A正确,B、C、D错误。
题型3 求解多过程问题
【典例3】(2019·信阳模拟)如图所示AB和CDO都是处
于竖直平面内的光滑圆弧形轨道,OA处于水平位置。 AB是半径为R=1 m的 1 圆周轨道,CDO是半径为r=
(2)小球仅仅与弹性挡板碰撞一次且刚好不脱离CDO轨 道的条件是在O点重力提供向心力,碰后再返回最高 点恰能上升到D点。
【解析】(1)设小球第一次到达D的速度为vD,对小球
从P到D点的过程,根据动能定理得:
mg(H+r)-μmgL1=m
2
v
2 D
-0
在D点轨道对小球的支持力FN提供向心力,则有:
(5)物体的动能不变,所受的合外力必定为零。 ( × ) (6)做自由落体运动的物体,物体的动能与下落时间的 二次方成正比。 ( √ )
考点1 对动能、动能定理的理解 【题组通关】 1.(2018·江苏高考)从地面竖直向上抛出一只小球, 小球运动一段时间后落回地面。忽略空气阻力,该过 程中小球的动能Ek与时间t的关系图象是 ( )
【解析】选A。对于整个竖直上抛过程(包括上升与下
落),速度与时间的关系为v=v0-gt,v2=g2t2-2v0gt+
v
2 0

Ek=
1 2
mv2,可见动能与时间是二次函数关系,由
数学中的二次函数知识可判断A正确。
2.(2018·全国卷Ⅱ)如图,某同学用绳子拉动木箱, 使它从静止开始沿粗糙水平路面运动至具有某一速度。 木箱获得的动能一定 ( )
A.小于8 J C.大于8 J

高考物理科普动能与动能定理

高考物理科普动能与动能定理

高考物理科普动能与动能定理动能与动能定理动能是物理学中的一个重要概念,用来描述物体的运动状态。

在高考物理中,学生需要对动能与动能定理有一定的了解。

本文将介绍什么是动能以及动能定理的含义和应用。

一、动能的定义动能(kinetic energy)是一个物体由于运动而具有的能量。

简单来说,物体的动能与物体的质量和速度有关。

动能的单位是焦耳(J)。

动能的计算公式如下:动能 = 1/2 ×质量 ×速度²其中,质量的单位是千克(kg),速度的单位是米/秒(m/s)。

例如,质量为2千克的物体以10米/秒的速度运动,其动能为:动能 = 1/2 × 2 kg × (10 m/s)² = 100 J这表示该物体由于运动而具有100焦耳的能量。

二、动能定理动能定理(kinetic energy theorem)是描述物体动能变化的定理。

它的表述如下:物体的动能的变化量等于作用在物体上的净外力所做的功。

净外力指的是物体受到的所有外力的矢量和,而功即为力对物体的作用在物体上产生的能量转移。

根据动能定理,如果一个物体受到净外力作用,其动能就会发生改变。

当净外力与物体运动方向一致时,物体的动能增加;当净外力与物体运动方向相反时,物体的动能减少。

三、动能定理的应用动能定理在物理学中具有很多应用。

以下是一些常见的应用场景:1. 能量转换:动能定理可以用来描述机械能的转换。

例如,当一个物体在上升过程中受到重力作用时,其动能会逐渐减小,而重力势能会逐渐增加;当物体下落时,动能增加,而重力势能减小。

2. 简谐振动:对于简谐振动,动能和势能之间会发生周期性的转换。

例如,弹簧振子的动能在振动过程中会由最大值转变为最小值,而势能则相反。

3. 碰撞过程:在碰撞过程中,动能定理可以用来分析物体的速度和动量变化。

例如,当两个物体碰撞时,动能定理可以帮助计算碰撞后物体的速度。

四、总结动能与动能定理是高考物理中的重要知识点。

高考物理总复习功能关系 能量守恒定律

高考物理总复习功能关系 能量守恒定律

2023:山东T4;
题是高考的热点.预计2025年高考题
2022:江苏T10;
出题可能性较大,有可能会结合体
2019:全国ⅡT18
育运动等实际情境进行考查.能量守
恒定律可能会结合弹簧模型以计算
题形式考查.
返回目录
第4讲
功能关系
能量守恒定律
核心考点
五年考情
命题分析预测
功能关系在选择题中考查的频率比
2 570
车牵引力大小F2= =
2
2
N=285 N,从P到Q,小车匀速行驶,小车牵引力F2=f2+
mg sin 30°,解得f2=F2-mg sin 30°=285
1
N-50×10×
2
N=35 N;从P到Q,小车克服
摩擦力做的功Wf2=f2·PQ=35×20 J=700 J,故D正确.从P到Q,小车上升的高度h=
动能定理得mgh-μmgs cos θ=Ek-0,h=xtan

θ,s=
,解得Ek=mgx(tan
cos
θ-μ),木块
在水平面上运动时,设初动能为Ek0,根据动能定理得-μmg(x-x1)=Ek-Ek0,解得Ek=
Ek0-μmg(x-x1),B正确.木块克服摩擦力做功转化为内能,木块在斜面上时,Q=μmgs
2023:浙江6月T18;
能量守恒定律的应用
2022:河北T9;
2021:山东T18;
2019:江苏T8
较高,特别是功能关系中的图像问
题是高考的热点.预计2025年高考题
出题可能性较大,有可能会结合体
育运动等实际情境进行考查.能量守
恒定律可能会结合弹簧模型以计算
题形式考查.

高考物理机械能守恒知识点解析

高考物理机械能守恒知识点解析

高考物理机械能守恒知识点解析在高考物理中,机械能守恒定律是一个非常重要的知识点,理解和掌握它对于解决相关问题至关重要。

接下来,让我们一起深入探讨机械能守恒的相关内容。

一、机械能守恒定律的基本概念机械能包括动能和势能。

动能是物体由于运动而具有的能量,其大小与物体的质量和速度有关,表达式为$E_{k} =\frac{1}{2}mv^{2}$,其中$m$是物体的质量,$v$是物体的速度。

势能又分为重力势能和弹性势能。

重力势能是物体由于被举高而具有的能量,其大小与物体的质量、高度以及重力加速度有关,表达式为$E_{p} = mgh$,其中$h$是物体相对参考平面的高度。

弹性势能则是物体由于发生弹性形变而具有的能量,常见于弹簧的拉伸或压缩。

机械能守恒定律指的是在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变。

二、机械能守恒定律的条件机械能守恒定律成立需要满足两个条件:一是只有重力或弹力做功。

这意味着其他力(如摩擦力、拉力等)不做功,或者做功的代数和为零。

二是系统内没有机械能与其他形式能的转化。

例如,没有内能的产生、没有电能的转化等。

需要注意的是,“只有重力或弹力做功”并不意味着物体只受重力或弹力作用。

物体可以受到其他力,但只要这些力不做功或者做功的代数和为零,机械能仍然守恒。

三、机械能守恒定律的表达式机械能守恒定律常见的表达式有以下三种:1、初态的机械能等于末态的机械能,即$E_{初} = E_{末}$,具体可写为$E_{k1} + E_{p1} = E_{k2} + E_{p2}$。

