(完整版)基本初等函数部分典型例题
基本初等函数(必修1)知识点与练习
第二章 基本初等函数知识点1.指数与指数幂的运算(1)根式的概念①如果,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当na =;当n 为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m naa m n N +>∈且1)n >.0的正分数指数幂等于 .0的负分数指数幂②正数的负分数指数幂的意义是:1()0,,,m m nn a a m n N a -+==>∈且1)n >.(3)分数指数幂的运算性质2指数函数及其性质3对数与对数运算(1)对数的定义.①若(0,1)xaN a a =>≠且,则x 叫做以a 为底N的对数,作 ,其中a 叫做 ,N 叫做 .②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x ax N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).(4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法: ②减法: ③数乘: ④log a Na N =⑤loglog (0,)bn a a n M M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a=>≠且 4对数函数及其性质(5)反函数的性质 ①原函数()y f x =与反函数1()y f x -=的图象关于 对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.AB C5幂函数(1)幂函数的定义 一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象,性质6〖补充知识〗二次函数图像及性质第二章 基本初等函数练习题log 1a ------= log a a ------= 12log 2------= 32log 2-------= 3log 27-------= 2log 52------=221log log 612------+= lg 25lg 4------+=2ln e -------=1. 函数y =的定义域是 ( )A .[1,)+∞B .2(,)3+∞C .2[,1]3D .2(,1]32.函数log (32)2a y x =-+的图象必过定点 ( )A .(1,2)B .(2,2)C .(2,3)D .2(,2)33.已知幂函数()y f x =的图象过点,则(4)f 的值为 ( )A .1B . 2C .12D .84. 已知f (x )=(m -1)x 2-2mx +3是偶函数,则在(-∞, 3)内此函数 ( ) A.是增函数 B.不是单调函数 C.是减函数 D.不能确定5. 下列图形表示具有奇偶性的函数可能是 ( )6(2)log (5)x y x -=-的定义域是 ( ) A .(3,4) B .(2,5) C .(2,3)(3,5) D .(,2)(5,)-∞+∞7. 若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(1,0)-和(0,1),则 ( )A .2,2a b == B.2a b = C .2,1a b == D.a b ==8. 函数22log (1)y x x =+≥的值域为 ( )A 、()2,+∞B 、(),2-∞C 、[)2,+∞D 、[)3,+∞9. 若21025x=,则10x -等于 ( )A 、15B 、15-C 、150D 、162510. 与函数()2xf x =的图像关于直线y x =对称的曲线C 对应的函数为()g x ,则1()2g 的值为 ( )AB .1;C .12; D .1-11. 已知13x x -+=,则22x x -+值为 ( )A 5B 6 C. 7 D. 812. 三个数60.70.70.76log 6,,的大小关系为 ( )A. 60.70.70.7log 66<<B. 60.70.70.76log 6<< C .0.760.7log 660.7<<D. 60.70.7log 60.76<<13. 在统一平面直角坐标系中,函数ax x f =)(与x a x g =)(的图像可能是 ( )14. 已知偶函数f (x )在区间(-∞,0]上为增函数,下列不等式一定成立的是( )A .f (-3)>f (2) B .f (-π)>f (3)C .f (1)>f (a 2+2a +3)D .f (a 2+2)>f (a 2+1)15. 函数log a y x =,log b y x =,log c y x =,log d y x =的图象如图所示,则a ,b ,c ,d 的大小顺序是 ( ).A .1<d <c <a <bB .c <d <1<a <bC .c <d <1<b <aD .d <c <1<a <b二、填空题16,已知函数f (x )=⎪⎩⎪⎨⎧,≤ ,,>,020log 3x x x x 则⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛91f f 的值为___ __17,不论a 为何正实数,函数12x y a +=-的图象一定通过一定点,则该定点的坐标是_____ 18,函数log (1)a y x =-恒过 点19.计算:459log 27log 8log 625⨯⨯= .20.若函数()log (01)f x ax a =<<在区间[,2]a a 上的最大值是最小值的3倍,a = .21,已知函数f (x )=a -121+x ,若f (x )为奇函数,则a =___ _____三、解答题22. 计算(1)4160.253216(24()849-+-⨯.(2)125552log 2log log 34e ++21log32-⨯23,函数()(0,1)x f x a a a =>≠在区间[1,2]上的最大值比最小值大2a,求a 的值为25, 设函数421()log 1x x f x x x -⎧<=⎨≥⎩.(Ⅰ)求方程1()4f x =的解. (Ⅱ)求不等式()2f x ≤的解集.26.解不等式2121()x x a a--> (01)a a >≠且.27.设集合2{|log (2)2}S x x =+≤,集合1{|()1,2}2xT y y x ==-≥-求S T ,S T .。
基本初等函数
图乙
一种对应 p q r B
A
图丙
图 2-1-3
图丁
图甲不是映射,因为集合A中的一个元素对应了 集合B中的两个元素; 图乙是映射,符合映射的定义; 图丙是映射,虽然,集合B中有的元素没有A中 的元素与之对应,但仍符合映射的定义; 图丁不是映射,因为集合A中的每一个元素都要 对应集合B中的元素,但是A中的元素-1,-2没有对 应B中的元素.
课堂例题
例1.某种笔记本的单价是5元,买 x(x∈{1,2,3,4,5})个笔记本需要y元.试用函数的三种表 示法表示函数y=f(x). 解:函数的定义域是数集{1,2,3,4,5}. 用解析法可将函数y=f(x)表示为y=5x,
x∈{1,2,3,4,5}.
用列表法可将函数y=f(x)表示为
笔记本数x
其中x叫做自变量,x的取值范围A叫作函数的定义域 (domain);与x的值对应的y值叫作函数值,函数值的 集合 f ( x) x A 叫作函数的值域(range). 值域是集合B的子集.
2.对概念的理解
(1)定义域、值域和对应关系是决定函数的三要素, 这是一个整体.一般来说值域由定义域和对应关系所确 定,因为对于定义域中的数x,按照确定的对应关系f, 在集合B中都有唯一确定的数f(x)和x对应. (2)记住y=f(x)的内涵.例如对于f(x)=x2,对应 关系f就是“取平方”,而对于 f ( x) x ,对应关 系f就是“开平方”,f就是函数符号,对于具体的函 数它有具体的涵义.函数符号还可以记作 y=g(x),y=u(x)等.
(2)f(x)=1和g(x)=x0.
2.请你再举出函数相等的例子.
课堂小结
1.函数的值域由定义域和对应关系确定. 2.如果两个函数的定义域、对应关系都相同,
(完整版)基本初等函数测试题及答案
基本初等函数测试题一、选择题 (本大题共 12 个小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的)1.有以下各式:① na n = a ; ②若 a ∈ R ,则 (a 2- a + 1)0= 1;③ 3 x 44y ; ④6- 2 2= 3- 2.y3x3此中正确的个数是 ()A . 0B . 1C .2D .3|x|的图象是 ()2.函数 y = a (a>1)3.以下函数在 (0,+∞ )上是增函数的是 ()-xB . y =- 2x1A . y = 3C . y = logxD . y = x24.三个数 log 21, 20.1,2-1 的大小关系是 ()51-1--11 -A . log 25<2<2 1 B . log 25<2 1<20.1 C . 2<2 1<log 25 D . 2<log 25<215.已知会合 A = { y|y = 2x , x<0} , B = { y|y =log 2x} ,则 A ∩ B = ()A . { y|y>0}B . { y|y>1}C . { y|0<y<1}D .6.设 P 和 Q 是两个会合,定义会合 P -Q = { x|x ∈ P 且 x?Q} ,假如 P ={ x|log x < 1} ,Q2= { x|1<x<3} ,那么 P -Q 等于 ( )A . { x|0< x < 1}B . { x|0< x ≤ 1}C . { x|1≤ x <2}D . { x|2≤ x < 3}17.已知 0<a<1, x = log a 2+ log a 3, y =2log a 5,z =log a 21- log a 3,则 ( )A . x>y>zB . x>y>xC . y>x>zD . z>x>y8.函数 y = 2x - x 2 的图象大概是 ()9.已知四个函数① y = f 1(x);② y = f 2 (x);③ y =f 3(x);④ y = f 4( x)的图象以以下图:- 1 -则以下不等式中可能建立的是 ()A . f (x + x )= f (x )+ f (x )B . f (x + x )=f (x )+ f(x )112111 22122122C . f 3(x 1+ x 2) =f 3(x 1)+ f 3(x 2 )D . f 4(x 1+ x 2)=f 4(x 1)+ f 4(x 2)f ( x)12-1, f 3 2,则 f 1 2 310.设函数x 2(x)= x(2010))) 等于 ()1, f (x)= x ( f (fB . 2010211A . 2010 C.2010 D. 201211.函数 f(x)=3x 2 + lg(3 x + 1)的定义域是 ( )1-xA. -∞,- 1B. - 1, 133 3C. -1, 1D. - 1,+∞332e x -1, x<2,12. (2010 石·家庄期末测试)设 f(x)=则 f[ f(2)] 的值为 ()log 3 x 2- 1 , x ≥ 2.A . 0B . 1C . 2D . 3二、填空题 (本大题共 4 小题,每题 5 分,共 20 分.把答案填在题中横线上 )13. 给出以下四个命题:(1)奇函数的图象必定经过原点;(2)偶函数的图象必定经过原点;1(3)函数 y = lne x 是奇函数; (4)函数 yx 3 的图象对于原点成中心对称.此中正确命题序号为 ________. (将你以为正确的都填上 )14. 函数 y log 1 (x 4) 的定义域是.215.已知函数 y = log a (x +b)的图象以以下图所示,则 a = ________, b = ________.16.(2008 上·海高考 )设函数 f(x)是定义在 R 上的奇函数, 若当 x ∈ (0,+∞ )时,f(x)= lgx ,则知足 f(x)>0 的 x 的取值范围是 ________.- 2 -三、解答题 (本大题共 6 小题,共 70 分.解答应写出必需的文字说明、证明过程或演算步骤 )17. (本小题满分 10 分 )已知函数 f( x)= log 2(ax + b),若 f(2)= 1, f(3)= 2,求 f(5).118. (本小题满分 12 分 )已知函数 f (x)2 x 2 .(1)求 f(x) 的定义域; (2) 证明 f(x)在定义域内是减函数.2x - 1 19. (本小题满分 12 分 )已知函数f( x)=2x + 1.(1)判断函数的奇偶性; (2) 证明: f( x)在(-∞,+∞ )上是增函数.220. (本小题满分 12 分 )已知函数 f x(m 2 m 1)x mm 3是幂函数 , 且 x ∈ (0,+∞ )时, f(x)是增函数,求 f(x)的分析式.21. (本小题满分 12 分 )已知函数 f( x)= lg(a x -b x ), (a>1>b>0) .(1)求 f(x)的定义域;(2)若 f(x)在 (1,+∞ )上递加且恒取正当,求a ,b 知足的关系式.1122. (本小题满分 12 分 )已知 f(x)= 2x -1+2 ·x.(1)求函数的定义域;(2)判断函数 f(x)的奇偶性;(3)求证: f(x)>0.- 3 -参照答案答案速查: 1-5 BCDBC6-10 BCACC11-12 CC1.分析: 仅有②正确. 答案: Ba x , x ≥0 ,2.分析: y = a |x|=-且 a>1 ,应选 C.答案: Ca x, x<0 ,3.答案: D4.答案: B5.分析:A = { y|y = 2x ,x<0} = { y|0<y<1} ,B = { y|y = log 2x} = { y|y ∈ R} ,∴ A ∩ B ={ y|0<y<1} .答案: C6.分析: P ={ x|log 2x<1} = { x|0<x<2} , Q ={ x|1<x<3} ,∴ P - Q = { x|0<x ≤1} ,应选 B.答案: B17.分析: x = log a 2+ log a 3= log a 6= 2log a 6, z = loga21- loga 3= loga 7= 2log 7.1a∵ 0<a<1 ,∴ 111log a 7.2 log a 5> log a 6> 22 即 y>x>z.答案: C8.分析: 作出函数 y =2x 与 y = x 2 的图象知,它们有3 个交点,因此 y =2x - x 2 的图象与x 轴有 3 个交点,清除B 、C ,又当 x<- 1 时, y<0,图象在 x 轴下方,清除 D.应选 A.答案: A9.分析: 联合图象知, A 、 B 、 D 不建立, C 建立. 答案: C10.分析: 依题意可得 f 3(2010) = 20102, f 2(f 3(2010))22 -1-2 = f 2(2010 ) =(2010 ) = 2010 ,∴ f 1(f 2(f 3(2010))) = f 1(2010 - 2-2 1-11 .)= (2010) =2010=20102答案: C1-x>0x<1-111.分析: 由 ?1? <x<1. 答案: C3x +1>0x>- 3312.分析: f(2) = log 3(22- 1)= log 33= 1,∴ f[f(2)] = f(1) = 2e 0= 2.答案: C13.分析: (1) 、 (2)不正确,可举出反例,如1, y = x -2,它们的图象都可是原点. (3)y = x中函数 y = lne x=x ,明显是奇函数.对于(4) , y =x 13是奇函数,而奇函数的图象对于原点对称,因此 (4)正确.答案: (3)(4)- 4 -14.答案: (4,5]15.分析: 由图象过点 (- 2,0), (0,2)知, log a (- 2+ b)= 0, log a b = 2,∴- 2+ b =1,∴ b= 3, a 2= 3,由 a>0 知 a = 3.∴ a = 3, b = 3.答案: 3 316.分析: 依据题意画出 f(x)的草图,由图象可知,f(x)>0 的 x 的取值范围是-1<x<0 或x>1.答案: (- 1,0)∪ (1,+∞ )17.解:由 f(2) log 2 2a + b =12a + b =2 ? a = 2, = 1,f(3)= 2,得 3a + b = 2? ∴ f(x)= log 2(2xlog 2 3a + b =4 b =- 2. - 2),∴ f(5)= log 28 =3.18.∵ x 2>x 1≥ 0,∴ x 2- x 1>0, x 2+ x 1>0,∴ f(x 1) - f(x 2)>0 ,∴ f(x 2)<f( x 1).于是 f(x)在定义域内是减函数.19.解: (1) 函数定义域为 R.2-x - 11- 2x2x - 1f(- x)=- x+ 1 =x =-x=- f(x),21+ 22 + 1因此函数为奇函数.1 2< +∞ ,(2)证明:不如设- ∞<x <x∴ 2x 2>2x 1.又由于 f(x 2)- f(x 1)= 2x 2- 1 - 2x 1- 1 = 2 2x 2- 2x 12 1 1 2x 2>0,2x + 1 2x + 1 2x + 1 +1∴ f(x 2)> f(x 1).因此 f(x)在 (- ∞ ,+ ∞ )上是增函数.20.解: ∵ f(x)是幂函数,∴ m 2- m - 1= 1, ∴ m =- 1 或 m = 2,∴ f(x)= x -3 或 f(x)= x 3,而易知 f(x)= x -3 在 (0,+ ∞ )上为减函数,f(x)=x 3 在 (0,+ ∞ )上为增函数. ∴ f(x)= x 3.21.解: (1) 由 a x- b x>0,得 a x>1.ba∵ a>1>b>0,∴ b >1, ∴ x>0.即 f(x)的定义域为 (0,+ ∞ ).(2)∵ f( x)在 (1,+ ∞ )上递加且恒为正当,∴ f(x)>f(1) ,只需 f(1)≥ 0,即 lg(a - b)≥ 0,∴ a - b ≥1.∴ a ≥ b + 1 为所求22.解: (1) 由 2x - 1≠ 0 得 x ≠0,∴函数的定义域为 { x|x ≠0, x ∈ R} . (2)在定义域内任取 x ,则- x 必定在定义域内. 1 1 f(- x)= 2-x - 1+ 2 (- x)=2xx +1 ( -x) =- 1+2x ·x = 2x +1 ·x.1-2 22 1- 2x 2 2x - 111 2x + 1而f(x)=2x - 1+2 x = 2 2x -1 ·x , ∴ f(- x)= f(x).∴ f(x)为偶函数.(3)证明:当 x>0 时, 2x >1,11∴2x - 1+2 ·x>0.又 f(x)为偶函数,∴当 x<0 时, f(x)>0.故当 x ∈ R 且 x ≠ 0 时, f(x)>0.。
必修1第二章 基本初等函数(Ⅰ)(练习题)
