数学有理数知识点

合集下载

有理数知识点

有理数知识点

有理数知识点有理数是数学中的一种基本的数学对象,它包括整数和分数。

以下是有理数的一些基本知识点:一、有理数的定义有理数是可以写成两个整数的比值形式的数,其中分母不为零。

二、有理数的比较两个有理数a和b的比较有以下几种情况:1. 如果a和b都是正数,那么a<b当且仅当a的分子乘以b的分母小于b的分子乘以a的分母。

2. 如果a和b都是负数,那么a<b当且仅当a的分子乘以b的分母小于b的分子乘以a的分母。

3. 如果a是正数,b是负数,那么a<b。

4. 如果a是负数,b是正数,那么a<b当且仅当a的分子乘以b的分母小于b的分子乘以a的分母。

三、有理数的四则运算有理数的四则运算包括加法、减法、乘法和除法。

1. 加法:有理数a和b的和可以通过将a的分子与b的分母相乘再加上a的分母与b的分子相乘的结果作为新的分子,而将a的分母与b的分母的乘积作为新的分母。

2. 减法:有理数a和b的差可以通过将a的分子与b的分母相乘再减去a的分母与b的分子相乘的结果作为新的分子,而将a的分母与b的分母的乘积作为新的分母。

3. 乘法:有理数a和b的积可以通过将a的分子与b的分子相乘作为新的分子,而将a的分母与b的分母的乘积作为新的分母。

4. 除法:有理数a除以b可以通过将a的分子与b的分母相乘作为新的分子,而将a的分母与b的分子相乘作为新的分母。

四、有理数的绝对值有理数的绝对值是该数到0的距离。

对于一个非负有理数a,其绝对值等于a本身;而对于一个负有理数a,其绝对值等于-a。

五、有理数的乘方有理数的乘方运算是一个数与自身连乘n次的运算,其中n是一个整数。

六、有理数的应用有理数在日常生活中的应用非常广泛,它们可以用来表示人口数量、货币金额、温度、距离等。

七、有理数的化简有理数化简是指将一个有理数写成最简分数的形式,即分子和分母没有公因子。

八、有理数的性质1. 有理数的加法和乘法封闭性:两个有理数的和或积仍然是有理数。

有理数知识点总结归纳

有理数知识点总结归纳

有理数知识点总结归纳数学是一门严谨而又精确的学科,有理数作为数学的基础之一,其在数学中起着重要的作用。

在本文中,将对有理数的一些常见知识点进行总结归纳,以便读者更好地理解和掌握这一概念。

一、有理数的定义与表达方式有理数由整数和分数两部分组成,可以用分数形式或小数形式表示。

分数形式为两个整数的比值,其中分子为整数,分母为非零整数;小数形式为无限循环小数或有限小数。

二、有理数的四则运算有理数的四则运算包括加法、减法、乘法和除法。

对于加法和乘法,有理数符合交换律、结合律和分配律;对于减法和除法,有理数符合减法的延伸性和除法的唯一性。

三、有理数的大小比较有理数的大小比较可以通过求差、求商或化简等方法进行。

求差法即将两个有理数相减;求商法即将两个有理数相除;化简法即将两个有理数化成相同的分母,再进行大小比较。

四、有理数的奇偶性判断有理数的奇偶性判断可以通过其分子和分母的奇偶性进行推导。

当分子为偶数、分母为奇数或分子为奇数、分母为偶数时,有理数为偶数;当分子为奇数、分母为奇数时,有理数为奇数。

五、有理数的相反数与绝对值有理数的相反数是指与该有理数的绝对值相等,但符号相反的有理数。

有理数的绝对值是指该有理数去掉符号后的值。

相反数和绝对值都是有理数的重要概念,在四则运算和大小比较中经常用到。

六、有理数的约分与化简有理数的约分是指将有理数的分子和分母同时除以它们的最大公因数,使得有理数的分数形式缩小为最简形式。

有理数的化简是指将有理数的小数形式进行处理,使其变为简洁而易读的形式。

七、有理数在实际生活中的应用有理数在实际生活中有着广泛的应用。

例如,有理数可以用来表示温度、时间、距离、速度等实际量,方便我们对这些量进行计算、比较和分析。

此外,有理数还可以应用于金融、经济、科学等领域,帮助我们解决实际问题。

有理数作为数学中的基础概念,掌握它的定义和相关知识点对于学好数学来说至关重要。

通过对有理数的定义、四则运算、大小比较、奇偶性判断、相反数与绝对值、约分与化简以及在实际生活中的应用进行总结归纳,读者可以更好地理解和掌握有理数的概念和运用,为日后的学习打下坚实的基础。