2、动能的增加量等于势能的减少量,即$\Delta E_{k} =\DeltaE_{p}$。

3、系统减少(或增加)的势能等于系统增加(或减少)的动能,即$\Delta E_{p} =\Delta E_{k}$。

四、机械能守恒定律的应用机械能守恒定律在解决物理问题中有着广泛的应用,下面通过一些具体的例子来进行说明。

高考物理课程复习:动能定理及其应用

高考物理课程复习:动能定理及其应用
定为正功,最后根据结果加以检验。
【对点演练】
4.(2021湖南卷)“复兴号”动车组用多节车厢提供动力,从而达到提速的目的。
总质量为m的动车组在平直的轨道上行驶。该动车组有四节动力车厢,每节
车厢发动机的额定功率均为P,若动车组所受的阻力与其速率成正比(F阻=kv,k
为常量),动车组能达到的最大速度为vm。下列说法正确的是(
答案 C
解析 本题考查机车启动问题,考查分析综合能力。动车组匀加速启动过程
中,根据牛顿第二定律,有F-kv=ma,因为加速度a不变,速度v改变,所以牵引
力F改变,选项A错误。由四节动力车厢输出功率均为额定值,可得
4
4P=Fv,F-kv=ma',联立解得 a'=


− ,因为 v 改变,所以 a'改变,选项 B 错误。
量损失,sin 37°=0.6,cos 37°=0.8,重力加速度大小为g)。则(
6
A.动摩擦因数 μ=7
2ℎ
B.载人滑沙板最大速度为 7
C.载人滑沙板克服摩擦力做功为 mgh
3
D.载人滑沙板在下段滑道上的加速度大小为5g
)
答案 AB
解析 对整个过程,由动能定理得 2mgh-μmgcos

45°·
载人滑沙板在下段滑道上的加速度大小为
错误。
cos37 °- sin37 °
3
a=
= 35 g,故

D
考点三
应用动能定理求解多过程问题[名师破题]
应用动能定理求解多过程问题的解题步骤
(1)首先需要建立运动模型,选择合适的研究过程能使问题得以简化。当物体
的运动过程包含几个运动性质不同的子过程时,可以选择一个、几个或全部

高三力学复习十五讲--动能定理的应用

高三力学复习十五讲--动能定理的应用

力学复习十二一、动能定理的应用[知识点析]1、用动能定理求变力做的功由于某些力F 的大小或方向变化,所以不能直接由公式W=FScos α计算它们做的功,此时可由其做功的结果——动能的变化来求变力F 做的功。

2、在不同过程中运用动能定理由于物体运动过程中可能包括几个不同的物理过程,解题时,可以分段考虑,也可视为一整体过程,往往对全过程运用动能定理比较简便。

[例题析思][例题1]一列质量为M=5.0×105kg 的火车,在一段平直的轨道上始终以额定功率P 行驶,在300S 内的位移为 2.85×103m ,而速度由8m/s 增加到火车在此轨道上行驶的最大速度17m/s 。

设火车所受阻力f 大小恒定,求1、火车运动中所受阻力f 的大小;2、火车头的额定功率P 的大小。

[解析]火车的初速度和末速度分别用V 0和V t 表示,时间用t 表示,位移用S 表示,根据动能定理有: Pt-fs=2022121mV mV t -火车速度达到最大时,牵引力等于阻力f ,根据瞬时功率的计算公式有:P=fV e 。

N S V V V M f t t 4225202105.2)285030017(2)817(100.5)(2)(⨯=-⨯⨯-⨯⨯=--=N fV P t 541025.417105.2⨯=⨯⨯==[思考1]总质量为M 的列车,沿水平直线轨道匀速前进,其末节车厢质量为m ,中途脱节,司机发觉时,机车已行驶L 的距离,于是立即关闭发动机滑行,设运动的阻力与质量成正比,机车的牵引力是恒定的,当列车的两部分都停止时,它们的距离是多少?[提示]法一:脱节的列车整个运动过程有两个阶段,先做匀加速运动,后关闭发动机滑行做匀减速运动,运用动能定理,从全过程考虑有: FL-K(M-m)gS 1=0-20)(21V m M -对末节车厢根据动能定理有-kmgS 2=0-2021mV ,由于原来列车匀速,故有F=kmg ,则m M ML S S S -=-=∆/21法二:由于脱节后列车比末节车厢多行驶的那段距离内,克服阻力所做的功等于牵引力在L 这段距离内所做的功,所以有:)/()(m M ML S Sg m M K KMgL -=∆∆-=[例题2]如图6-25所示,ABCD 是一条长轨道,其中AB 段是倾角为θ的斜面,CD 段是水平的,BC 是与AB 和CD 都相切的一小段圆弧,其长度可以不计。

高中物理必修2动能定理和机械能守恒定律复习

高中物理必修2动能定理和机械能守恒定律复习

高中物理必修2动能定理、机械能守恒定律复习考纲要求1、动能定理 (Ⅱ)2、做功与动能改变的关系 (Ⅱ)3、机械能守恒定律 (Ⅱ)知识归纳1、动能定理(1)推导:设一个物体的质量为m ,初速度为V 1,在与运动方向相同的恒力F 作用下,发生了一段位移S ,速度增加到V 2,如图所示。

在这一过程中,力F 所做的功W=F ·S ,根据牛顿第二定律有F=ma ;根据匀加速直线运动的规律,有:V 22-V 13=2aS ,即aV V S 22122-=。

可得:W=F ·S=ma ·2122212221212mV mV a V V -=- (2)定理:①表达式 W=E K2-E K1 或 W 1+W 2+……W n =21222121mV mV - ②意义 做功可以改变物体的能量—所有外力对物体所做的总功等于物体动能的变化。

ⅰ、如果合外力对物体做正功,则E K2>E K1 ,物体的动能增加;ⅱ、如果合外力对物体做负功,则E K2<E K1 ,物体的动能减少;ⅱ、如果合外力对物体不做功,则物体的动能不发生变化。