高一数学必修1导学案 第二章 基本初等函数(Ⅰ)1§2.1.1 指数与指数幂的运算(1)1.).A. 3B. -3C. ±3D. 81 2. 625的4次方根是( ).A. 5B. -5C. ±5D. 25 3.化简2是( ).A. b -B. bC. b ±D. 1b4.= .5.计算:3=;1. 计算:(1(2)2. 计算34a a -⨯和3(8)a +-,它们之间有什么关系? 你能得到什么结论?3. 对比()n n nab a b =与()n n n a a b b=,你能把后者归入前者吗?§2.1.1 指数与指数幂的运算(2)1. 若0a >,且,m n 为整数,则下列各式中正确的是( ).A. m mnna a a ÷= B. m n mna a a ⋅= C. ()n m m n a a += D. 01n n a a -÷=2. 化简3225的结果是( ).A. 5B. 15C. 25D. 125 3. 计算(122--⎡⎤⎢⎥⎣⎦的结果是().AB.D .4. 化简2327-= .5. 若102,104mn==,则3210m n -= .1. 化简下列各式: (1)3236()49; (2.2.1⎛÷- ⎝.§2.1.1 指数与指数幂的运算(练习)1.).A.B. C. 3D. 7292.3(a >0)的值是( ).A. 1B. aC. 15aD. 1710a23. 下列各式中成立的是( ).A .1777()n n m m = B.C34()x y =+ D .4. 化简3225()4-= .5. 化简21151********()(3)()3a b a b a b -÷= .1. 已知32x a b --=+, .2.2n a =时, 实数a 和整数n 所应满足的条件.§2.1.2 指数函数及其性质(1)1. 函数2(33)x y a a a =-+是指数函数,则a 的值为( ).A. 1B. 2C. 1或2D. 任意值 2. 函数f (x )=21x a -+ (a >0,a ≠1)的图象恒过定点( ).A. (0,1)B. (0,2)C. (2,1)D. (2,2) 3. 指数函数①()x f x m =,②()x g x n =满足不等式 01m n <<<,则它们的图象是().4. 比较大小:23( 2.5)- 45( 2.5)-.5. 函数y =的定义域为 .1. 求函数y =1151x x--的定义域.2. 探究:在[m ,n ]上,()(01)x f x a a a =>≠且值域?§2.1.2 指数函数及其性质(2)1. 如果函数y =a x (a >0,a ≠1)的图象与函数y =b x (b >0,b ≠1)的图象关于y 轴对称,则有( ). A. a >b B. a <bC. ab =1D. a 与b 无确定关系2. 函数f (x )=3-x -1的定义域、值域分别是( ). A. R , R B. R , (0,)+∞ C. R ,(1,)-+∞ D.以上都不对3. 设a 、b 均为大于零且不等于1的常数,则下列说法错误的是( ).A. y =a x 的图象与y =a -x 的图象关于y 轴对称B. 函数f (x )=a 1-x (a >1)在R 上递减 C.若1,则a >1 D. 若2x >1,则1x >高一数学必修1导学案 第二章 基本初等函数(Ⅰ)34. 比较下列各组数的大小:122()5- 320.4-(;0.76 0.75-(. 5. 在同一坐标系下,函数y =a x , y =b x , y =c x , y =d x 的图象如右图,则a 、b 、c 、d 、1之间从小到大的顺序是 .1. 已知函数f (x )=a -221x +(a ∈R ),求证:对任何a R ∈, f (x )为增函数.2. 求函数2121x x y -=+的定义域和值域,并讨论函数的单调性、奇偶性.§2.2.1 对数与对数运算(1)1. 若2log 3x =,则x =( ). A. 4 B. 6 C. 8D. 92. log = ( ).A. 1B. -1C. 2D. -23. 对数式2log (5)a a b --=中,实数a 的取值范围是( ).A .(,5)-∞B .(2,5)C .(2,)+∞D . (2,3)(3,5)4.计算:1(3+= .5. 若log 1)1x =-,则x=________,若l 8y =,则y =___________.1. 将下列指数式化成对数式,对数式化成指数式.(1)53243=; (2)51232-=; (3)430a =(4)1() 1.032m =; (5)12log 164=-;(6)2log 1287=; (7)3log 27a =.2. 计算:(1)9log 27; (2)3log 243;(3);(3)(2log (2;(4).§§2.2.1 对数与对数运算(2)1. 下列等式成立的是( ) A .222log (35)log 3log 5÷=- B .222log (10)2log (10)-=- C .222log (35)log 3log 5+=D .3322log (5)log 5-=-2. 如果lgx =lga +3lgb -5lgc ,那么( ).A .x =a +3b -cB .35abx c=C .35ab x c= D .x =a +b 3-c 33. 若()2lg 2lg lg y x x y -=+,那么( ). A .y x = B .2y x = C .3y x = D .4y x =4. 计算:(1)99log 3log 27+= ;(2)2121log log 22+= .5. 计算:15lg 23=.41. 计算:(1;(2)2lg 2lg2lg5lg5+⋅+.2. 设a 、b 、c 为正数,且346a b c ==,求证: 1112c a b -=.§2.2.1 对数与对数运算(3)1.25()a -(a ≠0)化简得结果是( ). A .-a B .a 2 C .|a | D .a2. 若 log 7[log 3(log 2x )]=0,则12x =( ). A. 3B.C.D.3. 已知35a b m ==,且112a b+=,则m 之值为( ).A .15 BC .D .2254. 若3a=2,则log 38-2log 36用a 表示为 . 5. 已知lg 20.3010=,lg1.07180.0301=,则lg 2.5=;1102=.1. 化简:(1)222lg5lg8lg5lg20(lg2)3+++;(2)()()24525log 5+log 0.2log 2+log 0.5.2. 若()()lg lg 2lg2lg lg x y x y x y -++=++,求x y的值.§2.2.2 对数函数及其性质(1)1. 当a >1时,在同一坐标系中,函数x y a -=与log a y x =的图象是( ).2. 函数22log (1)y x x =+≥的值域为( ). A. (2,)+∞ B. (,2)-∞ C. [)2,+∞ D. [)3,+∞3. 不等式的41log 2x >解集是( ). A. (2,)+∞ B. (0,2)B. 1(,)2+∞ D. 1(0,)24. 比大小: (1)log 67 log 7 6 ; (2)log 31.5 log 2 0.8.5. 函数(-1)log (3-)x y x =的定义域是 .1. 已知下列不等式,比较正数m 、n 的大小:(1)3log m <3log n ; (2)0.3log m >0.3log n ; (3)log a m >log a n (a >1)高一数学必修1导学案 第二章 基本初等函数(Ⅰ)52. 求下列函数的定义域:(1)y (2)y =§2.2.2 对数函数及其性质(2)1. 函数0.5log y x =的反函数是( ). A. 0.5log y x =- B. 2log y x =C. 2x y =D. 1()2x y =2. 函数2x y =的反函数的单调性是( ). A. 在R 上单调递增 B. 在R 上单调递减C. 在(0,)+∞上单调递增D. 在(0,)+∞上单调递减3. 函数2(0)y x x =<的反函数是( ).A. (0)y x =>B. (0)y x >C. (0)y x =>D. y =4. 函数x y a =的反函数的图象过点(9,2),则a 的值为 .5. 右图是函数1log a y x =,2log a y x =3log a y x=,4log a y x =的图象,则底数之间的关系为 .1. 现有某种细胞100个,其中有占总数12的细胞每小时分裂一次,即由1个细胞分裂成2个细胞,按这种规律发展下去,经过多少小时,细胞总数可以超过1010个?(参考数据:lg30.477,lg 20.301==).2. 探究:求(0)ax by ac cx d+=≠+的反函数,并求出两个函数的定义域与值域,通过对定义域与值域的比较,你能得出一些什么结论?§2.2 对数函数(练习)1. 下列函数与y x =有相同图象的一个函数是( )A. y =B. 2x y x=C. log (01)a x y a a a =>≠且D. log x a y a =2. 函数y ).A. [1,)+∞B. 2(,)3+∞C. 2[,1]3D. 2(,1]33. 若(ln )34f x x =+,则()f x 的表达式为( ) A. 3ln x B. 3ln 4x + C. 3x e D. 34x e +4.函数2()lg(8)f x x =+的定义域为 ,值域为 .5. 将20.3,2log 0.5,0.5log 1.5由小到大排列的顺序是 .1. 若定义在区间(1,0)-内的函数2()log (1)a f x x =+满足()0f x >,则实数a 的取值范围.2. 已知函数211()log 1xf x x x+=--,求函数()f x 的定义域,并讨论它的奇偶性和单调性.6§2.3 幂函数1. 若幂函数()f x x α=在(0,)+∞上是增函数,则( ).A .α>0B .α<0C .α=0D .不能确定 2. 函数43y x =的图象是( ).A. B. C. D.3. 若11221.1,0.9a b -==,那么下列不等式成立的是( ).A .a <l<bB .1<a <bC .b <l<aD .1<b <a 4. 比大小:(1)11221.3_____1.5; (2)225.1______5.09--. 5. 已知幂函数()y f x =的图象过点,则它的解析式为 .1. 已知幂函数f (x )=13222p p x -++(p ∈Z )在(0,)+∞上是增函数,且在其定义域内是偶函数,求p 的值,并写出相应的函数f (x ).2. 在固定压力差(压力差为常数)下,当气体通过圆形管道时,其流量速率R 与管道半径r 的四次方成正比.(1)写出函数解析式;(2)若气体在半径为3cm 的管道中,流量速率为400cm 3/s ,求该气体通过半径为r 的管道时,其流量速率R 的表达式;(3)已知(2)中的气体通过的管道半径为5cm ,计算该气体的流量速率.第二章 基本初等函数Ⅰ(复习)1. 函数2322x x y --+=的单调递增区间为( ).A. 3(,)2-∞ B. 3(,)2+∞C. 3(,)2-∞-D. 3(,)2-+∞2. 设2(log )2(0)x f x x =>,则(3)f 的值是( ).A. 128B. 256C. 512D. 8 3. 函数2log (y x =+的奇偶性为( ). A .奇函数而非偶函数 B .偶函数而非奇函数 C .非奇非偶函数 D .既奇且偶函数4. 函数2y x -=在区间1[,2]2上的最大值是 .5. 若函数12(log )x y a =为减函数,则a 的取值范围是 .1. 按复利计算利息的一种储蓄,本金为a 元,每期利率为r ,设本利和为y 元,存期为x ,写出本利和y 随存期x 变化的函数解析式. 如果存入本金1000元,每期利率为2.25%,试计算5期后的本利和是多少(精确到1元)?2. 某公司经过市场调查,某种商品在最初上市的几个月内销路很好,几乎能将所生产的产品全部销售出去. 为了追求最大的利润,该公司计划从当月开始,每月让产品生产量递增,且10个月后设法将该商品的生产量翻两番,求平均每月生产量的增长率.。
【理科专题二 】函数概念与基本初等函数(带答案)
专题二 函数概念与基本初等函数Ⅰ第三讲 函数的概念和性质一、选择题1.(2018全国卷Ⅱ)函数2()--=x xe ef x x 的图像大致为2.(2018全国卷Ⅲ)函数422y x x =-++的图像大致为3.(2018浙江)函数||2sin 2x y x =的图象可能是A .B .C .D .4.(2018全国卷Ⅱ)已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)-=+f x f x .若(1)2=f ,则(1)(2)(3)(50)++++=…f f f fA .50-B .0C .2D .505.(2017新课标Ⅰ)函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(1)1f =-,则满足1(2)1f x --≤≤ 的x 的取值范围是A .B .C .D . 6.(2017浙江)若函数2()f x x ax b =++在区间[0,1]上的最大值是M ,最小值是m ,则M m -A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关7.(2017天津)已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为A .a b c <<B .c b a <<C .b a c <<D .b c a <<8.(2017北京)已知函数1()3()3x x f x =-,则()f x A .是奇函数,且在R 上是增函数 B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数9.(2016山东)已知函数f (x )的定义域为R .当x <0时,3()1f x x =- ;当11x -≤≤ 时,()()f x f x -=-;当12x >时,11()()22f x f x +=-,则f (6)= A .−2 B .−1C .0D .2 10.(2016全国I) 函数2||2x y x e =-在[–2,2]的图像大致为A .B .C .D .11.(2016全国II) 已知函数()()f x x ∈R 满足()()2f x f x -=-,若函数1x y x +=与()y f x =图像的交点为()11x y ,,()22x y ,,…,()m m x y ,,则()1m i i i x y =+=∑ A .0 B .m C .2m D .4m12.(2015福建)下列函数为奇函数的是A.y B .sin y x = C .cos y x = D .x x y e e -=-13.(2015广东)下列函数中,既不是奇函数,也不是偶函数的是A.y = B .1y x x =+ C .122x x y =+ D .x y x e =+ 14.(2015湖南)设函数()ln(1)ln(1)f x x x =+--,则()f x 是A .奇函数,且在(0,1)上是增函数B .奇函数,且在(0,1)上是减函数C .偶函数,且在(0,1)上是增函数D .偶函数,且在(0,1)上是减函数15.(2015湖北)已知符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩()f x 是R 上的增函数,()()g x f x =-()f ax (1)a >,则A .sgn[()]sgn g x x =B .sgn[()]sgn g x x =-C .sgn[()]sgn[()]g x f x =D .sgn[()]sgn[()]g x f x =-16.(2015安徽)函数()()2ax bf x x c +=+的图象如图所示,则下列结论成立的是A .0a >,0b >,0c <B .0a <,0b >,0c >C .0a <,0b >,0c <D .0a <,0b <,0c <17.(2014新课标1)设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B .()f x |()g x |是奇函数C .|()f x |()g x 是奇函数D .|()f x ()g x |是奇函数18.(2014山东)函数1)(log 1)(22-=x x f 的定义域为A .)210(,B .)2(∞+,C .),2()210(+∞ ,D .)2[]210(∞+,, 19.(2014山东)对于函数()f x ,若存在常数0a ≠,使得x 取定义域内的每一个值,都有 ()(2)f x f a x =-,则称()f x 为准偶函数,下列函数中是准偶函数的是A.()f x = B .2()f x x = C .()tan f x x = D .()cos(1)f x x =+20.(2014浙江)已知函数32()f x x ax bx c =+++,且0(1)(2)(3)3f f f -=-=-≤≤,则A .3≤cB .63≤<cC .96≤<cD .9>c21.(2015北京)下列函数中,定义域是R 且为增函数的是A .x y e -=B .3y x =C .ln y x =D .y x =22.(2014湖南)已知(),()f x g x 分别是定义在R 上的偶函数和奇函数,且()()f x f x -=321x x ++,(1)(1)f g +则=A .-3B .-1C .1D .323.(2014江西)已知函数||5)(x x f =,)()(2R a x ax x g ∈-=,若1)]1([=g f ,则=aA .1B .2C .3D .-124.(2014重庆)下列函数为偶函数的是A .()1f x x =-B .3()f x x x =+C .()22x x f x -=-D .()22x x f x -=+ 25.(2014福建)已知函数()⎩⎨⎧≤>+=0,cos 0,12x x x x x f 则下列结论正确的是A .()x f 是偶函数B .()x f 是增函数C .()x f 是周期函数D .()x f 的值域为[)+∞-,126.(2014辽宁)已知()f x 为偶函数,当0x ≥时,1cos ,[0,]2()121,(,)2x x f x x x π⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩,则不等式1(1)2f x -≤的解集为 A .1247[,][,]4334 B .3112[,][,]4343-- C .1347[,][,]3434 D .3113[,][,]4334-- 27.(2013辽宁)已知函数()3)1f x x =+,则1(lg 2)(lg )2f f +=A .1-B .0C .1D .2 28.(2013新课标Ⅰ)已知函数()f x =22,0ln(1),0x x x x x ⎧-+≤⎨+>⎩,若|()f x |≥ax ,则a 的取值范围是A .(,0]-∞B .(,1]-∞C .[-2,1]D .[-2,0]29.(2013广东)定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是A .4B .3C .2D .130.(2013广东)函数lg(1)()1x f x x +=-的定义域是 A .(1,)-+∞ B .[1,)-+∞ C .(1,1)(1,)-+∞ D .[1,1)(1,)-+∞31.(2013山东)已知函数()f x 为奇函数,且当0x >时,()21f x x x=+ ,则()1f -= A .-2 B .0 C .1 D .232.(2013福建)函数)1ln()(2+=x x f 的图象大致是A .B .C .D .33.(2013北京)下列函数中,既是偶函数又在区间(0,)+∞上单调递减的是A .1y x= B .x y e -= C .21y x =-+ D .lg y x = 34.(2013湖南)已知()f x 是奇函数,()g x 是偶函数,且()()112f g -+=,()()114f g +-=,则()1g 等于A .4B .3C .2D .1 35.(2013重庆)已知函数3()sin 4(,)f x ax b x a b R =++∈,2(lg(log 10))5f =,则(lg(lg 2))f =A .5-B .1-C .3D .436.(2013湖北)x 为实数,[]x 表示不超过x 的最大整数,则函数()[]f x x x =-在R 上为A .奇函数B .偶函数C .增函数D . 周期函数37.(2013四川)函数133-=x x y 的图像大致是A B C D38.(2012天津)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为A .cos 2,y x x R =∈B .2log ||,0y x x R x =∈≠且C .,2x xe e y x R --=∈ D .31y x =+ 39.(2012福建)设1,0,()0,0,1,0,xf x x x >⎧⎪= =⎨⎪- <⎩⎩⎨⎧=为无理数为有理数x x x g ,0,1)(,则(())f g π的值为A .1B .0C .1-D .π40.(2012山东)函数1()ln(1)f x x =++ A .[2,0)(0,2]- B .(1,0)(0,2]- C .[2,2]- D .(1,2]-41.(2012陕西)下列函数中,既是奇函数又是增函数的为A 1y x =+B 3y x =-C 1y x =D ||y x x = 42.(2011江西)若()f x =,则)(x f 的定义域为 A .(21-,0) B .(21-,0] C .(21-,∞+) D .(0,∞+) 43.(2011新课标)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是A .3y x =B .1y x =+C .21y x =-+D .2x y -=44.(2011辽宁)函数)(x f 的定义域为R ,2)1(=-f ,对任意R ∈x ,2)(>'x f ,则42)(+>x x f 的解集为A .(1-,1)B .(1-,+∞)C .(∞-,1-)D .