七年级数学有理数的知识点

七年级数学有理数的知识点

七年级数学有理数的知识点在七年级数学中,有理数是一个重要的知识点。

本文将介绍有理数的概念、有理数的加减乘除、负数的概念、相反数、绝对值以及有理数的比较等方面的知识点。

一、有理数的概念有理数是指可以表示为两个整数的比的数,其中分母不为0。

有理数包括正有理数、负有理数以及0。

可以用分数形式表示,例如2/3、-3/4等,也可以用小数表示。

二、有理数的加减乘除1.有理数的加法:同号相加,异号相减,保留符号取绝对值相加。

例如:3+5=8,-3+(-5)=-8,-3+5=2,-3-(-5)=2。

2.有理数的减法:减去一个数等于加上这个数的相反数。

例如:3-5=3+(-5)=-2,-3-(-5)=-3+5=2。

3.有理数的乘法:符号相同为正,符号不同为负,绝对值相乘。

例如:3×4=12,-3×4=-12,-3×(-4)=12。

4.有理数的除法:除数不为0,符号相同为正,符号不同为负,绝对值相除。

例如:8÷2=4,-8÷2=-4,-8÷(-2)=4。

三、负数的概念1.负数的概念:小于0的整数即为负数。

例如:-1、-2、-3等。

2.相反数:两个数互为相反数,当且仅当它们的和等于0。

例如:2和-2互为相反数。

3.绝对值:一个数的绝对值,表示这个数到0的距离。

例如:|-3|=3,|5|=5。

四、有理数的比较1.相等与不等:两个有理数相等,当且仅当它们的差等于0。

例如:-4+6=2,所以-4和6不相等。

2.大小比较:可以用数轴比较大小,也可以比较绝对值。

例如:-5<2,|3|>|-5|。

总之,在数学学习中,有理数是一个非常基础且重要的知识点。

希望这篇文章能够对大家更好地掌握有理数的概念、加减乘除、负数的概念、相反数、绝对值以及有理数的比较等方面的知识点提供一定的帮助。

七年级数学上册“有理数”知识点梳理

七年级数学上册“有理数”知识点梳理

七年级上册数学“有理数”知识点导图知识点一、正数和负数(1)大于0的数叫作正数,正数有时在数字前面加“﹢”号,读作“正”例:1,2,3,+4,+5,+6,+7都是正数(2)正数前面加上“﹣”的数叫作负数,“﹣”读作“负”例:﹣1,﹣2,﹣3,﹣4,﹣5,﹣6,﹣7都是负数(3)正数和负数可以表示“相反”的意思例:向前走5米记为﹢5米,则向后走5米记为﹣5米;向右走5米记为﹢5米,则向左走5米记为﹣5米;(4)0既不是正数,也不是负数,它是正数和负数的分界,0不止是表示“没有”例:0℃所表示的是一个确定的温度,不是表示没有温度习题1:指出下列数哪些是正数,哪些是负数1;3;﹣5;﹣7;﹢9;﹣2;﹢4;6;﹣8;0知识点二、有理数(1)可以写成分数形式的数称为有理数;例:11,﹣12,13,2,﹣3,4都是有理数(2)可以写成正分数形式的数为正有理数;例:11,13,2,4都是正有理数(3)可以写成负分数形式的数为负有理数;例:﹣12,﹣3,都是负有理数习题2:指出下列数哪些是有理数,哪些是正有理数,哪些是负有理数1;2;﹣3;﹣5;π;7;﹣9;13;﹣15知识点三、数轴(1)规定了原点、正方向和单位长度的直线叫作数轴(2)在直线上任取一个点表示数0,这个点叫作原点(3)通常规定直线上从原点向右 (或上)为正方向,从原点向左 (或下)为负方向(4)选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示12,3,...;从原点向左,用类似方法依次表示-1,-2,-3,...例:习题3:用数轴表示下列各点A (1);B (﹣2);C (1);D (2.5);E (﹣3)知识点四、相反数(1)仅有符号不同的两个数,称这两个数互为相反数。

0的相反数是0例:1和﹣1;12和﹣12;0和0互为相反数习题4:写出下列个数的相反数2;4;﹣6;﹣8;﹣110;0知识点五、绝对值(1)数轴上表示数α的点与原点的距离叫作数α的绝对值,记作|α|(2)一个正数的绝对值是它本身;例:|1|=1;|2|=2;|3|=3(3)一个负数的绝对值是它的相反数;例:|﹣1|=1;|﹣2|=2;|﹣3|=3(4)0的绝对值是0例:|0|=0习题5:写出下列各数的绝对值10;﹣11;112;﹣113;0知识点六、有理数的大小比较(1)正数大于0,0大于负数,正数大于负数例:1>0;0>﹣1;1>﹣1(2)两个负数,绝对值大的反而小例:|﹣1|=1,|﹣2|=2,2>1,所以﹣1>﹣2;|﹣3|=3,|﹣4|=4,4>3,所以﹣3>﹣4习题6:比较下列各数的大小7与8;9与﹣10;﹣11和﹣12;0与13;0与﹣14习题参考答案习题1:指出下列数哪些是正数,哪些是负数1;3;﹣5;﹣7;﹢9;﹣2;﹢4;6;﹣8;0正数:1;3;﹢9;﹢4;6负数:﹣5;﹣7;﹣2;﹣8习题2:指出下列数哪些是有理数,哪些是正有理数,哪些是负有理数 1;2;﹣3;﹣5;π;7;﹣9;13;﹣15有理数:1;2;﹣3;﹣5;7;﹣9;13;﹣15正有理数:1;2; 7; 13;负有理数:﹣3;﹣5;﹣9;﹣15习题3:用数轴表示下列各点A (1);B (﹣2);C (1);D (2.5);E (﹣3)习题4:写出下列个数的相反数2;4;﹣6;﹣8;﹣110;0 2和﹣2;4和﹣4;﹣6和6;﹣8和8;﹣110和110;0和0习题5:写出下列各数的绝对值10;﹣11;112;﹣113;0 |10|=10;|﹣11|=11;|112|=112;|﹣113|=113;|0|=0习题6:比较下列各数的大小7与8;9与﹣10;﹣11和﹣12;0与13;0与﹣14 7>8;9>﹣10;﹣11>﹣12;0<13;0>﹣14。

