初二数学(二元一次方程组专题复习)
八年级下数学二元一次方程组知识点梳理及例题解析
第八章二元一次方程组一、知识回顾1、含有个未知数,并且含有未知数的项的次数都是的方程叫做二元一次方程;能使二元一次方程的两个未知数的值叫做二元一次方程的解。
2、把具有未知数的方程合在一起就组成了一个二元一次方程组;能使二元一次方程组的未知数的值叫做二元一次方程组的解。
3、解二元一次方程组的基本思想是,它有和两种方法;把二元一次方程组中一个方程的一个未知数用含的式子表示出来,{再另一个方程,实现消元进而求得这个二元一次方程组的解,这种方法叫做;当两个二元一次方程中同一个未知数的系数(或)时,将两个方程的两边分别(或),就能消去这个未知数得到一个一元一次方程,这种方法叫做。
4、列方程组解应用题的步骤可概括为、、、、、、这七大步骤。
5、由个方程组成,并且方程组中含有个相同未知数,每个方程中含未知数的项的次数都为,这样的方程组叫做三元一次方程组。
二元一次方程组的实际应用列方程组解应用题的常见类型主要有:1. 行程问题.包括追及问题和相遇问题,基本等量关系为:路程=速度×时间;2. 工程问题.一般分为两类,一类是一般的工程问题,一类是工作总量为1的工程问题.基本等量关系为:工作量=工作效率×工作时间;3. 和差倍分问题.基本等量关系为:较大量=较小量+多余量,总量=倍数× 1倍量;4. 航速问题.此类问题分为水中航行和风中航行两类,基本关系式为:顺流(风):航速=静水(无风)中的速度+水(风)速逆流(风):航速=静水(无风)中的速度-水(风)速5. 几何问题、年龄问题和商品销售问题等.二元一次方程组是中考重点考查的内容之一,主要有以下几个方面:(1)从实际数学问题中构造一次方程组,解决有关问题;(2)能从图表中获得有关信息,列方程组解决问题.【例2】解方程组【例3】某化妆晚会上,男生脸上涂蓝色油彩,女生脸上涂红色油彩.游戏时,每个男生都看见涂红色油彩的人数比涂蓝色油彩的人数的2倍少1人;而每个女生都看见涂蓝色油彩的人数是涂红色油彩的人数的,问晚会上男、女生各有几人?【例4】解方程组第四节、思维点拨【例1】小红到邮局寄挂号信,需要邮资3元8角. 小红有票额为6角和8角的邮票若干张,问各需多少张这两种面额的邮票?【例2】小聪全家外出旅游,估计需要胶卷底片120张. 商店里有两种型号的胶卷:A型每卷36张底片,B型每卷12张底片. 小聪一共买了4卷胶卷,刚好有120张底片. 求两种胶卷的数量.【例3】用加减法解方程组【例4】用代入法解方程组【例5】用代入法解方程组【例6】甲、乙两厂,上月原计划共生产机床90台,结果甲厂完成了计划的112%,乙厂完成了计划的110%,两厂共生产机床100台,求上月两厂各超额生产了多少台机床?【例7】某学校组织学生到100千米以外的夏令营去,汽车只能坐一半人,另一半人步行.先坐车的人在途中某处下车步行,汽车则立即回去接先步行的一半人.已知步行每小时走4千米,汽车每小时走20千米(不计上下车的时间),要使大家下午5点同时到达,问需何时出发.【例8】小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存了2000元钱,一种是年利率为2.25%的教育储蓄,另一种是年利率为2.25%的一年定期存款,一年后可取出2042.75元,问这两种储蓄各存了多少钱?(利息所得税=利息金额×20%,教育储蓄没有利息所得税)【例1】已知方程组的解x,y满足方程5x-y=3,求k的值..【例2】某种商品价格为每件33元,某人身边只带有2元和5元两种面值的人民币各若干张,买了一件这种商品. 若无需找零钱,则付款方式有哪几种(指付出2元和5元钱的张数)?哪种付款方式付出的张数最少?【例3】某中学新建了一栋4层的教学大楼,每层楼有8间教室,这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.安全检查中,对4道门进行了训练:当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生;当同时开启一道正门和一道侧门时,4分钟可以通过800名学生. (1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤,出门的效率将降低20%.安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离.假设这栋教学大楼每间教室最多有45名学生,问:建造的这4道门是否符合安全规定?请说明理由.【例4】某水果批发市场香蕉的价格如下表:张强两次共购买香蕉50千克(第二次多于第一次),共付款264元,请问张强第一次、第二次分别购买香蕉多少千克?【例5】用如图1中的长方形和正方形纸板做侧面和底面,做成如图2的竖式和横式两种无盖纸盒. 现在仓库里有1000张正方形纸板和2000张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完?第六节、本章训练基础训练题一、填空题(每题7分,共35分)1.一个两位数的数字之和是7,这个两位数减去27,它的十位和个位上的数字就交换了位置,则这个两位数是 .2. 已知甲、乙两人从相距36km的两地同时相向而行,1h相遇.如果甲比乙先走h,那么在乙出发后h与甲相遇.设甲、乙两人速度分别为xkm/h、ykm/h,则x=,y= .3. 甲、乙二人练习赛跑,如果甲让乙先跑10米,那么甲跑5秒钟就能追上乙;如果甲让乙先跑2秒钟,那么甲跑4秒钟就能追上乙,两人每秒钟各跑的米数是 .4.一队工人制造某种工件,若平均每人一天做5件,全队一天就超额30件;若平均每人一天做4件,全队一天就比定额少完成20件.若设这队工人有x人,全队每天的数额为y件,则依题意可得方程组 .5.某次知识竞赛共出了25道题,评分标准如下:答对1题加4分;答错1题扣1分;不答记0分.已知小明不答的题比答错的题多2道,他的总分为74分,则他答对了 .二、选择题(每题7分,共35分)1.一个两位数的十位数字比个位数字小2,且能被3整除,若将十位数字与个位数字交换又能被5整除,这个两位数是().A. 53B. 57C. 35D. 752.甲、乙两车相距150km,两车同时出发,同向而行,甲车4h可追上乙车;相向而行,1.5h后两车相遇.设甲、乙两车的平均速度分别为xkm/h、ykm/h.以下方程组正确的是().3.甲、乙二人从同一地点出发,同向而行,甲骑车乙步行.若乙先行12km,那么甲1小时追上乙;如果乙先走1小时,甲只用小时就追上乙,则乙的速度是()km/h.A. 6B. 12C. 18D. 364.一艘船在一条河上的顺流速度是逆流速度的2倍,则船在静水中的速度与水流的速度之比为().A. 4:3B. 3:2C. 2:1D. 3:1三、列方程组解应用题(每题15分,共30分)1.一批机器零件共840个,如果甲先做4天,乙加入合做,那么再做8天才能完成;如果乙先做4天,甲加入合做,那么再做9天才能完成,问两人每天各做多少个机器零件?2. 师傅对徒弟说“我像你这样大时,你才4岁,将来当你像我这样大时,我已经是52岁的人了”.问这位师傅与徒弟现在的年龄各是多少岁?提高训练题1.甲、乙两人分别从相距30千米的A、B两地同时相向而行,经过3小时后相距3千米,再经过2小时,甲到B地所剩路程是乙到A地所剩路程的2倍,求甲、乙两人的速度.2. 2. 小华不小心将墨水溅在同桌小丽的作业本上,结果二元一次方程组中第一个方程y的系数和第二个方程x的系数看不到了,现在已知小丽的结果是你能由此求出原来的方程组吗?3.若是关于x,y的二元一次方程3x-y+a=0的一个解,求a的值.4.已知方程组其中正确的说法是()A.只有(1)、(3)是二元一次方程组;B.只有(1)、(4)是二元一次方程组;C.只有(2)、(3)是二元一次方程组;D.只有(2)不是二元一次方程组.强化训练题1.解关于x,y的方程组,并求当解满足方程4x-3y=21时的k值2. 有两个长方形,第一个长方形的长与宽之比为5∶4,第二个长方形的长与宽之比为3∶2,第一个长方形的周长比第二个长方形的周长大112cm,第一个长方形的宽比第二个长方形的长的2倍还大6cm,求这两个长方形的面积.3.甲乙两人做加法,甲在其中一个数后面多写了一个0,得和为2342,乙在同一个加数后面少写了一个0,得和为65,你能求出原来的两个加数吗?4.某校2006年初一年级和高一年级招生总数为500人,计划2007年秋季初一年级招生人数增加20%,高一年级招生人数增加25%,这样2007年秋季初一年级、高一年级招生总数比2006年将增加21%,求2007年秋季初一、高一年级的招生人数各是多少?综合训练题一、精心选一选(每题7分,共35分)1. 方程组的解是().2. 在一次小组竞赛中,遇到了这样的情况:如果每组7人,就会余3人;如果每组8人,就会少5人.问竞赛人数和小组的组数各是多少?若设人数为x,组数为y,根据题意,可列方程组().3. 买甲、乙两种纯净水共用250元,其中甲种水每桶8元,乙种水每桶6元,乙种水的桶数是甲种水的桶数的75%,设买甲种水x桶、乙种水y桶,则所列方程组中正确的是().4. 一个两位数被9除余2,如果把它的十位与个位交换位置,则所得的两位数被9除余5,设个位数字为x,十位数字为y,则下面正确的是().(以下选项中k1、k2都为整数)5. 用面值l元的纸币换成面值为l角或5角的硬币,则换法共有()种.A. 4B. 3C. 2D. 1二、用心填一填(每题7分,共35分)1. 一艘轮船顺流航行,每小时行20千米;逆流航行每小时行16千米.则轮船在静水中的速度为______,水流速度为______.2. 一队工人制造某种工件,若平均每人一天做5件,那么全队一天就比定额少完成30件;若平均每人一天做7件,那么全队一天就超额20件. 则这队工人有______人,全队每天制造的工件数额为______件.3. 已知甲、乙两人从相距18千米的两地同时相向而行,1小时相遇.再同向而行如果甲比乙先走小时,那么在乙出发后小时乙追上甲.设甲、乙两人速度分别为x千米/时、y千米/时,则x=______,y=______.4. 甲、乙二人练习赛跑,如果甲让乙先跑10米,那么甲跑5秒钟就能追上乙;如果乙让甲先跑2秒钟,那么乙跑6秒钟落后于甲28米,甲每秒钟跑______,乙每秒钟跑______.5. 小强拿了十元钱去商场购买笔和圆规.售货员告诉他:这10元钱可以买一个圆规和三支笔或买两个圆规和一支笔,现在小强只想买一个圆规和一支笔,那么售货员应该找给他______元.三、耐心做一做(每题10分,共30分)1. 某人要在规定的时间内由甲地赶往乙地,如果他以每小时50千米的速度行驶,就会迟到24分钟;如果他以每小时75千米的高速行驶,则可提前24分钟到达乙地,求他以每小时多少千米的速度行驶可准时到达.2. 一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付两组费用共3480元.若只选一个组单独完成,从节约开支角度考虑,这家商店应选择哪个组?3. 《参考消息》报道,巴西医生马廷恩经过10年研究得出结论:卷入腐败行列的人容易得癌症,心肌梗塞,脑溢血,心脏病等病,如果将贪污受贿的580名官员和600名廉洁官员进行比较,可发现,后者的健康人数比前者的健康人数多272人,两者患病或患病致死者共444人,试问贪污受贿的官员和廉洁官员中的健康人数各自占统计人数的百分之几?。
八年级数学专题 二元一次方程组重难点(参数问题、实际应用问题)(北师大版)
ì3x - 2 y = -1
ìx =1 ìm + 5 =1
ìm = -4
íî3x + 2 y = 7
,解得
í î
y
=
2
,即
íîn
+
3
=
2
,解得
íîn
=
-1
.