(∞-,+∞)45.(2011福建)已知函数2,0()1,0x x f x x x >⎧=⎨+≤⎩.若()(1)0f a f +=,则实数a 的值等于 A .-3 B .-1C .1D .346.(2011辽宁)若函数))(12()(a x x x x f -+=为奇函数,则a = (A)21 (B)32 (C)43 (D)1 47.(2011安徽)设)(x f 是定义在R 上的奇函数,当0x ≤时,2()2f x x x =-,则(1)f =A .-3B .-1C .1D .348.(2011陕西)设函数()()f x x R ∈满足()(),(2)(),f x f x f x f x -=+=,则()y f x =的图像可能是49.(2010山东)函数()()2log 31x f x =+的值域为 A .()0,+∞ B .)0,+∞⎡⎣ C .()1,+∞ D .)1,+∞⎡⎣ 50.(2010年陕西)已知函数()f x =221,1,1x x x ax x ⎧+<⎨+≥⎩,若((0))f f =4a ,则实数a = A .12 B .45C .2D .9 51.(2010广东)若函数()33x x f x -=+与()33x x g x -=-的定义域均为R ,则A .()f x 与()g x 均为偶函数B .()f x 为偶函数,()g x 为奇函数C .()f x 与()g x 均为奇函数D .()f x 为奇函数,()g x 为偶函数52.(2010安徽)若()f x 是R 上周期为5的奇函数,且满足()()11,22f f ==,则()()34f f -=A .-1B .1C .-2D .2二、填空题53.(2018江苏)函数()f x =的定义域为 .54.(2018江苏)函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,cos ,02,2()1||,20,2x x f x x x π⎧<⎪⎪=⎨⎪+<⎪⎩≤-≤则((15))f f 的值为 . 55.(2018上海)已知11{2,1,,,1,2,3}22α∈---,若幂函数()α=f x x 为奇函数,且在0+∞(,)上递减,则α=_____56.(2018北京)能说明“若()(0)f x f >对任意的(0,2]x ∈都成立,则()f x 在[0,2]上是增函数”为假命题的一个函数是__________.57.(2017新课标Ⅲ)设函数1,0()2,0x x x f x x +⎧=⎨>⎩≤,则满足1()()12f x f x +->的x 的取值范围是___.58.(2017江苏)已知函数31()2x xf x x x e e =-+-,其中e 是自然数对数的底数,若2(1)(2)0f a f a -+≤,则实数a 的取值范围是 .59.(2017山东)若函数e ()xf x (e=2.71828 ,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是①()2x f x -= ②()3xf x -= ③3()=f x x ④2()2=+f x x 60.(2017浙江)已知a ∈R ,函数4()||f x x a a x=+-+在区间[1,4]上的最大值是5,则a 的取值范围是 .61.(2016天津)已知f (x )是定义在R 上的偶函数,且在区间(,0)-∞上单调递增.若实数a 满足1(2)(a f f ->,则a 的取值范围是______.62.(2016江苏)设()f x 是定义在R 上且周期为2的函数,在区间[)1,1-上,(),10,2,01,5x a x f x x x +-<⎧⎪=⎨-<⎪⎩≤≤其中a ∈R ,若59()()22f f -=,则()5f a 的值是 . 63.(2015新课标Ⅰ)若函数()ln(f x x x =+为偶函数,则a =64.(2015浙江)已知函数223,1()lg(1),1x x f x xx x ⎧+-⎪=⎨⎪+<⎩≥,则((3))f f -=_______,()f x 的最小值是______.65.(2015山东)已知函数()(0,1)x f x a b a a =+>≠ 的定义域和值域都是[1,0]-,则a b += .66.(2015福建)若函数()6,2,3log ,2,a x x f x x x -+⎧=⎨+>⎩≤(0a > 且1a ≠ )的值域是[)4,+∞,则实数a 的取值范围是 .67.(2014新课标Ⅱ)偶函数()f x 的图像关于直线2x =对称,(3)3f =,则(1)f -=___.67.(2014湖南)若()()ax e x f x ++=1ln 3是偶函数,则=a ____________.68.(2014四川)设()f x 是定义在R 上的周期为2的函数,当[1,1)x ∈-时,242,10,(),01,x x f x x x ⎧-+-≤<=⎨≤<⎩,则3()2f = . 70.(2014浙江)设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是___. 71.(2014湖北)设()x f 是定义在()+∞,0上的函数,且()0>x f ,对任意0,0>>b a ,若经过点(,())a f a ,(,())b f b -的直线与x 轴的交点为()0,c ,则称c 为b a ,关于函数()x f 的平均数,记为),(b a M f ,例如,当())0(1>=x x f 时,可得2),(b a c b a M f +==,即),(b a M f 为b a ,的算术平均数. (Ⅰ)当())0_____(>=x x f 时,),(b a M f 为b a ,的几何平均数;(Ⅱ)当())0_____(>=x x f 时,),(b a M f 为b a ,的调和平均数ba ab +2; (以上两空各只需写出一个符合要求的函数即可) 72.(2013安徽)函数1ln(1)y x =++的定义域为_____________. 73.(2013北京)函数12log ,1()2,1x x x f x x ≥⎧⎪=⎨⎪ <⎩的值域为 .74.(2012安徽)若函数()|2|f x x a =+的单调递增区间是),3[+∞,则a =________. 75.(2012浙江)设函数()f x 是定义在R 上的周期为2的偶函数,当[0,1]x ∈时,()1f x x =+,则3()2f =_______________.76.(2011陕西)设2lg 0()30ax x f x x t dt x >⎧⎪=⎨+⎪⎩⎰…,若((1))1f f =,则a = . 77.(2011江苏)已知实数0≠a ,函数⎩⎨⎧≥--<+=1,21,2)(x a x x a x x f ,若)1()1(a f a f +=-,则a 的值为________78.(2011福建)设V 是全体平面向量构成的集合,若映射:f V R →满足:对任意向量11(,)x y a =∈V ,22(,)x y b =∈V ,以及任意λ∈R ,均有((1))()(1)(),f f f λλλλ+-=+-a b a b则称映射f 具有性质P . 现给出如下映射:①12:,(),,(,);f V R f m x y m x y V →=-=∈ ②222:,(),(,);f V R f m x y m x y V →=+=∈ ③33:,()1,(,).f V R f m x y m x y V →=++=∈其中,具有性质P 的映射的序号为________.(写出所有具有性质P 的映射的序号)79.(2010福建)已知定义域为0+∞(,)的函数()f x 满足:①对任意0x ∈+∞(,),恒有(2)=2()f x f x 成立;当(1,2]x ∈时,()=2f x x -.给出如下结论:①对任意Z m ∈,有(2)=0mf ;②函数()f x 的值域为[0+∞,);③存在Z n ∈,使得(2+1)=9n f ;④“函数()f x 在区间(,)a b 上单调递减”的充要条件是 “存在Z k ∈,使得1(,)(2,2)kk a b +⊆”. 其中所有正确结论的序号是 .80.(2010江苏)设函数()()xxf x x e ae -=+(x ∈R)是偶函数,则实数a =______.专题二 函数概念与基本初等函数Ⅰ第三讲 函数的概念和性质答案部分1.B 【解析】当0<x 时,因为0--<xxe e ,所以此时2()0--=<x xe ef x x,故排除A .D ;又1(1)2=->f e e,故排除C ,选B . 2.D 【解析】当0x =时,2y =,排除A ,B .由3420y x x '=-+=,得0x =或2x =±,结合三次函数的图象特征,知原函数在(1,1)-上有三个极值点,所以排除C ,故选D .3.D 【解析】设||()2sin 2x f x x =,其定义域关于坐标原点对称,又||()2sin(2)()x f x x f x --=⋅-=-,所以()y f x =是奇函数,故排除选项A ,B ; 令()0f x =,所以sin 20x =,所以2x k π=(k ∈Z ),所以2k x π=(k ∈Z ),故排除选项C .故选D .4.C 【解析】解法一 ∵()f x 是定义域为(,)-∞+∞的奇函数,()()-=-f x f x .且(0)0=f .∵(1)(1)-=+f x f x ,∴()(2)=-f x f x ,()(2)-=+f x f x ∴(2)()+=-f x f x ,∴(4)(2)()+=-+=f x f x f x ,∴()f x 是周期函数,且一个周期为4,∴(4)(0)0==f f ,(2)(11)(11)(0)0=+=-==f f f f ,(3)(12)(12)(1)2=+=-=-=-f f f f ,∴(1)(2)(3)(50)120(49)(50)(1)(2)2+++⋅⋅⋅+=⨯++=+=f f f f f f f f , 故选C .解法二 由题意可设()2sin()2f x x π=,作出()f x 的部分图象如图所示.由图可知,()f x 的一个周期为4,所以(1)(2)(3)(50)+++⋅⋅⋅+f f f f , 所以(1)(2)(3)(50)120(1)(2)2+++⋅⋅⋅+=⨯++=f f f f f f ,故选C . 5.D 【解析】由函数()f x 为奇函数,得(1)(1)1f f -=-=,不等式1(2)1f x --≤≤即为(1)(2)(1)f f x f --≤≤,又()f x 在(,)-∞+∞单调递减,所以得121x --≥≥,即13x ≤≤,选D . 6.B 【解析】函数()f x 的对称轴为2a x =-, ①当02a-≤,此时(1)1M f a b ==++,(0)m f b ==,1M m a -=+; ②当12a-≥,此时(0)M f b ==,(1)1m f a b ==++,1M m a -=--;③当012a <-<,此时2()24a a m fb =-=-,(0)M f b ==或(1)1M f a b ==++,24a M m -=或214a M m a -=++.综上,M m -的值与a 有关,与b 无关.选B .7.C 【解析】由题意()g x 为偶函数,且在(0,)+∞上单调递增,所以22(log 5.1)(log 5.1)a g g =-= 又2222log 4log 5.1log 83=<<=,0.8122<<,所以0.822log 5.13<<,故b a c <<,选C .8.A 【解析】11()3()(3())()33xx x x f x f x ---=-=--=-,得()f x 为奇函数, ()(33)3ln33ln30x x x x f x --''=-=+>,所以()f x 在R 上是增函数.选A .9.D 【解析】当11x-剟时,()f x 为奇函数,且当12x >时,(1)()f x f x +=,所以(6)(511)(1)f f f =⨯+=.而3(1)(1)[(1)1]2f f =--=---=, 所以(6)2f =,故选D .10.D 【解析】当0x ?时,令函数2()2x f x x e =-,则()4x f x x e '=-,易知()f x '在[0,ln 4)上单调递增,在[ln 4,2]上单调递减,又(0)10f '=-<,1()202f '=->,(1)40f e '=->,2(2)80f e '=->,所以存在01(0,)2x ∈是函数()f x 的极小值点,即函数()f x 在0(0,)x 上单调递减,在0(,2)x 上单调递增,且该函数为偶函数,符合 条件的图像为D .11.B 【解析】由()()2f x f x -=-得()()2f x f x -+=,可知()f x 关于()01,对称, 而111x y x x+==+也关于()01,对称, ∴对于每一组对称点0i i x x '+= =2i i y y '+, ∴()111022m m miiiii i i mx y x ym ===+=+=+⋅=∑∑∑,故选B . 12.D【解析】∵函数y 的定义域为[0,)+∞,不关于原点对称,所以函数y =为非奇非偶函数,排除A ;因为|sin |y x =为偶函数,所以排除B ;因为cos y x =为偶函数,所以排除C ;因为()xxy f x e e -==-,()()()x x x x f x e e e e f x ---=-=--=-,所以()x x y f x e e -==-为奇函数.13.D 【解析】选项A 、C 为偶函数,选项B 中的函数是奇函数;选项D 中的函数为非奇非偶函数.14.A 【解析】由题意可知,函数()f x 的定义域为(1,1)-,且12()lnln(1)11x f x x x+==---,易知211y x=--在(0,1)上为增函数,故()f x 在(0,1)上为增函数,又()ln(1)ln(1)()f x x x f x -=--+=-,故()f x 为奇函数.15.B 【解析】因为()f x 是R 上的增函数,令x x f =)(,所以x a x g )1()(-=,因为1>a ,所以)(x g 是R 上的减函数,由符号函数1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩知,1,0sgn[()]0,0sgn 1,0x g x x x x ->⎧⎪===-⎨⎪<⎩.16.C 【解析】∵2()()ax bf x x c +=+的图象与,x y 轴分别交于,N M ,且点M 的纵坐标与点N的横坐标均为正,∴0b x a =->,20by c=>,故0,0a b <>,又函数图象间断的横坐标为正,∴0c ->,故0c <.17.B 【解析】()f x 为奇函数,()g x 为偶函数,故()f x ()g x 为奇函数,()f x |()g x |为奇函数,|()f x |()g x 为偶函数,|()f x ()g x |为偶函数,故选B .18.C 【解析】2222(log )10log 1log 1x x x ->⇒><-或,解得1202x x ><<或. 19.D 【解析】由()(2)f x f a x =-可知,准偶函数的图象关于y 轴对称,排除A ,C ,而B 的对称轴为y 轴,所以不符合题意;故选D . 20.C 【解析】由已知得184212793a b c a b c a b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩,解得611a b =⎧⎨=⎩,又0(1)63f c <-=-≤,所以69c <≤. 21.B 【解析】四个函数的图象如下显然B 成立.22.C 【解析】用x -换x ,得32()()()()1f x g x x x ---=-+-+,化简得32()()1f x g x x x +=-++,令1x =,得(1)(1)1f g +=,故选C .23.A 【解析】因为[(1)]1f g =,且||()5x f x =,所以(1)0g =,即2110a ⋅-=,解得1a =.24.D 【解析】函数()1f x x =-和2()f x x x =+既不是偶函数也不是奇函数,排除选项A和选项B ;选项C 中()22x x f x -=-,则()22(22)()x x x x f x f x ---=-=--=-, 所以()f x =22xx--为奇函数,排除选项C ;选项D 中()22x x f x -=+,则()22()x x f x f x --=+=,所以()22x x f x -=+为偶函数,选D .25.D 【解析】2()1,()1f f πππ=+-=-,所以函数()x f 不是偶函数,排除A ;因为函数()x f 在(2,)ππ--上单调递减,排除B ;函数()x f 在(0,)+∞上单调递增,所以函数()f x 不是周期函数,选D .26.A 【解析】当102x ≤≤时,令1()cos 2f x x π=≤,解得1132x ≤≤,当12x >时, 令1()212f x x =-≤,解得1324x <≤,故1334x ≤≤.∵()f x 为偶函数,∴1()2f x ≤的解集为3113[,][,]4334--⋃,故1(1)2f x -≤的解集为1247[,][,]4334⋃.27.D 【解析】11lg 2lg lg(2)lg1022+=⨯==,()()3)13()]1f x f x x x +-=-++--+3)3)2x x =++ln 33)2x x ⎡⎤=+⎣⎦2ln (3)2x ⎡⎤=-+⎣⎦ln122=+=.28.D 【解析】∵|()f x |=22,0ln(1),0x x x x x ⎧-≤⎨+>⎩,∴由|()f x |≥ax 得,202x x x ax ≤⎧⎨-≥⎩ 且0ln(1)x x ax>⎧⎨+≥⎩,由202x x x ax ≤⎧⎨-≥⎩可得2a x ≥-,则a ≥-2,排除A ,B ,当a =1时,易证ln(1)x x +<对0x >恒成立,故a =1不适合,排除C ,故选D . 29.C 【解析】是奇函数的为3y x =与2sin y x =,故选C .30.C 【解析】1010x x +>⎧⎨-≠⎩,∴11x x >-⎧⎨≠⎩.31.A 【解析】()()112f f ---=-.32.A 【解析】本题考查的是对数函数的图象.由函数解析式可知)()(x f x f -=,即函数为偶函数,排除C ;由函数过)0,0(点,排除B ,D . 33.C 【解析】1y x=是奇函数,x y e -=是非奇非偶函数,而D 在(0,)+∞单调递增.选C . 34.B 【解析】由已知两式相加得,()13g =. 35.C 【解析】因为21(lg(log 10))(lg())(lg(lg 2))5lg 2f f f ==-=,又因为 ()()8f x f x +-=,所以(lg(lg 2))(lg(lg 2))5(lg(lg 2))8f f f -+=+=,所以(lg(lg 2))f =3,故选C .36.D 【解析】由题意f (1.1)=1.1-[1.1]=0.1,f (-1.1)=-1.-[-1.1]=-1.1-(-2)=0.9,故该函数不是奇函数,也不是偶函数,更不是增函数.又对任意整数a ,有f (a +x )=a +x -[a +x ]=x -[x ]=f (x ),故f (x )在R 上为周期函数.故选D .37.C 【解析】由函数解析式可得,该函数定义域为(-∞,0)∪(0,+∞),故排除A ;取x =-1,y =1113--=32>0,故再排除B ;当x →+∞时,3x -1远远大于x 3的值且都为正,故331x x -→0且大于0,故排除D ,选C .38.B 【解析】函数x y 2log =为偶函数,且当0>x 时,函数x x y 22log log ==为增函数,所以在)2,1(上也为增函数,选B .39.B 【解析】∵π是无理数 ∴g (π)=0 则(())f g π=f (0)=0 ,故选B .40.B 【解析】210,11,100 2.40,x x x x x +>⎧⎪+≠∴-<<<≤⎨⎪-≥⎩或故选B .41.D 【解析】A 是增函数,不是奇函数;B 和C 都不是定义域内的增函数,排除,只有D正确,因此选D .42.A 【解析】12log (21)0x +>,所以0211x <+<,故102x -<<. 