《有理数》的数学知识点总结

《有理数》的数学知识点总结

《有理数》的数学知识点总结(1)正数:比0大的数叫做正数;负数:比0小的数叫做负数;0既不是正数,也不是负数。

(2)正数和负数表示相反意义的量。

2、有理数的概念及分类有理数是整数和分数的统称。

通常有两种分类:3、有关数轴(1)数轴的三要素:原点、正方向、单位长度。

数轴是一条直线。

(2)全部有理数都可以用数轴上的点来表示,但数轴上的点不肯定都是有理数。

(3)数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。

4、绝对值与相反数(1)绝对值:在数轴上表示数a的点与原点的距离,叫做a的绝对值,记作:。

一个正数的绝对值等于本身,一个负数的绝对值等于它的相反数,0的绝对值是0.即(2)相反数:符号不同、绝对值相等的两个数互为相反数。

假设a、b互为相反数,那么a+b=0;相反数是本身的是0,正数的相反数是负数,负数的相反数是正数。

(3)绝对值最小的数是0;绝对值是本身的数是非负数。

任何数的绝对值是非负数。

最小的正整数是1,最大的负整数是-1。

5、利用绝对值比较大小两个正数比较:绝对值大的那个数大;两个负数比较:先算出它们的绝对值,绝对值大的反而小。

6、有理数加法(1)符号相同的两数相加:和的符号与两个加数的符号全都,和的绝对值等于两个加数绝对值之和.(2)符号相反的两数相加:当两个加数绝对值不等时,和的符号与绝对值较大的加数的符号相同,和的绝对值等于加数中较大的绝对值减去较小的'绝对值;当两个加数绝对值相等时,两个加数互为相反数,和为零.(3)一个数同零相加,仍得这个数.加法的交换律:a+b=b+a加法的结合律:(a+b)+c=a+(b+c)7、有理数减法:减去一个数,等于加上这个数的相反数。

8、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.例如:14+12+(-25)+(-17)可以写成省略括号的形式:14+12-25-17,可以读作“正14加12减25减17”,也可以读作“正14、正12、负25、负17的和.”9、有理数的乘法两个数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘都得0。

有理数知识点总结

有理数知识点总结

有理数知识点总结有理数是数学中的一个重要概念,它是整数和分数的统称。

在数学中,有理数的性质和运算规律是我们学习的基础,下面将从有理数的定义、性质和运算规律三个方面进行总结。

一、有理数的定义有理数是可以用两个整数的比表示出来的数,即有理数是整数和分数的统称。

其中,整数是有理数的一种特殊形式,而分数则是整数的推广。

有理数的特点是可以用分数表示为有限小数或无限循环小数。

二、有理数的性质1. 有理数可以进行比较大小。

对于任意两个有理数a和b,有且只有以下三种情况之一成立:a<b,a=b,a>b。

2. 有理数可以进行加、减、乘、除运算。

有理数的加法、减法、乘法、除法运算仍然是有理数。

3. 有理数的加法和乘法满足交换律、结合律和分配律。

三、有理数的运算规律1. 加法运算规律:对于任意三个有理数a、b、c,有(a+b)+c=a+(b+c);a+b=b+a。

2. 减法运算规律:对于任意三个有理数a、b、c,有(a-b)+c=a+(b-c);a-b=-(b-a)。

3. 乘法运算规律:对于任意三个有理数a、b、c,有(a*b)*c=a*(b*c);a*b=b*a。

4. 除法运算规律:对于任意三个非零有理数a、b、c,有(a/b)/c=a/(b/c);a/b=(c/b)*a。

5. 分配律:对于任意三个有理数a、b、c,有a*(b+c)=a*b+a*c。

有理数是数学中的基本概念之一,它在实际生活中有着广泛的应用。

比如,在商业活动中,我们需要进行货币的加减乘除运算,这就涉及到有理数的运算规律;在科学研究中,我们需要对数据进行分析和比较,这也需要用到有理数的性质。

有理数是数学中重要的概念之一,它包括了整数和分数,并具有比较大小和四则运算的性质。

掌握有理数的定义、性质和运算规律,对于我们学习数学和应用数学知识都具有重要意义。

有理数知识点整理

有理数知识点整理

有理数知识点整理有理数是指可以表示为两个整数的比值的数,包括正整数、负整数、零以及所有可以表示为分数的数。

在数学中,有理数是一种基本的数学概念,我们在日常生活和学习中经常会接触到它们。

下面将整理一些有关有理数的知识点。

1. 有理数的定义和表示:有理数可以通过一个分子和一个非零的分母的比值来表示,分子和分母都是整数。

通常用分数的形式来表示有理数,例如1/2、3/4等。

有理数可以是正数、负数或零。

2. 有理数的加法和减法:有理数的加法和减法可以通过分数的加减法来进行。

当两个有理数的分母相同时,只需将分子进行相应的加减操作即可。

当两个有理数的分母不同时,可以通过通分的方法,将两个有理数的分母变成相同的,然后进行相应的加减操作。

3. 有理数的乘法和除法:有理数的乘法和除法可以通过分数的乘除法来进行。

乘法要将两个有理数的分子相乘,分母相乘;除法要将除数的分子和被除数的分母相乘,除数的分母和被除数的分子相乘。

4. 有理数的大小比较:有理数的大小比较可以通过它们的绝对值来判断。

绝对值是一个数的大小与符号无关的值,即该数与0的距离。

绝对值大的数比绝对值小的数要大。

当两个有理数的绝对值相同时,可以根据它们的符号来判断大小。

5. 有理数的相反数和倒数:有理数的相反数是指与该有理数的绝对值相等,符号相反的数。

例如,-2是2的相反数,2是-2的相反数。

有理数的倒数是指与该有理数的乘积为1的数。

例如,2的倒数是1/2,-3的倒数是-1/3。

6. 有理数的约分和分数的化简:有理数的约分是指将一个分数的分子和分母同时除以同一个非零整数,得到一个相等的分数。

分数的化简是指将一个分数的分子和分母同时除以它们的公因数,得到一个最简形式的分数。

初一数学有理数知识点与经典例题

初一数学有理数知识点与经典例题

初一数学有理数知识点与经典例题一、有理数知识点。

(一)有理数的概念。

1. 有理数的定义。

- 整数和分数统称为有理数。

整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。

例如:5是正整数,属于有理数; - 3是负整数,属于有理数;(1)/(2)是分数,属于有理数;0.25(有限小数,可化为(1)/(4))也是有理数。

2. 有理数的分类。

- 按定义分类:- 有理数整数正整数 0 负整数分数正分数负分数- 按性质符号分类:- 有理数正有理数正整数正分数 0 负有理数负整数负分数(二)数轴。

1. 数轴的定义。

- 规定了原点、正方向和单位长度的直线叫做数轴。

2. 数轴上的点与有理数的关系。

- 所有的有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数(例如√(2)等无理数也可以用数轴上的点表示)。

