《财务管理》说课课件货币时间价值37页PPT
合集下载
第三章 资金的时间价值 《财务管理》PPT课件
一、单利
【例3-2】 如果小刘想在三年后获得本息和为8000元,那他 现在以三年定期存入银行的现金应该是多少?已知三年定 期整存整取的年利率是3.24%,不考虑其余税费,按照单 利计算。 解: 现在以三年定期存入银行的现金应该是
PV FV 8000 7291.29 (元) 1 r t 1 3.24%3
一、单利
【例3-1】 小刘有5000元的现金,以三年定期存入银行, 已知三年定期整存整取的年利率是3.24%,不考虑其余税 费。按照单利计算,这笔存款到期时小刘获得的本息和是 多少? 解:
这笔存款到期时小刘获得的本息和是
FV PV(1 r t) 5000(1 3.24%3) 5486 (元)
第三章 资金的时间价值
第一节 货币时间价值的概念
(一)货币的时间价值的含义: 货币的时间价值(time value of money),是指现金经
过一定时期的投资和再投资所增加的价值,也称为资金时 间价值。
第一节 货币时间价值的概念
(二)货币的时间价值,主要有以下三方面的原因 : 1.货币可以用于投资获得利息、红利,这样在将来会获
得更多的货币; 2.货币的购买力会因通货膨胀的影响而随时间改变 ; 3.一般来说,未来的预期收入具有不确定性。
第一节 货币时间价值的概念
(三)理解货币的时间价值,要把握以下三个要点: 1.货币只有经过投资和再投资才会增值 ; 2.要持续一定的时间 ; 3.货币时间价值是指“增量”。
第一节 货币时间价值的概念
每年末支付100元,年利率为5%,共支付4年,4年之 后年金的终值是多少?
二、普通年金
年金终值是每一笔现金流的终值之和,有
FVA4 PMT PMT (1 r) PMT (1 r)2 PMT (1 r)3 100 100 (1 5%) 100 (1 5%)2 100 (1 5%)3 431.01 (元)
财务管理-货币的时间价值-PPT课件
五、现值原理的简单应用——净现值
我们用一个简单的例子说明净现值的经济含义。 – 假设一房地产公司拥有一块土地,土地的市场价格 为5万元。公司考虑在这块土地上建一幢办公楼, 建筑费用为30万元。一年后该办公楼建成,售价为 40万元。公司是否应进行办公楼项目的投资? – 首先假设一年后40万元的售价是确定的。一年期国 库券的利率为7%。 7%的利率称为资本机会成本,净现值(NPV)为: NPV=40/(1+7%)-35 =37.3872-35 =2.3872万元
t
3,偿债基金公式
A F F (A /F ,r ,t) t ( 1 r ) 1
4,资金回收公式
t r( 1 r ) A P P (A /P ,r ,t) t ( 1 r ) 1
r
四、确定利率 在实际生活中,我们经常会遇到要计算在合 同中隐含的利率的情况。 • 假设一银行提出贷给你25万元以购买住房, 条件是你必须在以后的25年内每年年末偿还 25451.6元。计算银行收取的利率为多少? 首先应认识到25万元是年金25451.6元的现值。 250000=25451.6(P/A,r,25) (P/A,r,25)=9.8226 r=9%
1000
P=1000(1+10%)-1+1000(1+10%)-2 +1000(1+10%)-3 =1000[(1+10%)3-1]/10%(1+10%)3 =2486.8
年金现值的一般公式:
( 1 r ) 1 P A A (P /A ,r ,t) t r( 1 r )
该系数称为年金现值系数。
货币的时间价值
•货币时间价值 •证券的评价
资料来源-自由漫步:free-bummel
《财务管理》说课课件货币时间价值.pptx
1.1 课程定位
职业主线
结论:财务管理是会计专业中的专业核心课
基础 会计
成本 会计
中级会 计实务
会 计 员 助理会计师 会计师 高级会计师
财务 管理
财务 管理
高级会 计实务
位阶晋升:低阶
高阶
1.2 学情分析 ——“因材施教” 的前提
2011年9月入学
学生
基础
2013-1013学年第二学期
掌握 情况
请说明1260亿美元是如何计算出来的?本案例对 你有什么启示?