(1)学以致用,模仿乐乐同学的“整体换元”的方法,解方程组
ì ïï í ï ïî
x x
+ 3 + 3
y y
+ -
x x
5 5
y y
= =
4 .
-2
试卷第 2 页,共 9 页
义,否则,若把 y=ax+b 代入变形的原方程,必然得到一个恒等式; ③用代入法求出一个未知数的值后,再求另一个未知数时,一般代入变形后得到的方
程比较简单.
2.加减消元法
把方程组的两个方程(或先作适当变形)相加或相减,消去其中一个未知数,从而把
解二元一次方程组转化为解一元一次方程.这种解方程组的方法叫做加减消元法,简
联立成方程组,求出未知数的值,然后代入含有参数的方程即可求出参数的值.
四、列方程组解应用题步骤
1.列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未 知量联系起来,找出题目中的相等关系.一般来说,有几个未知量就必须列出几个方
程,所列方程必须满足:
①方程两边表示的是同类量;②同类量的单位要统一;③方程两边的数值要相等.
y
=
与 41
íî2
x
+
3
y
=
-7
有相同的解,求
a,b
的值.
新初中数学方程与不等式之二元一次方程组知识点总复习有答案解析
新初中数学方程与不等式之二元一次方程组知识点总复习有答案解析一、选择题1.已知关于x,y 的二元一次方程组323223x y m x y m+=-⎧⎨+=⎩ 的解适合方程25x y -=,则m 的值为( ) A .1 B .2C .3D .4【答案】C 【解析】 【分析】整理方程为3x+7y=2,与25x y -=组成新的方程组,求解得31x y =⎧⎨=-⎩,代入原方程组中任意一个方程即可求出m. 【详解】解:将m=2x+3y 代入3232x y m +=-中得,3x+7y=2, ∵x,y 的二元一次方程组323223x y m x y m+=-⎧⎨+=⎩ 的解适合方程25x y -=,∴联立方程组25372x y x y -=⎧⎨+=⎩,解得:31x y =⎧⎨=-⎩, ∴23m x y =+=3, 故选C. 【点睛】本题考查解二元一次方程组的方法,属于简单题,熟练掌握加减消元和代入消元的方法是解题关键.2.若关于x ,y 的方程组2315x y m x y +=-⎧⎨-=⎩的解满足x +y =3,则m 的值为 ( )A .-2B .2C .-1D .1【答案】D 【解析】 【分析】首先把m 看成常数,然后进一步解关于x 与y 的方程组,求得用m 表示的x 与y 的值后,再进一步代入3x y +=加以求解即可. 【详解】 由题意得:2315x y m x y +=-⎧⎨-=⎩①②,∴由①−②可得:()2315x y x y m +--=--,化简可得:336y m =-,即:2y m =-, 将其代入②可得:25x m -+=, ∴3x m =+ ∵3x y +=, ∴323m m ++-=, ∴1m =, 故选:D. 【点睛】本题主要考查了二元一次方程组的综合运用,熟练掌握相关方法是解题关键.3.若关于x y 、的方程组ax by c ex fy d +=⎧⎨+=⎩的解为12x y =⎧⎨=⎩,则方程组()()132132a x by ce x fy d ⎧-+=⎪⎨-+=⎪⎩的解是 ( )A .223x y =⎧⎪⎨=⎪⎩B .343x y =⎧⎪⎨=⎪⎩C .243x y =⎧⎪⎨=-⎪⎩D .323x y =⎧⎪⎨=⎪⎩【答案】B 【解析】 【分析】根据整体思想和方程组ax by c ex fy d +=⎧⎨+=⎩的解可得:112x -=和322=y,分别求解方程即可得出结果. 【详解】解:方程组()()132132a x by c e x fy d ⎧-+=⎪⎨-+=⎪⎩可化为:()()13221322a x byc e x fy d⎧-+=⎪⎪⎨-⎪+=⎪⎩,令12-=x m ,32=yn ,则am bn c em fn d +=⎧⎨+=⎩,∵方程组ax by c ex fy d +=⎧⎨+=⎩的解为12x y =⎧⎨=⎩,∴方程组am bn c em fn d +=⎧⎨+=⎩的解为12m n =⎧⎨=⎩,即112322x y -⎧=⎪⎪⎨⎪=⎪⎩,解得:343x y =⎧⎪⎨=⎪⎩,故选:B . 【点睛】本题主要考查了解二元一次方程组中的同解方程组问题,能把二元一次方程组转化成关于m ,n 的方程组是解此题的关键.4.已知关于x 、y 的二元一次方程组356310x y x ky +=⎧⎨+=⎩,给出下列结论:①当5k =时,此方程组无解;②若此方程组的解也是方程61516x y +=的解,则10k =;③无论整数k 何值,此方程组一定无整数解(x 、y 均为整数),其中正确的是()A .①②B .①③C .②③D .①②③【答案】D 【解析】 【分析】①将5k =代入方程组可得3563510x y x y +=⎧⎨+=⎩,解方程组即可作出判断;②将10k =代入方程组可得35631010x y x y +=⎧⎨+=⎩求得方程组的解后,再将解代入61516x y +=即可作出判断;③解356310x y x ky +=⎧⎨+=⎩得20231545x k y k ⎧=-⎪⎪-⎨⎪=⎪-⎩,根据k 为整数即可作出判断.【详解】解:①当5k =时,关于x 、y 的二元一次方程组为:3563510x y x y +=⎧⎨+=⎩,此时方程组无解,故本说法正确;②当10k =时,关于x 、y 的二元一次方程组为:35631010x y x y +=⎧⎨+=⎩,解得2345x y ⎧=⎪⎪⎨⎪=⎪⎩,将其代入61516x y +=,能使其左右两边相等,故本说法正确;③解356310x y x ky +=⎧⎨+=⎩得20231545x k y k ⎧=-⎪⎪-⎨⎪=⎪-⎩,因为k 为整数而x 、y 不能都为整数,故本说法正确. 故选:D 【点睛】此题考查了二元一次方程(组)的解、解二元一次方程组等,方程组的解即为能使方程组中两方程同时成立的未知数的值.5.如图,将长方形ABCD 的一角折叠,折痕为AE ,∠BAD 比∠BAE 大18°.设∠BAE 和∠BAD 的度数分别为x ,y ,那么x ,y 所适合的一个方程组是( )A .1890y x y x -=⎧⎨+=⎩B .18290y x y x -=⎧⎨+=⎩C .182y x y x -=⎧⎨=⎩D .18290x y y x -=⎧⎨+=⎩【答案】B 【解析】 【分析】首先根据题意可得等量关系:①∠BAD-∠BAE 大18°;②∠BAD+2∠BAE=90°,根据等量关系列出方程组即可. 【详解】解:设∠BAE 和∠BAD 的度数分别为x°和y°, 依题意可列方程组:18290y x y x -=⎧⎨+=⎩故选:B . 【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.6.已知关于x y 、的方程组135x y a x y a +=-⎧⎨-=+⎩,满足12x y ≥,则下列结论:①2a ≥-;②53a =-时,x y =;③当1a =-时,关于x y 、的方程组135x y a x y a +=-⎧⎨-=+⎩的解也是方程2x y +=的解;④若1y ≤,则1a ≤-,其中正确的有( ) A .1个 B .2个C .3个D .4个【答案】C 【解析】 【分析】①解方程组得322x a y a =+⎧⎨=--⎩,由12x y ≥得到关于a 的不等式,解之可得答案;②将x =y代入方程组,求出a的值,即可做出判断;③将x=y代入322x ay a=+⎧⎨=--⎩求出x、y的值,从而依据x=y得出答案;④由y≤1得出关于a的不等式,解之可得.【详解】解:关于x、y的方程组135 x y ax y a+=-⎧⎨-=+⎩,解得:322 x ay a=+⎧⎨=--⎩.①∵12x y ≥,∴a+3≥−a−1,解得a≥−2,故①正确;②将x=y代入322x ay a=+⎧⎨=--⎩,得:4353xa⎧=⎪⎪⎨⎪=-⎪⎩,即当x=y时,a=53-,此结论正确;③当a=−1时,2xy=⎧⎨=⎩,满足x+y=2,此结论正确;④若y≤1,则−2a−2≤1,解得a≥−32,此结论错误;故选:C.【点睛】本题考查了二元一次方程组的解,解题的关键是牢记二元一次方程组的解题方法.7.二元一次方程3x+y=7的正整数解有()组.A.0 B.1 C.2 D.无数【答案】C【解析】【分析】分别令x=1、2进行计算即可得【详解】解:方程3x+y=7,变形得:y=7-3x,当x=1时,y=4;当x=2时,y=1,则方程的正整数解有二组故本题答案应为:C【点睛】本题考查了二元一次方程的解,给出一个未知数的值求出另一个未知数的值即可.8.关于x、y的方程组222x ymx y m+=⎧⎨+=+⎩的解为整数,则满足这个条件的整数m的个数有()A.4个B.3个C.2个D.无数个【答案】A【解析】【分析】先解二元一次方程组x、y,然后利用解为整数解题即可【详解】解方程组222x ymx y m+=⎧⎨+=+⎩得到242m xmym ⎧=⎪⎪-⎨⎪=⎪-⎩因为方程组的解为整数,所以m可以为0、1、3、4,所以满足条件的m的整数有4个,选A【点睛】本题主要考查二元一次方程组的解,解出x、y再利用解为整数求解是本题关键9.若是关于x、y的方程组的解,则(a+b)(a﹣b)的值为( )A.15 B .﹣15 C.16 D.﹣16【答案】B【解析】【分析】把方程组的解代入方程组可得到关于a、b的方程组,解方程组可求a,b,再代入可求(a+b)(a-b)的值.【详解】解:∵是关于x、y的方程组的解,∴解得∴(a+b )(a-b )=(-1+4)×(-1-4)=-15. 故选:B . 【点睛】本题考查方程组的解的概念,掌握方程组的解满足方程组中的每一个方程是解题关键.10.若2334a b x y +与634a bx y -的和是单项式,则a b +=( ) A .3- B .0C .3D .6【答案】C 【解析】 【分析】根据同类项的定义可得方程组263a b a b +=⎧⎨-=⎩,解方程组即可求得a 、b 的值,即可求得a+b的值. 【详解】∵2334a b x y +与643a b x y -是同类项, ∴263a b a b +=⎧⎨-=⎩,解得30a b =⎧⎨=⎩, ∴a+b=3. 故选C. 【点睛】本题考查了同类项的定义及二元一次方程组的解法,根据同类项的定义得到方程组263a b a b +=⎧⎨-=⎩是解决问题的关键.11.用5个大小相同的小长方形拼成了如图所示的大长方形,若大长方形的周长是28,则每个小长方形的周长是( )A .12B .14C .13D .16【答案】A 【解析】 【分析】设小长方形的长为x,宽为y ,根据题意列出方程组,解方程组求出x,y 的值,进而可求小长方形的周长. 【详解】设小长方形的长为x,宽为y ,根据题意有2(3)228x y y x x =⎧⎨++⨯=⎩ 解得42x y =⎧⎨=⎩∴小长方形的周长为(42)212+⨯= , 故选:A . 【点睛】本题主要考查二元一次方程组的应用,读懂题意列出方程组是解题的关键.12.|21|0a b -+=,则2019()b a -等于( ) A .1- B .1C .20195D .20195-【答案】A 【解析】 【分析】根据二次根式的性质和绝对值的概念先列出关于a,b 的方程组,求出解,然后代入式子中求值. 【详解】12110a b -+=,所以50,210,a b a b ++=⎧⎨-+=⎩①②由②,得21b a =+③,将③代入①,得2150a a +++=, 解得2a =-, 把2a =-代入③中, 得3b =-, 所以20192019()(1)1b a -=-=-.故选A. 【点睛】本题考查了二元一次方程组的解法,也考查了二次根式和绝对值的性质,比较基础.13.已知关于x ,y 的二元一次方程组57345x y ax y a -=⎧⎨-+=⎩,且x ,y 满足x –2y =0,则a 的值为( ) A .2 B .–4 C .0 D .5【答案】C【解析】 【分析】将二元一次方程组中的两个方程相加,化简整理得x –2y =4a,进而求出4a =0即可解题. 【详解】 方程组57345x y ax y a -=⎧⎨-+=⎩,两个方程相加可得:x –2y =4a ,∵x –2y =0, ∴4a =0,解得a =0, 故选C . 