(3)理解:①外力对物体做的总功等于物体动能的变化。

W 总=△E K =E K2-E K1 。

它反映了物体动能变化与引起变化的原因——力对物体做功的因果关系。

可以理解为外力对物体做功等于物体动能增加,物体克服外力做功等于物体动能减少。

外力可以是重力、弹力、摩擦力,也可以是任何其他力,但物体动能的变化对应合外力的功,而不是某一个力的功。

②注意的动能的变化,指末动能减初动能。

用△E K 表示动能的变化,△E K >0,表示动能增加;△E K <0,表示动能减少。

③动能定理是标量式,功和动能都是标量,不能利用矢量法则分解,故动能定理无分量式。

(4)应用:①动能定理的表达式是在恒力作用且做匀加速直线运动的情况下得出的,但它也适用于减速运动、曲线运动和变力对物体做功的情况。

②动能定理对应的是一个过程,并且它只涉及到物体初末态的动能和整个过程中合外力的功,它不涉及物体运动过程中的加速度、时间和中间状态的速度、动能,因此用它处理问题比较方便。

高考物理总复习动能和动能定理

高考物理总复习动能和动能定理
标量
动能是[2]
,只有正值
状态量
动能是状态量,因为v是瞬时速度

返回目录
第2讲
动能和动能定理
2. 动能定理
内容
表达式
物理意义
适用条件
力在一个过程中对物体做的功,等于物体在这个过程中[3] 动能的
变化


W=[4]
1
m22
2
1
2
− m12
或W=Ek2-Ek1
合力
做的功是物体动能变化的量度
曲线运动
数为μ、重力加速度为g,此过程发光物体所受的摩擦力(
A. 方向始终指向A点
C.
1
做的功为 mωr
2
D )
B. 大小始终为μmg
D.
1
做的功为 mω2r2
2
返回目录
第2讲
动能和动能定理
[解析]
角速度从0增大至ω的过程中,发光物体的线速度逐渐增大,可知发光物体
有切向加速度,摩擦力等于发光物体所受的合力,提供发光物体切向加速度和向心
五年考情
核心素养对接
2023:新课标T20;
3.科学探究:通过对动能定理的
动能定理
2022:江苏T8;
学习,探索功与动能的关系.
与图像的
2021:湖北T4;
4.科学态度与责任:能用动能定
综合应用
2020:江苏T4;
理解决实际问题,激发学习兴
2019:全国ⅢT17
趣,提高应用能力.
动能和动能定理是历年高考的热点,题型为选择题或计算题,命题背
加速度,可知摩擦力方向不是始终指向A点,故A错误;角速度从0增大至ω的过程
中,发光物体未发生滑移,所受摩擦力小于等于最大静摩擦力,发光物体做圆周运