43.B 【解析】3y x =为奇函数,21y x =-+在(0,)+∞上为减函数,2xy -=在(0,)+∞上为减函数.44.B 【解析】令函数()()24g x f x x =--,则()()20g x f x ''=->,所以()g x 在R 上为增函数,又(1)(1)240g f -=-+-=,所以不等式可转化为()(1)g x g >-,由()g x 的单调性可得1x >-.45.A 【解析】当0a >时,由()(1)0f a f +=得220a+=,无解;当0a <时,由()(1)0f a f +=得120a ++=,解得3a =-,故选A .46.A 【解析】∵))(12()(a x x xx f -+=为奇函数,∴(1)(1)0f f -+=,得12a =.47.A 【解析】因为)(x f 是定义在R 上的奇函数,且当0x …时,2()2f x x x =-,∴2(1)(1)2(1)(1)3f f =--=-⨯-+-=-,选A .48.B 【解】 由()()f x f x -=得()y f x =是偶函数,所以函数()y f x =的图象关于y 轴对称,可知B ,D 符合;由(2)()f x f x +=得()y f x =是周期为2的周期函数,选项D 的图像的最小正周期是4,不符合,选项B 的图像的最小正周期是2,符合,故选B .49.A 【解析】因为311x+>,所以()()22log 31log 10x f x =+>=,故选A .50.C 【解析】∵()21200=+=f ,∴()()()a a f f f 2422202+=+==.于是,由()()a f f 40=得2424=⇒=+a a a .故选C . 51.B 【解析】()33(),()33()xx x x f x f x g x g x ---=+=-=-=-.52.A 【解析】∵()f x 是R 上周期为5的奇函数,∴(3)(4)(2)(1)(2)(1)211f f f f f f -=---=-+=-+=-.53.[2,)+∞【解析】要使函数()f x 有意义,则2log 10x -≥,即2x ≥,则函数()f x 的定义域是[2,)+∞.54.【解析】因为函数()f x 满足(4)()f x f x +=(x ∈R ),所以函数()f x 的最小正周期是4.因为在区间(2,2]- 上,cos ,02,2()1||,20,2x x f x x x π⎧<⎪⎪=⎨⎪+<⎪⎩≤-≤,所以1((15))((1))()cos24f f f f f π=-===. 55.1-【解析】由题意()f x 为奇函数,所以α只能取1,1,3-,又()f x 在(0,)+∞上递减,所以1α=-.56.sin y x =(不答案不唯一)【解析】这是一道开放性试题,答案不唯一,只要满足()(0)f x f >对任意的(0,2]x ∈都成立,且函数()f x 在[0,2]上不是增函数即可,如,()sin f x x =,答案不唯一.57.1(,)4-+∞【解析】当12x >时,不等式为12221x x-+>恒成立;当102x <≤,不等式12112xx +-+>恒成立; 当0x ≤时,不等式为11112x x ++-+>,解得14x >-,即104x -<≤;综上,x 的取值范围为1(,)4-+∞.58.1[1,]2-【解析】因为31()2e ()e xx f x x f x x -=-++-=-,所以函数()f x 是奇函数,因为22()32e e 320x x f 'x x x -=-++≥-+≥,所以数()f x 在R 上单调递增,又21)02()(f f a a +-≤,即2())2(1a a f f ≤-,所以221a a ≤-, 即2120a a +-≤,解得112a -≤≤,故实数a 的取值范围为1[1,]2-. 59.①④【解析】①()2()2xxxx ee f x e -=⋅=在R 上单调递增,故()2x f x -=具有M 性质; ②()3()3xxx x ee f x e -=⋅=在R 上单调递减,故()3x f x -=不具有M 性质; ③3()xxe f x e x =⋅,令3()xg x e x =⋅,则322()3(2)xxxg x e x e x x e x '=⋅+⋅=+,∴当2x >-时,()0g x '>,当2x <-时,()0g x '<,∴3()x x e f x e x =⋅在(),2-∞-上单调递减,在()2,-+∞上单调递增,故()3f x x =不具有M 性质;④2()(2)x x e f x e x =+,令()()22xg x ex=+,则22()(2)2[(1)1]0xxxg x e x e x e x '=++⋅=++>,∴2()(2)x x e f x e x =+在R 上单调递增,故2()2f x x =+具有M 性质.60.9(,]2-∞【解析】∵[1,4]x ∈,∴4[4,5]x x+∈ ①当5a ≥时,44()2224f x a x a a x a a x x =--+=---=-≤, 所以()f x 的最大值245a -=,即92a =(舍去) ②当4a ≤时,44()5f x x a a x x x=+-+=+≤,此时命题成立.③当45a <<时,max ()max{|4|,|5|}f x a a a a =-+-+,则|4||5||4|5a a a a a a -+-+⎧⎨-+=⎩≥或|4||5||5|5a a a a a a -+<-+-+=, 解得92a =或92a <, 综上可得,实数a 的取值范围是9(,]2-∞.61.13(,)22【解析】由()f x 是偶函数可知,()0-∞,单调递增;()0+∞,单调递减 又()(12a f f ->,(f f =可得,12a -112a -<∴1322a <<. 62.25-【解析】由题意得511()()222f f a -=-=-+,91211()()225210f f ==-=,由59()()22f f -=可得11210a -+=,则35a =,则()()()325311155f a f f a ==-=-+=-+=-. 63.1【解析】由题意()ln(())==-=-f x x x f x x x ,=x ,解得1a =.64.0、3【解析】∵(3)1f -=,(1)0f =,即((3))0f f -=.又()f x 在(,0)-∞上单调递减,在(0,1)上单调递增,在上单调递减,在)+∞上单调递增,所以min ()min{(0),3f x f f ==.65.32-【解析】当1a >时1010a b a b -⎧+=-⎨+=⎩,无解;当01a <<时1001a b a b -⎧+=⎨+=-⎩,解得2b =-,12a =,则13222a b +=-=-.66.(1,2]【解析】因为6,2()3log ,2a x x f x x x -+⎧=⎨+>⎩≤,所以当2x ≤时,()4f x ≥;又函数()f x 的值域为[4,)+∞,所以13log 24a a >⎧⎨+⎩≥,解得12a <≤,所以实数a 的取值范围为(1,2].67.3【解析】∵函数()f x 的图像关于直线2x =对称,所以()(4)f x f x =-,()(4)f x f x -=+,又()()f x f x -=,所以()(4)f x f x =+,则(1)(41)(3)3f f f -=-==. 68.32-【解析】函数3()ln(1)xf x e ax =++为偶函数,故()()f x f x -=, 即33ln(1)ln(1)xxeax e ax -+-=++,化简得32361ln 2ln xax x x e ax e e e+==+,即32361x ax x xe e e e+=+,整理得32331(1)x ax x xe e e ++=+,所以230ax x +=, 即32a =-. 69.1【解析】2311()()4()21222f f =-=-⨯-+=.70.(-∞结合图形(图略),由()()2f f a ≤,可得()2f a -≥,可得a . 71.【答案】(Ⅱ)x(或填(Ⅰ)k (Ⅱ)2k x ,其中12,k k 为正常数均可) 【解析】过点(,())a f a ,(,())b f b -的直线的方程为()()()()f a f b y f a x a a b+-=--,令0y =得()()()()af b bf a c f a f b +=+.()()()()af b bf a f a f b +=+()()()()a b bf a af b =+,可取()0)f x x =>.(Ⅱ)令调和平均数2()()()()ab af b bf a a b f a f b +=++,得()()()()ab ba af b bf a a b f a f b ++=++,可 取()(0)f x x x =>.72.(]0,1【解析】2110011011x x xx x ⎧+>⇒><-⎪⎨⎪-≥⇒-≤≤⎩或,求交集之后得x 的取值范围(]0,1. 73.(),2-∞【解析】由分段函数1x ≥,1122log log 10x ≤=;1x <,10222x<<=.74.6-【解析】由22()22a x a x f x ax a x ⎧--<-⎪⎪=⎨⎪+-⎪⎩…可知()f x 的单调递增区间为[,)2a -+∞,故362aa -=⇔=-. 75.32【解析】331113()(2)()()1222222f f f f =-=-==+=.76.1【解析】因为10x =>,所以(1)lg10f ==,又因为230()3af x x t dt x a =+=+⎰,所以3(0)f a =,所以31a =,1a =.77.34-【解析】30,2212,2a a a a a a >-+=---=-, 30,1222,4a a a a a a <-+-=++=- .78.①③【解析】∵11(,)x y a =,22(,)x y b =,R λ∈,所以1212(1)((1),(1))x x y y λλλλλλ+-=+-+-a b对于①1111212(),((1))((1),(1))f m x y f a b f x x y y λλλλλλ=-+-=+-+-12121122(1)(1)()(1)()x x y y x y x y λλλλλλ=+----=-+--()(1)()f a f b λλ=+-,具有性质P 的映射,同理可验证③符合,②不符合,答案应填.79.①②④【解析】①0)2(2)2(2)22()2(111====⋅=---f f f f m m m m ,正确; ②取]2,2(1+∈m m x ,则]2,1(2∈m x ;mm x x f 22)2(-=,从而 x xf x f x f m m m -====+12)2(2)2(2)( ,其中, ,2,1,0=m ,从而),0[)(+∞∈x f ,正确;③122)12(1--=++n m n f ,假设存在n 使9)12(=+n f ,∵121[2,2)n n n ++∈,∴1(21)22121n n n n f ++=--=-,∴219,210n n +==, 这与n Z ∈矛盾,所以该命题错误;④根据前面的分析容易知道该选项正确;综合有正确的序号是①②④.80.-1【解析】设(),()x x g x x h x e ae -==+,∵()g x 为奇函数,由题意()h x 也为奇函数.所以(0)0h =,解得1a =-.专题二 函数概念与基本初等函数Ⅰ 第四讲 指数函数、对数函数、幂函数一、选择题1.(2018全国卷Ⅰ)已知函数0()ln 0⎧=⎨>⎩,≤,,,x e x f x x x ()()=++g x f x x a .若()g x 存在2个零点,则a 的取值范围是 A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞2.(2018全国卷Ⅲ)设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+3.(2018天津)已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 A .a b c >> B .b a c >>C .c b a >>D .c a b >>4.(2017新课标Ⅰ)设,,x y z 为正数,且235xyz==,则A .235x y z <<B .523z x y <<C .352y z x <<D .325y x z << 5.(2017天津)已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为A .a b c <<B .c b a <<C .b a c <<D .b c a <<6.(2017北京)已知函数1()3()3x xf x =-,则()f xA .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数 7.(2017北京)根据有关资料,围棋状态空间复杂度的上限M 约为3613,而可观测宇宙中普通物质的原子总数N 约为8010.则下列各数中与M N最接近的是(参考数据:lg 3≈0.48)A .3310B .5310C .7310D .9310 8.(2016全国I) 若1a b >>,01c <<,则A .c c a b <B .c c ab ba <C .log log b a a c b c <D .log log a b c c < 9.(2016全国III) 已知432a =,254b =,1325c =,则A .b a c <<B .a b c <<C .b c a <<D .c a b << 10.(2015新课标Ⅱ)设函数211log (2),1()2,1x x x f x x -+-<⎧=⎨⎩≥,则2(2)(log 12)f f -+=A .3B .6C .9D .1211.(2015北京)如图,函数()f x 的图像为折线ACB ,则不等式()()2log 1f x x +≥的解集是A .{}|10x x -<≤B .{}|11x x -≤≤C .{}|11x x -<≤D .{}|12x x -<≤12.(2015天津)已知定义在R 上的函数()21x mf x -=- (m 为实数)为偶函数,记0.5log 3a =,()2log 5b f =,()2c f m =则,,a b c 的大小关系为A .a b c <<B .a c b <<C .c a b <<D .c b a <<13.(2015四川)设,a b 都是不等于1的正数,则“333ab>>”是“log 3log 3a b <”的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 14.(2015山东)设函数31,1()2,1xx x f x x -<⎧=⎨⎩≥,则满足()(())2f a f f a =的a 的取值范围是 A .2[,1]3B .[0,1]C .2[,)3+∞ D .[1,)+∞15.(2014山东)已知函数log ()a y x c =+(,a c 为常数,其中0,1a a >≠)的图象如图,则下列结论成立的是A .0,1a c >>B .1,01a c ><<C .01,1a c <<>D .01,01a c <<<<16.(2014安徽)设3log 7a =, 1.12b =, 3.10.8c =,则A .c a b <<B .b a c <<C .a b c <<D .b c a <<17.(2014浙江)在同意直角坐标系中,函数x x g x x x f a a log )(),0()(=≥=的图像可能是18.(2014天津)函数212()log (4)f x x =-的单调递增区间是A .(0,)+¥B .(,0)-?C .(2,)+¥D .(),2-? 19.(2013新课标)设357log 6,log 10,log 14a b c ===,则A .c b a >>B .b c a >>C .a c b >>D .a b c >> 20.(2013陕西)设a , b , c 均为不等于1的正实数, 则下列等式中恒成立的是A .·log log log a c c b a b = B .·log lo log g a a a b a b = C .()log og g l lo a a a b c bc =D .()log g og o l l a a a b b c c +=+ 21.(2013浙江)已知y x ,为正实数,则A .y x yx lg lg lg lg 222+=+ B .lg()lg lg 222x y x y += C .y x yx lg lg lg lg 222+=∙ D .lg()lg lg 222xy x y =22.(2013天津)已知函数()f x 是定义在R 上的偶函数, 且在区间[0,)+∞单调递增.若实数a 满足212(log )(log )2(1)f a f f a ≤+, 则a 的取值范围是A .[1,2]B .10,2⎛⎤ ⎥⎝⎦C .1,22⎡⎤⎢⎥⎣⎦D .(0,2]23.(2012安徽)23(log 9)(log 4)⋅=A .14 B .12C . 2D . 4 24.(2012新课标)当102x <≤时,4log xa x <,则a 的取值范围是A.(0,2 B.(2C. D. 25.(2012天津)已知122a =,0.212b -⎛⎫= ⎪⎝⎭,52log 2c =,则,,a b c 的大小关系为A .c b a <<B .c a b <<C .b a c <<D .b c a << 26.(2011北京)如果,0log log 2121<<y x 那么A .1y x <<B .1x y <<C .1x y <<D .1y x <<27.(2011安徽)若点(,)a b 在lg y x = 图像上,a ≠1,则下列点也在此图像上的是A .1(,)b a B .(10,1)a b - C .10(,1)b a+ D .2(,2)a b 28.(2011辽宁)设函数122,1()1log ,1x x f x x x -⎧=⎨->⎩≤,则满足()2f x ≤的x 的取值范围是A .1[-,2]B .[0,2]C .[1,+∞)D .[0,+∞) 29.(2010山东)函数22x y x =-的图像大致是30.(2010天津)设5log 4a =,5(log 3)b =2,4log 5c =,则A .a <c <bB .b <c <aC .a <b <cD .b <a <c 31.(2010浙江)已知函数2()log (1),f x x =+若()1,f α=α=A .0B .1C .2D .332.(2010辽宁)设25abm ==,且112a b+=,则m = AB .10C .20D .10033.(2010陕西)下列四类函数中,具有性质“对任意的x >0,y >0,函数f (x )满足f (x +y )=f (x )f (y )”的是A .幂函数B .对数函数C .指数函数D .余弦函数34.(2010新课标)已知函数212log ,0()log (),0x x f x x x >⎧⎪=⎨-<⎪⎩,若a ,b ,c 均不相等,且()f a =()f b =()f c ,则abc 的取值范围是A .(1,10)B .(5,6)C .(10,12)D .(20,24)35.(2010天津)若函数212log ,0()log (),0x x f x x x >⎧⎪=⎨-<⎪⎩,若()()f a f a >-,则实数a 的取值范围是A .(1,0)(0,1)-B .(,1)(1,)-∞-+∞C .(1,0)(1,)-+∞D .(,1)(0,1)-∞- 二、填空题36.(2018江苏)函数()f x =的定义域为 . 37.(2018上海)已知11{2,1,,,1,2,3}22α∈---,若幂函数()α=f x x 为奇函数,且在(0,)+∞上递减,则α=_____.38.(2018上海)已知常数0a >,函数2()(2)xx f x ax =+的图像经过点6()5P p ,、1()5Q q -,,若236p qpq +=,则a =__________.39.(2016年浙江) 已知1a b >>,若5log log 2a b b a +=,b aa b =,则a = ,b = . 40.(2015江苏)不等式224x x-<的解集为_______.41.(2015浙江)若4log 3a =,则22aa-+=_______.42.(2014新课标)设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是__.43.(2014天津)函数2()lg f x x =的单调递减区间是________. 44.(2014重庆)函数2()log )f x x =的最小值为_________.45.(2013四川)____________.46.(2012北京)已知函数()lg f x x =,若()1f ab =,则22()()f a f b += .47.(2012山东)若函数()(0,1)x f x a a a =>≠在[1,2]-上的最大值为4,最小值为m ,且函数()(14g x m =-[0,)+∞上是增函数,则a =____.48.(2011天津)已知22log log 1a b +≥,则39ab+的最小值为__________. 