一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数 - a的点在原点的左边,与原点的距离是a个单位长度。

(三)相反数。

1. 相反数的定义。

- 只有符号不同的两个数叫做互为相反数。

特别地,0的相反数是0。

例如,3和 - 3互为相反数,-(1)/(2)和(1)/(2)互为相反数。

2. 相反数的性质。

- 互为相反数的两个数的和为0,即若a与b互为相反数,则a + b=0。

(四)绝对值。

1. 绝对值的定义。

- 一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作| a|。

2. 绝对值的性质。

- 当a>0时,| a|=a;当a = 0时,| a|=0;当a<0时,| a|=-a。

例如,|3| = 3,| - 3|=3,|0| = 0。

- 非负性:| a|≥s lant0。

(五)有理数的大小比较。

1. 法则。

- 正数大于0,0大于负数,正数大于负数。

- 两个负数,绝对值大的反而小。

例如,比较 - 2和 - 3,| - 2|=2,| - 3| = 3,因为2<3,所以 - 2>- 3。

有理数知识点总结归纳

有理数知识点总结归纳

有理数知识点总结归纳有理数是我们数学中的一个重要概念,它包括整数和分数。

有理数具有多种运算性质和特点,对于学生来说,掌握有理数知识点是十分重要的。

本文将对有理数的定义、性质、运算法则以及应用进行总结归纳,帮助读者更好地理解和应用有理数。

一、有理数的定义有理数是可以写成两个整数的比值形式的数,其中分子和分母都是整数,且分母不为零。

通常可以用分数的形式表示有理数,例如1/2、3/4等。

有理数集合包括正整数、负整数、零以及正分数、负分数。

二、有理数的性质1. 有理数可以进行加、减、乘、除运算,并且运算结果仍然是有理数。

2. 有理数满足交换律、结合律和分配律。

3. 有理数的相反数是唯一的。

4. 有理数之间可以进行比较大小,有理数集合在数轴上是有序排列的。

三、有理数的运算法则1. 加法运算:有理数的加法满足两个整数相加、两个分数相加以及整数与分数相加的情况。

对于整数相加,直接将两个整数相加即可;对于分数相加,先化为相同分母的分数,然后再将分子相加,并保留相同的分母;整数与分数相加,可以先将整数转化为分数,然后按照相同分母的分数相加法则进行计算。

2. 减法运算:有理数的减法可以转化为加法来进行处理。

对于减法运算,可以用被减数加上减数的相反数来代替,然后按照加法运算法则进行计算。

3. 乘法运算:有理数的乘法可以分为整数乘整数、整数乘分数以及分数乘分数的情况。

对于整数乘整数,直接将两个整数相乘即可;对于整数乘分数,将整数转化为分数,然后按照分数乘法法则进行运算;分数的乘法可以直接将分子相乘作为新的分子,分母相乘作为新的分母。

4. 除法运算:有理数的除法可以转化为乘法运算来进行处理。

对于除法运算,可以用被除数乘以除数的倒数来代替,然后按照乘法运算法则进行计算。

四、有理数的应用有理数在我们的日常生活中有着广泛的应用。

以下列举几个具体的例子:1. 购物时的折扣和加价:折扣通常以分数表示,例如八折即打八分之一的折扣;加价也可以以分数表示,例如加价百分之二十即加一分之五的价格。

有理数知识点考点难点总结归纳

有理数知识点考点难点总结归纳

有理数知识点考点难点总结归纳有理数是数学中一种重要的数的概念,在数学学科的学习中经常会涉及到有理数的运算和性质。

掌握有理数的相关知识点、考点和难点,对于学习数学和解题非常重要。

本文将就有理数的知识点、考点和难点进行总结归纳,希望能够对读者有所帮助。

一、有理数的定义有理数是指可以表示为两个整数之比(分数形式)的数,包括正有理数、负有理数和0。

二、有理数的四则运算1. 加法:有理数的加法运算要注意符号的变化,同号相加取相同符号,异号相加取绝对值较大数的符号。

2. 减法:有理数的减法可以转化为加法运算,对减数取相反数,然后进行加法运算。

3. 乘法:有理数的乘法运算结果符号遵循正负号相同为正,正负号不同为负的原则。

4. 除法:有理数的除法可以转化为乘法运算,对除数取倒数,然后进行乘法运算。

三、有理数的性质1. 有理数的封闭性:有理数的加法、减法、乘法和除法的运算结果都是有理数。

2. 有理数的整除性:如果有理数a除以非零有理数b,商等于有理数c,则称a能被b整除,b能整除a;如果商c是整数,则a和b是整数关系;如果商c不是整数,则a和b是非整数关系。