【点睛】本题考查了加减消元的实际应用,属于简单题,熟悉加减消元的步骤,建立新的等量关系是解题关键.14.在方程组657237x y m x y +=+⎧⎨-=⎩的解中,x 、y 的和等于9,则72m +的算术平方根为( )A .7B .7±CD .【答案】A 【解析】 【分析】根据条件得到二元一次方程组937y x y x ⎧⎨-=+=⎩,求出x ,y 的值,进而求出72m +的算术平方根,即可. 【详解】∵657237x y m x y +=+⎧⎨-=⎩且x+y=9,∴937y x y x ⎧⎨-=+=⎩,解得:45x y =⎧⎨=⎩,∴72m +=65x y +=6×4+5×5=49, ∴72m +的算术平方根为:7. 故选A . 【点睛】本题主要考查二元一次方程组的解的意义,掌握解二元一次方程组的方法,是解题的关键.15.方程5x+2y=-9与下列方程构成的方程组的解为212xy=-⎧⎪⎨=⎪⎩的是()A.x+2y=1 B.3x+2y=-8C.5x+4y=-3 D.3x-4y=-8【答案】D【解析】试题分析:将x与y的值代入各项检验即可得到结果.解:方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x﹣4y=﹣8.故选D.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.16.某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x元,水笔每支为y元,那么根据题意,下列方程组中,正确的是()A.3201036x yx y-=⎧⎨+=⎩B.3201036x yx y+=⎧⎨+=⎩C.3201036y xx y-=⎧⎨+=⎩D.3102036x yx y+=⎧⎨+=⎩【答案】B【解析】分析:根据等量关系“一本练习本和一支水笔的单价合计为3元”,“20本练习本的总价+10支水笔的总价=36”,列方程组求解即可.详解:设练习本每本为x元,水笔每支为y元,根据单价的等量关系可得方程为x+y=3,根据总价36得到的方程为20x+10y=36,所以可列方程为:3 201036 x yx y+⎧⎨+⎩==,故选:B.点睛:此题主要考查了由实际问题抽象出二元一次方程组,得到单价和总价的2个等量关系是解决本题的关键.17.《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十.问甲乙持钱各几何?”其大意是:今有甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱;如果乙得到甲所有钱的三分之二,那么乙也共有.问甲、乙两人各带了多少钱?设甲带钱为,乙带钱为,根据题意,可列方程组为()A .B .C .D .【答案】A【解析】【分析】设甲需带钱x ,乙带钱y ,根据题意可得,甲的钱+乙的钱的一半=50,乙的钱+甲所有钱的,据此列方程组可得.【详解】解:设甲需带钱x ,乙带钱y , 根据题意,得:故选:A .【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.18.若关于x ,y 的方程组3,25x y m x y m -=+⎧⎨+=⎩的解满足x >y >0,则m 的取值范围是( ). A .m >2 B .m >-3 C .-3<m <2 D .m <3或m >2【答案】A【解析】【分析】先解方程组用含m 的代数式表示出x 、y 的值,再根据x >y >0列不等式组求解即可.【详解】解325x y m x y m -=+⎧⎨+=⎩,得 212x m y m =+⎧⎨=-⎩. ∵x >y >0,∴21220m m m +>-⎧⎨->⎩ , 解之得m >2.故选A.【点睛】本题考查了二元一次方程组及一元一次不等式组的应用,用含m 的代数式表示出x 、y 的值是解答本题的关键.19.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/小时,下坡路的平均速度是5千米/小时,若设小颖上坡用了min x ,下坡用了min y ,根据题意可列方程组( )A .35120016x y x y +=⎧⎨+=⎩B .35 1.2606016x y xy ⎧+=⎪⎨⎪+=⎩ C .35 1.216x y x y +=⎧⎨+=⎩D .351200606016x y x y ⎧+=⎪⎨⎪+=⎩ 【答案】B【解析】【分析】根据路程=时间乘以速度得到方程35 1.26060x y +=,再根据总时间是16分钟即可列出方程组.【详解】∵她去学校共用了16分钟,∴x+y=16,∵小颖家离学校1200米,∴35 1.26060x y +=, ∴35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩, 故选:B.【点睛】此题考查二元一次方程组的实际应用,正确理解题意列出方程组,注意时间单位,这是解题中容易出现错误的地方.20.如图,10块相同的长方形墙砖拼成一个大长方形,设长方形墙砖的长和宽分别为x 厘米和y 厘米,则依题意所列方程组正确的是( )A.2753x yy x+=⎧⎨=⎩B.2753x yx y+=⎧⎨=⎩C.2753x yy x-=⎧⎨=⎩D.2753x yx y+=⎧⎨=⎩【答案】B【解析】【分析】根据图示可得:矩形的宽可以表示为x+2y,宽又是75厘米,故x+2y=75,矩的长可以表示为2x,或x+3y,故2x=3y+x,整理得x=3y,联立两个方程即可.【详解】根据图示可得,2753x yx y+=⎧⎨=⎩故选B.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.。
(经典)北师大版八年级上册二元一次方程组复习题(带答案)
北师大版八年级上册二元一次方程组复习题1、我们知道解二元一次方程组的基本思想方法是“消元”,那么解方程组宜用______法;解方程组宜用______法.2、若|x-2y+1|+|x+y-5|=0,则x=__________,y=__________.3、某年级有学生258人,其中男生比女生人数的2倍少3人,求男、女生各有多少人.设女生人数为x,男生人数为y,则可列出方程组为___________.4、在一段坡路,小明骑自行车上坡的速度为每小时千米,下坡时的速度为每小时千米,则他在这段路上、下坡的平均速度是每小时()A. 千米B. 千米C. 千米D.无法确定5、某校初一(一)班学生到操场观看“抗震救灾”义演,若每条长凳坐5人,则少10条长凳;若每条长凳坐6人,则又多余2条长凳。
如果设学生数为人,长凳数为条,由题意可列方程组()A.B.C.D.6、方程(k2-4)x2+(k+2)x+(k-6)y=k+8是关于x,y的方程,试问当k为何值时:(1)方程为一元一次方程?(2)方程为二元一次方程?7、已知是方程的根,求代数式的值.8、根据题意列出方程组:将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;•若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?9、若是二元一次方程组的解,求a+2b的值。
10、已知是方程组的解,求代数式4a(a-b)+b(4a-b)+5的值.12、为响应县政府“创建绿色县城”的号召,一小区计划购进A,B两种树苗共20棵,已知A种树苗每棵80元,B种树苗每棵50元。
(1)若购进A、B两种树苗刚好用去1240元,问购进A、B两种树苗各多少棵?(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最少的方案,并求出该方案所需费用。
13、“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.14、王明决定暑假期间到工厂打工.一天他到某厂了解情况,下面是厂方有关人员的谈话:厂方说:我厂实行计件工资制,就是在发给每人相同生活费的基础上,每生产一件产品得一定的工资,超过500件,超过部分每件再增加0.5元;工人甲说:我上个月完成了450件产品,月收入是2850元;工人乙说:我上个月完成了300件产品,月收入是2100元.根据上述内容,完成下面问题:(1)设该厂工人每生产一件产品得元,每月生活费为元,求,的值;(2)厂长决定聘用王明.由于王明工作积极肯干,一个月收入达3166元,他该月的产量是多少?15、某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元,若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案.16、某通信运营商的短信收费标准如下:发送网内短信0.1元/条,发送网际短信0.15元/条,该通信运营商的用户小王某月发送以上两种短信共计150条,依照该收费标准共支出短信费用19元,问小王该月发送网内、网际短信各多少条?17、计算:(1)(3)(4)18、已知是方程组的解,求和的值。
中考数学总复习《二元一次方程组》专项测试卷(附答案)
中考数学总复习《二元一次方程组》专项测试卷(附答案)一、单选题(共12题;共24分)1.方程组 {y =2x 3x +y =15,的解是( ) A .{x =3y =6,B .{x =4y =3, C .{x =4y =8,D .{x =2y =3,2.以下是方程3x +2y =12的一个解的是( )A .{x =−1y =2B .{x =2y =−1C .{x =2y =3D .{x =3y =23.如图,在某张桌子上放相同的木块, R =32 , S =96 ,则桌子的高度是( )A .63B .58C .60D .644.已知{x =1,y =−2是关于x ,y 的二元一次方程ax +y =1的一个解,那么a 的值为( ) A .3B .1C .-1D .-35.已知关于x 、y 的方程组 {x +y =1−ax −y =3a +5 ,满足 x ≥12y ,则下列结论:①a ≥−2 ;②a =−53时, x =y ;③当 a =−1 时,关于x 、y 的方程组{x +y =1−ax −y =3a +5 的解也是方程 x +y =2 的解;④若 y ≤1 ,则 a ≤−1 ,其中正确的有( ) A .1个B .2个C .3个D .4个6.一个长方形的长减少3cm ,宽增加2cm ,就成为一个正方形,并且长方形的面积与正方形的面积相等.如果设这个长方形的长为xcm ,宽为ycm ,那么所列方程组正确的是( )A .{x +3=y −2(x +3)(y −2)=xyB .{x −3=y +2(x −3)(y +2)=xyC .{3−x =y +2(3−x)(y +2)=xyD .{x −2=y +3(x −2)(y +3)=xy7.若 |b +2|+(a −3)2=0 ,则 b a 的值为( )A .﹣bB .−18C .﹣8D .88.已知关于 x,y 的二元一次方程组 {3x +y =−4m +2x −y =6 的解满足 x +y <3 ,则m 的取值范围是( ) A .m >−52B .m <−52C .m >52D .m <529.已知关于x ,y 的二元一次方程ax +b =y ,当x 取不同值时,对应y 的值分别如下表所示:x … -1 0 1 2 3 … y…321-1…A .x <0B .x >0C .x <2D .x >210.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2(见下页).图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是{3x +2y =19x +4y =23,类似地,图2所示的算筹图我们可以表述为A .{2x +y =114x +3y =27B .{2x =y =114x +3y =22C .{3x +2y =19x +4y =23D .{2x +y =64x +3y =2711.一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为( ) A .54B .45C .27D .7212.用代入消元法解方程组 {3x −y =2,①y =1−2x ,② 时,把②代入①,得( )A .3x-1-2x= 2B .3x-(1-2x )= 2C .3x+(1-2x )=2D .3(1-2x )-y=2二、填空题(共6题;共6分)13.若 (a −1)2+|b −2|=5 ,则以a 、b 为边长的等腰三角形的周长为 14.如图,将长方形ABCD 分割成1个灰色长方形与148个面积相等的小正方形.若灰色长方形的长与宽之比为5:3,则AD :AB=15.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品(必须保证买两种),共花35元.毽子单价3元,跳绳单价5元,关于购买毽子和跳绳两种体育用品的数量购买的方案共有种.16.如果√x−2+(2y+1)2=0,那么xy=17.方程x2-y2=31的正整数解为。