49.(2011江苏)函数)12(log )(5+=x x f 的单调增区间是__________.专题二 函数概念与基本初等函数Ⅰ 第四讲 指数函数、对数函数、幂函数答案部分1.C 【解析】函数()()=++g x f x x a 存在 2个零点,即关于x 的方程()=--f x x a 有2个不同的实根,即函数()f x 的图象与直线=--y x a 有2个交点,作出直线=--y x a 与函数()f x 的图象,如图所示,由图可知,1-≤a ,解得1≥a ,故选C . 2.B 【解析】由0.2log 0.3a =得0.31log 0.2a =,由2log 0.3b =得0.31log 2b=, 所以0.30.30.311log 0.2log 2log 0.4a b +=+=,所以1101a b <+<,得01a bab+<<. 又0a >,0b <,所以0ab <,所以0ab a b <+<.故选B .3.D 【解析】因为2log e >1a =,ln 2(0,1)b =∈,12221log log 3log 13c e ==>>. 所以c a b >>,故选D .4.D 【解析】设235x y zk ===,因为,,x y z 为正数,所以1k >,则2log x k =,3log y k =,5log z k =, 所以22lg lg3lg913lg 23lg lg8x k y k =⨯=>,则23x y >,排除A 、B ;只需比较2x 与5z , 22lg lg5lg 2515lg 25lg lg32x k z k =⨯=<,则25x z <,选D . 5.C 【解析】由题意()g x 为偶函数,且在(0,)+∞上单调递增,所以22(log 5.1)(log 5.1)a g g =-= 又2222log 4log 5.1log 83=<<=,0.8122<<,所以0.822log 5.13<<,故b a c <<,选C . 6.A 【解析】11()3()(3())()33xx x x f x f x ---=-=--=-,得()f x 为奇函数, ()(33)3ln33ln30x x x x f x --''=-=+>,所以()f x 在R 上是增函数.选A .7.D 【解析】设36180310M x N ==,两边取对数得,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-≈,所以93.2810x =,即M N最接近9310,选D .8.C 【解析】选项A ,考虑幂函数c y x =,因为0c >,所以cy x =为增函数,又1a b >>,所以c c a b >,A 错.对于选项B ,c cab ba <()cb b aa ⇔<,又()xb y a=是减函数,所以B 错.对于选项D ,由对数函数的性质可知D 错,故选C .9.A 【解析】因为4133216a ==,2155416b ==,1325c =,且幂函数13y x =在R 上单调递增,指数函数16x y =在R 上单调递增,所以b a c <<,故选A . 10.C 【解析】由于2(2)1log 43f -=+=,22log 121log 62(log 12)226f -===,所以2(2)(log 12)f f -+=9.11.C 【解析】如图,函数2log (1)y x =+的图象可知,2()log (1)f x x +≥的解集是{|11}x x -<≤.。
二轮常见的基本初等函数.doc
数学科学案序号40 高三年级班教师学生课题基本初等函数一、教学目的:掌握基本初等函数图像与性质及综合运用二教学过程典型例题例1、(广东省四校联合体2011-2012学年度首次联合考试)当。
>1时,函数y-logA和尸(1 一小的图(象只可能是()例2、如图,开始时,桶1中有。
L水,,分钟后剩余的水符合指数衰减曲i&y=ae~nl,那么桶2中水就是乃由一。
厂'”, 假设过5分钟时,桶1和桶2的水相等,则再过分钟桶1中的水只有;.例3.下列命题中正确的是()A.当。
=°时,函数y 的图象是一条直线B.旱函数的图象都经过(0, 0), (1, 1)两点a aC.幕函数的)‘ 二1图象不可能在第四象限内D.若幕函数v = x为奇函数,则在定义域内是增函数练习1、己知命题p:函数y = logo.5(/+2x +。
)的值域为R,命题q:函数),=一(5-2。
尸是减函数。
若P或q 为真命题,P且q为假命题,则实数3的取值范围是A. aWlB.水2C. 1〈水2D. aWl 或]+ 2工+ 4X a2、设f(x)=lg -------- ------- ,如果当x《(-8,l]时f(x)有意义,则实数a的取值范围D. (3,+8)3、设不等式2x-l>m (x 2-l )对满足|m|W2的一切实数m 的取值都成立。
则x 的取值范围4、己知函数/⑴满足:=/(1) = 2,则/2(1) + /(2)( /2(2) + /(4)( /2(3) + /(6) , /2(4) + /(8)/⑴ ./■⑶ /(5)/(7)----------------5、方程1 gx + x = 3的解所在的区间为 A. (0, 1) B. (1,2) C. (2,3)巩固练习:1、已知函数)' = /(x )是R 上的偶函数,且在(-8, °】上是减函数,若则实数a 的取值范围是()方程fix, y )二0的曲线如图所示,那么方程f (2 —x, y )二0的曲线是222A. aW2B. aW ・2或a 》2C. a>・2D.・2WaW29、函数y = fa )"e R )图象恒过定点(°」),那么q + Z?的值为(A. 1B. -11C. — 21D. 22. 设 f(x)=2x+3, g(x+2)=f(x-l),贝lj g(x)=3. 定义域为商-3o-2,4]上的函数f (x)是奇函数,则a= I4. 要使代数式(W -1)3有意义,则x 的取值范围是( )A. kEB.田<1c.风#1D. 一切实数5. 设函数>°,。
专题2基本初等函数
专题8:直线与圆、圆与圆一、前测训练1.(1)一个圆经过椭圆x216+y24=1的三个顶点,且圆心在x轴上,则该圆的标准方程为.(2)已知圆C的圆心位于第二象限且在直线y=2x+1上,若圆C与两个坐标轴都相切,则圆C的标准方程是______.2.(1)过点P(1,0)作圆C:(x-4)2+(y-2)2=9的两条切线,切点分别为A、B,则切线方程为;切线长P A为;直线AB的方程为.(2)经过点A(4,-1),且与圆:x2+y2+2x-6y+5=0相切于点B(1,2)的圆的方程为.(3)圆C1:x2+y2=16与C2:(x-4)2+(y+3)2=r2(r>0)在交点处的切线互相垂直,则r=.3.(1)已知过定点P(1,2)的直线l交圆O:x2+y2=9于A,B两点,若AB=42,则直线l的方程为;当P为线段AB的中点时,则直线l的方程为.(2)已知圆的方程为x2+y2-6x-8y=0.设该圆过点(-1,4)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为.(3)圆C:x2+(y-2)2=R2(R>0)上恰好存在2个点,它到直线y=3x-2上的距离为1,则R的取值范围为.4.(1)已知圆C1:x2+y2-2mx+4y+m2-5=0和圆C2:x2+y2+2x-2my+m2-3=0,若两圆相交,实数m的取值范围为.(2)已知圆O1:x2+y2-4x-2y-4=0,圆O2:x2+y2-6x+2y+6=0,则两圆的公共弦长度为.5.已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B ,则线段AB 的中点M 的轨迹C 的方程为 .二、方法联想1.相交弦问题2.相切问题3.圆上点到直线距离问题4.外接圆问题5.两圆位置关系问题6.两圆相交问题7.两圆相切问题三、例题分析例1:如图,已知圆心坐标为M (3,1)的圆M 与x 轴及直线y =3x 均相切,切点分别为A ,B ,另一圆N 与圆M 、x 轴及直线y =3x 均相切,切点分别为C ,D .(1)求圆M 和圆N 的方程;(2)过点B 作直线MN 的平行线l ,求直线l 被圆N 截得的弦的长度.例2:如图,已知椭圆C :x 24+y 2=1的长轴为AB ,O 为坐标原点,过B 的直线l 与x 轴垂直.P 是椭圆上异于A ,B 的任意一点,PH ⊥x 轴,H 为垂足,延长HP 到点Q 使得HP =PQ ,连结AQ 延长交直线l 于点M ,N 为MB 的中点. (1)求证:Q 点在以AB 为直径的圆上; (2)试判断直线QN 与以AB 为直径的圆位置关系.例3:已知圆M:x2+(y-2)2=1,设点B,C是直线l:x-2y=0上的两点,它们的横坐标分别是t,t+4,点P在线段BC上,过P作圆M的切线P A,切点为A.(1)若t=0,MP=5,求直线P A的方程;(2)经过A,P,M三点的圆的圆心是D,求线段DO长的最小值L(t).例4:如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4,设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;=2MO,求圆心C的横坐标a的取值范围.(2)若圆C上存在点M,使MA四、反馈练习A1.在平面直角坐标系xOy 中,已知圆C 的圆心在第一象限,圆C 与x 轴交于A (1,0),B (3,0)两点,且与直线x -y +1=0相切,则圆C 的半径为________.2.直线l 1:y =kx +3与圆C :(x -2)2+(y -3)2=4相交于M ,N 两点,若MN ≥23,则k 的的取值范围是________.3.在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx -y -2m -1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为________.4.在平面直角坐标系xOy 中,已知圆C :x 2+(y -3)2=2,点A 是x 轴上的一个动点,AP ,AQ 分别切圆C 于P ,Q 两点,则线段PQ 的长的取值范围是________.5.已知圆M :(x -1)2+(y -1)2=4,直线l :x +y -6=0,A 为直线l 上一点.若圆M 上存在两点B ,C ,使得∠BAC =60°,则点A 横坐标的取值范围是__________.6.平面直角坐标系xOy 中,设二次函数f (x )=x 2+2x +b 的图象与两坐标轴有三个交点,经过这三个交点的圆记为C ,则C 的方程是________.7.已知圆O :x 2+y 2=4,点M (4,0),过原点的直线(不与 x 轴重合)与圆O 交于A ,B 两点,则△ABM 的外接圆的面积的最小值为________.8.在平面直角坐标系xOy 中,圆C 的方程为(x -1)2+(y -1)2=9,直线l :y =kx +3与圆C 相交于A ,B 两点,M 为弦AB 上一动点,以M 为圆心,2为半径的圆与圆C 总有公共点,则实数k 的取值范围为________.9.在平面直角坐标系xOy 中,已知圆O :x 2+y 2=1,O 1:(x -4)2+y 2=4,动点P 在直线x +3y -b =0上,过P 分别作圆O ,O 1的切线,切点分别为A ,B ,若满足PB =2P A 的点P 有且只有两个,则实数b 的取值范围是________.10.等腰三角形ABC 中,AB =AC ,腰AC 上的中线BD =2,则△ABC 面积的最大值为________.11.点P 是圆C :x 2+y 2=1上动点,已知A (-1,2),B (2,0),则P A +12PB 的最小值为________.12.在平面直角坐标系xOy 中,圆C 1:(x +1)2+(y -6)2=25,圆C 2:(x -17)2+(y -30)2=r 2.若圆C 2上存在一点P ,使得过点P 可作一条射线与圆C 1依次交于点A ,B ,满足P A =2AB ,则半径r 的取值范围是________.13.设集合A ={(x ,y )|m2≤(x -2)2+y 2≤m 2,x ,y ∈R},B ={(x ,y )|2m ≤x +y ≤2m +1,x ,y ∈R},若A ∩B ≠ ,则实数m 的取值范围是___________.14.已知以点A (-1,2)为圆心的圆与直线l 1:x +2y +7=0相切.过点B (-2,0)的动直线l 与圆A相交于M ,N 两点,Q 是MN 的中点,直线l 与l 1相交于点P . (1)求圆A 的方程;(2)当MN =219时,求直线l 的方程; (3)BQ →·BP →是否为定值?如果是,求出其定值;如果不是,请说明理由.15.已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B . (1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线l :y =k (x -4)与曲线C 只有一个交点:若存在,求出k 的取值范围;若不存在,说明理由.16.在直角坐标系xOy 中,曲线C 1的点均在C 2:(x -5)2+y 2=9外,且对C 1上任意一点M ,M 到直线x =-2的距离等于该点与圆C 2上点的距离的最小值. (1)求曲线C 1的方程;(2)设P (x 0,y 0)(y 0≠±3)为圆C 2外一点,过P 作圆C 2的两条切线,分别与曲线C 1相交于点A ,B和C ,D .证明:当P 在直线x =-4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值.五、反馈练习B1.直线1l 和2l 是圆222x y +=的两条切线,若1l 与2l 的交点为(1,3),则1l 与2l 的夹角的正切值等于 .2.过点)1,3(做圆4)2()2(22=-+-y x 的弦,其中最短的弦长为 ..3.已知过点)1,(a 的任意直线和圆022=--+y x y x 至少有一个交点,则实数a 的取值范围是 ..4.已知圆4)1(:22=+-y x C ,P 为圆上一点,若存在一个定圆M ,过点P 做圆M 的两条切线PB PA ,,切点分别为B A ,,当点P 在圆上运动时,APB ∠恒为︒60,则圆M 方程为 .5.已知直线01:=-+ay x l 是圆0124:22=+--+y x y x C 的对称轴。
高一数学 基本初等函数(对、指、幂函数)高考考纲及典型例题高考真题解析
.
2
a 3 3a
【法二】 8 x 8 x 2 x
2
3 2
x 3
2 2 2 x 2 x 2 x 2 x 2 x 2 x
1
2 3
3
37 48
5 9 37 100 3 100 . 3 16 48
4
(4)原式 0.4 1 1 2 2 3 0.1
5 1 1 1 143 . 1 2 16 8 10 80
4.函数 f x a 2 7a 7 a x 是指数函数,求实数 a 的值. 【解析】∵函数 f x a 2 7a 7 a x 是指数函数,
1
0 a2 a1 1 a4 a3 . 1 又由题知: 0 10 1 3 10 ,∴ A 项正确. 3
1 x
a1 a2
O
x 1 x
b 7.已知二次函数 y ax 2 bx 与指数函数 y 的图象只能是下列图形中的 a y
1 1
1 2
1 1 , y x 2 的图像,了解它们的变化情况. x
二、重点知识总结
1.指数与指数幂运算 (1)①
a
n n n
n
a. a , 当n是奇数时 . a , 当n是偶数时
② a
(2)分数指数幂 ①a ②a
m n
n a m ( a 0 , m, n N * ,且 n 1 )
x y
2
是非负数,故④对.
7 (3) 2 9
基本初等函数
2.若函数 是奇函数,则 =
3.已知 ,则 的值域为,单调增区间为
4.(北京卷)已知 是 上的减函数,那么 的取值范围是( )
A. B. C. D.
5.已知 [0,1]上是x的减函数,则 的取值范围是( )
A.(0,1)B.(1,2)C.(0,2)D.「2,
2.(湖北,理7)函数 在[0,1]上的最大值与最小值的和为a,则 的值为( )
A. B. C.2D.4
3.已知 ,其中 ,则下列不等式成立的是()
A. B.
C. D.
4.若 ,则 的取值范围是( )
A.(0, )∪(1,+∞) B.( ,+∞)
C.(0, )∪( ,+∞) D.( ,1)
5.(湖北卷)函数 的图象大致是()
5.方程lgx+lg(x+3)=1的解x=_______
6.函数 =lg( )是(奇、偶)函数
7.函数 的值域为
8.已知 ,t∈[ ,8],对于f(t)值域内的所有实数m,不等式 恒成立,求x的取值范围
(1)试证明对于任意a,f(x)为增函数;
(2)试确定a值,使f(x)为奇函数.
对数函数
【知识要点】
一、对数的运算性质
二、对数函数的图象和性质
【典型例题】
一、对数式的变形ቤተ መጻሕፍቲ ባይዱ
1.若 , ,试用 , 表示
2.若 ,试用 和 表示
3.设 (0,+∞),且 ,求证:
二、比较大小
1.已知 ,则( )
A.1<n<mB.1<m<nC.m<n<1D.n<m<1
8.已知 ,则函数 的值域为
9.已知2 ≤( )x-2,求函数y=2x-2-x的值域.
基本初等函数、函数与方程以及经典例题100例
基本初等函数、函数与方程以及经典例题100例[考情分析] 1.基本初等函数的图象、性质是高考考查的重点,利用函数性质比较大小是常见题型.2.函数零点的个数判断及参数范围是高考的热点,常以压轴题形式出现.基本初等函数(Ⅰ)本节复习的基本初等函数包括:一次函数、二次函数、指数函数、对数函数和幂函数,三角函数在三角部分复习.函数的图象上直观地反映着函数的性质,学习函数的“捷径”是熟知函数的图象.熟知函数图象包括三个方面:作图,读图,用图.掌握初等函数一般包括以下一些内容:首先是函数的定义,之后是函数的图象和性质.函数的性质一般包括定义域,值域,图象特征,单调性,奇偶性,周期性,零点、最值以及值的变化特点等,研究和记忆函数性质的时候应全面考虑.函数的定义(通常情况下是解析式)决定着函数的性质,我们可以通过解析式研究函数的性质,也可以通过解析式画出函数的图象,进而直观的发现函数的性质. 【知识要点】1.一次函数:y =kx +b (k ≠0)(1)定义域为R ,值域为R ; (2)图象如图所示,为一条直线;(3)k >0时,函数为增函数,k <0时,函数为减函数;(4)当且仅当b =0时一次函数是奇函数.一次函数不可能是偶函数. (5)函数y =kx +b 的零点为⋅-kb2.二次函数:y =ax 2+bx +c (a ≠0)通过配方,函数的解析式可以变形为⋅-++=a b ac ab x a y 44)2(22(1)定义域为R :当a >0时,值域为),44[2+∞-ab ac ;当a <0时,值域为]44,(2ab ac --∞;(2)图象为抛物线,抛物线的对称轴为abx 2-=,顶点坐标为)44,2(2a b ac a b --.当a >0时,抛物线开口向上;当a <0时,抛物线开口向下.(3)当a >0时,]2,(a b --∞是减区间,),2[+∞-a b是增区间; 当a <0时,]2,(a b --∞是增区间,),2[+∞-ab是减区间.(4)当且仅当b =0时,二次函数是偶函数;二次函数不可能是奇函数.(5)当判别式∆=b 2-4ac >0时,函数有两个变号零点aacb b 242-±-;当判别式∆=b 2-4ac =0时,函数有一个不变号零点ab 2-; 当判别式∆=b 2-4ac <0时,函数没有零点. 3.指数函数y =a x (a >0且a ≠1) (1)定义域为R ;值域为(0,+∞).(2)a >1时,指数函数为增函数;0<a <1时,指数函数为减函数; (3)函数图象如图所示.不具有奇偶性、周期性,也没有零点.4.对数函数y=log a x(a>0且a≠1),对数函数y=log a x与指数函数y=a x互为反函数.(1)定义域为(0,+∞);值域为R.(2)a>1时,对数函数为增函数;0<a<1时,对数函数为减函数;(3)函数图象如图所示.不具有奇偶性、周期性,(4)函数的零点为1.5.幂函数y=xα(α∈R)幂函数随着α的取值不同,它们的定义域、性质和图象也不尽相同,但它们有一些共同的性质:(1)所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1,1);(2)如果α>0,则幂函数的图象通过原点,并且在区间[0,+∞)上是增函数;(3)如果α<0,则幂函数在区间(0,+∞)上是减函数,在第一象限内,当x从右边趋向于原点时,图象在y轴右方无限地接近y轴,当x趋于+∞时,图象在x轴上方无限地接近x轴.