2025《高中物理总复习》6.2动能定理及其应用

2025《高中物理总复习》6.2动能定理及其应用

第2讲动能定理及其应用课程标准素养目标1.理解动能和动能定理.2.能用动能定理解释生产生活中的现象.物理观念:了解动能的概念和动能定理的内容.科学思维:会用动能定理分析曲线运动、多过程运动问题.返回导航考点一动能、动能定理的理解【必备知识•自主落实】1.动能动能是标量(1)定义:物体由于运动而具有的能.(2)公式:E k=^mv2v是瞬时速度(3)单位:焦耳,1J=1N m=l kg m2/s2.(气)动能]的变化:物体末动能与初动能之差,即AEk=答案返回导航2.动能定理“力”指的是物体受到的合力(1)内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的变化.合力所做的总功1719(2)表达式:W=(3)物理意义:合外力的功是物体动能变化的量度.答案返回导航【关键能力.思维进阶]1.甲、乙两物体的质量分别用m甲、m乙表示,甲、乙两物体的速度大小分别用v甲、v乙表示,则下列说法正确的是()A.如果m乙=2m甲,v甲=2v乙,则甲、乙两物体的动能相等B.如果m甲=2m乙,v乙=2v甲,则甲、乙两物体的动能相等C.如果m乙=2m甲,v乙=2v甲,则甲、乙两物体的动能相等D.如果111甲=111乙,v¥=v^,两物体的速度方向相反,此时两物体的动能相等答案:D解析:由动能的表达式氏=fl"”?可知,A、B、C错误;动能是标量,只与物体的质量和速度的大小有关,与速度方向无关,D正确.解析■答案返回导航2.(多选)如图所示,电梯质量为M,在它的水平底板上放置一质量为m 的物体.电梯在钢索的拉力作用下做竖直向上的加速运动,当电梯的速度由V|增大到V2时,上升高度为H.则在这个过程中,下列说法正确的是(重力加速度为g)()A.对物体,动能定理的表达式为W=:mv专-:mv,,其中W为支持力做的功B.对物体,动能定理的表达式为W合=0,其中W合为合力做的功C.对物体,动能定理的表达式为W—mgH=:mv芸一?mv,,其中W为支持力做的功|D.对电梯,其所受合力做功为!Mv专一I—―I答案:CD解析■答案胃返回导航思维提升有能与动能变化的区别(1)动能与动能的变化是两个不同的概念,动能是状态量,动能的变化是过程量.(2)动能没苔负值,而动能变化量有正负之分.JE,>0表示物体的动能增加,/E r VO表示物体的动能减少.返回导航2.对动能定理的理解做功的过程就是能量转化的过程,动能定理表达式中的意义是一种因果关系在数值上相等的符号.因果关系一合力做功是物体动能变化的原因数量关系一合力做的功与动能变化可以等量代换单位关系一国际单位都是焦耳返回导航返回导航考点二动能定理的基本应用【关键能力•思维进阶】应用动能定理的注意事项(1)方法的选择:动能定理往往用于单个物体的运动过程,由于不涉及加速度及时间,比动力学方法要简捷.(2)过程的选择:物体在某个运动过程中包含有几个运动性质不同的小过程(如加速、减速的过程),此时可以分段应用动能定理,也可以对全过程应用动能定理.如果对整个过程应用动能定理,往往能使问题简化.(3)规律的应用:动能定理表达式是一个标量式,不能在某个方向上应用动能定理.返回导航考向1应用动能定理求变力的功例1承德的转盘滑雪机为我国自主原创、世界首例的专利产品.一名运 动员的某次训练过程中,转盘滑雪机绕垂直于盘面的固定转轴以角速度3 = 0.5,以〃s 顺时针匀速转动,质量为60 kg 的运动员在盘面上离转轴10 m 半 径上滑行,滑行方向与转盘转动方向相反,在最低点的速度大小为10 m/s, 滑行半周到最高点的速度大小为8 m/s,该过程中,运动员所做的功为6 500 J,巳知盘面与水平面夹角为18° , g 取10 mis 1, sin 18° =0.31, cos 18° =0.95,则该过程中运动员克服阻力做的功为( )A. 4 240 J C. 3 860JB. 3740 JD. 2 300 J 答案:c解析■答案返回导航考向2应用动能定理求解直线运动问题例2如图所示,一斜面体ABC 固定在水平地面上,斜面AD 段粗糙、DC 段光 滑,在斜面底端C 点固定一轻弹簧,弹簧原长等于CD 段长度.一质量m = 0.1 蚀的小物块(可视为质点)从斜面顶端A 以初速度v 0=2力/s 沿斜面下滑,当弹簧 第一次被压缩至最短时,其长度恰好为原长的一半,物块沿斜面下滑后又沿 斜面向上返回,第一次恰能返回到最高点A.己知弹簧的原长L o = O.2 m,物块 与斜面AD 段间的动摩擦因数p=g 斜面倾角0=30° ,重力加速度g=10 tn/s 2,6弹簧始终处于弹性旭度范围内.下列说法中正确的是()A. A 、D 间的足巨鬲X n )=0.2 m%B. 物块第一次运动到D 点时的速度大小为匝m/sC. 弹簧第一次被压缩到最短时的弹性势能为0.3 Jn D. 物块在斜面AD 段能滑行的总路程为1.6 mCB 答案:D 解析■答案返回导航考向3应用动能定理求解曲线运动问题例3[2023-湖北卷]如图为某游戏装置原理示意图.水平桌面上固定一半圆形竖直挡板,其半径为2R、内表面光滑,挡板的两端A、B在桌面边缘,B与半径为R的固定光滑圆弧轨道COE在同一竖直平面内,过C点的轨道半径与竖直方向的夹角为60°.小物块以某一水平初速度由A点切入挡板内侧,从B点飞出桌面后,在C点沿圆弧切线方向进入轨道CDE内侧,并恰好能到达轨道的最高点D.小物块与桌面之间的动摩擦因数为重力加速度大小21T为g,忽略空气阻力,小物块可视为质点.求:a A(1)小物块到达D点的速度大小;(2)B和D两点的高度差;(寻f(3)小物块在A点的初速度大小.芯夕次答案返回导航思维提升求解多过程问题抓好“两状态,一过程”“两状态”即明确研究对象的始、末状态的速度或动能情况;“一过程”即明确研究过程,确定这一过程研究对象的受力情况和位置变化或位移信息.返回导航考向4动能定理在往复运动问题中的应用1.往复运动问题:在有些问题中物体的运动过程具有重复性、往返性,而在这一过程中,描述运动的物理量多数是变化的,而且重复的次数又往往是无限的或者难以确定.2.解题策略:此类问题多涉及滑动摩擦力或其他阻力做功,其做功的特点是与路程有关,运用牛顿运动定律及运动学公式将非常繁琐,甚至无法解出,由于动能定理只涉及物体的初、末状态,所以用动能定理分析这类问题可使解题过程简化.返回导航例4(多选)[2024-山东模拟预测]如图,左侧光滑曲面轨道与右侧倾角a= 37°的斜面在底部平滑连接且均固定在水平地面上,质量为m的小滑块从斜面上离斜面底边高为H处由静止释放,滑到斜面底端然后滑上左侧曲面轨道,再从曲面轨道滑上斜面,滑块第一次沿斜面上滑的最大高度为&H,多次往复运动.不计空气阻力,重力加速度为g,sin37°=0.6.返回导航下列说法正确的是()A.滑块第一次下滑过程,克服摩擦力做的功为土mgHB.滑块第1次下滑的时间与第1次上滑的时间之比为:4C.滑块与斜面间的动摩擦因数为寿D.滑块从静止释放到第n次上滑到斜面最高点的过程中,系统产生的热量为(l—*)mgH答案:BCD解析■答案返回导航返回导航考点三动能定理与图像结合问题【关键能力•思维进阶】考向1E r x(W-x)图像问题例5(多选)一滑块从某固定粗糙斜面底端在沿斜面向上的恒力作用下由静止开始沿斜面向上运动,某时刻撤去恒力,上升过程中滑块的动能和重力势能随位移变化的图像如图所示,图中E和、So为已知量,滑块与斜面间的动摩擦因数为0.5,重力加速度为g,下列说法正确的是()A.恒力的大小为譬酮三B.斜面倾角的正饥值为0.75C.滑块下滑到斜面底端时的速度大小为玄笋D.滑块的质量可表示为竺剪\gs。

高考物理复习 动能定理 机械能守恒定律课件(共32张PPT)

高考物理复习 动能定理 机械能守恒定律课件(共32张PPT)

知识回顾
1、动能:物体由于运动而具有的能。 2、重力势能:地球上的物体具有的跟它的高度有关的能。
3、弹性势能:发生弹性形变的物体的各部分之间, 由于有弹 力的相互作用而具有的势能。
4、动能定理:合力所做的总功等于物体动能的变化。
5、重力做功与重力势能变化的关系:重力做的功等于物体重 力势能的减少量。
A
B
O
根据机械能守恒定律有 : Ek2+Ep2=Ek1+Ep1
即 1/2mv2= mgl ( 1- cosθ)
所以 v =
【例2】以10m/s的速度将质量为m的物体竖直向上抛出,若 空气阻力忽略,g=10m/s2,则上升过程在何处重力 势能和动能相等?
【解】物体在空气中只有重力做功,故机械能守恒 初状态设在地面,则:
例.物体沿高H的光滑斜面从顶端由静止下滑,求它滑 到底端时的速度大小.
H
解:由动能定理得 mgH 1 mv2
2
∴ v 2gH
若物体沿高H的光滑曲面从顶端由静止下滑,结果如何?
仍由动能定理得 mgH 1 m v2 2
v 2gH
注意:速度不一定相同
若由H高处自由下落,结果如何呢? 仍为 v 2gH
整个过程中物体的水平位移为s ,求证: µ=h/s
A
物体从A到B过程,由动能定理得:
L
h

s1
WG +Wf =0
mgh – µmg cos θ •L –µmg s2 =0 B
s2
mgh – µmg s1 –µmg s2 =0
mgh – µmg s =0 s
∴µ =h/s
3. 质量为m的小球用长为L的轻绳悬挂于O点,小球在水平拉力F的 作用下,从平衡位置P很缓慢地移到Q点,则力F所做的功为