进入流程
教师 为主导
学生 为主体
任务 为主线
(二)复利终值和现值的计算 1. 复利的概念
板书结合多媒体投影完成教学:任务一
(二)复利终值和现值的计算 1. 复利的概念 2.复利终值的计算 ⑴计算公式 F=P×(1+i)n (1+i)n称为复利终值系 数记为(F/P,i,n)
1
任务驱动法
2
案例教学法
3
角色扮演法
4
实训作业法
集体的力量总是大于个体的力量,集体 的智慧远远超过个体的智慧,这是被无数 的事实证明了的真理。教导学生合作交流 的方式方法,培养和增强学生的协作精神 ,合作交流的能力,以适应不断发展的社 会要求。
联系 生活
自主 探究
学法
小组 合作
情境 体验
3.2 学法指导
⑴计算公式 F=P×(1+i)n
(1+i)n称为复利终值系 数记为(F/P,i,n)
⑵例题
⑶节点小议
3.复利现值的计算
⑴计算公式 P=F/(1+i)n=F ×(1+i) -n
过程与方法目标
究 的及的 主计方 动算式 性方将放法系在数学表生的上使,
财务管理资金的时间价值精品ppt课件
3
2.1.2 现金流量时间线
现金流量时间线: 重要的计算货币资金时间价值的工具,可以直
观、便捷地反映资金运动发生的时间和方向。
10000 600 600
t=0
1
2
3
4
2.1.3 资金的时间价值的计算
1、单利终值与单利现值 2、复利终值与复利现值 3、年金
(1)后付年金终值和现值 (2)先付年金终值和现值 (3)递延年金 (4)永续年金
(1 10%)3
则:第一年初,若一次性收款,商品价格为: PVA3=90.91+82.64+75.13=248.68
28
求后付年金现值的计算公式
❖设:每年未收到年金金额=A;利率=i,期数=n.
第1年末收到的资金的现值
:
PVA1
A1 (1 i)1
第2年末收到的资金的现值 : PVA2 A 1
15
复利现值计算公式
因为:FV=PV*( 1+i)n 所以: PV=FV/(1+i)n =FV*(1+i) - n
(1+i) -n :复利现值系数, PVIF i,n 或(P,i,n),(P/s, i, n)。
所以: PV=FV*(1+i) – n =FV(P,i,n)
16
❖ 例:将来从银行取到的1元钱,在10%年利率, 复利计息的情况下,其现值可计算如下:
20
100
100
100
0
1
2
3
①例:已知:某商店,若分三年分期收款出售商品,每年年末 收回100元,i=10%,n=3,A=100.
求:三年后,一共收回的金额。
第一年末收回资金终值=100(1+10%)2=100*1.21=121
2.1.2 现金流量时间线
现金流量时间线: 重要的计算货币资金时间价值的工具,可以直
观、便捷地反映资金运动发生的时间和方向。
10000 600 600
t=0
1
2
3
4
2.1.3 资金的时间价值的计算
1、单利终值与单利现值 2、复利终值与复利现值 3、年金
(1)后付年金终值和现值 (2)先付年金终值和现值 (3)递延年金 (4)永续年金
(1 10%)3
则:第一年初,若一次性收款,商品价格为: PVA3=90.91+82.64+75.13=248.68
28
求后付年金现值的计算公式
❖设:每年未收到年金金额=A;利率=i,期数=n.
第1年末收到的资金的现值
:
PVA1
A1 (1 i)1
第2年末收到的资金的现值 : PVA2 A 1
15
复利现值计算公式
因为:FV=PV*( 1+i)n 所以: PV=FV/(1+i)n =FV*(1+i) - n
(1+i) -n :复利现值系数, PVIF i,n 或(P,i,n),(P/s, i, n)。
所以: PV=FV*(1+i) – n =FV(P,i,n)
16
❖ 例:将来从银行取到的1元钱,在10%年利率, 复利计息的情况下,其现值可计算如下:
20
100
100
100
0
1
2
3
①例:已知:某商店,若分三年分期收款出售商品,每年年末 收回100元,i=10%,n=3,A=100.