要注意:因为所有的幂函数在(0,+∞)都有定义,并且当x∈(0,+∞)时,xα>0,所以所有的幂函数y=xα(α∈R)在第一象限都有图象.根据幂函数的共同性质,可以比较容易的画出一个幂函数在第一象限的图象,再根据幂函数的定义域和奇偶性,我们可以得到这个幂函数在其他象限的图象,这样就能够得到这个幂函数的大致图象. 6.指数与对数(1)如果存在实数x ,使得x n =a (a ∈R ,n >1,n ∈N +),则x 叫做a 的n 次方根. 负数没有偶次方根.),1()(+∈>=N n n a a n n ;⎩⎨⎧=为偶数时当为奇数时当n a n a a n n |,|,)( (2)分数指数幂,)0(1>=a a a n n;,0()(>==a a a a n m m n nm n ,m ∈N *,且nm为既约分数). *N ,,0(1∈>=-m n a aanm nm ,且nm为既约分数). (3)幂的运算性质a m a n =a m +n ,(a m )n =a mn ,(ab )n =a n b n ,a 0=1(a ≠0).(4)一般地,对于指数式a b =N ,我们把“b 叫做以a 为底N 的对数”记为log a N , 即b =log a N (a >0,且a ≠1). (5)对数恒等式:Na alog =N .(6)对数的性质:零和负数没有对数(对数的真数必须大于零!); 底的对数是1,1的对数是0. (7)对数的运算法则及换底公式:N M NMN M MN a a a a a a log log log ;log log )(log -=+=; M M a a log log αα=; bNN a a b log log log =.(其中a >0且a ≠1,b >0且b ≠1,M >0,N >0).【复习要求】1.掌握基本初等函数的概念,图象和性质,能运用这些知识解决有关的问题;其中幂函数主要掌握y =x ,y =x 2,y =x 3,21,1x y xy ==这五个具体的幂函数的图象与性质.2.准确、熟练的掌握指数、对数运算;3.整体把握函数的图象和性质,解决与函数有关的综合问题.函数的图象 在函数图象上,定义域、值域、对应关系、单调性、奇偶性和周期性一览无遗.因此,快速准确地作出函数图象成为学习函数的一项基本功,而读图也从“形”的角度成为解决函数问题及其他相关问题的一种重要方法. 【知识要点】作函数图象最基本的方法是列表描点作图法. 常用的函数图象变换有: 1.平移变换y =f (x +a ):将y =f (x )的图象向左(a >0)或向右(a <0)平移|a |个单位可得. y =f (x )+a :将y =f (x )的图象向上(a >0)或向下(a <0)平移|a |个单位可得. 2.对称变换y =-f (x ):作y =f (x )关于x 轴的对称图形可得. y =f (-x ):作y =f (x )关于y 轴的对称图形可得. 3.翻折变换y =|f (x )|:将y =f (x )的图象在x 轴下方的部分沿x 轴翻折到x 轴的上方,其他部分不变即得.y =f (|x |):此偶函数的图象关于y 轴对称,且当x ≥0时图象与y =f (x )的图象重合. 【复习要求】1.能够在对函数性质作一定的讨论之后,用描点法作出函数的图象.2.能够对已知函数y =f (x )的图象,经过适当的图象变换得到预期函数的图象. 3.通过读图能够分析出图形语言所表达的相关信息(包括函数性质及实际意义),运用数形结合的思想解决一些与函数有关的问题. 考点一 基本初等函数的图象与性质 核心提炼1.指数函数y =a x(a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)互为反函数,其图象关于y =x 对称,它们的图象和性质分0<a <1,a >1两种情况,着重关注两函数图象的异同. 2.幂函数y =x α的图象和性质,主要掌握α=1,2,3,12,-1五种情况.【例题分析】=()1.A.2B.C.D.﹣2【考点】有理数指数幂及根式.【专题】转化思想;定义法;函数的性质及应用;数学运算.【答案】B【分析】利用根式与有理指数幂的互化以及有理指数幂的运算性质求解即可.【解答】解:原式=.故选:B.【点评】本题考查了有理数指数幂及根式的运算,主要考查了有理指数幂的互化以及有理指数幂的运算性质,属于基础题.2.函数y=2x(x≤0)的值域是()A.(0,1)B.(﹣∞,1)C.(0,1]D.[0,1)【考点】指数函数的定义、解析式、定义域和值域.【专题】函数思想;转化法;函数的性质及应用.【答案】C【分析】本题可利用指数函数的值域.【解答】解:∵y=2x(x≤0)为增函数,且2x>0,∴20=1,∴0<y≤1.∴函数的值域为(0,1].故选:C.【点评】本题考查的是函数值域的求法,关键是要熟悉指数函数的单调性,本题计算量极小,属于容易题.3.如果函数f(x)=3x+b的图象经过第一、二、三象限,不经过第四象限,则()A.b<﹣1B.﹣1<b<0C.0<b<1D.b>1【考点】指数函数的图象与性质.【专题】计算题;函数思想;转化法;函数的性质及应用;数学运算.【答案】B【分析】利用函数图象的平移变换,得到关于b的不等式,再求出b的范围.【解答】解:∵函数f(x)=3x+b的图象经过第一、二、三象限,不经过第四象限,∴函数f(x)=3x+b是由函数f(x)=3x的图象向下平移|b|个单位长度得到,且|b|<1,又∵图象向下平移,∴b<0,∴﹣1<b<0,故选:B.【点评】本题主要考查了函数图象的平移变换,是基础题.函数的最值最大值与最小值是研究变量问题时常需要考虑的问题,也是高中数学中最重要的问题之一.函数的最大值、最小值问题常与实际问题联系在一起.函数的最值与值域在概念上是完全不同的,但对于一些简单函数,其求法是相通的.【知识要点】本节主要讨论两类常见的函数最值的解决方法及其应用.1.基本初等函数在特定区间上的最值(或值域)问题.解决这类问题的方法是:作出函数图象,观察单调性,求出最值(或值域).2.一些简单的复合函数的最值问题.解决这类问题的方法通常有:(1)通过作出函数图象变成第1类问题;(2)通过换元法转化成第1类问题;(3)利用平均值定理求最值;(4)通过对函数单调性进行讨论进而求出最值.其中讨论单调性的方法可以用单调性定义或导数的知识(导数的方法在后面相应章节复习);(5)转化成几何问题来求解,如线性规划问题等.【复习要求】从整体上把握求函数最值的方法,明确求最值的一般思路.函数与方程【知识要点】1.如果函数y=f(x)在实数a处的值等于零,即f(a)=0,则a叫做这个函数的零点.函数零点的几何意义:如果a是函数y=f(x)的零点,则点(a,0)一定在这个函数的函数图象上,即这个函数与x轴的交点为(a,0).2.零点的判定如果函数y =f (x )在区间[a ,b ]上的图象是不间断的,而且f (a )f (b ),则这个函数在区间[a ,b ]上至少有一个零点.这也是二分法的依据.注意:上述判定零点的方法只是判断零点存在的充分条件.这种判定零点方法主要适用于在无法对函数进行作图而且也不易对函数所对应的方程求根的情况下.如果可以画出函数的图象(这时判断函数零点的方法将是非常直观的),如果函数所对应的方程可以求根,那么就可以用“作图”和“求根”的方法判断零点. 3.用二分法求函数y =f (x ),x ∈D 零点的一般步骤为:第一步、确定初始区间,即在D 内取一个闭区间[a ,b ],使得f (a )f (b )<0; 第二步、求中点及其对应的函数值,即求)(21b a x +=<0以及f (x )的值,如果f (x )=0,则计算终止,否则进一步确定零点所在的区间;第三步、计算精确度,即计算区间的两个端点按给定的精确度取近似值时是否相等,若相等,则计算终止,否则重复第二步. 【复习要求】1、结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.2、能够用二分法求相应方程的近似解. 考点二 函数的零点 核心提炼判断函数零点个数的方法: (1)利用零点存在性定理判断法. (2)代数法:求方程f (x )=0的实数根.(3)几何法:对于不易求根的方程,将它与函数y =f (x )的图象联系起来,利用函数的性质找出零点或利用两个函数图象的交点求解.在利用函数性质时,可用求导的方法判断函数的单调性.规律方法 利用函数零点的情况求参数值(或取值范围)的三种方法【例题分析】1.函数f(x)=﹣lnx的零点所在的大致区间是()A.(1,2)B.(2,3)C.(3,4)D.(e,+∞)【考点】函数的零点.【专题】函数的性质及应用.【答案】B【分析】由函数的解析式可得f(2)•f(3)<0,再利用函数的零点的判定定理可得函数的零点所在的大致区间.【解答】解:∵函数满足f(2)=>0,f(3)=1﹣ln3<0,∴f (2)•f(3)<0,根据函数的零点的判定定理可得函数的零点所在的大致区间是(2,3),故选:B.【点评】本题主要考查函数的零点的判定定理的应用,属于基础题.2.已知函数f(x)=﹣log2x,在下列区间中,函数f(x)有零点的是()A.(0,1)B.(1,2)C.(2,4)D.(4,+∞)【考点】函数的零点.【专题】计算题;函数思想;试验法;函数的性质及应用.【答案】B【分析】首先判断函数f(x)=﹣log2x在(0,+∞)上是减函数,且连续;从而由零点的判定定理判断即可.【解答】解:易知函数f(x)=﹣log2x在(0,+∞)上是减函数,且连续;f(1)=1﹣0=1>0,f(2)=﹣1=﹣<0;故函数f(x)有零点的区间是(1,2);故选:B.【点评】本题考查了函数的性质的判断与应用及零点的判定定理的应用,注意掌握基本初等函数的性质.3.函数24,0()(),0x x f x g x x ⎧->=⎨<⎩是奇函数,则函数()f x 的零点是 2± .【答案】2±.【考点】函数的零点;函数奇偶性的性质与判断【专题】整体思想;综合法;函数的性质及应用;数学运算 【分析】由已知函数解析式及奇函数的对称性即可求解. 【解答】解:当0x >时,()240x f x =-=, 解得,2x =,根据奇函数的对称性可知,2x =-也是函数()f x 的零点, 故答案为:2±.【点评】本题主要考查了函数零点的求解,属于基础题.考点3 函数零点的判定定理 【例题分析】1.在下列区间中,存在函数3()2f x lnx x =-+的零点的是( ) A .1(0,)2B .1(,1)2C .(1,2)D .(2,3)【答案】AD【考点】函数零点的判定定理【专题】计算题;方程思想;转化思想;综合法;函数的性质及应用;数学运算【分析】根据题意,求出函数的导数,分析()f x 的单调区间,由函数零点判断定理依次分析选项,综合即可得答案.【解答】解:根据题意,3()2f x lnx x =-+,其定义域为(0,)+∞,其导数11()1xf x x x-'=-=, 在区间(0,1)上,()0f x '>,()f x 为增函数, 在区间(1,)+∞上,()0f x '<,()f x 为减函数, 依次分析选项:对于A ,()f x 在1(0,)2上递增,2222111311()022f ln e e e e=-+=--<,1113()12022222ef ln ln ln =-+=-=>,在()f x 在1(0,)2上存在零点,A 正确,对于B ,()f x 在1(2,1)上递增,1()1202f ln =->,f (1)3111022ln =-+=>,在()f x 在1(2,1)上不存在零点,B 错误,对于C ,()f x 在(1,2)上递减,f (1)102=>,f (2)31222022ln ln =-+=->, 在()f x 在(1,2)上不存在零点,C 错误,对于D ,()f x 在(2,3)上递减,f (2)1202ln =->,f (3)33333022ln ln =-+=-<, 在()f x 在(2,3)上存在零点,D 正确, 故选:AD .【点评】本题考查函数的零点判断定理,解题的关键是确定区间端点对应的函数值异号,属于基础题.2.函数2()2log f x x x =-+的零点所在的一个区间是( ) A .(4,5) B .(3,4)C .(2,3)D .(1,2)【答案】D【考点】函数零点的判定定理【专题】转化思想;定义法;函数的性质及应用;逻辑推理【分析】由函数解析式,判断f (1)f (2)0<,由零点的存在性定理进行分析求解即可. 【解答】解:因为2()2log f x x x =-+, 所以f (1)212log 110=-+=-<,f (2)222log 210=-+=>, 所以f (1)f (2)0<,由零点的存在性定理可得,函数2()2log f x x x =-+的零点所在的一个区间是(1,2). 故选:D .【点评】本题考查了函数零点的问题,主要考查了函数零点的存在性定理的应用,属于基础题.3.利用二分法求方程20lnx x +-=的近似解,已求得()2f x lnx x =+-的部分函数值的数据如表:则当精确度为0.1时,该方程的近似解可取为( ) A .1.55 B .1.62 C .1.71 D .1.76【答案】A【考点】函数零点的判定定理【专题】函数思想;定义法;函数的性质及应用;逻辑推理【分析】利用表格中的数据,在结合零点的存在性定理进行分析求解即可. 【解答】解:根据表中的数据可得,(1.5)0.0945f =-,(1.5625)0.0088f =, 故函数()f x 的零点在区间(1.5,1.5625)之间, 只有1.55符合要求. 故选:A .【点评】本题考查了函数零点的求解,涉及了零点存在性定理的应用,解题的关键是熟练掌握函数零点的存在性定理,属于基础题. 函数零点与方程根的关系 【例题分析】1.已知函数2,12()1,21log x x f x x x <⎧⎪=⎨>⎪-⎩,若方程()0f x a -=至少有两个实数根,则实数a 的取值范围为( ) A .(0,1) B .(0,1]C .[0,2)D .[0,2]【答案】A【考点】函数的零点与方程根的关系【专题】计算题;数形结合;转化思想;演绎法;函数的性质及应用;逻辑推理;数学运算 【分析】首先将问题转化为两个函数交点个数的问题,然后数形结合即可确定实数a 的取值范围.【解答】解:原问题等价于函数y a =与函数()f x 至少有两个交点, 绘制函数图象如图所示,观察可得,实数a的取值范围是(0,1).故选:A.【点评】本题主要考查由函数的零点个数求参数的方法,等价转化的数学思想,数形结合的数学思想等知识,属于基础题.2.若方程|2x﹣2|=b有一个零点,则实数b的取值范围是.【考点】函数的零点;函数的零点与方程根的关系.【专题】数形结合;数形结合法;函数的性质及应用;逻辑推理.【答案】(2,+∞)∪{0}..【分析】根据函数与方程之间的关系,作出两个函数的图象,利用数形结合进行求解即可.【解答】解:作出函数y=|2x﹣2|的图象如图:要使方程|2x﹣2|=b有一个零点,则函数y=|2x﹣2|与y=b有一个交点,则b>2或b=0,故实数b的取值范围是b>2或b=0,即(2,+∞)∪{0}.故答案为:(2,+∞)∪{0}.【点评】本题主要考查函数与方程的应用,作出函数图象,利用数形结合是解决本题的关键,是基础题.3.已知关于x 的方程|310|x a -=有两个不同的实根1x ,2x ,且212x x =,则实数a 的值是() A .5 B .6 C .7 D .15【答案】B【考点】函数的零点与方程根的关系【专题】方程思想;转化法;高考数学专题;函数的性质及应用;数学运算【分析】根据条件可得3log (10)(010)x a a =±<<,然后由212x x =,得到33log (10)2log (10)a a +=-或33log (10)2log (10)a a -=+,再求出a 的值.【解答】解:关于x 的方程|310|x a -=有两个不同的实根1x ,2x ,∴由|310|xa -=,可知010a <<,3log (10)(010)x a a ∴=±<<,关于x 的方程|310|x a -=有两个不同的实根1x ,2x ,且212x x =, 33log (10)2log (10)a a ∴+=-或33log (10)2log (10)a a -=+210(10)a a ∴+=-或210(10)a a -=+,6a ∴=±或15a =±,又010a <<, 6a ∴=.故选:B .【点评】本题考查了函数的零点与方程根的关系,考查了方程思想和转化思想,属基础题。
高考数学中的基本初等函数题型总结
高考数学中的基本初等函数题型总结作为全国高中生的普及性质考试,高考中必定会考到数学这个科目,而其中初等函数部分则是数学中的基础知识。
初等函数常常出现在多项式函数、指数函数、对数函数、三角函数、反三角函数等高中知识点当中。
因此,对于考生来说,掌握初等函数的知识点,对高考数学考试及日后的数学学习都非常重要。
本文就高考数学中的基本初等函数题型进行总结。
1. 最值问题求函数的最值是很常见的一种初等函数题型。
以一些典型的例子为参考,可更好地掌握这类题型。
例1:已知$f(x)=x^2-2x+2$,求$f(x)$的最小值。
解:首先,把$f(x)$变形为完全平方的形式。
即$$f(x)=(x-1)^2+1$$显然,当$x=1$时,$(x-1)^2$取最小值$0$。
故$f(x)$在$x=1$时取得最小值$1$。
例2:已知$f(x)=\dfrac{1}{2}x^2-3x+5$,求$f(x)$的最大值。
解:同样把$f(x)$变形为完全平方的形式。
即$$f(x)=\dfrac{1}{2}(x-3)^2+\dfrac{1}{2}$$显然,当$x=3$时,$(x-3)^2$取最小值$0$。
故$f(x)$在$x=3$时取得最大值$\dfrac{1}{2}$。
2. 解方程解初等函数的方程是另一种常见的题型。
以下为几个典型的例子,例3:已知$y=2^x-x$,求$y=0$时的$x$的值。
解:根据方程可得$$2^x-x=0$$$$x=2^x$$把函数$y=2^x-x$作图,可以看出在$x=1$时交于$y=0$。
因此,方程的解为$x=1$。
例4:已知$y=\dfrac{1}{2}\log_2(x-1)+2$,求$y=1$时$x$的值。
解:根据方程可得$$\dfrac{1}{2}\log_2(x-1)+2=1$$$$\log_2(x-1)=2$$$$x-1=2^2=4$$因此,方程的解为$x=5$。
3. 函数图像解题函数图像是初等函数题目中重要的一部分。
基本初等函数87744
基本初等函数指数函数(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0且不等于1。
对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑,同时a等于0函数无意义一般也不考虑。
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下凸的。
(4) a>1时,则指数函数单调递增;若0<a<1,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过指数函数程中(不等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。
其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于X轴,并且永不相交。
(7)函数总是通过(0,1)这点,(若y=a^x+b,则函数定过点(0,1+b)(8)指数函数无界。
(9)指数函数既不是奇函数也不是偶函数。
(10)当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。
(11)当指数函数中的自变量与因变量一一映射时,指数函数具有反函数。
函数图像(1)由指数函数y=a^x与直线x=1相交于点(1,a)可知:在y轴右侧,图像从下到上相应的底数由小变大。
(2)由指数函数y=a^x与直线x=-1相交于点(-1,1/a)可知:在y轴左侧,图像从下到上相应的底数由大变小。
(3)指数函数的底数与图像间的关系可概括的记忆为:在y轴右边“底大图高”;在y轴左边“底大图低”。
(如右图)》。
(4)y=a的x次方与y=a分之1的x次方的图像关于y轴对称。
幂的比较比较大小常用方法:(1)比差(商)法:(2)函数单调性法;(3)中间值法:要比较A与B的大小,先找一个中间值C,再比较A与C、B与C的大小,由不等式的传递性得到A与B之间的大小。
比较两个幂的大小时,除了上述一般方法之外,还应注意:(1)对于底数相同,指数不同的两个幂的大小比较,可以利用指数函数的单调性来判断。
(整理)函数的概念与基本初等函数.