功能关系 能量守恒定律-高考物理复习

功能关系 能量守恒定律-高考物理复习
目录
研透核心考点
1.(多选)(2024·湖北武汉高三月考)从地面竖直向上抛出一物体,其机械能E总等于 动能Ek与重力势能Ep之和,取地面为零势能参考平面,该物体的E总和Ep随它离 开地面的高度h的变化如图3所示。重力加速度g取10 m/s2,根据图中数据可知
( AD )
A.物体的质量为2 kg
B.物体上升过程中所受阻力大小为4 N
目录
研透核心考点
角度 功能关系与图像的结合
例 2 (多选)如图 2 甲所示,倾角为 30°的斜面固定在水平地面上,一木块以一定
的初速度从斜面底端开始上滑。若斜面足够长,上滑过程中木块的机械能和动
能随位移变化的关系图线如图乙所示,则下列说法正确的是( BC )
A.木块上滑过程中,重力势能增加了 4E0
图5
目录
研透核心考点
(1)求弹簧压缩至原长的一半时,弹簧的弹性势能Ep; 解析 若滑块 P 刚好能沿圆轨道运动到圆轨道的最高 点,有 mg=mvR2D 滑块P由静止运动到圆轨道最高点过程,由能量守恒定 律可得 Ep=μmgcos 37°·32R+mg(32Rsin 37°+R+Rcos 37°)+21mv2D 联立解得 Ep=3.8mgR。 答案 3.8mgR
目录
研透核心考点
考点二 能量守恒定律的理解和应用
1.对能量守恒定律的两点理解 (1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一 定相等。 (2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一 定相等。
目录
研透核心考点
2.能量转化问题的解题思路 (1)当涉及摩擦力做功,机械能不守恒时,一般应用能量守恒定律。 (2)解题时,首先确定初、末状态,然后分析状态变化过程中哪种形式的能量减 少,哪种形式的能量增加,求出减少的能量总和ΔE减与增加的能量总和ΔE增, 最后由ΔE减=ΔE增列式求解。

2023届高考物理一轮复习讲义:专题四 功和能

2023届高考物理一轮复习讲义:专题四  功和能

专题四 功和能重点1. 机械能守恒的条件及其表达方式。

2.以正确的步骤运用机械能守恒定律。

3.动能定理及其导出过程。

4.动能定理的应用。

难点1.如何判断机械能是否守恒,及如何运用机械能守恒定律解决实际问题。

2.建立物理模型、状态分析和寻找物理量之间的关系。

3.多过程和变力做功情况下动能定理的应用。

易错点1. 如何判断机械能是否守恒,及如何运用机械能守恒定律解决实际问题。

2.多过程和变力做功情况下动能定理的应用。

高频考点 1.动能定理的应用。

2. 运用机械能守恒定律解决实际问题。

考情分析:能量问题是历年来高考的重点和热点,考查比较全面而且有较强的综合性。

其中动能定理和功能关系更是重中之重,明确功是能量转化的途径和量度;而机械能守恒定律是另一个重点,要求学生能用守恒观点去解决问题,压轴题也会与此部分知识有关。

本专题内容常与牛顿定律、圆周运动、电磁学知识综合,高考对本部分知识的考查核心会在分析综合能力上。

考点预测:功和功率、动能和动能定理、机械能守恒定律、能量守恒定律是力学的重点,也是高考考查的重点,常以选择题、计算题的形式出现,考题常与生产生活实际联系紧密,题目的综合性较强.预计在高考中,仍将对该部分知识进行考查,复习中要特别注意功和功率的计算,动能定理、机械能守恒定律的应用以及与平抛运动、圆周运动知识的综合应用。

【解读】功和功率是物理学中两个重要的基本概念,是学习动能定理、机械能守恒定律、功能原理的基础,也往往是用能量观点分析问题的切入点。

复习时重点把握好功德概念、正功和负功;变力的功;功率的概念;平均功率和瞬时功率,发动机的额定功率和实际功率问题;与生产生活相关的功率问题。

解决此问题必须准确理解功和功率的意义,建立相关的物理模型,对能力要求较高。

动能定理是一条适用范围很广的物理规律,一般在处理不含时间的动力学问题时应优先考虑动能定理,特别涉及到求变力做功的问题,动能定理几乎是唯一的选择。

考点23 动能定理及其应用 (核心考点精讲精练)(学生版) 备战25年高考物理一轮复习(新高考通用)

考点23 动能定理及其应用 (核心考点精讲精练)(学生版) 备战25年高考物理一轮复习(新高考通用)

考点23 动能定理及其应用1. 高考真题考点分布题型考点考查考题统计选择题动能和动能定理2024年福建卷选择题多过程的动能定理应用2024年广东卷计算题动能定理2024年全国新课标卷、辽宁卷2. 命题规律及备考策略【命题规律】高考对动能定理的考查非常频繁,题目出现的形式有选择题也有计算题,如果以计算题出现,大多涉及到多过程问题的分析与应用,难度上也比较大。

【备考策略】1.理解动能动能定理,并会用动能定理处理物理问题。

2.掌握有关动能定理的图像问题。

【命题预测】重点关注动能定理在多过程问题中的应用。

一、动能1.公式:E k=12mv2,式中v为瞬时速度,动能是状态量。

2.标矢性:动能是标量,只有正值,动能与速度的方向无关。

3.动能的变化量:ΔE k=12mv22-12mv12。

4.动能的相对性:由于速度具有相对性,则动能也具有相对性,一般以地面为参考系。

二、动能定理1.内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的变化。

2.表达式W=ΔE k=12mv22-12mv12。

3.功与动能的关系(1)W>0,物体的动能增加。

(2)W<0,物体的动能减少。

(3)W=0,物体的动能不变。

4.适用条件(1)动能定理既适用于直线运动,也适用于曲线运动。

(2)既适用于恒力做功,也适用于变力做功。

(3)力可以是各种性质的力,既可以同时作用,也可以不同时作用。

考点一 对动能、动能定理的理解考向1 应用动能定理求变力做功1.在变力作用下的直线运动问题中,如果物体所受恒力的功可以求出,并且知道物体的初末速度,那么可以应用动能定理求解变力的功,可以将这种方法作为首选试试。

2.在变力作用下的直线运动问题中,且变力功已知,不涉及时间的问题中,可优先考虑应用动能定理求解位移大小的问题。

3.动能定理中的位移和速度均是相对于同一参考系的,一般以地面为参考系。

1.如图所示,将质量为m 的小球从高为h 处以初速度水平抛出,落地时速度大小为v ,方向与水平面成q 角,空气阻力不能忽略,重力加速度为g 。

动能定理专题复习(考点+题型+专题练习)

动能定理专题复习(考点+题型+专题练习)