求解二元一次方程组(知识梳理与考点分类讲解)-八年级数学上册基础知识专项突破讲与练(北师大版)
专题5.4求解二元一次方程组(知识梳理与考点分类讲解)【知识点1】代入消元法解二元一次方程组代入消元法:(1)定义:将其中一个方程组中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程组,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代入消元法,简称代入法.(2)用代入消元法解二元一次方程组的一般步骤:步骤具体做法目的注意事项(1)变形选取一个系数比较简单的二元一次方程变形,用含一个未知数的式子表示另一个未知数变形为x=ax+b(或x=ay+b)(a,b 是常数,a≠0)的形式一般选未知数系数比较简单的方程变形(2)代入把y=ax+B(或x=ay+b)代入另一个没有变形的方程消去一个未知数,将二元一次方程组转化为一元一次方程变形后的方程只能代入另一个方程(或另一个方程变形后的方程)(3)求解解消元后的一元一次方程求出一个未知数的值去括号时不能漏乘,移项时所移的项要变号(4)回代把求得的未知数的值代入步骤(1)中变形后的方程求出另一个未知数的值一般代入变形后的方程(5)写解把两个未知数的值用大括号联立起来特别提醒:将方程组中的一个二元一次方程写成用含一个未知数的式子表示另一个未知数的形式,是用代入法解二元一次方程组的前提和关键,其方法就是利用等式的性质将其变形为y=ax+b(或x=ay+b)的形式,其中a,b 为常数,a≠0.用含一个未知数的式子表示另一个未知数后,应代入另一个方程求解,否则只能得到一个恒等式,并不能求出方程组的解.【知识点2】加减消元法解二元一次方程组1.加减消元法的定义通过将两个方程相加(减)消去其中一个未知数,将二元一次方程组转化为一元一次方程来解,这种解二元一次方程组的方法叫做加减消元法,简称加减法.2.用加减消元法解二元一次方程组的一般步骤步骤具体做法目的注意事项(1)变形根据绝对值较小的未知数(同一个未知数)的系数的最小公倍数,给方程的两边都乘适当的数.使某一个未知数在两个方程中的系数相等或互为相反数.给某个方程乘一个数时,方程两边的每一项都要和这个数相乘(2)代入两个方程中同一个未知数的系数互为相反数时,将两个方程相加;同一个未知数的系数相等时,将两个方程相减.消去一个未知数,将二元一次方程组转化为一元一次方程把两个方程相加(减)时,一定要把两个方程两边分别相加(减).(3)求解解消元后的一元一次方程求出一个未知数的值(4)回代把求得的未知数的值代入方程组中某个较简单的方程求出另一个未知数的值回代时选择系数较简单的方程(5)写解把两个未知数的值用大括号联立起来特别提醒:1.两个方程同一未知数的系数的绝对值相等或成倍数关系时,解方程组应考虑用加减消元法.2.如果同一未知数的系数的绝对值既不相等又不成倍数关系,我们应设法将一个未知数的系数的绝对值转化为相等关系.3.用加减法时,一般选择系数比较简单(同一未知数的系数的绝对值相等或成倍数关系)的未知数作为消元对象.【考点目录】【考点1】代入消元法解二元一次方程组;【考点2】加减消元法解二元一次方程组;【考点3】同解方程组;【考点4】整体思想解二元一次方程组;【考点5】求解二元一次方程组——错题复原问题;【考点6】求解二元一次方程组——参数问题;【考点7】构造二元一次方程组求解。
八年级总复习二元一次方程组
总复习(五)二元一次方程【知识点归纳】: 一、二元一次方程的概念含有 个未知数,并且 的整式方程叫做二元一次方程。
二、二元一次方程组的解法(1)代入(消元)法 (2)加减(消元)法 三、一次函数与二元一次方程(组)的关系:(1)一次函数与二元一次方程的关系:直线y=kx+b 上任意一点的坐标都是它所对应的二元一次方程kx-y+b=0的解 (2)一次函数与二元一次方程组的关系:二元一次方程组的解可看作两个一次函数的图象的交点的坐标,反之也行。
【基础训练】1.已知⎩⎨⎧==5,3y x 是方程ax -2y =2的一个解,那么a 的值是 . 2.已知2x -3y =1,用含x 的代数式表示y ,则y = ,当x =0时,y = . 3.二元一次方程组⎩⎨⎧==+xy y x 2,102的解是( ).(A )⎩⎨⎧==;3,4y x (B )⎩⎨⎧==;6,3y x (C )⎩⎨⎧==;4,2y x (D )⎩⎨⎧==.2,4y x4.已知y =kx +b .如果x =4时,y =15;x =7时,y =24,则k = ;b = 。
5、下列方程中,是二元一次方程的是( ) A .3x -2y=4z B .6xy+9=0 C .1x +4y=6 D .4x=24y - 6、如果与是同类项,则x ,y 的值是( ). A.B. C.D.7.解下列方程组:(1)⎩⎨⎧-=--=-.2354,42y x y x (2)⎩⎨⎧=-=+.52,02y x y x2315a b 114x x ya b ++-1,3x y =⎧⎨=⎩2,2x y =⎧⎨=⎩1,2x y =⎧⎨=⎩2,3x y =⎧⎨=⎩(3) (4) ⎩⎨⎧+=-=+.76)1(4,443y x y x8、已知是关于x ,y 的二元一次方程组的解,求出a +b 的值.9.甲、乙两种商品原来的单价和为100元.因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%.甲、乙两种商品原来的单价各是多少?10.某校有两种类型的学生宿舍30间,大的宿舍每间可住8人,小的宿舍每间可住5人.该校198个住宿生恰好住满这30间宿舍.大、小宿舍各有多少间?第二元一次方程组一、选择题(本大题共10小题,每小题3分,共30分) 1.方程x +2y =7在自然数范围内的解( ).A .有无数对B .只有1对C .只有3对D .以上都不对 2.二元一次方程组的解是( ).A. B. C. D.5818,37,x y x y +=⎧⎨-=⎩4,3x y =⎧⎨=⎩1,2ax y x by +=-⎧⎨-=-⎩210,2x y y x+=⎧⎨=⎩4,3x y =⎧⎨=⎩3,6x y =⎧⎨=⎩2,4x y =⎧⎨=⎩4,2x y =⎧⎨=⎩3.根据下图所示的计算程序计算y 的值,若输入x =2,则输出的y 值是( ). A .0B .-2C .2D .44.如果与是同类项,则x ,y 的值是( ). A. B. C. D.5.如图,AB ⊥BC ,∠ABD 的度数比∠DBC 的度数的两倍少15°,设∠ABD 和∠DBC 的度数分别为x °,y °,那么下面可以求出这两个角的度数的方程组是( ).A. B. C. D.6.在等式y =kx +b 中,当x =0时,y =-1;当x =-1时,y =0,则这个等式是( ). A .y =-x -1 B .y =-x C .y =-x +1D .y =x +17.如果x -y =5且y -z =5,那么z -x 的值是( ). A .5B .10C .-5D .-108.无论m 为何实数,直线y =2x +m 与y =-x +4的交点不可能在( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限9.如果方程组的解中的x 与y 的值相等,那么a 的值是( ).A .1B .2C .3D .410.如果二元一次方程组的解是二元一次方程3x -5y -7=0的一个解,那么a 的值是( ).A .3B .5C .7D .9二、填空题(本大题共6小题,每小题4分,共24分)11.已知x =2a +4,y =2a +3,如果用x 表示y ,则y =______.12.若直线y =ax +7经过一次函数y =4-3x 和y =2x -1的交点,则a 的值是______. 13.一次函数y =x +1的图象与y =-2x -5的图象的交点坐标是__________. 14.已知2x -3y =1,用含x 的代数式表示y ,则y =______,当x =0时,y =______. 15.已知二元一次方程组则2x +9y =__________.16.如图,点A 的坐标可以看成是方程组______________的解. 三、解答题(本大题共8小题,共46分) 17.(6分)解下列方程组:2315a b 114x x ya b ++-1,3x y =⎧⎨=⎩2,2x y =⎧⎨=⎩1,2x y =⎧⎨=⎩2,3x y =⎧⎨=⎩90,15x y x y +=⎧⎨=-⎩90,215x y x y +=⎧⎨=-⎩90,152x y x y +=⎧⎨=-⎩290,215x x y =⎧⎨=-⎩3710,2(1)5x y ax a y +=⎧⎨+-=⎩,3x y a x y a-=⎧⎨+=⎩5818,37,x y x y +=⎧⎨-=⎩(1) (用代入法) (2) (用加减法)(3)用作图象的方法解方程组⎩⎨⎧=-=+.52,02y x y x18.(5分)已知是关于x ,y 的二元一次方程组的解,求出a +b 的值.19.(5分)若方程组的解满足方程组求a ,b 的值.4,25;x y x y -=⎧⎨+=⎩24,4523;x y x y -=-⎧⎨-=-⎩4,3x y =⎧⎨=⎩1,2ax y x by +=-⎧⎨-=-⎩3,1x y x y +=⎧⎨-=⎩8,4,ax by ax by +=⎧⎨-=⎩20.(5分)若关于x ,y 的方程组的解x ,y 的和等于5,求k 的值.21.(6分)为了净化空气,美化环境,某小区计划投资1.8万元种玉兰树和松柏树共80棵,已知某苗圃负责种活以上两种树苗的价格分别为:300元/棵,200元/棵,问可种玉兰树和松柏树各多少棵?22.(6分)甲、乙两种商品原来的单价和为100元.因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%.甲、乙两种商品原来的单价各是多少?23.(8分)甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元.234,59x y k x y k +=⎧⎨-=-⎩24.某山区有23名中、小学生因贫困失学需要捐助, 资助一名中学生的学习费用需要a 元,一名小学生的学习费用需要b 元,某校学生积极捐款,初中各年级学生捐款数额与用其恰好捐助贫困中学生和小学生人数的部分情况如下表:(1)求a 、b 的值;(2)初三年级学生的捐款解决了其余贫困中小学生的学习费用,请将初三年级学生可捐助的贫困中、小学生人数直接填入上表中?25. (10分)(1)求一次函数. (2)求直线与轴交点A 的坐标; 求直线与X 轴的交点B 的坐标; (3)求由三点P 、A 、B 围成的三角形的面积.的坐标的交点的图象与的图象P l x y l x y 2112122-=-=1l y 2l。
北师大版八年级上册数学《认识二元一次方程组》二元一次方程组研讨说课复习课件
相同:
含未知数个数不同
都是一次方程
观察思考
x-y=2
x+1=2(y-1)
x+y=8
5x+3y=34
只含有1个未知数(元),未知数的次数为1;
x + y = 45.
x + 15 = 60
含有2个未知数(元),未知数的次数为1.