2.函数的概念与基本初等函数 2.1 函数的概念与表示法【知识网络】1.函数的概念;2.函数的表示法:解析法、列表法、图象法;3.分段函数;4.函数值.【典型例题】例1.(1)下列函数中哪个与函数y x =(0)x ≥是同一个函数( A )A .y=(x )2B .y=xx 2C .y=33xD .y=2x提示:当两个函数的解析式和定义域完全相同时,这两个函数为同一函数.同时满足这两个条件的只有B 中的函数. (2) 函数||)(x xx f =的图象是( C )提示:所给函数可化为:1(0)()1(0)x f x x >⎧=⎨-<⎩,故答案为C .也可以根据函数的的定义域为{|0}x x ≠而作出判断.(3)已知)(x f 的图象恒过(1,1)点,则)4(-x f 的图象恒过( ) A .(-3,1) B .(5,1) C .(1,-3)D .(1,5)提示:法一:由)(x f 的图象恒过(1,1)知(1)1f =,即(54)1f -=,故函数)4(-x f 的图像过点(5,1).法二:)4(-x f 的图象可由)(x f 的图象向右平移4个单位而得到,(1,1)向右平移4个单位后变为(5,1),答案为B .(4)已知2()1f x x x =++,则[f f =提示:213f =+=,2[(3(3115f f =++=+ (5)函数2)1(+=x y -2的图象可由函数2x y =的图象经过 ③ 得到.①先向右平移1个单位,再向下平移2个单位;②先向右平移1个单位,再向上平移2个单位;③先向左平移1个单位,再向下平移2个单位;④先向左平移1个单位,再向上平移2个单位. 提示:由“左加右减”,“上加下减”的方法可得.例2.(1)已知1)f x +=+()f x 及2()f x ;(2)已知12)(3)(+=-+x x f x f ,求)(x f .解:(1)令1t =,则1t ≥1t =-,2(1)x t =-,22()(1)2(1)1f t t t t =-+-=- ∴ 2()1(1)f x x x =-≥,2224()()11(1)f x x x x =-=-≥. (2)12)(3)(+=-+x x f x f ………………①把①中的x 换成x -得:()3()21f x f x x -+=-+………………② 由①②解得:1()4f x x =-+. 例3.画出下列函数的图象.(1)y =x 2-2,x ∈Z 且|x |2≤;(2)y =-22x +3x ,x ∈(0,2]; (3)y =x |2-x |;(4)3232232x y xx x ⎧⎪⎨⎪⎩≤≥<-,=--<-.. 解:四个函数的图象如下例4.如图,动点P 从单位正方形ABCD 顶点A 开始,顺次经C 、D 绕边界一周,当x 表示点P 的行程,y 表示PA 之长时,求y 关于x 的解析式,并求f(25)的值. 解:当P 在AB 上运动时, (01)y x x =≤≤; 当P 在BC 上运动时,y=2)1(1-+x (12)x <≤ 当P 在CD 上运动时,y=2)3(1x -+(23)x <≤ 当P 在DA 上运动时,y=4-x (34)x <≤∴y= (01)2)3)4 (34)x x x x x x ≤≤⎧<≤<≤-<≤⎩ ∴f (25)=25 【课内练习】 1.与曲线11-=x y 关于原点对称的曲线为 ( A )A .x y +=11 B .x y +-=11 C .xy -=11D .xy --=11 提示:用,x y --代替方程11-=x y 中的,x y 得:11y x -=--,即x y +=11.答案为A .2.已知函数)(x f y =,[,]x a b ∈,那么集合}2|),{(]},[),(|),{(=∈=x y x b a x x f y y x 中所含元素的个数是 A .0个 B .1个 C . 0或1个 D .0或1或无数个 提示:垂直于x 轴的直线与函数的图象最多只有一个交点.答案为C . 3.下列说法中,正确的有( )个①函数)(x f y =与函数)(x f y -=的图象关于直线x =0对称; ②函数)(x f y =与函数)(x f y -=的图象关于直线y=0对称; ③函数)(x f y =与函数)(x f y --=的图象关于坐标原点对;④如果函数)(x f y =对于一切,R x ∈都有()f a x +=()f a x -,那么)(x f y =的图象关于直线a x =对称.A .1B .2C .3D .4提示:①把函数)(x f y =中的x 换成x -,y 保持不变,得到的函数的图象与原函数的图象关于y 轴对称;②把函数)(x f y =中的y 换成y -,x 保持不变,得到的函数的图象与原函数的图象关于x 轴对称;③把函数)(x f y =中的x 换成x -,y 换成y -,得到的函数的图象与原函数的图象关于原点轴对称;④若对于一切,R x ∈都有()f a x +=()f a x -,则()f x 的图象关于直线()()2a x a x x ++-=对称.答案为D .4.设函数10221,0,()()1,0x x f x f x x x -⎧-≤⎪=>⎨⎪>⎩若,则0x 的取值范围是 ( D )A .(-1,1)B .(-1,+∞)C .(-∞,-2)∪(0,+∞)D .(-∞,-1)∪(1,+∞)5.已知⎩⎨⎧>-<+=0404)(x x x x x f ,则)3([-f f ]的值为-3解析:(3)341,((3))(1)143f f f f -=-+=-==-=-.6.已知f (x )=x 5+ax 3+bx -8,f (-2)=10,则f (2)=-26__. 提示:f (-2)=(-2)5+a (-2)3-2b -8=10, ∴ 8a +2b =-50,f (2)=25+23a +2b -8=24+82a b +=-26.7.已知函数22()1x f x x=+,那么111(1)(2)()(3)()(4)()234f f f f f f f ++++++=27 提示:()f x =221xx +,)1(x f =112+x ,()f x +)1(x f =1. ∴ 111(1)(2)()(3)()(4)()234f f f f f f f ++++++=21+1+1+1=27.8.作出下列函数的图象:(1)⎩⎨⎧---=14)(22x x x f )20()02(≤<≤≤-x x ; (2)322-+=x x y ;01()2(3)||x y x x+=-解:(1)函数图象如下:第(1)题 第(2)题 第(3)题(2)2223(02)23(20)x x x x y x x x ⎧+-≥≤-⎪=⎨----<<⎪⎩或22(1)4(02)(1)2(20)x x x x x ⎧+-≥≤-⎪=⎨-+--<<⎪⎩或 函数的图象如右上. (3)11(0)22y x x x =-<≠-且,图象如右上.9.设二次函数()f x 满足f (x +2)=f (2-x ),且方程()0f x =的两实根的平方和为10,)(x f 的图象过点(0,3),求f (x )的解析式. 解:设2()(0)f x ax bx c a =++≠∵ f (x +2)=f (2-x ),∴()f x 的图像有对称轴2x =, ∴ 22ba-=,4b a =-. ∵ )(x f 的图象过点(0,3),∴ 3c =,∴ 2()43(0)f x ax ax a =-+≠ 设方程2430ax ax -+=的两根为12,x x ,则:121243x x x x a +=⎧⎪⎨=⎪⎩,由221210x x +=,得:21212()210x x x x +-=,∴ 234210a-⋅=,解得:1a =. ∴ 2()43f x x x =-+.10.设2()32f x ax bx c =++,若0,(0)0,(1)0a b c f f ++=>>,求证: (1)0a >且21ba-<<-; (2)方程()0f x =在(0,1)内有两个实根。
完整版)基本初等函数经典复习题+答案
完整版)基本初等函数经典复习题+答案1、幂的运算性质1) $a^r\cdot a^s=a^{r+s}$,其中$r,s\in R$;2) $(a^r)^s=a^{rs}$,其中$r,s\in R$;3) $a^r\cdot b^r=(ab)^r$,其中$r\in R$;4) $a^{-n}=\dfrac{1}{a^n}$,其中$a>0,n\in N^*,n>1$。
2、对数的运算性质若$a>0$且$a\neq 1$,$M>0,N>0$,则有:1) $a^x=N\iff \log_a N=x$;2) $\log_a(MN)=\log_a M+\log_a N$;3) $\log_a\dfrac{M}{N}=\log_a M-\log_a N$;4) $\log_a M^n=n\log_a M$,其中$n\in R$;5) $\log_a 1=0$;6) 换底公式:$\log_a b=\dfrac{\log_c b}{\log_c a}$,其中$a>0,a\neq 1,c>0,c\neq 1,b>0$。
3、函数的定义域能使函数式有意义的实数$x$的集合称为函数的定义域。
求函数的定义域时,需要注意以下几点:1) 偶次方根的被开方数不小于零;2) 对数式的真数必须大于零;3) 分式的分母不等于零;4) 指数、对数式的底必须大于零且不等于1.4、函数单调区间与单调性的判定方法A) 定义法:1.任取$x_1,x_2\in D$,且$x_1<x_2$;2.作差$f(x_1)-f(x_2)$;3.变形(通常是因式分解和配方);4.定号(即判断差$f(x_1)-f(x_2)$的正负);5.下结论(指出函数$f(x)$在给定的区间$D$上的单调性)。
B) 图象法(从图象上看升降)。
C) 复合函数的单调性:复合函数$f[g(x)]$的单调性与构成它的函数$u=g(x),y=f(u)$的单调性密切相关,其规律为“同增异减”。
基本初等函数基础题(答案解析)
基本初等函数基础题汇总一、单选题(共15小题)1.若a>b,则下列各式中恒正的是()A.lg(a﹣b)B.a3﹣b3C.0.5a﹣0.5b D.|a|﹣|b|【解答】解:选项A:令a=1,b=,则a﹣b=,而lg=﹣lg2<0,A错误,选项B:因为函数y=x3在R上单调递增,又a>b,所以有a3>b3,则a3﹣b3>0,B正确,选项C:因为函数y=0.5x在R上单调递减,又a>b,所以有0.5a<0.5b,即0.5a﹣0.5b<0,C错误,选项D:令a=1,b=﹣2,则|a|﹣|b|=1﹣2=﹣1<0,D错误,故选:B【知识点】指数函数的图象与性质、对数函数的图象与性质、幂函数的性质2.设a=40.4,b=log0.40.5,c=log50.4,则a,b,c的大小关系是()A.a<b<c B.b<c<a C.c<a<b D.c<b<a【解答】解:∵a=40.4>1,0<b=log0.40.5<log0.40.4=1,c=log50.4<0,∴c<b<a.故选:D.【知识点】对数值大小的比较3.设lg2=a,lg3=b,则log512等于()A.B.C.D.【解答】C【知识点】对数的运算性质4.已知幂函数f(x)的图象过点(2,),则f()的值为()A.B.C.2D.8【解答】解:设幂函数f(x)=xα(α为常数),∵幂函数f(x)的图象过点(2,),∴,∴,∴f(x)==,∴f()==,故选:A.【知识点】幂函数的概念、解析式、定义域、值域5.已知幂函数y=(k﹣1)xα的图象过点(2,4),则k+α等于()A.B.3 C.D.4【解答】解:∵幂函数y=(k﹣1)xα的图象过点(2,4),∴k﹣1=1,2α=4,∴k=2,α=2,∴k+α=4,故选:D.【知识点】幂函数的概念、解析式、定义域、值域6.已知x>0,y>0,a≥1,若a•()y+log2x=log8y3+2﹣x,则()A.ln|1+x﹣3y|<0 B.ln|1+x﹣3y|≤0C.ln(1+3y﹣x)>0 D.ln(1+3y﹣x)≥0【解答】解:由题意可知,a•()3y+log2x=log2y+,∴=<≤,令f(x)=,则f(x)<f(3y),易知f(x)在(0,+∞)上为增函数,由f(x)<f(3y)得:x<3y,∴3y﹣x>0,∴1+3y﹣x>1,∴ln(1+3y﹣x)>ln1=0,故选:C.【知识点】对数的运算性质7.若a,b,c满足,则()A.c<b<a B.a<b<c C.b<c<a D.c<a<b【解答】解:∵2a=3,∴a=log23,∵1=log22<log23<log25,∴b>a>1,∵3c=2,∴c=log32,∵0=log31<log32<log33=1,∴0<c<1,∴b>a>c,故选:D.【知识点】对数值大小的比较8.已知实数a,b,c∈R,满足==﹣<0,则a,b,c的大小关系为()A.c>b>a B.c>a>b C.b>c>a D.b>a>c【解答】解:易知,a,b,c>0.由﹣<0,则c>1,不妨令c=e.则<0,故0<2a<1,0<b<1.因为,故,所以,而函数f(x)=,,易知0<x<1时,f′(x)>0,f(x)在(0,1)上递增,故0<a<b<1.所以c>b>a.故选:A.【知识点】对数值大小的比较9.函数f(x)=a x﹣2﹣ax+2a+1恒过定点P,则点P的坐标为()A.(2,1)B.(2,2)C.(3,1)D.(2,2)或(3,1)【解答】解:①令x﹣2=0,得x=2,此时y=1﹣2a+2a+1=2,所以定点P(2,2),②令x﹣2=1,得x=3,此时y=a﹣3a+2a+1=1,所以定点P(3,1)综上所述,点P的坐标为(2,2)或(3,1),故选:D.【知识点】指数函数的单调性与特殊点10.若函数为对数函数,则a=()A.1 B.2 C.3 D.4【解答】解:∵函数为对数函数,∴a2﹣3a+2=0,则a=1(舍去)或a=2,故选:B.【知识点】对数函数的定义11.若实数a,b满足2a=2﹣a,log2(b﹣1)=3﹣b,则a+b=()A.3 B.C.D.4【解答】解:由2a=2﹣a可知,a为函数y=2x与y=2﹣x的交点A的横坐标,由log2(b﹣1)=3﹣b=2﹣(b﹣1)可知,b﹣1为函数y=log2x与y=2﹣x的交点B的横坐标,如图所示:,∵函数y=2x与函数y=log2x关于直线y=x对称,∴点A与点B关于点(1,1)对称,∴a+b﹣1=2,即a+b=3,故选:A.【知识点】指数式与对数式的互化、对数的运算性质12.函数f(x)=a x﹣2+3(a>0且a≠1)的图象恒过定点P,点P又在幂函数g(x)的图象上,则g(3)的值为()A.4 B.8 C.9 D.16【解答】解:∵f(x)=a x﹣2+3,令x﹣2=0,得x=2,∴f(2)=a0+3=4,∴f(x)的图象恒过点(2,4).设幂函数g(x)=xα,把P(2,4)代入得2α=4,∴α=2,∴g(x)=x2,∴g(3)=32=9,故选:C.【知识点】幂函数的概念、解析式、定义域、值域13.已知幂函数f(x)=(m2﹣2m﹣2)x在(0,+∞)上是减函数,则f(m)的值为()A.3 B.﹣3 C.1 D.﹣1【解答】解:∵幂函数f(x)=(m2﹣2m﹣2)x在(0,+∞)上是减函数,则m2﹣2m﹣2=1,且m2+m﹣2<0,求得m=﹣1,故f(x)=x﹣2=,故f(m)=f(﹣1)==1,故选:C.【知识点】幂函数的概念、解析式、定义域、值域、幂函数的性质14.已知对数函数y=log a x(a>0,a≠1)的图象经过点P(3,﹣1),则幂函数y=x a的图象是()A.B.C.D.【解答】解:∵对数函数y=log a x(a>0,a≠1)的图象经过点P(3,﹣1),∴﹣1=log a3,∴a=,故幂函数y=x a=,它的图象如图D所示,故选:D.【知识点】幂函数的图象15.从2,4,6,8,10这五个数中,每次取出两个不同的数分别为a,b,共可得到lga﹣lgb的不同值的个数是()A.20 B.18 C.10 D.9【解答】解:首先从2,4,6,8,10这五个数中任取两个不同的数排列,共A52=20有种排法,又,,∴从2,4,6,8,10这五个数中,每次取出两个不同的数分别记为a,b,共可得到lga﹣lgb=的不同值的个数是:20﹣2=18.故选:B.【知识点】对数的运算性质二、填空题(共10小题)16.设函数f(x)=a x+1﹣2(a>1)的反函数为y=f﹣1(x),若f﹣1(2)=1,则f(2)=【解答】解:由题意得:函数f(x)=a x+1﹣2(a>1)过(1,2),将(1,2)代入f(x)得:a2﹣2=2,解得:a=2,故f(x)=2x+1﹣2,故f(2)=6,故答案为:6.【知识点】反函数17.若函数y=f(x)的反函数f﹣1(x)=log a x(a>0,a≠1)图象经过点(8,),则f(﹣)的值为.【解答】解:由已知可得log a8=,即a=8,解得a=4,所以f﹣1(x)=log4x,再令log4x=﹣,即4=x,解得x=,由反函数的定义可得f(﹣)=,故答案为:.【知识点】反函数、函数的值18.若函数y=log2(x﹣m)+1的反函数的图象经过点(1,3),则实数m=.【解答】解:∵函数y=log2(x﹣m)+1的反函数的图象经过点(1,3),∴函数y=log2(x﹣m)+1的图象过点(3,1),∴1=log2(3﹣m)+1∴log2(3﹣m)=0,∴3﹣m=1,∴m=2.故答案为:2.【知识点】反函数19.已知幂函数y=(n∈N*)的定义域为(0,+∞),且单调递减,则n=.【解答】解:∵幂函数y=(n∈N*)的定义域为(0,+∞),且单调递减,∴,解得n=2.故答案为:2.【知识点】幂函数的性质20.已知函数y=f(x)在定义域R上是单调函数,值域为(﹣∞,0),满足f(﹣1)=﹣,且对于任意x,y∈R,都有f(x+y)=﹣f(x)f(y).y=f(x)的反函数为y=f﹣1(x),若将y=kf(x)(其中常数k>0)的反函数的图象向上平移1个单位,将得到函数y=f﹣1(x)的图象,则实数k的值为()【解答】解:由题意,设f(x)=y=﹣a x,根据f(﹣1)=﹣,解得a=3,∴f(x)=y=﹣3x,那么x=log3(﹣y),(y<0),x与y互换,可得f﹣1(x)=log3(﹣x),(x<0),则y=kf(x)=﹣k•3x,那么x=,x与y互换,可得y=,向上平移1个单位,可得y=+1,即log3(﹣x)=,故得k=3,故答案为:3.【知识点】反函数21.若函数y=log a(x﹣7)+2恒过点A(m,n),则=()【解答】解:∵函数y=log a(x﹣7)+2恒过点A(m,n),令x﹣7=1,求得x=8,y=2,可得函数的图象经过定点(8,2).若函数y=log a(x﹣7)+2恒过点A(m,n),则m=8,n=2,则==2,故答案为:2.【知识点】对数函数的单调性与特殊点22.已知函数f(x)=(m2﹣m﹣1)x1﹣m是幂函数,在x∈(0,+∞)上是减函数,则实数m的值为.【解答】解:∵函数f(x)=(m2﹣m﹣1)x1﹣m是幂函数,∴m2﹣m﹣1=1,求得m=2,或m=﹣1.∵当x∈(0,+∞)时,f(x)=x1﹣m是上是减函数,∴1﹣m<0,故m=2,f(x)=x﹣1=,故答案为:2.【知识点】幂函数的性质23.已知函数f(x)=x2﹣3tx+1,其定义域为[0,3]∪[12,15],若函数y=f(x)在其定义域内有反函数,则实数t的取值范围是()【解答】解:函数f(x)=x2﹣3tx+1的对称轴为x=,若≤0,即 t≤0,则 y=f(x)在定义域上单调递增,所以具有反函数;若≥15,即 t≥10,则 y=f(x)在定义域上单调递减,所以具有反函数;当3≤≤12,即 2≤t≤8时,由于区间[0,3]关于对称轴的对称区间是[3t﹣3,3t],于是当或,即t∈[2,4)或t∈(6,8]时,函数在定义域上满足1﹣1对应关系,具有反函数.综上,t∈(﹣∞,0]∪[2,4)∪(6,8]∪[10,+∞).【知识点】反函数24.如图所示,正方形ABCD的四个顶点在函数y1=log a x,y2=2log a x,y3=log a x+3(a>1)的图象上,则a=()【解答】解:设B(x1,2log a x1),C(x1,log a x1+3),A(x2,log a x2),D(x2,2log a x2),则log a x2=2log a x1,∴,又2log a x2=log a x1+3,,即x1=a,,∵ABCD为正方形,∴|AB|=|BC|;可得a2﹣a=2,解得a=2.故答案为:2.【知识点】对数函数的图象与性质25.已知函数y=f(x)与y=g(x)的图象关于直线y=x对称,若f(x)=x+log2(2x+2),则满足f(x)>log23>g(x)的x的取值范围是.【解答】解:∵函数y=f(x)与y=g(x)的图象关于直线y=x对称,f(x)=x+log2(2x+2),设y=x+,则y﹣x=,∴2y﹣x=2x+2,∴2y=22x+2x+1,∴2x==﹣1,x=.互换x,y,得g(x)=,∵f(x)>log23>g(x),∴x+log2(2x+2)>log23>,解得0<x<log215.∴满足f(x)>log23>g(x)的x的取值范围是(0,log215).故答案为:(0,log215).【知识点】反函数三、解答题(共10小题)26.计算以下式子的值:(1)2lg2+lg25;(2);(3)(2)0+2﹣2•(2)﹣(0.01)0.5.【解答】解:(1)原式=lg4+lg25=lg(4×25)=lg100=2;(2)原式=====1;(3)原式=.【知识点】对数的运算性质、有理数指数幂及根式27.求值:(1);(2)log354﹣log32+log23•log34.【解答】解:(1)原式=+4+1+=7;(2)原式=log327+•=3+2=5.【知识点】有理数指数幂及根式、对数的运算性质28.计算下列各式的值:(1);(2)lg25+4.【解答】解:(1)原式===;(2)原式=2lg5+2lg2﹣2log23•log32=2(lg5+lg2)﹣2=2﹣2=0.【知识点】对数的运算性质、有理数指数幂及根式29.已知幂函数f(x)=(m∈N*),经过点(2,),试确定m的值,并求满足条件f(2﹣a)>f(a﹣1)的实数a的取值范围.【解答】解:∵幂函数f(x)经过点(2,),∴=,即=∴m2+m=2.解得m=1或m=﹣2.又∵m∈N*,∴m=1.∴f(x)=,则函数的定义域为[0,+∞),并且在定义域上为增函数.由f(2﹣a)>f(a﹣1)得解得1≤a<.∴a的取值范围为[1,).【知识点】幂函数的性质30.(1)化简:(a,b均为正数);(2)求值:lg4+2lg5+π0﹣4ln+.【解答】解:(1)===.(2)lg4+2lg5+π0﹣4ln+==2+1﹣4×=22.【知识点】对数的运算性质、有理数指数幂及根式31.已知函数f(x)为函数y=a x(a>0,a≠1)的反函数,f(5)>f(6),且f(x)在区间[a,3a]上的最大值与最小值之差为1.(1)求a的值;(2)解关于x的不等式.【解答】解:(1)∵f(x)为函数y=a x的反函数,∴f(x)=log a x,又∵log a5>log a6得:0<a<1,由f(x)在区间[a,3a]上的最大值与最小值之差为1,得:log a a﹣log a3a=1,解得:a=;(2)∵0<a<1,∴,∴1<x≤2.【知识点】反函数、指、对数不等式的解法32.计算:(1).(2)已知,,求实数B的值.【解答】解:(1)原式==.(2)由题意知:,,∴3B=9B﹣6=(3B)2﹣6,解得3B=3或﹣2(舍),∴B=1.【知识点】对数的运算性质33.已知函数f(x)=log a(kx2﹣2x+6)(a>0且a≠1).(1)若函数的定义域为R,求实数k的取值范围;(2)若函数f(x)在[1,2]上恒有意义,求k的取值范围;(3)是否存在实数k,使得函数f(x)在区间[2,3]上为增函数,且最大值为2?若存在,求出k的值;若不存在,请说明理由。
基本初等函数专项训练(含答案)经典题
(2)假设该公司采用模型函数y= 作为奖励函数模型,试确定最小的正整数a的值.