21222121mv mv W -=21222121E mv mv W k -=∆=动能和动能定理第1步:讲基础一、动能:1、定义:物体由于运动而具有的能量叫动能.2、表达式:221mv E k =3、物理意义:动能是描述物体运动状态的物理量,是标量。

4、 单位:焦耳( J ) 二、动能定理: >1、内容:合力对物体所做的总功等于物体动能的变化。

2、表达式:第2步:学技巧一、对动能定理的进一步理解 力在一个过程中对物体所做的功,等于物体在这个过程中动能的变化,即 。

1、式中的W ,是力对物体所做的总功,可理解为各个外力所做功的代数和,也可以理解为合力所做的功。

2、式中的k E ∆,是物体动能的变化,是指做功过程的末动能减去初动能。

3、动能定理的研究对象一般是单一物体,或者是可以看成单一物体的物体系。

4、动能定理表达式是一个标量式,不能在某个方向上应用动能定理。

&二、常用应用动能定理的几种情况1、动能定理适用于恒力、变力、直线、曲线运动。

2、动能定理是标量式,不涉及方向问题。

在不涉及加速度和时间的问题时,可优先考虑动能定理。

3、对于求解多个过程的问题可全程考虑,从而避开考虑每个运动过程的具体细节。

具有过程简明、方法巧妙、运算量小等优点。

(注意动能损失:例3和例4比较)4、变力做功问题。

在某些问题中,由于力F 大小的变化或方向的改变,不能直接由αcos Fl W =来求变力F 所做的功,此时可由其做功的效果——动能的变化来求变力F 所做的功。

三、经典例题 例1、(课本例题)一架喷气式飞机,质量m=5×103 kg ,起飞过程中从静止开始滑跑的路程为s =×102m时,达到起飞速度v=60m/s ,在此过程中飞机受到的平均阻力是飞机重量的倍(k=,求飞机受到的牵引力. 分析: 研究对象:飞机研究过程:从静止→起飞(V=60m/s )适用公式:动能定理:2022121mv mv W -=合表达式:=-S f F )(221mv得到牵引力:Nkmg S mv F 42108.12⨯=+=例2、将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。

【2020】高考物理专题复习-——功能关系综合运用(例题+习题+答案)试卷及参考答案

【2020】高考物理专题复习-——功能关系综合运用(例题+习题+答案)试卷及参考答案

【精品】最新高考物理专题复习-——功能关系综合运用(例题+习题+答案)试卷及参考答案(附参考答案)知识点归纳:一、动能定理1.动能定理的表述合外力做的功等于物体动能的变化.。

(这里的合外力指物体受到的所有外力的合力,包括重力).。

表达式为W=ΔEK动能定理也可以表述为:外力对物体做的总功等于物体动能的变化.。

实际应用时,后一种表述比较好操作.。

不必求合力,特别是在全过程的各个阶段受力有变化的情况下,只要把各个力在各个阶段所做的功都按照代数和加起来,就可以得到总功2.对外力做功与动能变化关系的理解:外力对物体做正功,物体的动能增加,这一外力有助于物体的运动,是动力;外力对物体做负功,物体的动能减少,这一外力是阻碍物体的运动,是阻力,外力对物体做负功往往又称物体克服阻力做功.功是能量转化的量度,外力对物体做了多少功;就有多少动能与其它形式的能发生了转化.所以外力对物体所做的功就等于物体动能的变化量.即.3.应用动能定理解题的步骤(1)确定研究对象和研究过程.。

和动量定理不同,动能定理的研究对象只能是单个物体,如果是系统,那么系统内的物体间不能有相对运动.。

(原因是:系统内所有内力的总冲量一定是零,而系统内所有内力做的总功不一定是零).。

(2)对研究对象进行受力分析.。

(研究对象以外的物体施于研究对象的力都要分析,含重力).。

(3)写出该过程中合外力做的功,或分别写出各个力做的功(注意功的正负).。

如果研究过程中物体受力情况有变化,要分别写出该力在各个阶段做的功.。

(4)写出物体的初、末动能.。

即WAB=mgR-μmgS=1×10×0.8-1×10×3/15=6 J【例5】:如图所示,小滑块从斜面顶点A 由静止滑至水平部分C 点而停止.。

已知斜面高为h ,滑块运动的整个水平距离为s ,设转角B 处无动能损失,斜面和水平部分与小滑块的动摩擦因数相同,求此动摩擦因数.。

动能定理与弹性势能知识点总结

动能定理与弹性势能知识点总结

动能定理与弹性势能知识点总结动能定理与弹性势能知识点总结:动能定理是物理学中的一个重要定理,用来描述物体的运动状态与其动能之间的关系。

它是基于牛顿第二定律推导得出的,可以帮助我们理解物体在运动中的能量变化情况。

而弹性势能则是指弹性体在受力变形后储存的能量,是力学中一个重要的概念。

一、动能定理动能定理描述了物体的动能与其所受的力之间的关系。

它可以表达为以下的公式:动能的变化等于物体所受力的功,即:∆K = W其中,∆K表示动能的变化,W表示力所做的功。

动能是物体的一种能量形式,它的大小与物体的质量m和速度v有关,可以表示为:K = 1/2 mv²其中,K表示动能,m表示物体的质量,v表示物体的速度。

从动能定理可以看出,物体的动能改变量等于所受外力所做功的大小。

当物体受到正功时,其动能增加;当物体受到负功时,其动能减小。

动能定理可以帮助我们理解物体在运动过程中能量的转换与传递。

二、弹性势能弹性势能是指弹性体在受力变形后储存的能量。

它是由于物体在受力的作用下发生形变,形变过程中储存的能量,可以通过形变的复原过程释放出来。

在弹性力学中,我们常常用弹簧作为研究的对象,弹簧的弹性势能可以表示为:PE = 1/2 kx²其中,PE表示弹性势能,k表示弹簧的弹性系数,x表示弹簧的形变量。

由公式可以看出,弹簧的弹性势能与形变量的平方成正比,而与弹簧的弹性系数相关。

当形变量增大时,弹性势能也相应增大;当形变量减小时,相应减小。

弹性势能是在弹性体发生形变后,通过恢复力的作用而产生的能量。

当释放受压缩或拉伸的弹簧时,弹簧会恢复到原来的形状,同时释放出储存的弹性势能。

这个过程是一个能量的转换与传递过程。

三、动能定理与弹性势能之间的关系动能定理和弹性势能有着密切的联系。

当一个物体受到外力作用发生运动时,它的动能会发生变化;而当物体发生形变时,它的弹性势能也会发生变化。

这种变化的关系可以通过动能定理来理解。

高中物理新高考考点复习17 动能和动能定理

高中物理新高考考点复习17 动能和动能定理

考点规范练17动能和动能定理一、单项选择题1.下列有关动能的说法正确的是()A.物体只有做匀速运动时,动能才不变B.物体的动能变化时,速度不一定变化C.物体做平抛运动时,水平速度不变,动能不变D.物体做自由落体运动时,物体的动能增加2.一个质量为0.3 kg的弹性小球,在光滑水平面上以6 m/s的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前相同,则下列碰撞前后小球速度变化量的大小Δv和碰撞过程中小球的动能变化量ΔE k正确的是()A.Δv=0B.Δv=12 m/sC.ΔE k=1.8 JD.ΔE k=10.8 J3.光滑斜面上有一个小球自高为h的A处由静止开始滚下,抵达光滑水平面上的B点时速度大小为v0。