一元一次方程
都是含未知数的等式方程
二元一次方程
观察比较
(是)
(是)
(不是)
(不是)
(是)
(不是)
通过上面问题,你认为二元一次方程组有哪些特征?
二元一次方程组的特点:①方程组中共有2个不同未知数;②方程组有2个一次方程;③一般用大括号把2个方程连起来.
例 在方程组 程组的有 ( ) A. 1个 B. 2个 C. 3个 D. 4个
巩固练习
1.下列选项中,是二元一次方程的是 ( ) A. 7x+3y=2 B.C. D.
A
2.下列方程组中,属于二元一次方程组的是 ( )A. B.C. D.
2m-1=1
1
3n-2m=1
1
2.如果 是二元一次方程,那么k的值是 ( ) A. 2 B. 3 C. 1 D. 0
B
x + y = 16
篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.某队为了争取较好名次,想在全部16场比赛中得到28分,那么这个队胜负场数分别是多少?
用学过的一元一次方程能解决此问题吗?
1. 了解二元一次方程(组)及其解的定义.
2. 会检验一对数值是不是某个二元一次方程组的解.
素养目标
3. 能根据简单的实际问题列出二元一次方程组.
二元一次方程的概念
初二数学二元一次方程组常考知识点
初二数学二元一次方程组常考知识点
1、二元一次方程
含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。
2、二元一次方程的解
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
3、二元一次方程组
含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。
4二元一次方程组的解
二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。
5、二元一次方程组的解法
(1)代入(消元)法(2)加减(消元)法
6、一次函数与二元一次方程(组)的关系:
(1)一次函数与二元一次方程的关系:
直线y=kx+b上任意一点的坐标都是它所对应的二元一次方程kx-y+b=0的解
当函数图象有交点时,说明相应的二元一次方程组有解;当函数图象(直线)平行即无交点时,说明相应的二元一次方程组无解。
八年级数学下册第五章二元一次方程组(同步+复习)精品讲义课件
【例1】
1. 解决上面提出的鸡兔同笼问题。 2. 古代问题:以绳测井。若将绳三折测之,绳 多五尺;若将绳四折测之,绳多一尺。绳长、 井深各几何?
【典例2】
【典例3】
【典例4】
第二单元:求解二元一次方程组
一.代入消元
代入法的基本思路:通过“代入”达到“消 元” 代入 提前 整理 二元 一元 2. 代入法的一般步骤(举例说明): 1.
① 一选:选一个未知数系数相对简单的方程(整理) ② 二变:把选中的方程变为用含有一个未知数的代 数式表示另一个未知数的形式。如 y=f(x)的形式 ③ 三代:把变化后的方程代入另一个方程,消去一 个未知数。化为一元一次方程。 ④ 四解:解一元一次方程得到一个未知数的值。 ⑤ 五求:把得到的未知数的值代入其中一个简单的 二元方程,求出另一个未知数的值。 ⑥ 六写:用大括号的形式写出方程组的解。
第四单元:二元一次方程 组的实际应用
列方程解应用题
• 思路:试设元-回头看-找关系-列方程。 • 步骤:审-设-列-解-验-答。 • 记住:未知数也是数,别把未知数不当数。
今有鸡兔同笼, 上有三十五头, 下有九十四足, 问鸡兔各几何?
鸡兔同笼
一.和、差、倍、分问题
1.
2.
复习小学解决这类问题的思路:砍腿法和安 脚法。 仔细审题:抓住“大、小、多、少、和、差、 倍、分等关键词找准等量关系。
(加减) 思路:二元 一元 依据:等量加(减)等量,和(差)相等。 一般步骤:
① 一选:选择两方程中系数简单的一个未知数。 ② 二变:利用等式性质二,把选中的未知数的系数 变为相等或相反的数(两边同乘一个数变公倍数) ③ 三加减:变化后符合条件的方程相加(减)消去 一个未知数,得到一个一元一次方程。 ④ 四解:解一元一次方程得到一个未知数的值。 ⑤ 五求:把得到的未知数的值代入一个较简单的二 元方程求出另一个未知数的值。 ⑥ 六写:用大括号的形式写出方程组的解。
初中数学中考复习考点知识与题型专题讲解06 二元一次方程组(解析版)
初中数学中考复习考点知识与题型专题讲解专题06 二元一次方程组【知识要点】考点知识一二元一次方程(组)有关概念二元一次方程的概念:含有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二元一次方程。
【注意】1)二元:含有两个未知数;2)一次:所含未知数的项的次数都是1。
例如:xy=1,xy的次数是二,属于二元二次方程。
2)方程:方程的左右两边必须都是整式(分母不能出现未知数)。
二元一次方程的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.【注意】1)在二元一次方程中,给定其中一个未知数的值,就可以求出另一个未知数的值。
2)二元一次方程有无数个解,满足二元一次方程使得方程左右相等都是这个方程的解,但并不是说任意一对数值就是它的解。
二元一次方程组的概念:含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.【注意】1)二元一次方程组的“二元”和“一次”都是针对整个方程组而言的,组成方程组的各个方程不必同时含有两个未知数,如⎩⎨⎧2x +1=0,x +2y =2也是二元一次方程组。
这两个一次方程不一定都是二元一次方程,但这两个一次方程必须一共含有两个未知数。
3) 方程组中的各个方程中,相同字母必须代表同一未知量。
4)二元一次方程组中的各个方程应是整式方程。
二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
【注意】1)二元一次方程组的解是方程中每个方程的解。
2)一般情况下二元一次方程组的解是唯一的,但是有的方程组有无数个解或无解。
如:⎩⎨⎧x +y =5,4x +4y =20.有的方程组无解,如:⎩⎨⎧x +y =5,x +y =2.考点知识二 解二元一次方程组消元的思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为熟悉的一元一次方程,即可先求出一个未知数,然后再求另一个未知数。
这种将未知数的个数由多化少、逐一解决的思想,叫做消元的思想。
第八章 二元一次方程组专题复习(学生版)
第八章 二元一次方程组专题复习(学生版)一.知识网络结构二.知识要点剖析知识点一:二元一次方程(组)有关概念1.(1)二元一次方程:含有_____未知数,且未知项的次数为___,这样的方程叫二元一次方程。
(2)二元一次方程的解:能使二元一次方程________的一对未知数的值叫做二元一次方程的解,通常用________的形式表示,任何一个二元一次方程都有________解。
2.(1)二元一次方程组:由_____或________且方程组中仅含有_______的未知数一次方程组成。
(2)二元一次方程组的解:二元一次方程组的两个方程的_______,叫做二元一次方程组的解。
3.三元一次方程组:由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组。
知识点二.二元一次方程(组)的基本解法:(1)_______消元法 (2)_______消元法 1.解二元一次方程组的思路:二元一次方程组____________一元一次方程。
2.解二元一次方程组的一般步骤:当方程组中有一个未知数的系数为1(或一1)或方程组中有1个方程的常数项为0时,选用_______消元法;当同一个未知数的系数的绝对值相等或同一个未知数的系数成整数倍时,用______消元法较简单。
知识点三.列一次方程组解应用题列二元一次方程组解应用题的一般步骤:概括为“______________________________”五步.三.考点典型例析考点1.等式变形1.如果2x-7y=8,那么用含y 的代数式表示x 正确的是( ) A.y=72-8x B.y=782+x C.x=278y + D.x=278y- 2.由方程组可得出x 与y 的关系是( )A.2x+y=4B.2x ﹣y=4C.2x+y=﹣4D.2x ﹣y=﹣4考点2.二元一次方程(组)的概念1.下列选项中,是二元一次方程的是( )A .xy +4x =7B .π+x =6C .x -y =1D .7x +3=5y +7z2.下列方程组:①⎩⎪⎨⎪⎧2x +y =0,x +y =2;②⎩⎪⎨⎪⎧3x -y =0,y =1;③⎩⎪⎨⎪⎧x -y =0,2x +3z =-2;④⎩⎪⎨⎪⎧x =1,y =2. 其中是二元一次方程组的有____________.(填序号即可)3.若一个二元一次方程组的解为,则这个方程组可以是 (只要求写出一个)4.若x|2m -3|+(m -2)y =6是关于x ,y 的二元一次方程,则m 的值是( ) A .1B .任何数C .2D .1或25.已知关于x ,y 的方程x 2m ﹣n ﹣2+4ym +n +1=6是二元一次方程,则m ,n 的值为_______.6.下列说法正确的是( ) A.是方程的一个解 B.是二元一次方程组C.方程可化为D.当a 、b 是已知数时,方程的解是考点3.二元一次方程(组)的解1.写出方程x +2y =5的正整数解___________.2.若关于x ,y 的方程组⎩⎪⎨⎪⎧x +ay =5,y -x =1有正整数解,则正整数a 为( )A .1,2B .2,5C .1,5D .1,2,53.如果⎩⎨⎧==13-y x 是方程ax+(a ﹣2)y=0的一组解,则a 的值( )A. 1B. 2C. ﹣1D. ﹣2 4.不解方程组,观察下列方程组无解的一组是( )二元一次方程二元一次方程组的概念二元一次方程组的解法 二元一次方程组的应用三元一次方程组____消元法____消元法解一元一次方程组A.⎩⎨⎧-=+=+2212y x y x B.⎩⎨⎧-=+=-42412y x y x C.⎩⎨⎧=+=+224336y x y x D.⎩⎨⎧-=+-=-22412y x y x5.以方程组 的解为坐标的点(x ,y )在第_____象限.6.已知是方程组的解,则间的关系是( ).A.B.C.D.7.小亮解方程组的解为,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则两个数●与★的值为( )A .B .C .D .8.若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +y =3,2x -ay =5的解是⎩⎪⎨⎪⎧x =b ,y =1,则a b 的值为______. 9.已知是二元一次方程组的解,则的算术平方根为( )A .4B .2C .D . ±210.若二元一次方程组⎩⎨⎧=-=+ay x ay x 93的解是二元一次方程2x ﹣3y+12=0的一个解,则a 的值是( )A.43 B.-74 C.47 D.-34 11.若方程组与有相同的解,则a= ,b= .12.已知方程组的解满足x+y=2,则k 的算术平方根为( )A .4B .﹣2C .﹣4D .213.若方程组的解是则方程组的解为 .14.解方程组⎩⎪⎨⎪⎧ax +by =2,cx -7y =8时,一学生把c 看错而得⎩⎪⎨⎪⎧x =-2,y =2,而正确的解是⎩⎪⎨⎪⎧x =3,y =-2,那么a ,b ,c 的值是( )A .不能确定B .a =4,b =5,c =-2C .a ,b 不能确定,c =-2D .a =4,b =7,c =2 考点4.解二元一次方程组 1.解下列方程组:(1)⎩⎪⎨⎪⎧x +2y =5,①3x -2y =-1;② (2)⎩⎨⎧=+=+2.54.22.35.12y x y x(3)⎩⎨⎧3(x +y )-4(x -y )=6,x +y 2-x -y 6=1. (4)⎩⎪⎨⎪⎧2x +y =3,3x -z =7,x -y +3z =02.用代入法解方程组有以下步骤:①:由(1),得y =(3);②:由(3)代入(1),得7x ﹣2×=3;③:整理得3=3;④:∴x 可取一切有理数,原方程组有无数个解 以上解法,造成错误的一步是( )A .① B .② C .③ D .④ 3.有加减法解方程3210415x y x y -=⎧⎨-=⎩①②时,最简捷的方法是( )A .①×4﹣②×3,消去xB .①×4+②×3,消去xC .②×2+①,消去yD .②×2﹣①,消去y 4.已知,则.5.若与的和是单项式,则( ).A. B.C. D.6.已知代数式x 2+bx+c ,当x=1时,它的值是2;当x=-1时,它的值是8;则b= ,c= 。
二元一次方程组考点总结及练习附复习资料