3. 有理数的传递性:对于任意三个有理数a、b、c,如果a<b<c,则a和c之间也存在一个有理数,即b。

四、有理数的比较1. 同号比较:两个正有理数比较大小,绝对值较大的数较大;两个负有理数比较大小,绝对值较小的数较大。

2. 异号比较:正有理数大于负有理数;负有理数小于正有理数。

五、有理数的绝对值有理数a的绝对值表示为|a|,其中正有理数的绝对值等于其本身,负有理数的绝对值等于去掉负号。

六、有理数的约分和化简1. 约分:对于有理数a/b,如果a和b有公因数,可以将a和b同时除以最大公因数,使得a/b约分为最简形式。

2. 化简:对于有理数a+b/c,可以先将a和b进行整数部分的运算,然后将分数部分化简为最简形式。

七、有理数的应用有理数在实际生活中的应用非常广泛,例如在温度计上的正负温度、货币的盈亏计算、海拔的升降等。

小学数学知识点认识简单的有理数和无理数

小学数学知识点认识简单的有理数和无理数

小学数学知识点认识简单的有理数和无理数知识点一:有理数有理数是可以表示为两个整数的比值的数。

有理数包括正整数、负整数、零和分数。

有理数可以用分数、小数或整数来表示。

1. 正整数:正整数是大于零的整数,例如1、2、3等。

2. 负整数:负整数是小于零的整数,例如-1、-2、-3等。

3. 零:零表示无数量的概念,即没有东西或没有数值。

零用0来表示。

4. 分数:分数是表示整体被分割成若干等分的数。

分数由一个分子和一个分母组成,分子表示被分割的部分,分母表示总的分割数。

例如1/2、3/4等。

知识点二:无理数无理数是不能表示为两个整数的比值的数,无理数的小数部分是无限不循环的。

无理数包括无限不循环小数以及不能表示为整数比值的根号形式。

1. 无限不循环小数:无限不循环小数是指小数部分无限不重复的小数,例如π(3.1415926...)和e(2.7182818...)等。

2. 根号形式:根号形式是不能表示为整数比值的根号数。

例如√2、√3等。

无理数和有理数一起构成了实数集合,实数集合包括了所有的数。

知识点三:有理数与无理数的比较有理数和无理数之间可以进行比较。

根据数轴的性质,对于任意两个数a和b,如果a<b,则a在数轴上的位置会在b的左边。

在数轴上,有理数和无理数是混合分布的,没有一条明确的界限将它们分开。

例如,√2是无理数,而1.5是有理数,但它们在数轴上是相邻的。

总结:小学数学中,我们学习了有理数和无理数的基本概念。

有理数是可以表示为两个整数的比值的数,包括正整数、负整数、零和分数。

无理数是不能表示为两个整数的比值的数,包括无限不循环小数和不能表示为整数比值的根号形式。

在数轴上,有理数和无理数混合分布,没有明确的界限。

了解这些基本概念对于小学数学的学习和进一步的数学知识的构建是非常重要的。

通过不断学习和练习,我们可以更好地掌握有理数和无理数的概念,并应用到实际问题中。

有理数知识点梳理

有理数知识点梳理

有理数知识点梳理有理数是整数和分数的统称,是数学中重要的概念。

本文将对有理数的相关知识点进行梳理和总结。

一、有理数的定义有理数是可以用两个整数比值表示的数,包括整数和分数。

有理数可以表示为 p/q 的形式,其中 p 和 q 是整数,且 q 不等于 0。

二、有理数的分类1. 正有理数:大于零的有理数,记作 Q+。

2. 负有理数:小于零的有理数,记作 Q-。

3. 零:既不是正有理数也不是负有理数,记作 0。

三、有理数的运算有理数的运算包括加法、减法、乘法和除法。

1. 加法:有理数的加法满足交换律和结合律。

当两个有理数符号相同时,将它们的绝对值相加,并保持符号不变;当两个有理数符号不同时,将它们的绝对值相减,并取绝对值大的数的符号。

2. 减法:减法可以转化为加法运算,在减法运算中,将减数取相反数,然后进行加法运算。

3. 乘法:有理数的乘法满足交换律和结合律。

将两个有理数的绝对值相乘,符号由乘法规则决定:同号得正,异号得负。

4. 除法:除法可以转化为乘法运算,即将被除数乘以除数的倒数。

除数不能为零。

四、有理数的比较有理数的大小可以通过比较绝对值的大小来确定。

当两个有理数符号相同时,比较它们的绝对值;当两个有理数符号不同时,正有理数大于负有理数,零等于零。

五、有理数的化简有理数可以进行化简操作,即将分子和分母同时除以它们的最大公约数,从而得到一个最简形式的有理数。

六、有理数的逆元有理数的逆元是指与其相加为零的数,对于有理数 a,它的逆元记作 -a,满足 a + (-a) = 0。

七、有理数在数轴上的表示有理数可以在数轴上表示出来,将数轴上的零点与每个有理数点对应起来,通过正数方向表示正有理数,负数方向表示负有理数,可以直观地理解有理数的大小和相对关系。