光滑水平面上每隔相等的距离设置了一个与小球运动方向垂直的活动阻挡条,如图所示,小球越过n条活动阻挡条后停下来。

若让小球从h高处以初速度v0滚下,设小球每次越过活动阻挡条时损失的动能相等,则小球能越过的活动阻挡条的条数是()A.nB.2nC.3nD.4n4.(2021·湖北武汉月考)物块在水平面上以初速度v0直线滑行,前进x0后恰好停止运动,已知物块与水平面之间的动摩擦因数为μ,且μ的大小与物块滑行的距离x的关系为μ=kx(k为常数),重力加速度为g。

则() A.v0=√kgx02 B.v0=√2kgx02D.v0=2√kgx02C.v0=√kgx0225.(2021·广东深圳月考)如图所示,物块从固定斜面的最高点由静止滑下,冲上右侧光滑曲面,经过最低点连接处时无能量损失。

已知物块与斜面的动摩擦因数μ=0.25,斜面高度h=1.20 m,斜面倾角θ=37°,g取10 m/s2,sin 37°=0.6,物块在曲面上升的最大高度为()A.0.70 mB.0.80 mC.0.96 mD.1.20 m6.(2021·湖北学业水平选择性考试模拟演练)如图所示,两倾角均为θ的光滑斜面对接后固定在水平地面上,O点为斜面的最低点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理动能势能动能定理复习2012年高考物理----动能 势能 动能定理复习浙江台州篷街私立中学 王继安教学目标:理解功和能的概念,掌握动能定理,会熟练地运用动能定理解答有关问题教学重点:动能定理教学难点:动能定理的应用教学方法:讲练结合,计算机辅助教学教学过程:一、动能1.定义:物体由于运动而具有的能,叫动能。

其表达式为:221mv E k 。

2.对动能的理解(1)动能是一个状态量,它与物体的运动状态对应.动能是标量.它只有大小,没有方向,而且物体的动能总是大于等于零,不会出现负值.(2)动能是相对的,它与参照物的选取密切相关.如行驶中的汽车上的物品,对汽车上的乘客,物品动能是零;但对路边的行人,物品的动能就不为零。

二、重力势能1.定义:物体和地球由相对位置决定的能叫重力势能,是物体和地球共有的。

表达式:mgh,与零势能面Ep的选取有关。

2.对重力势能的理解(1)重力势能是物体和地球这一系统共同所有,单独一个物体谈不上具有势能.即:如果没有地球,物体谈不上有重力势能.平时说物体具有多少重力势能,是一种习惯上的简称.重力势能是相对的,它随参考点的选择不同而不同,要说明物体具有多少重力势能,首先要指明参考点(即零点).(2)重力势能是标量,它没有方向.但是重力势能有正、负.此处正、负不是表示方向,而是表示比零点的能量状态高还是低.势能大于零表示比零点的能量状态高,势能小于零表示比零点的能量状态低.零点的选择不同虽对势能值表述不同,但对物理过程没有影响.即势能是相对的,势能的变化是绝对的,势能的变化与零点的选择无关.(3)重力做功与重力势能重力做正功,物体高度下降,重力势能降低;重力做负功,物体高度上升,重力势能升高.可以证明,重力做功与路径无关,由物体所受的重力和物体初、末位置所在水平面的高度差决定,即:W G=mg △h.所以重力做的功等于重力势能增量的负值,即W G= -△E p= -(mgh2-mgh1).三、动能定理1.动能定理的表述合外力做的功等于物体动能的变化。

(这里的合外力指物体受到的所有外力的合力,包括重力)。

表达式为W=ΔE K动能定理也可以表述为:外力对物体做的总功等于物体动能的变化。

实际应用时,后一种表述比较好操作。

不必求合力,特别是在全过程的各个阶段受力有变化的情况下,只要把各个力在各个阶段所做的功都按照代数和加起来,就可以得到总功。

动能定理建立起过程量(功)和状态量(动能)间的联系。

这样,无论求合外力做的功还是求物体动能的变化,就都有了两个可供选择的途径。

功和动能都是标量,动能定理表达式是一个标量式,不能在某一个方向上应用动能定理。

【例1】 一个质量为m 的物体静止放在光滑水平面上,在互成60°角的大小相等的两个水平恒力作用下,经过一段时间,物体获得的速度为v ,在力的方向上获得的速度分别为v 1、v 2,那么在这段时间内,其中一个力做的功为A .261mvB .241mvC .231mvD .221mv 2.对外力做功与动能变化关系的理解:外力对物体做正功,物体的动能增加,这一外力有助于物体的运动,是动力;外力对物体做负功,物体的动能减少,这一外力是阻碍物体的运动,是阻力,外力对物体做负功往往又称物体克服阻力做功. 功是能量转化的量度,外力对物体做了多少功;就有多少动能与其它形式的能发生了转化.所以外力对物体所做的功就等于物体动能的变化量.即 .3.应用动能定理解题的步骤(1)确定研究对象和研究过程。

和动量定理不同,动能定理的研究对象只能是单个物体,如果是系统,那么系统内的物体间不能有相对运动。

(原因是:系统内所有内力的总冲量一定是零,而系统内所有内力做的总功不一定是零)。

(2)对研究对象进行受力分析。

(研究对象以外的物体施于研究对象的力都要分析,含重力)。

(3)写出该过程中合外力做的功,或分别写出各个力做的功(注意功的正负)。

如果研究过程中物体受力情况有变化,要分别写出该力在各个阶段做的功。

(4)写出物体的初、末动能。

(5)按照动能定理列式求解。

【例2】 如图所示,斜面倾角为α,长为L ,AB 段光滑,BC 段粗糙,且BC =2 AB 。

质量为m 的木块从斜面顶端无初速下滑,到达C 端时速度刚好减小到零。

求物体和斜面BC 段间的动摩擦因数μ。

【例3】 将小球以初速度v 0竖直上抛,在不计空气阻力的理想状况下,小球将上升到某一最大高度。

由于有空气阻力,小球实际上升的最大高度只有该理想高度的80%。

设空气阻力大小恒定,求小球落回抛出点时的速度大小v 。

Bv v f f【例4】质量为m的钢珠从高出地面h处由静止自由下落,落到地面进入沙坑h/10停止,则(1)钢珠在沙坑中受到的平均阻力是重力的多少倍?(2)若让钢珠进入沙坑h/8,则钢珠在h处的动能应为多少?设钢珠在沙坑中所受平均阻力大小不随深度改变。