二元一次方程组考点解析考点一二元一次方程(组)的解的概念【例1】已知2,1xy==⎧⎨⎩是二元一次方程组8,1mx nynx my+=-=⎧⎨⎩的解,则2m-n的算术平方根为( )A.4B.2D.±2【解析】把2,1xy==⎧⎨⎩代入方程组8,1mx nynx my+=-=⎧⎨⎩得28,2 1.m nn m+=-=⎧⎨⎩解得3,2.mn==⎧⎨⎩所以2m-n=4,4的算术平方根为2.故选B.【方法归纳】方程(组)的解一定满足原方程(组),所以将已知解代入含有字母的原方程(组),得到的等式一定成立,从而转化为一个关于所求字母的新方程(组),解这个方程(组)即可求得待求字母的值.变式练习1.若方程组,ax y bx by a+=-=⎧⎨⎩的解是1,1.xy==⎧⎨⎩求(a+b)2-(a-b)(a+b)的值.考点二二元一次方程组的解法【例2】解方程组:1 28. x yx y=++=⎧⎨⎩,①②【分析】可以直接把①代入②,消去未知数x,转化成一元一次方程求解.也可以由①变形为x-y=1,再用加减消元法求解.【解答】方法一:将①代入到②中,得2(y+1)+y=8.解得y=2.所以x=3.因此原方程组的解为3,2. xy==⎧⎨⎩方法二:1, 28. x yx y=++=⎧⎨⎩①②对①进行移项,得x-y=1.③②+③得3x=9.解得x=3.将x=3代入①中,得y=2. 所以原方程组的解为3,2. xy==⎧⎨⎩【方法归纳】二元一次方程组有两种解法,我们可以根据具体的情况来选择简便的解法.如果方程中有未知数的系数是1时,一般采用代入消元法;如果两个方程的相同未知数的系数相同或互为相反数时,一般采用加减消元法;如果方程组中的系数没有特殊规律,通常用加减消元法.变式练习2.方程组 25,7213x y x y +=--=⎧⎨⎩的解是__________. 3.解方程组:3419,4.x y x y +=-=⎧⎨⎩①②考点三 由解的关系求方程组中字母的取值范围【例3】若关于x 、y 的二元一次方程组31,33x y a x y +=++=⎧⎨⎩①②的解满足x+y<2,则a 的取值范围为( )A.a<4B.a>4C.a<-4D.a>-4【分析】本题运用整体思想,把二元一次方程组中两个方程相加,得到x 、y 的关系,再根据x+y<2,求得本题答案;也可以按常规方法求出二元一次方程组的解,再由x+y<2求出a 的取值范围,但计算量大.【解答】由①+②,得4x+4y=4+a,x+y=1+4a ,由x+y<2,得1+4a <2,解得a<4.故选A. 【方法归纳】通过观察两个方程,运用整体思想解题,这是中考中常用的解题方法.变式练习4.已知x 、y 满足方程组25,24,x y x y +=+=⎧⎨⎩则x-y 的值为__________.考点四 二元一次方程组的应用【例4】某中学拟组织九年级师生去黄山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话:李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”小芳:“我们学校八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到韶山参观,一天的租金共计5 000元.”小明:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.”根据以上对话,解答下列问题:(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元?【分析】(1)根据题目给出的条件得出的等量关系是60座客车每辆每天的租金-45座客车每辆每天的租金=200元,4辆60座一天的租金+2辆45座的一天的租金=5 000元;由此可列出方程组求解;(2)可根据“我们九年级师生租用5辆60座和1辆45座的客车正好坐满”以及(1)的结果来求出答案.【解答】(1)设平安公司60座和45座客车每辆每天的租金分别为x 元,y 元.由题意,得200,425000.x y x y -=+=⎧⎨⎩解得900,700.x y ==⎧⎨⎩ 答:平安客运公司60座和45座的客车每辆每天的租金分别为900元和700元.(2)5×900+1×700=5 200(元).答:九年级师生租车一天共需资金5 200元.1.审题:弄清已知量和未知量;2.列未知数,并根据相等关系列出符合题意的方程;3.解这个方程;4.验根并作答:检验方程的根是否符合题意,并写出完整的答.变式练习5.如图是一个正方体的展开图,标注了字母“a”的面是正方体的正面.如果正方体相对两个面上的代数式的值相等,求x,y的值.6.在某次亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1 800条或者脖子的丝巾1 200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?复习测试一、选择题(每小题3分,共30分)1.下列方程组中,是二元一次方程组的是( )A.212x yy z+=-+=⎧⎨⎩B.53323x yy x-==+⎧⎨⎩C.512x yxy-==⎧⎨⎩D.2371x yx y-=+=⎧⎨⎩2.方程2x+y=9的正整数解有( )A.1组B.2组C.3组D.4组3.方程组32,3211x yx y-=+=⎧⎨⎩①②的最优解法是( )A.由①得y=3x-2,再代入②B.由②得3x=11-2y,再代入①C.由②-①,消去xD.由①×2+②,消去y4.已知21xy==⎧⎨⎩,是方程组4,ax byax by+=--=⎧⎨⎩的解,那么a,b的值分别为( )A.1,2B.1,-2C.-1,2D.-1,-25.A、B两地相距6 km,甲、乙两人从A、B两地同时出发,若同向而行,甲3 h可追上乙;若相向而行,1 h相遇,A.6336x y x y +=+=⎧⎨⎩B.636x y x y +=-=⎧⎨⎩C.6336x y x y -=+=⎧⎨⎩D.6336x y x y +=-=⎧⎨⎩ 6.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )A.3场B.4场C.5场D.6场7.(2014·抚州)已知a 、b 满足方程组22,26,a b a b -=+=⎧⎨⎩则3a+b 的值为( )A.8B.4C.-4D.-88.方程组24,31,7x y x z x y z +=+=++=⎧⎪⎨⎪⎩的解是( )A.221x y z ===⎧⎪⎨⎪⎩B.211x y z ===⎧⎪⎨⎪⎩C.281x y z ⎧=-==⎪⎨⎪⎩D.222x y z ===⎧⎪⎨⎪⎩9.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( )A.50人,40人B.30人,60人C.40人,50人D.60人,30人10.甲、乙二人收入之比为4∶3,支出之比为8∶5,一年间两人各存5 000元(设两人剩余的钱都存入银行),则甲、乙两人年收入分别为( )A.15 000元,12 000元B.12 000元,15 000元C.15 000元,11 250元D.11 250元,15 000元二、填空题(每小题4分,共20分)11.已知a 、b12.已知2,1x y ==⎧⎨⎩是二元一次方程组7,1mx ny nx my +=-=⎧⎨⎩的解,则m+3n 的立方根为__________.13.孔明同学在解方程组,2y kx b y x =+=-⎧⎨⎩的过程中,错把b 看成了6,他其余的解题过程没有出错,解得此方程组的解为1,2,x y =-=⎧⎨⎩又已知3k+b=1,则b 的正确值应该是__________. 14.已知|x-8y|+2(4y-1)2+|8z-3x|=0,则x=__________,y=__________,z=__________.15.一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为__________.三、解答题(共50分)16.(10分)解方程组:(1)251x y x y +=-⎧=⎨⎩,①;② (2)1151.x y z y z x z x y +-=+-=+-⎪⎨=⎧⎪⎩,①,②③17.(8分)吉林人参是保健佳品.某特产商店销售甲、乙两种保鲜人参,甲种人参每棵100元,乙种人参每棵70元.王叔叔用1 200元在此特产商店购买这两种人参共15棵,求王叔叔购买每种人参的棵数.18.(9分)已知方程组53,54x yax y+=+=⎧⎨⎩与方程组25,51x yx by-=+=⎧⎨⎩有相同的解,求a,b的值.19.(11分)食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B 饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?20.(12分)某商场计划拨款9万元从厂家购进50台电冰箱,已知该厂家生产三种不同型号的电冰箱,出厂价分别为:甲种每台1 500元,乙种每台2 100元,丙种每台2 500元.(1)某商场同时购进其中两种不同型号电冰箱共50台,用去9万元,请你研究一下商场的进货方案;(2)该商场销售一台甲种电冰箱可获利150元,销售一台乙种电冰箱可获利200元,销售一台丙种电冰箱可获利250元,在同时购进两种不同型号的方案中,为使销售时获利最多,你选择哪种进货方案?参考答案变式练习1.把1,1x y ==⎧⎨⎩代入方程组,ax y b x by a +=-=⎧⎨⎩,得1,1.a b b a +=-=⎧⎨⎩ 整理,得1,1.a b a b -=-+=⎧⎨⎩ ∴(a+b)2-(a-b)(a+b)=12-(-1)×1=2.2.13x y ==-⎧⎨⎩, 3.由②,得x=4+y.③把③代入①,得3(4+y)+4y=19.解得y=1.把y=1代入③,得x=4+1=5.∴原方程组的解为51.x y ==⎧⎨⎩, 4.15.根据题意,得25,5 1.x y x y -=-=+⎧⎨⎩解得3,1.x y ==⎧⎨⎩ 6.设应分配x 名工人生产脖子上的丝巾,y 名工人生产手上的丝巾,由题意得 70,120021800.x y x y +=⨯=⎧⎨⎩解得30,40.x y ==⎧⎨⎩ 答:应分配30名工人生产脖子上的丝巾,40名工人生产手上的丝巾. 复习测试1.B2.D3.C4.D5.D6.C7.A8.C9.C 10.C11.6 12.2 13.-11 14.214 34 15.35 16.(1)①+②,得3x=6.解得x=2.把x=2代入②,得y=1.所以原方程组的解为21.x y ==⎧⎨⎩, (2)①+②+③,得x+y+z=17.④④-①,得2z=6,即z=3.④-②,得2x=12,即x=6.④-③,得2y=16,即y=8.所以原方程组的解是683.x y z ⎧⎪=⎩==⎪⎨,,17.设王叔叔购买甲种人参x 棵,乙种人参y 棵.根据题意,得15x y +=⎧⎨,解得5x =⎧⎨,答:王叔叔购买甲种人参5棵,乙种人参10棵.18.解方程组53,25x y x y +=-=⎧⎨⎩,得1,2.x y ==-⎧⎨⎩将x=1,y=-2代入ax+5y=4,得a=14.将x=1,y=-2代入5x+by=1,得b=2.19.设A 饮料生产了x 瓶,B 饮料生产了y 瓶,依题意得100,23270.x y x y +=+=⎧⎨⎩解得30,70.x y ==⎧⎨⎩答:A 饮料生产了30瓶,B 饮料生产了70瓶.20.(1)①设购进甲种电冰箱x 台,购进乙种电冰箱y 台,根据题意,得50,1500210090000.x y x y +=+=⎧⎨⎩解得25,25.x y ==⎧⎨⎩ 故第一种进货方案是购甲、乙两种型号的电冰箱各25台.②设购进甲种电冰箱x 台,购进丙种电冰箱z 台,根据题意,得50,1500250090000.x z x z +=+=⎧⎨⎩解得35,15.x z ==⎧⎨⎩ 故第二种进货方案是购进甲种电冰箱35台,丙种电冰箱15台. ③设购进乙种电冰箱y 台,购进丙种电冰箱z 台,根据题意,得 50,2100250090000.y z y z +=+=⎧⎨⎩解得87.5,37.5.y z ==-⎧⎨⎩不合题意,舍去. 故此种方案不可行.(2)上述的第一种方案可获利:150×25+200×25=8 750(元),第二种方案可获利:150×35+250×15=9 000(元),因为8 750<9 000,故应选择第二种进货方案,即购进甲种电冰箱35台,乙种电冰箱15台.。
二元一次方程组专题复习
(2)制作一件A型工艺品的钱数为:0.9×8+0.3×10=10.2(元), 则制作A型号的工艺品需材料的钱数为:10.2×30=306(元), 制作一件B型工艺品需要的钱数为:0.4×8+1×10=13.2(元), 则制作B型号的工艺品需材料的钱数为:13.2×20=264(元),
6.列二元一次方程解决实际问题的一 般步骤(应用题)
审: 审清题目中的等量关系.