结语:通过对有理数的梳理,我们可以更清晰地认识到有理数的定义、分类、运算、比较等基本概念和操作。

有理数是数学中的重要概念,对于几乎所有数学领域都有着广泛的应用。

数学有理数知识点

数学有理数知识点

数学有理数知识点在数学中,有理数是指可以表示为两个整数的比值的数,包括整数、分数和小数。

有理数是数学中的重要概念,适用于各个数学分支和实际生活中的计算问题。

本文将介绍有理数的基本概念、性质以及相关运算法则,帮助读者全面了解有理数的知识点。

1. 有理数的定义有理数是可以表示为两个整数的比值的数。

具体来说,有理数可以用分数的形式表示,其中分子和分母都是整数,并且分母不为零。

例如,2、-3/4、0都属于有理数。

2. 有理数的分类有理数可以分为整数、真分数和带分数三种形式。

2.1 整数整数是没有小数部分的有理数,包括正整数、负整数和零。

例如,-3、0、5都是整数。

2.2 真分数真分数指分子小于分母的有理数,其数值小于1。

例如,1/2、3/4都是真分数。

2.3 带分数带分数由整数部分和真分数部分组成。

例如,1 1/2、-2 3/4都是带分数。

3. 有理数的性质3.1 有理数的比较两个有理数的大小可以通过它们的数值大小进行比较。

对于同号的有理数,绝对值大的数较大;对于异号的有理数,正数较大。

例如,-2 < 1/2 < 3。

3.2 有理数的加法和减法有理数的加法和减法可以通过分数的通分和整数的运算来实现。

具体规则如下:- 同号有理数相加/相减时,将绝对值相加/相减,并保持同号。

- 异号有理数相加/相减时,将绝对值相减/相加,并保持绝对值较大的符号。

3.3 有理数的乘法和除法有理数的乘法和除法同样基于分数和整数的运算法则。

具体规则如下:- 有理数乘法:将两个有理数的绝对值相乘,并确定结果的符号。

- 有理数除法:将除数倒数乘以被除数,并确定结果的符号。

4. 有理数的应用有理数的概念和运算在实际生活中有着广泛的应用,尤其在计算、测量和比较等方面。

4.1 计算有理数运算可以解决很多实际计算问题,比如金融计算、商业运算等。

例如,计算从-5到5的整数之和时,可以使用有理数的加法运算。

4.2 测量有理数可以用来表示各种测量结果,例如温度、长度、重量等。

七年级数学上册“有理数的运算”知识点梳理

七年级数学上册“有理数的运算”知识点梳理

七年级数学上册“有理数的运算”知识点梳理导图知识点一、有理数的加法(1)同号两数相加,和取相同的符号,且和的绝对值等于加数的绝对值的和;例:1+2=3(1和2都是正数,和取正号;|3|=|1|+|2|)﹣2+(﹣3)=﹣5(﹣2和﹣3都是负数,和取负号;|﹣5|=|﹣2|+|﹣3|)(2)绝对值不相等的异号两数相加,和取绝对值较大的加数的符号,且和的绝对值等于加数的绝对值中较大者与较小者的差;例:2+(﹣1)=1(|2|>|﹣1|,和取正号;|1|=|2|-|﹣1|)2+(﹣3)=﹣1(|﹣3|>|2|,和取﹣号;|﹣1|=|﹣3|-|2|)(3)互为相反数的两个数相加得0;例:1+(﹣1)=0;﹣2+2=0(4)一个数与0相加,仍得这个数;例:1+0=1;﹣2+0=﹣2(5)两个数相加,交换加数的位置,和不变;例:1+2=2+1=3;1+(﹣2)=(﹣2)+1=﹣1;(﹣1)+(﹣2)=(﹣2)+(﹣1)=﹣3(6)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变;例:1+2+3=1+(2+3)=(1+2)+3=6;(﹣1)+(﹣2)+(﹣3)=(﹣1)+[(﹣2)+(﹣3)]=[(﹣1)+(﹣2)]+(﹣3)=﹣6习题1:计算(1):3+4; (2):﹣4+(﹣5); (3):5+(﹣6);(4):﹣7+8; (5):9+0; (6):﹣10+0;(7):10+11+12; (8):(﹣11)+(﹣12)+(﹣13); (9):12+(﹣13)+(﹣14)知识点二、有理数的减法(1)减去一个数,等于加这个数的相反数例:1-2=1+(﹣2)=﹣1;(﹣2)-3=(﹣2)+(﹣3)=﹣50-5=0+(﹣5)=﹣5习题2:计算(1):3-4; (2)5-4; (3)(﹣6)-5; (4)(﹣6)-(﹣7);(5):8-7; (6)0-9 (4)0-(﹣10)知识点三、有理数的乘法(1)两数相乘,同号得正,异号得负,且积的绝对值等于乘数的绝对值的积; 例:1×2=2(1和2都是同号,积为正;|2|=|1|×|2|)(﹣2)×(﹣3)=6(﹣2和﹣3都是同号,积为正;|6|=|﹣2|×|﹣3|) 2×(﹣3)=﹣6(2和﹣3是异号,积为负;|﹣6|=|﹣2|×|﹣3|)(2)任何数与0相乘,都得0;例:0×0=0;1×0=0;(﹣2)×0=0(3)乘积是1的两个数互为倒数;例: 2×12=1(2与12互为倒数)(﹣3)×(﹣13)=1(﹣3与﹣13互为倒数)(4)两个数相乘,交换乘数的位置,积不变;例:1×2=2×1=2;5×(﹣6)=(﹣6)×5=﹣30(5)三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变;例:﹣1×2×3=﹣1×(2×3)=(﹣1×2)×3=﹣6;(6)一个数与两个数的和相乘,等于把这个数分别与这两个数相乘,再把积相加; 例:2×(1+3)=2×1+2×3=8(7)α×b 也可以写为α·b 或αb ;当用字母表示乘数时,“×”可以写成“·”或省略; 例:5×α可以写成5·α或5α习题3:计算(1)2×3; (2):(﹣3)×(﹣4); (3):4×(﹣5);(4):0×100; (5):1×2×3; (6):(﹣2)×(﹣3)×(﹣4);(7):(﹣3)×(﹣4)×5;(8):2×(2+3);(9):3×(4-5);(10)4×[(﹣3)+(﹣4)]知识点四、有理数的除法(1)除以一个不等于0的数,等于乘这个数的倒数例:4÷(﹣2)=4×(﹣1)=22(2)两数相除,同号得正,异号得负,且商的绝对值等于被除数的绝对值除以除数的绝对值的商例:(﹣8)÷(﹣2)=4(﹣8和﹣2都是同为负号,商为正;|4|=|﹣8|÷|﹣2|)8÷(﹣2)=﹣4(8和﹣2一正一负为异号,商为负;|﹣4|=|8|÷|﹣2|)(3)0除以任何一个不等于0的数,都得0例:0÷(﹣9)=0;0÷9=0习题4:计算(1):6÷(﹣3);(2):(﹣10)÷(﹣2);(3):10÷(﹣10);(4):0÷4知识点五、有理数的乘方(1)求n个相同乘数的积的运算,叫作乘方,乘方的结果叫作幂。