四、动能定理的综合应用动能定理可以由牛顿定律推导出来,原则上讲用动能定律能解决物理问题都可以利用牛顿定律解决,但在处理动力学问题中,若用牛顿第二定律和运动学公式来解,则要分阶段考虑,且必须分别求每个阶段中的加速度和末速度,计算较繁琐。

但是,我们用动能定理来解就比较简捷。

我们通过下面的例子再来体会一下用动能定理解决某些动力学问题的优越性。

1.应用动能定理巧求变力的功如果我们所研究的问题中有多个力做功,其中只有一个力是变力,其余的都是恒力,而且这些恒力所做的功比较容易计算,研究对象本身的动能增量也比较容易计算时,用动能定理就可以求出这个变力所做的功。

【例5】如图所示,AB为1/4圆弧轨道,半径为R=0.8m,BC是水平轨道,长S=3m,BC处的摩擦系数为μ=1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。

求物体在轨道AB段所受的阻力对物体做的功。

【例7】一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m的物体,如图所示.绳的P端拴在车后的挂钩上,Q端拴在物体上.设绳的总长不变,绳的质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳长为H.提升时,车加速向左运动,沿水平方向从A经过B驶向C.设A到B的距离也为H,车过B点时的速度为v B.求在车由A移到B的过程中,绳Q端的拉力对物体做的功.2.应用动能定理简解多过程问题。

物体在某个运动过程中包含有几个运动性质不同的小过程(如加速、减速的过程),此时可以分段考虑,也可以对全过程考虑,但如能对整个过程利用动能定理列式则使问题简化。

【例8】如图所示,斜面足够长,其倾角为α,质量为m的滑块,距挡板P为s0,以初速度v0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于滑块沿斜面方向的重力分力,若滑块每次与挡板相碰均无机械能损失,求滑块在斜面上经过的总路程为多少?3.利用动能定理巧求动摩擦因数【例9】如图所示,小滑块从斜面顶点A由静止滑至水平部分C点而停止。

已知斜面高为h,滑块运动的整个水平距离为s,设转角B处无动能损失,斜面和水平部分与小滑块的动摩擦因数相同,求此动摩擦因数。

4.利用动能定理巧求机车脱钩问题【例10】总质量为M的列车,沿水平直线轨道匀速前进,其末节车厢质量为m,中途脱节,司机发觉时,机车已行驶L的距离,于是立即关闭油门,除去牵引力。

设运动的阻力与质量成正比,机车的牵引力是恒定的。

当列车的两部分都停止时,它们的距离是多少?五、针对训练1.质量为m的物体,在距地面h高处以g/3 的加速度由静止竖直下落到地面.下列说法中正确的是A.物体的重力势能减少31mghB.物体的动能增加31mgh C.物体的机械能减少31mgh D.重力做功31mgh2.质量为m 的小球用长度为L 的轻绳系住,在竖直平面内做圆周运动,运动过程中小球受空气阻力作用.已知小球经过最低点时轻绳受的拉力为7m g ,经过半周小球恰好能通过最高点,则此过程中小球克服空气阻力做的功为A.m g L /4B.m g L /3C.m g L /2D.m g L3.如图所示,木板长为l ,板的A 端放一质量为m 的小物块,物块与板间的动摩擦因数为μ。

开始时板水平,在绕O 点缓慢转过一个小角度θ的过程中,若物块始终保持与板相对静止。

对于这个过程中各力做功的情况,下列说法正确的是 ( ) A 、摩擦力对物块所做的功为mgl sin θ(1-cos θ)B 、弹力对物块所做的功为mgl sin θcos θA θC、木板对物块所做的功为mgl sinθD、合力对物块所做的功为mgl cosθ4.如图所示,小球以大小为v0的初速度由A端向右运动,到B端时的速度减小为v B;若以同样大小的初速度由B端向左运动,到A端时的速度减小为v A。

已知小球运动过程中始终未离开该粗糙轨道。

比较v A、v B的大小,结论是A.v A>v BB.v A=v BC.v A<v BD.无法确定5.质量为m的飞机以水平速度v0飞离跑道后逐渐上升,若飞机在此过程中水平速度保持不变,同时受到重力和竖直向上的恒定升力(该升力由其他力的合力提供,不含重力),今测得当飞机在水平方向的位移为L时,它的上升高度为h,求:(1)飞机受到的升力大小;(2)从起飞到上升至h高度的过程中升力所做的功及在高度h处飞机的动能.6.如图所示,质量m=0.5kg的小球从距地面高H=5m处自由下落,到达地面恰能沿凹陷于地面的半圆形槽壁运动,半圆槽半径R =0.4m 。

小球到达槽最低点时速率为10m/s ,并继续沿槽壁运动直到从槽右端边缘飞出……,如此反复几次,设摩擦力恒定不变,求:(设小球与槽壁相碰时不损失能量)(1)小球第一次离槽上升的高度h ;(2)小球最多能飞出槽外的次数(取g =10m/s 2)。

参考答案:1.B 2.C 3.解析:C 该题是考查对功的计算的。

如果不理解W =Fs cos θ.中的F 必须是恒力,就会在AB 两选项上多用时间。

当然,也不能认为AB 中的功无法计算,而C 中的功为这两个功之和,所以也不能得出。

由W =△E K ,知合力对物块所做的功为零。

而W =W F +W G =0,故W F = -W G =mgl sin θ,这就是木板对物块所做的功。

正确选项是C 。

4.解析:A 小球向右通过凹槽C 时的速率比向左通过凹槽C 时的速率大,由向心力方程R mv mg N 2=-可知,对应的弹力N 一定大,滑动摩擦力也大,克服阻力做的功多;又小球向右通过凸起D 时的速率比向左通过凸起D 时的速率小,由向心力方程R mv N mg 2=-可知,对应的弹力N一定大,滑动摩擦力也大,克服阻力做的功多。

所以小球向右运动全过程克服阻力做功多,动能损失多,末动能小,选A 。

相关文档
最新文档