设: 设未知数. 列: 根据等量关系,列出方程组. 解: 解方程组,求出未知数. 答: 检验所求出未知数是否符合题意,写出答案.
7.二元一次方程与一次函数
二元一次方程和一次 函数的图象的关系
二元一次方程组和一 次函数的图象的关系
s 5 0
t
2 5
s
t 2
7 5
5
例2.甲、乙二人以不变的速度在环形路上跑步, 如果同时同地出发,相向而行,每隔2分钟相遇一 次;如果同向而行,每隔6分钟相遇一次.已知甲 比乙跑得快,甲、乙每分钟各跑多少圈
解:设甲、乙二人每分钟各跑x、y圈,根据
题意得方程组 2( x y ) 1
6
2.二元一次方程的解:使二元一次方程两边的值 相等的两个未知数的值,叫做二元一次方程的解.
3.二元一次方程组:由两个一次方程组成,共有两 个未知数的方程组,叫做二元一次方程组.
4.二元一次方程组的解: 二元一次方程组中各个方程的公共解,叫做二 元一次方程组的解. 5.方程组的解法
基本思想或思路——消元 常用方法————代入法和加减法 根据方程未知数的系数特征确定用哪一种解法.
(
x
y)
1
解得
初二数学二元一次方程组专题复习
二元一次方程组【知识点一:二元一次方程组的有关概念】二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.【典型例题】1.在以下方程中,不是二元一次方程的有〔 〕A .*+y =3B .*y =3C .*-y =3D .*=3-y 2.以下方程中,①2*-*y =1;②1102x y -=;③*2-*=1;④3*-5y =6有〔 〕二元一次方程.A .1个B .2个C .3个D .4个3.假设关于*,y 的方程*m +1+y n -2=0是二元一次方程,则m +n 的和为〔 〕 A .0B .1C .2D .3【变式练习】 1.以下各式中,属于二元一次方程的是〔 〕A .*2-25=0B .*=2yC .y -6=0D .*+y +z =02.以下四个方程中,是二元一次方程的是〔 〕A .*y =3B .2*-y 2=9C .132x y=+D .3*-2y =0 3.假设*a -2+3y b +3=15是关于*,y 的二元一次方程,则a +b 的值为〔 〕A .1B .-1C .2D .-2【提高练习】 1.以下式子中,属于二元一次方程的是〔 〕A .2*+3=*-5B .*+y <2C .3*-1=2-5yD .*y ≠12.:m*-3y =2*+6是关于*、y 的二元一次方程,则m 的值为〔 〕A .m ≠0B .m ≠3C .m ≠-2D .m ≠23.*2m -1+3y 4-2n =-7是关于*,y 的二元一次方程,则m 、n 的值是〔 〕A.B.C.D.二元一次方程的解集:适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解.对于任何一个二元一次方程,令其中一个未知数取任意一个值,都能求出与它对应的另一个未知数的值.因此,任何一个二元一次方程都有无数多个解.由这些解组成的集合,叫做这个二元一次方程的解集.【典型例题】1.假设是关于*、y的二元一次方程a*-3y=1的解,则a的值为〔〕A.-5B.-1C.2D.72.方程*+2y=5的正整数解有〔〕A.一组B.二组C.三组D.四组3.方程5*-2y=1,当*与y相等时,*与y的值分别是〔〕A.*=13,y=13B.*=-1,y=-1 C.*=1,y=1 D.*=2,y=2【变式练习】1.二元一次方程5a-11b=21〔〕A.有且只有一解B.有无数解C.无解D.有且只有两解2.假设是方程2*-3y+a=1的解,则a的值是〔〕A.1 B.12C.2 D.03.是二元一次方程2*-y=14的解,则k的值是〔〕A.2 B.-2C.3D.-34、方程2*+y=9在正整数*围内的解有〔〕A、1个B、2个C、3个D、4个【提高练习】1.方程*+y=6的非负整数解有〔〕A.6个B.7个C.8个D.无数个2.二元一次方程3*+2y=15在自然数*围内的解的个数是〔〕A.1个B.2个C.3个D.4个二元一次方程组及其解:两个二元一次方程合在一起就组成了一个二元一次方程组.一般地,能使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.【典型例题】1、以下方程组中,属于二元一次方程组的是( )A 、⎩⎨⎧==+725xy y xB 、⎪⎩⎪⎨⎧=-=+043112y x y x C 、⎪⎩⎪⎨⎧=+=343453yx yx D 、⎩⎨⎧=+=-12382y x y x2.以下方程组中,是二元一次方程组的是〔 〕A 、B 、C 、D 、3.假设方程组是二元一次方程组,则a 的值为_______.4.关于*、y 的方程组的解是,则|m -n |的值是〔 〕A .5B .3C .2D .15.假设方程组026ax y x by +=⎧⎨+=⎩的解是12x y =⎧⎨=-⎩,则a +b =_______. 【变式练习】1.以下方程组中,是二元一次方程组的是〔 〕A .228423119...23754624x y x y a b x B C D x y b c y x x y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩2.以下方程组中,不是二元一次方程组的是〔 〕A 、B 、C 、D 、3.是二元一次方程组的解,则2m -n 的算术平方根为〔〕 A .±2 B .2C .2 D .44.假设方程组2x y b x by a +=⎧⎨-=⎩的解是10x y =⎧⎨=⎩,则│a -b │=_____. 【提高练习】1.方程2*+3y =11和以下方程构成的方程组的解是的方程是〔 〕A .3*+4y =20B .4*-7y =3C .2*-7y =1D .5*-4y =62.│2*-y -3│+〔2*+y +11〕2=0,则〔 〕A .21x y =⎧⎨=⎩B .03x y =⎧⎨=-⎩C .15x y =-⎧⎨=-⎩D .27x y =-⎧⎨=-⎩ 3、假设3243y x b a +与b a y x -634是同类项,则=+b a 〔 〕A 、-3B 、0C 、3D 、6【知识点二:二元一次方程组的两种解法】【例1】假设1721x ax by y ax by =+=⎧⎧⎨⎨=--=-⎩⎩是方程组的解,则a =______,b =_______. 【变式练习】1、以*、y 为未知数的方程组⎩⎨⎧=+=-24by ax by ax 与方程组⎩⎨⎧=+=+654432y x y x 的解一样,试求a 、b 的值. 2、假设把上面题目改成方程组451x y ax by -=⎧⎨+=-⎩与 ⎩⎨⎧=-=+184393by ax y x 的解一样,试求a 、b 的值. 【例四】二元一次方程3*+4y =6,当*、y 互为相反数时,*=_____,y =______;当*、y 相等时,*=______,y = _______ .【例五】2*2m -3n -7-3y m +3n +6=8是关于*,y 的二元一次方程,求n 2m【变式练习】1、假设2a y +5b 3*与-4a 2*b 2-4y 是同类项,则a =______,b =_______.2、如果〔5a -7b +3〕2+53+-b a =0,求a 与b 的值.【扩展】代入法在一些特殊方程中的巧妙应用【例五】方程组⎩⎨⎧-=+=-252132y x y x 中,*的系数特点是______;方程组⎩⎨⎧=-=+437835y x y x 中,y 的系数特点是________.这两个方程组用__________________法解比拟方便.【变式练习】【例六】方程m*+ny =10有两个解,分别是⎩⎨⎧-==⎩⎨⎧=-=1221y x y x 和,则m =________,n =__________. 【变式练习】1、假设2a +3b =4和3a -b =-5能同时成立,则a =_____,b =______.2、如果二元一次方程组⎩⎨⎧=-=+a y x a y x 4的解是二元一次方程3*-5y -28=a 的一个解,则a 的值是_________.3、假设关于*、y 的二元一次方程组⎩⎨⎧-=+=+1532m y x m y x 的解*与y 的差是7,求m 的值. 4、假设3122x m y m =+⎧⎨=-⎩,是方程组1034=-y x 的一组解,求m 的值.5、二元一次方程343x my mx ny -=+=和有一个公共解11x y =⎧⎨=-⎩,求m 和n 的值. 【例七】⎩⎨⎧=+=+8272y x y x ,则*-y 的值是___________. 【变式练习】1、⎩⎨⎧=+=+8272y x y x ,则y x y x +-=_________.2、⎩⎨⎧=-=+ay x a y x 22,a ≠0,则y x =__________. 观察思考,选择适当的方法消元并加以归纳总结(1) (2)(3) 〔4〕 【知识点三:一次函数与二元一次方程〔组〕的综合应用】1.假设直线y =2x +n 与y =m*-1相交于点(1,-2),则( ). ⎩⎨⎧=+-=65732y x y x ⎩⎨⎧=-=+6341953y x y xA.m=12,n=-52B.m=12,n=-1C.m=-1,n=-52D.m=-3,n=-322.直线y=12*-6与直线y=-231*-1132的交点坐标是( ).A.(-8,-10) B.(0,-6)C.(10,-1) D.以上答案均不对3.在y=k*+b中,当*=1时y=2;当*=2时y=4,则k,b的值是( ).A.kb=⎧⎨=⎩B.2kb=⎧⎨=⎩C.31kb=⎧⎨=⎩D.2kb=⎧⎨=⎩4.直线k*-3y=8,2*+5y=-4交点的纵坐标为0,则k的值为( ) A.4 B.-4 C.2 D.-25.4353xy⎧=⎪⎪⎨⎪=⎪⎩,是方程组3,12x yxy+=⎧⎪⎨-=⎪⎩的解,则一次函数y=3-*和y=2x+1的交点是________.6.一次函数y=3*+7的图像与y轴的交点在二元一次方程-2*+by=18上,则b=_________.7.关系*,y的二元一次方程3a*+2by=0和5a*-3by=19化成的两个一次函数的图像的交点坐标为(1,-1),则a=_______,b=________.8.方程组230,2360y xy x-+=⎧⎨+-=⎩的解为4,31,xy⎧=⎪⎨⎪=⎩则一次函数y=3*-3与y=-32*+3的交点P的坐标是______.9.假设直线y=a*+7经过一次函数y=4-3*和y=2*-1的交点,求a的值.10.(1)在同一直角坐标系中作出一次函数y=*+2,y=*-3的图像.(2)两者的图像有何关系"(3)你能找出一组数适合方程*-y=2,*-y=3吗"________,这说明方程组2,3,x yx y-=-⎧⎨-=⎩_______.11.如下图,求两直线的解析式及图像的交点坐标.12.在直角坐标系中,直线L1经过点(2,3)和(-1,-3),直线L2经过原点,且与直线L1交于点(-2,a).(1)求a的值.(2)(-2,a)可看成怎样的二元一次方程组的解"(3)设交点为P,直线L1与y轴交于点A,你能求出△APO的面积吗"【知识点四:二元一次方程组应用题】【一、百分数问题】1.*市现有42万人口,方案一年后城镇人口增加0.8%,农村人口增加工厂1.1%,这样全市人口将增加1%,求这个市现在的城镇人口与农村人口"2.要配浓度是45%的盐水12千克,现有10%的盐水与85%的盐水,这两种盐水各需多少"3.