有理数知识点总结归纳

有理数知识点总结归纳

有理数知识点总结归纳有理数是数学中的一个重要概念,包括整数和分数。

它们在数学运算、代数、几何、实际应用等方面都有广泛的应用。

本文将对有理数的基本概念、性质以及相关的运算规则进行总结归纳。

一、有理数的基本概念有理数是可以表示为两个整数之比(分数)的数。

整数是有理数的特殊情况,可以表示为分母为1的分数。

有理数可以有正负之分,分数可以是正的、负的或零。

有理数可以用分数形式表示,也可以用小数形式表示。

二、有理数的性质1. 封闭性:有理数的加法、减法和乘法运算仍然是有理数。

2. 密度性:在任意两个不相等的有理数之间,总存在一个有理数。

3. 比较性:任意两个有理数都可以进行比较大小,并满足传递性。

4. 0的特殊性:任何有理数与0相乘得到0,除了0以外的任何有理数与0相除都得到0。

三、有理数的运算规则1. 加法和减法:a) 同号两数相加减,绝对值求和差,符号不变。

b) 异号两数相加减,绝对值求差,符号取绝对值大的数的符号。

2. 乘法和除法:a) 同号两数相乘除,结果为正,绝对值求积商。

b) 异号两数相乘除,结果为负,绝对值求积商。

c) 任何数与0相乘得0,0除以任何数等于0。

3. 混合运算:根据运算次序,先进行括号内的运算,然后依次进行乘法和除法,最后进行加法和减法。

四、有理数的应用举例1. 温度计中的正负数:温度计上的正数表示高温,负数表示低温。

例如,今天的温度是-10℃,表示比冰点低10摄氏度。

2. 债务与存款:债务可以表示为负数,存款可以表示为正数。

当我们拥有存款时,我们的财务状况是正的;当我们拥有债务时,我们的财务状况是负的。

3. 有理数在比例和比率中的应用:比例和比率是数学中常用的概念,可以用有理数来表示。

例如,某商品的售价是原价的3/4,可以表示为有理数3/4。

总结:有理数是数学中的重要概念,它包括了整数和分数。

有理数具有封闭性、密度性、比较性和0的特殊性等性质。

在运算方面,有理数的加法、减法、乘法和除法都有相应的规则。

有理数知识点

有理数知识点

有理数知识点有理数是数学中的一个重要概念,对于初学者来说,理解有理数的相关知识是构建数学基础的关键。

接下来,咱们就一起来详细了解一下有理数。

首先,什么是有理数呢?有理数是整数(正整数、0、负整数)和分数的统称。

换句话说,能够写成两个整数之比的数就是有理数。

比如 2/3、-5/7 等等。

有理数可以分为正有理数、零和负有理数。

正有理数包括正整数和正分数,比如 3、5/2 ;负有理数包括负整数和负分数,比如-2、-7/3 ;而零既不是正数也不是负数。

有理数的运算也是我们需要重点掌握的内容。

加法运算:同号两数相加,取相同的符号,并把绝对值相加。

例如,2 + 3 = 5,-2 +(-3) =-5 。

异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。

比如 2 +(-3) =-1 。

减法运算:减去一个数,等于加上这个数的相反数。

例如 5 3 = 5+(-3) = 2 。

乘法运算:两数相乘,同号得正,异号得负,并把绝对值相乘。

比如 2 × 3 = 6 ,(-2) ×(-3) = 6 ,2 ×(-3) =-6 。

除法运算:除以一个数等于乘以这个数的倒数。

要注意 0 不能做除数。

有理数的运算遵循一定的运算顺序。

先算乘方,再算乘除,最后算加减。

如果有括号,要先算括号里面的。

在比较有理数的大小时,我们可以利用数轴。

数轴上右边的数总比左边的数大。

正数大于 0,0 大于负数,正数大于负数。

两个负数比较大小,绝对值大的反而小。

有理数的绝对值也是一个重要概念。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是 0 。

比如,|3| =3 ,|-5| = 5 。

有理数的加减法在实际生活中有很多应用。

比如在计算收支情况时,如果收入 500 元记作+500 元,那么支出 200 元就记作-200 元,最终的结余就是两者的和。

在解决有理数的问题时,我们要仔细分析题目中的条件,明确所给的数是正数、负数还是0 ,然后选择合适的运算方法和顺序进行计算。

有理数的数学知识点

有理数的数学知识点

有理数的数学知识点有理数是数学中的一个重要概念,它包括整数和分数,是可以表示为两个整数之比的数。

在这篇文章中,我将会介绍有关有理数的数学知识点。

一、有理数的定义和表示方法有理数定义为可以写成两个整数的比的数,表示为a/b,其中a是整数,b是非零整数。

例如,2/3、-4/5、1等都是有理数。

另外,所有整数也都是有理数,因为可以写成分母为1的分数形式。

有理数可以用数轴表示,数轴上的每个点对应一个有理数。

例如,0对应于整数0,而1/2对应于数轴上0和1之间的一个点。

二、有理数的运算规则1. 有理数的加法和减法:- 有理数的加法:对于有理数a/b和c/d,可以通过通分的方法来进行加法运算。

首先对a和c进行通分,即将它们的分母相乘得到b*d,并分别乘以d和b,得到ad和cb,最后将ad和cb相加即可。

例如,2/3+1/5=(2*5+1*3)/15=13/15。

- 有理数的减法:减法可以转换为加法,即对于有理数a/b和c/d,可以将减法转换为a/b+(-c/d)的形式,然后按照加法的规则进行计算。

2. 有理数的乘法和除法:- 有理数的乘法:对于有理数a/b和c/d,可以直接将它们的分子相乘得到ac,将它们的分母相乘得到bd,然后将ac/bd化简即可。

例如,2/3*3/4=(2*3)/(3*4)=6/12=1/2。

- 有理数的除法:除法可以转换为乘法,即对于有理数a/b和c/d,可以将除法转换为a/b*(d/c)的形式,然后按照乘法的规则进行计算。

三、有理数的比较和大小关系有理数的大小关系可以通过它们在数轴上的位置来确定。

例如,2/3和1/2,我们可以将它们表示在数轴上,然后比较它们所在的位置,从而确定它们的大小关系。

另外,还可以通过通分的方法,将两个有理数的分子相乘比较大小。

四、有理数的绝对值有理数的绝对值表示该数到0的距离。

对于有理数a/b,它的绝对值表示为|a/b|=|a|/|b|。

例如,|-2/3|=2/3。

数学有理数知识点

数学有理数知识点

数学有理数知识点数学有理数知识点总结篇一(1)凡能写成形式的数,都是有理数,整数和分数统称有理数。

注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;(2)有理数的分类:①②(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的`数也有自己的特性;(4)自然数0和正整数;a0a是正数;a0a是负数;a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数。