8、函数 图象上一点P(2,f(2))处的切线方程为 .
(1)写出第x月的需求量f(x)的表达式;
(2)假设第x月的销售量g(x)=
(单位:件),每件利润q(x)元与月份x的近似关系为:q(x)= ,问:该商场销售A品牌商品,预计第几月的月利润到达最大值?月利润最大值是多少?(e6≈403)
6、函数f(x)=x2-(1+2a)x+alnx(a为常数).
(1)当a=-1时,求曲线y=f(x)在x=1处切线的方程;
(Ⅱ) ,令 ,
那么 ,令 ,得x=1(x=-1舍去).
在 内,当x∈ 时, ,∴h(x)是增函数;
当x∈ 时, ,∴h(x)是减函数.
那么方程 在 内有两个不等实根的充要条件是
即 .
9、解:∵ 命题p:函数y=loga(1-2x)在定义域上单调递增,∴ 0<a<1.
又命题q:不等式(a-2)x2+2(a-2)x-4<0对任意实数x恒成立,
①当0<a< 时,由f′(x)>0,又知x>0得0<x<a或 <x<1
由f′(x)<0,又知x>0,得a<x< ,
所以函数f(x)的单调增区间是(0,a)和 ,单调减区间是 ,(10分)
②当a= 时,f′(x)= ≥0,且仅当x= 时,f′(x)=0,
所以函数f(x)在区间(0,1)上是单调增函数.(11分)
当6<x<7时,h′(x)<0,
∴当1≤x<7且x∈N*时,h(x)max=30e6≈12 090,(11分)
人教B版高中数学必修一第三章《基本初等函数I》讲解与例题+综合测试(7份).docx
3.4函数的应用(II)QJy I (.Hl / H?S li IJHi E \ J I \ L \1.函数模型所谓数学模型是指对客观实际的特征或数量关系进行抽象概括,用形式化的数学语言表述一种数学结构.数学模型剔除了事物中一切与研究目标无木质联系的各种属性,在纯粹状态下研究数量关系和空间形式,函数就是重要的数学模型,用函数解决方程问题,使求解变得容易进行,这是数学模型间的相互转换在发挥作用.而用函数解决实际问题,则体现了数学模型是联系数学与现实世界的桥梁.本节涉及的函数模型有:⑴指数函数模型:y=G//+c(b>0, bHl, aHO),当b>\, d>0时,其增长特点是随着自变量的增大,函数值增大的速度越来越快,常形象地称为指数爆炸.(2)对数函数模型:y=mlog(l x+n(m^O f a>0, aHl),当aAl,加>0时,其增长的特点是随着自变量的增大,函数值增大的速度越来越慢.(3)帚函数模型:y=a-x n+b(a^O),其中最常见的是二次函数模型y=ax2+bx~\~c(a0), 当d>0时,其特点是随着自变量的增大,函数值先减小,后増大.在以上几种函数模型的选择与建立时,要注意函数图彖的直观运用,分析图象特点,分析变量x的范围,同时还要与实际问题结合,如取整等.【例1 — 1】据报道,全球变暖使北冰洋冬季冰雪覆盖面积在最近50年内减少了5%,如果按此速度,设2012年的冬季冰雪覆盖面积为加,从2012年起,经过兀年后,北冰洋冬季冰雪覆盖面积),与x的函数关系式是()A. ^=0.9550 -mB. >,=(l-O.O55O)-mC. y=0.9550_x-/?zD. y=(l-O.O55O_v)-/n解析:设每年的冰雪覆盖面积减少率为d.・・・50年内覆盖面积减少了5%,1・・・(1—a)5°=l—5%,解得0=1 — 0.9550.1 △・••从2012年起,经过x年后,冰雪覆盖面积尸加1一(1一0.95巧F二加095込答案:A【例1一2】某公司为应对金融危机的影响,拟投资100万元,有两种投资可供选择:一种是年利率1%,按单利计算,5年后收回本金和利息;另一种是年利率3%,按每年复利一次计算,5年后收回本金和利息.哪一种投资更有利?这种投资比另一种投资5年可多得利息多少元?(结果精确到0.01万元)分析:这是一个单利和复利所获得收益多少的比较问题.可先按单利和复利讣算5年后的本利和分别是多少,再通过比较作答.解:本金100万元,年利率1%,按单利计算,5年后的本利和是100X(l + l%X5) = 105(万元).本金100万元,年利率3%,按每年复利一次计算,5年后的本利和是100X(1 + 3%『a 115.93(万元).由此可见按年利率3%每年复利一次投资要比按年利率1%单利投资更有利,5年后多得利息约10.93万元.谈重点利息的计算利息分单利和复利两种.单利是只有木金牛息,利息不再牛息,而复利是把前一期的本利 和作为本金再牛息,两种情况要注意区分.我国现行定期储蓄中的自动转存业务类似复利计•息的储蓄,如某人存入本金。
高中数学选择性必修二 5 2 1基本初等函数的导数(知识梳理+例题+变式+练习)(含答案)
5.2.1基本初等函数的导数要点一 几个常用函数的导数要点二【重点小结】(1)几个基本初等函数导数公式的特点①正、余弦函数的导数可以记忆为“正余互换,(符号)正同余反”. ②指数函数的导数等于指数函数本身乘以底数的自然对数. ③对数函数的导数等于x 与底数的自然对数乘积的倒数. (2)函数与其导函数奇偶性的关系 ①常数的导数是0.②奇函数的导函数为偶函数. ③偶函数的导函数为奇函数.【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)⎝⎛⎭⎫1x ′=1x 2.( ) (2)(log 3x )′=13ln x.( )(3)⎣⎡⎦⎤sin ⎝⎛⎭⎫π2-x ′=cos ⎝⎛⎭⎫π2-x .( ) (4)若y =e 3,则y ′=e 3.( ) 【答案】(1)×(2)×(3)×(4)×2.(多选题)下列导数运算正确的是( )A .(ln x )′=xB .(a x )′=xa x -1C .(sin x )′=cos xD .(x -5)′=-5x -6 【答案】CD【解析】由导数公式得C 、D 正确.3.曲线y =e x 在点A (0,1)处的切线方程是( ) A .x +y +1=0 B .x -y -2=0 C .x -y +1=0 D .x +y -2=0 【答案】C【解析】y ′|x =0=e x |x =0=1,即切线斜率为1,又切点为A (0,1),故切线方程为y =x +1,即x -y +1=0. 4.函数f (x )=sin x ,则f ′(6π)=________. 【答案】1【解析】f ′(x )=cos x ,所以f ′(6π)=1.题型一 利用导数公式求函数的导数 【例1】求下列函数的导数:(1)y =x -3; (2)y =3x ;(3)y = x x x ; (4)y =log 5x ;(5)y =cos ⎝⎛⎭⎫π2-x ;(6)y =sin π6;(7)y =ln x ; (8)y =e x .【解析】(1)y ′=-3x -4;(2)y ′=3x ln 3;(3)y =x ·x ·x 12=xx 32=x ·x 34=x 78,∴y ′=78x1-8;(4)y ′=1x ln 5;(5)y =sin x ,y ′=cos x ;(6)y ′=0;(7)y ′=1x;(8)y ′=e x .不能用基本初等函数公式直接求导的,应先化为基本初等函数再求导. 【方法归纳】求简单函数的导数有两种基本方法(1)用导数的定义求导,但运算比较繁杂;(2)用导数公式求导,可以简化运算过程、降低运算难度.解题时根据所给问题的特征,将题中函数的结构进行调整,再选择合适的求导公式. 【跟踪训练1】求下列函数的导数:(1)y =lg x ; (2)y =⎝⎛⎭⎫12x; (3)y =x x ;(4)y =⎝⎛⎭⎫sin x 2+cos x22-1. 【解析】(1)y ′=(lg x )′=1x ln 10. (2)y ′=⎣⎡⎦⎤⎝⎛⎭⎫12x ′=⎝⎛⎭⎫12x ln 12=-⎝⎛⎭⎫12x ln 2. (3)y ′=(x x )′=(x32)′=32x12=32x ; (4)∵y =⎝⎛⎭⎫sin x 2+cos x22-1 =sin 2x 2+2sin x 2cos x 2+cos 2x 2-1=sin x ,∴y ′=(sin x )′=cos x .题型二 利用导数公式求曲线的切线方程【例2】已知曲线y =ln x ,点P (e,1)是曲线上一点,求曲线在点P 处的切线方程. 【解析】∵y =ln x ,∴y ′=1x ,∴y ′|x =e =1e ,即切线斜率为1e .∴切线方程为y -1=1e(x -e),即x -e y =0.【变式探究】本例中的曲线不变,求过点(0,0)的切线方程. 【解析】因为点(0,0)不在曲线上,所以设切点Q (a ,b ).则切线斜率k =y ′|x =a =1a,又k =b -0a -0=b a,且b =ln a∴a =e ,b =1,∴切线方程为x -e y =0. 【方法归纳】(1)求过点P 的切线方程时应注意,P 点在曲线上还是在曲线外,两种情况的解法是不同的;(2)解决此类问题应充分利用切点满足的三个关系:一是切点坐标满足曲线方程;二是切点坐标满足对应切线的方程;三是切线的斜率是曲线在此切点处的导数值.【跟踪训练2】已知点P (-1,1),点Q (2,4)是曲线y =x 2上的两点,求与直线PQ 垂直的曲线y =x 2的切线方程.【解析】∵y ′=(x 2)′=2x ,设切点为M (x 0,y 0), 则y ′|0x x ==2x 0,又∵直线PQ 的斜率为k =4-12+1=1,而切线垂直于直线PQ ,∴2x 0=-1,即x 0=-12,所以切点为M ⎝⎛⎭⎫-12,14.∴所求的切线方程为y -14=-⎝⎛⎭⎫x +12, 即4x +4y +1=0.易错辨析 混淆幂函数与指数函数求导公式致错【例3】曲线f (x )=2x 在点(0,1)处的切线方程为________. 【答案】y =x ln 2+1【解析】∵f (x )=2x ,∴f ′(x )=2x ln 2,∴f ′(0)=ln 2 故所求切线方程为y -1=(x -0)ln 2 即y =x ln 2+1. 【易错警示】 1.出错原因记错导数公式(a x )′=a x ln a ,与幂函数y =x α的求导公式混淆. 2.纠错心得利用导数公式求导时,应先弄清是指数函数,还是幂函数.一、单选题1.若函数5()(2cos )sin 2f x a x x x =-+(其中a 为参数)在R 上单调递增,则a 的取值范围是( )A .10,2⎡⎤⎢⎥⎣⎦B .11,22⎡⎤-⎢⎥⎣⎦C .11,,22⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭D .1,02⎡⎤-⎢⎥⎣⎦【答案】B 【分析】先求解函数的导数,再根据函数的单调性建立不等式,将问题转化为不等式恒成立问题,进而求解参数的值. 【解析】根据题意,()22259cos 2sin 2cos cos 4cos 22f x a x x x a x x '=+-+=-+()f x 在R 上单调递增 ()0f x ∴'≥ 在R 上恒成立令cos x t =,[]1,1t ∈-,则 ()f x '可写为 ()[]294,1,12g t at t t =-+∈-根据题意()g t 在[]1,1-上的最小值非负()()1010g g ⎧-≥⎪∴⎨≥⎪⎩解得 1122a -≤≤,所以选项B 正确故选:B.2.已知函数()tan f x x =,则4f π⎛⎫' ⎪⎝⎭等于( )A .12 BC .1D .2【答案】D 【分析】先对函数求导,然后求出4f π⎛⎫' ⎪⎝⎭即可【解析】由()sin tan cos x f x x x ==,得2222cos sin 1()cos cos x x f x x x+==',所以2124cos4f ππ⎛⎫=='= ⎪⎝⎭, 故选:D3.已知函数()()2e e ln ex f x f x '=⋅⋅-(e是自然对数的底数),则()e f 等于( ) A .e 1- B .21e-C .1D .11e-【答案】C 【分析】利用导数的运算可得出关于()e f '的方程,求出()e f '的值,可得出函数()f x 的解析式,进而可求得()e f 的值. 【解析】因为()()2e e ln e xf x f x '=⋅⋅-,则()()2e e 1e f f x x ''=-, 所以,()()1e 2e e f f ''=-,所以,()1e e f '=,故()2ln exf x x =-,因此,()e 2lne 11f =-=. 故选:C.4.函数()ln 25y x x =+的导数为( )A .()2ln 25y x x '=+B .25xy x '=+ C .()ln 2525xy x x '=+++ D .()2ln 2525xy x x '=+++ 【答案】D 【分析】利用复合函数的求导法则,乘法公式的求导法则及基本初等函数的导数公式对函数()ln 25y x x =+求导即可. 【解析】因为()ln 25y x x =+,所以()()()ln 25ln 25ln 25y x x x x x x ''⎡''=+=⎤⎡+++⎤⎣⎦⎣⎦()()()12ln 2525ln 252525xx x x x x x =++⋅⋅+=++++'. 故选:D.5.若()e ln2xf x x =,则()f x '等于( )A .e e ln 22xx x x+B .e ln 2xx x -C .e e ln 2xxx x+D .12e x x⋅【答案】C 【分析】直接根据基本初等函数的导数公式及导数的运算法则计算可得; 【解析】解:()()()ee ln 2e ln 2e ln 2xxx x f x x x x x'''=⋅+⋅=+.故选:C. 6.函数()1f x x=在2x =和3x =处的导数的大小关系是( ) A .()()23f f ''< B .()()23f f ''> C .()()23f f ''= D .不能确定【答案】A 【分析】求出函数导数即可比较. 【解析】 ()1f x x =,()21f x x '∴=-,所以()()112,349f f ''=-=-,即()()23f f ''<.故选:A.7.给出下列命题:①ln 2y =,则12y ;②21y x=,则3227x y ==-';③2x y =,则2ln 2x y '=;④2log y x =,则1ln 2y x '=.其中正确命题的个数为( ) A .1 B .2 C .3 D .4【答案】C 【分析】利用求导公式和法则逐个分析判断即可 【解析】①中ln 2y =为常数函数,故0y '=,故①错误; 对于②,∵32y x '=-,∵3227x y ==-',故②正确; 显然③④正确. 故选:C.8.下列导数运算正确的是( ) A .()121x x-'=B .11ln 222x x'⎡⎤⎛⎫⎛⎫=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦C .()cos sin x x '=D .()1ln 1x x x'+=+【答案】D 【分析】利用求导公式和法则逐个分析判断即可 【解析】因为()121x x -'=-,11ln 222x x'⎡⎤⎛⎫⎛⎫=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,()cos sin x x '=-,()1ln 1x x x '+=+,所以选项A ,B ,C 均不正确,选项D 正确, 故选:D.二、多选题9.(多选)以下运算正确的是( )A .211x x '⎛⎫= ⎪⎝⎭B .()sin cos x x '=C .()22ln 2x x '=D .()1lg ln10x x =-' 【答案】BC 【分析】利用基本初等函数的导数公式,依次计算判断即可 【解析】对于A ,因为1211()x x x -'⎛⎫'==- ⎪⎝⎭,所以A 不正确; 对于B ,因为()sin cos x x '=,所以B 正确; 对于C ,因为()22ln 2x x '=,所以C 正确; 对于D ,因为()1lg ln10x x '=,所以D 不正确. 故选:BC.10.下列求导运算不正确的是( ) A .2111x x x '⎛⎫+=+ ⎪⎝⎭B .2sin cos sin x x x x x x '-⎛⎫=⎪⎝⎭C .()555log x x x '=D .()2cos 2sin x x x x '=-【答案】ACD 【分析】利用基本初等函数的导数公式和运算法则求解. 【解析】2111x x x '⎛⎫+=- ⎪⎝⎭,故A 错误; 2sin cos sin x x x x x x '-⎛⎫= ⎪⎝⎭,故B 正确; ()55ln 5xx'=,故C 错误;()22cos 2cos sin xx x x x x '=-,故D 错误.故选:ACD11.下列各式正确的是( ) A .sin cos 33ππ'⎛⎫= ⎪⎝⎭B .()cos sin x x '=C .()sin cos x x '=D .'⎛ ⎝【答案】CD 【分析】直接根据导数的运算公式计算即可. 【解析】对于A ,sin 03π'⎛⎫= ⎪⎝⎭,故错误;对于B ,()cos sin x x '=-,故错误; 对于C ,()sin cos x x '=,故正确; 对于D ,'⎛=⎝ 故选:CD.第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题12.对于三次函数()()320ax bx d a f x cx =+++≠给出定义:设()f x '是函数()y f x =的导数,()f x ''是函数()f x '的导数,若方程()0f x ''=有实数解0x ,则称点()()00,x f x 为函数()y f x =的“拐点”,某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心。