校办工厂去年的总收入比总支出多50万元,今年的总收入比去年增加了10%,总支出节约了20%,因而总收入比总支出多100万元. 求去年我校校办工厂的总收入和总支出各多少万元"4.*工厂去年的利润〔总产值-总支出〕为200万元,今年的总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元一次方程组【知识点一:二元一次方程组的有关概念】二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.【典型例题】1.在下列方程中,不是二元一次方程的有()A.x+y=3 B.xy=3 C.x-y=3 D.x=3-y2.下列方程中,①2x-xy=1;②112xy-=;③x2-x=1;④3x-5y=6有()二元一次方程.A.1个B.2个C.3个D.4个3.若关于x,y的方程x m+1+y n-2=0是二元一次方程,则m+n的和为()A.0 B.1 C.2 D.3【变式练习】1.下列各式中,属于二元一次方程的是()A.x2-25=0 B.x=2y C.y-6=0 D.x+y+z=02.下列四个方程中,是二元一次方程的是()A.xy=3 B.2x-y2=9 C.132x y=+D.3x-2y=03.若x a-2+3y b+3=15是关于x,y的二元一次方程,则a+b的值为()A.1 B.-1 C.2 D.-2【提高练习】1.下列式子中,属于二元一次方程的是()A.2x+3=x-5 B.x+y<2 C.3x-1=2-5y D.xy≠12.已知:mx-3y=2x+6是关于x、y的二元一次方程,则m的值为()A.m≠0B.m≠3C.m≠-2 D.m≠23.已知x2m-1+3y4-2n=-7是关于x,y的二元一次方程,则m、n的值是()A.B.C.D.二元一次方程的解集:适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解.对于任何一个二元一次方程,令其中一个未知数取任意一个值,都能求出与它对应的另一个未知数的值.因此,任何一个二元一次方程都有无数多个解.由这些解组成的集合,叫做这个二元一次方程的解集.【典型例题】1.若是关于x、y的二元一次方程ax-3y=1的解,则a的值为()A.-5 B.-1 C.2 D.72.方程x+2y=5的正整数解有()A.一组B.二组C.三组D.四组3.已知方程5x-2y=1,当x与y相等时,x与y的值分别是()A.x=13,y=13B.x=-1,y=-1 C.x=1,y=1 D.x=2,y=2【变式练习】1.二元一次方程5a-11b=21()A.有且只有一解B.有无数解C.无解D.有且只有两解2.若是方程2x-3y+a=1的解,则a的值是()A.1 B.12C.2 D.03.已知是二元一次方程2x-y=14的解,则k的值是()A.2 B.-2 C.3 D.-34、方程2x+y=9在正整数范围内的解有()A、1个B、2个C、3个D、4个【提高练习】1.方程x+y=6的非负整数解有()A.6个B.7个C.8个D.无数个2.二元一次方程3x+2y=15在自然数范围内的解的个数是()A.1个B.2个C.3个D.4个二元一次方程组及其解:两个二元一次方程合在一起就组成了一个二元一次方程组.一般地,能使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解. 【典型例题】1、下列方程组中,属于二元一次方程组的是( )A 、⎩⎨⎧==+725xy y xB 、⎪⎩⎪⎨⎧=-=+043112y x y xC 、⎪⎩⎪⎨⎧=+=343453y x y xD 、⎩⎨⎧=+=-12382y x y x2.下列方程组中,是二元一次方程组的是( )A 、B 、C 、D 、3.若方程组是二元一次方程组,则a 的值为_______.4.关于x 、y 的方程组的解是,则|m -n |的值是( )A .5B .3C .2D .15.若方程组026ax y x by +=⎧⎨+=⎩的解是12x y =⎧⎨=-⎩,则a +b =_______.【变式练习】1.下列方程组中,是二元一次方程组的是( )A .228423119 (23754624)x y x y a b x B C D x y b c y x x y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩ 2.下列方程组中,不是二元一次方程组的是( )A 、B 、C 、D 、3.已知是二元一次方程组的解,则2m -n 的算术平方根为( ) A .±2 B .2C .2D .44.若方程组2x y b x by a +=⎧⎨-=⎩的解是1x y =⎧⎨=⎩,那么│a -b │=_____.【提高练习】1.方程2x +3y =11和下列方程构成的方程组的解是 的方程是( )A .3x +4y =20B .4x -7y =3C .2x -7y =1D .5x -4y =62.已知│2x -y -3│+(2x +y +11)2=0,则( )A .21x y =⎧⎨=⎩ B .03x y =⎧⎨=-⎩ C .15x y =-⎧⎨=-⎩ D .27x y =-⎧⎨=-⎩3、若3243y x b a +与b a y x -634是同类项,则=+b a ( )A 、-3B 、0C 、3D 、6【知识点二:二元一次方程组的两种解法】【例1】若1721x ax by y ax by =+=⎧⎧⎨⎨=--=-⎩⎩是方程组的解,则a =______,b =_______. 【变式练习】1、以x 、y 为未知数的方程组⎩⎨⎧=+=-24by ax by ax 与方程组⎩⎨⎧=+=+654432y x y x 的解相同,试求a 、b 的值.2、若把上面题目改成方程组451x y ax by -=⎧⎨+=-⎩与⎩⎨⎧=-=+184393by ax y x 的解相同,试求a 、b 的值. 【例四】已知二元一次方程3x +4y =6,当x 、y 互为相反数时,x =_____,y =______;当x 、y 相等时,x =______,y = _______ . 【例五】已知2x 2m-3n -7-3y m +3n +6=8是关于x ,y 的二元一次方程,求n 2m【变式练习】1、若2a y +5b 3x 与-4a 2x b 2-4y是同类项,则a =______,b =_______.2、如果(5a -7b +3)2+53+-b a =0,求a 与b 的值.【扩展】代入法在一些特殊方程中的巧妙应用⎪⎪⎪⎨⎧=+=-+41432y x y yx ⎩⎨⎧-=+-=+1)(258y x x y x【例五】方程组⎩⎨⎧-=+=-252132y x y x 中,x 的系数特点是______;方程组⎩⎨⎧=-=+437835y x y x 中,y 的系数特点是________.这两个方程组用__________________法解比较方便.【变式练习】【例六】已知方程mx +ny =10有两个解,分别是⎩⎨⎧-==⎩⎨⎧=-=1221y x y x 和,则m =________,n =__________. 【变式练习】1、若2a +3b =4和3a -b =-5能同时成立,则a =_____,b =______.2、如果二元一次方程组⎩⎨⎧=-=+ay x ay x 4的解是二元一次方程3x -5y -28=a 的一个解,那么a 的值是_________.3、若关于x 、y 的二元一次方程组⎩⎨⎧-=+=+1532m y x my x 的解x 与y 的差是7,求m 的值.4、若3122x m y m =+⎧⎨=-⎩,是方程组1034=-y x 的一组解,求m 的值.5、二元一次方程343x my mx ny -=+=和有一个公共解11x y =⎧⎨=-⎩,求m 和n 的值.【例七】已知⎩⎨⎧=+=+8272y x y x ,那么x -y 的值是___________.【变式练习】1、已知⎩⎨⎧=+=+8272y x y x ,则y x y x +-=_________.2、已知⎩⎨⎧=-=+ay x a y x 22,a ≠0,则y x=__________.观察思考,选择适当的方法消元并加以归纳总结(1) (2)(3) (4)【知识点三:一次函数与二元一次方程(组)的综合应用】1.若直线y =2x+n 与y =mx -1相交于点(1,-2),则( ). A .m =12,n =-52 B .m =12,n =-1 C .m =-1,n =-52 D .m =-3,n =-322.直线y =12x -6与直线y =-231x -1132的交点坐标是( ).A .(-8,-10)B .(0,-6)C .(10,-1)D .以上答案均不对 3.在y =kx +b 中,当x =1时y =2;当x =2时y =4,则k ,b 的值是( ). A .00k b =⎧⎨=⎩ B .20k b =⎧⎨=⎩ C .31k b =⎧⎨=⎩ D . 02k b =⎧⎨=⎩ 4.直线kx -3y =8,2x +5y =-4交点的纵坐标为0,则k 的值为( ) A .4 B .-4 C .2 D .-25.已知4353x y ⎧=⎪⎪⎨⎪=⎪⎩,是方程组3,12x y xy +=⎧⎪⎨-=⎪⎩的解,那么一次函数y =3-x 和y =2x +1的交点是________. 6.一次函数y =3x +7的图像与y 轴的交点在二元一次方程-2x +by =18上,则b =_________.7.已知关系x ,y 的二元一次方程3ax +2by =0和5ax -3by =19化成的两个一次函数的图像的交点坐标为(1,-1),则a =_______,b =________.8.已知方程组230,2360y x y x -+=⎧⎨+-=⎩的解为4,31,x y ⎧=⎪⎨⎪=⎩则一次函数y =3x -3与y =-32x +3的交点P 的坐标是______.9.若直线y =ax +7经过一次函数y =4-3x 和y =2x -1的交点,求a 的值.10.(1)在同一直角坐标系中作出一次函数y =x +2,y =x -3的图像. (2)两者的图像有何关系?(3)你能找出一组数适合方程x -y =2,x -y =3吗?________,这说明方程组2,3,x y x y -=-⎧⎨-=⎩_______.⎩⎨⎧=+-=65732y x y x ⎩⎨⎧=-=+6341953y x y x11.如图所示,求两直线的解析式及图像的交点坐标.12.在直角坐标系中,直线L1经过点(2,3)和(-1,-3),直线L2经过原点,且与直线L1交于点(-2,a).(1)求a的值.(2)(-2,a)可看成怎样的二元一次方程组的解?(3)设交点为P,直线L1与y轴交于点A,你能求出△APO的面积吗?【知识点四:二元一次方程组应用题】【一、百分数问题】1.某市现有42万人口,计划一年后城镇人口增加%,农村人口增加工厂%,这样全市人口将增加1%,求这个市现在的城镇人口与农村人口?2.要配浓度是45%的盐水12千克,现有10%的盐水与85%的盐水,这两种盐水各需多少? 3.校办工厂去年的总收入比总支出多50万元,今年的总收入比去年增加了10%,总支出节约了20%,因而总收入比总支出多100万元. 求去年我校校办工厂的总收入和总支出各多少万元?4.某工厂去年的利润(总产值-总支出)为200万元,今年的总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元。