数学有理数知识点总结篇二有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。

两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的'符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

有理数知识点总结

有理数知识点总结

有理数知识点总结有理数是数学中的一种基本概念,它包括整数和分数。

在学习数学过程中,我们经常会遇到有理数的运算、大小比较和绝对值等问题。

下面,我将总结一下有理数的相关知识点。

一、有理数的概念与性质有理数是可以表示为两个整数之比的数,分母不为零。

例如,1/2、3/4、-5/6都是有理数。

举个例子,如果把一个苹果分成2等份,每份就是1/2,我们可以用有理数1/2来代表这个概念。

有理数可以是正数、负数或零。

二、有理数的运算1. 有理数的加法和减法:当两个有理数的分母相同时,只需对分子进行加减运算,并保持分母不变。

例如,1/2+3/2=4/2=2。

当两个有理数的分母不同时,可先通分,然后再进行加减运算。

2. 有理数的乘法和除法:有理数的乘法相当于分母相乘,分子相乘。

例如,1/2*3/4=3/8。

有理数的除法可以转化为乘法的倒数运算。

例如,1/2÷3/4=1/2*4/3=4/6=2/3。

3. 有理数的混合运算:在有理数的混合运算中,通常按照先乘除后加减的原则进行计算。

例如,2-1/3*4=2-4/3=6/3-4/3=2/3。

三、有理数的大小比较在进行有理数的大小比较时,我们可以先将其转化为相同分母的分数,然后比较分子的大小。

例如,对于比较1/2与3/4的大小,可以将其转化为2/4和3/4,显然3/4大于1/2。

四、有理数的绝对值有理数的绝对值表示该数到0的距离,即该数的非负值。

对于正数,它的绝对值等于它本身。

对于负数,它的绝对值等于它的相反数。

例如,|3|=3,|-5|=5。

五、有理数的应用有理数在我们的日常生活中有着广泛的应用。

在计量、商业、金融等领域,都需要运用到有理数的概念和运算。

比如超市打折商品的价格,利率的计算等等,都是有理数的具体应用。

总结一下,有理数是数学中的一种基本概念,它包括整数和分数,并且具有一定的性质和规律。

在运算过程中,我们需要掌握有理数的加法、减法、乘法和除法,以及绝对值和大小比较等概念。

七年级数学上册有理数知识点总结

七年级数学上册有理数知识点总结

有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

5.a 可以表示什么数⑴a>0表示a 是正数;反之,a 是正数,则a>0;⑵a<0表示a 是负数;反之,a 是负数,则a<0⑶a=0表示a 是0;反之,a 是0,,则a=0课时2. 实数的运算与大小比较【考点链接】一、实数的运算1.实数的运算种类有:加法、减法、乘法、除法、 、 六种,其中减法转化为 运算,除法、乘方都转化为 运算。

2. 数的乘方 =n a ,其中a 叫做 ,n 叫做 .3. =0a (其中a 0 且a 是 )=-p a (其中a 0)4. 实数运算 先算 ,再算 ,最后算 ;如果有括号,先算 里面的,同一级运算按照从 到 的顺序依次进行.二、实数的大小比较1.数轴上两个点表示的数, 的点表示的数总比 的点表示的数大.2.正数 0,负数 0,正数 负数;两个负数比较大小,绝对值大的 绝对值小的.3.实数大小比较的特殊方法⑴设a 、b 是任意两个数,若a-b>0,则a b ;若a-b=0,则a b ,若a-b<0,则 a b.⑵平方法:如3>2;⑶商比较法:已知a>0、b>0,若b a >1,则a b ;若b a =1,则a b ;若ba <1,则a b. ⑷近似估算法⑸找中间值法 4.n 个非负数的和为0,则这n 个非负数同时为0. 例如:若a +2b +c =0,则a=b=c=0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学有理数知识点
数学有理数知识点
在日常的学习中,大家都背过各种知识点吧?知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。

那么,都有哪些知识点呢?以下是小编帮大家整理的数学有理数知识点,希望能够帮助到大家。

1.有理数:
(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;
(2)有理数的分类:①②
2.数轴:
数轴是规定了原点、正方向、单位长度的一条直线.
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)相反数的和为0a+b=0a、b互为相反数.
4.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2)绝对值可表示为:或;绝对值的问题经常分类讨论;
5.有理数比大小:
(1)正数的绝对值越大,这个数越大;
(2)正数永远比0大,负数永远比0小;
(3)正数大于一切负数;
(4)两个负数比大小,绝对值大的反而小;
(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数0,小数-大数0.
6.互为倒数:
乘积为1的两个数互为倒数;注意:0没有倒数;若a0,那么的倒数是;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.
7.有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
8.有理数加法的运算律:
(1)加法的'交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).
9.有理数减法法则:
减去一个数,等于加上这个数的相反数;即a-b=a+(-b).
10.有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.
11.有理数乘法的运算律:
(1)乘法的交换律:ab=ba;
(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac.
12.有理数除法法则:
除以一个数等于乘以这个数的倒数;注意:零不能做除数,.
13.有理数乘方的法则:
(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-
b)n=(b-a)n.
14.乘方的定义:
(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
15.科学记数法:
把一个大于10的数记成a10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.
16.近似数的精确位:
一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.
17.有效数字:
从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.
18.混合运算法则:
先乘方,后乘除,最后加减.。

相关文档
最新文档