求:三年后,一共收回的金额。
第一年末收回资金终值=100(1+10%)2=100*1.21=121
货币时间价值公开课PPT-图文
由于货币直接或间接地参与了社会资本周转,从而获得 了价值增值。货币时间价值的实质就是货币周转使用后 的增值额
➢ 作为资本投放到企业的生产经营当中,经过一段 时间的资本循环后,会产生利润
➢ 进入了金融市场,参与社会资本周转,从而间接 地参与了企业的资本循环周转
货币时间价值 ——表现形式
货币在经过一段时间后的增值 额
若每年本利摊还60万,几年可还清? 新旧屋的房贷利 率都设为4%,设此期间房价水平不变。
1 计算旧屋目前每年摊还金额
24.66万
4 新屋还需要的贷款 648万
2 计算3年后旧屋还剩下多少房贷额 148万
3 计算出售旧屋的净现金流入
5 新屋每年本利摊还额 47.68万
6 若每年还60万,几年可还清
352
14.42
规划初步——子女教育金规划
规划让子女出国留学,目前留学的费用为150万元, 预定子女10年后出国时要准备好此笔留学基金,学费 成长率为3%,为了准备此笔费用,假设投资报酬率可 达8%,父母每年要投资多少钱?
若父母的年储蓄投资额为20万,需要有多高的报酬率 才能达到筹备子女教育金的目标?
5% 1.050 1.103 1.158 1.216 1.276 1.340 1.407 1.477 1.551 1.629 1.710 1.796 1.886 1.980 2.079
6% 1.060 1.124 1.191 1.262 1.338 1.419 1.504 1.594 1.689 1.791 1.898 2.012 2.133 2.261 2.397
(2)从第5年开始,每年年初支付25万元,连续 支付10次,共支付250万元. 假设市场的资金成本率(即最低报酬率)为 10%,你认为该应选择哪个方案?
➢ 作为资本投放到企业的生产经营当中,经过一段 时间的资本循环后,会产生利润
➢ 进入了金融市场,参与社会资本周转,从而间接 地参与了企业的资本循环周转
货币时间价值 ——表现形式
货币在经过一段时间后的增值 额
若每年本利摊还60万,几年可还清? 新旧屋的房贷利 率都设为4%,设此期间房价水平不变。
1 计算旧屋目前每年摊还金额
24.66万
4 新屋还需要的贷款 648万
2 计算3年后旧屋还剩下多少房贷额 148万
3 计算出售旧屋的净现金流入
5 新屋每年本利摊还额 47.68万
6 若每年还60万,几年可还清
352
14.42
规划初步——子女教育金规划
规划让子女出国留学,目前留学的费用为150万元, 预定子女10年后出国时要准备好此笔留学基金,学费 成长率为3%,为了准备此笔费用,假设投资报酬率可 达8%,父母每年要投资多少钱?
若父母的年储蓄投资额为20万,需要有多高的报酬率 才能达到筹备子女教育金的目标?
5% 1.050 1.103 1.158 1.216 1.276 1.340 1.407 1.477 1.551 1.629 1.710 1.796 1.886 1.980 2.079
6% 1.060 1.124 1.191 1.262 1.338 1.419 1.504 1.594 1.689 1.791 1.898 2.012 2.133 2.261 2.397
(2)从第5年开始,每年年初支付25万元,连续 支付10次,共支付250万元. 假设市场的资金成本率(即最低报酬率)为 10%,你认为该应选择哪个方案?
货币的时间价值(共47张PPT)精选全文
权平均值, 是加权平均的中心值。
n
E
=i=∑X1iPi
(三) 离散程度
离散程度是用以衡量风险大小的统计指 标。一般说来,离散程度越大,风险越大; 散程度越小,风险越小。
反映随机变量离散程度的常用指标主 要包括方差、标准差、标准离差率等三项 指标。
1、方差
方差是用来表示随机变量与期望值之间的
P =A·[(P/A,i,n-l)+1] =20 000×[(P/A,10%,6-l)+1] =20 000×(3.7908+1) =95 816(元)
3、递延年金
(1)递延年金的终值计算与普通年金的 计算一样,只是要注意期数。
F=A·(F/A,i,n) 式中,n 表示的是 A 的个数,与递延
第一节 货币的时间价值
思考: 今天的100元是否与1年后的100元价
值相等?为什么?
第一节 货币的时间价值
一、货币时间价值的概念 二、货币时间价值的计算
一、货币时间价值的概念
货币的时间价值,也称为资金的时间 价值,是指货币经历一定时间的投资和再 投资所增加的价值,它表现为同一数量的 货币在不同的时点上具有不同的价值。
值为:
F2 =10 000×(1+6%)×(1+6%) = 10 000×(1+6%)2=11 240(元)
同理,第三年末的终值为:
F3 =10 000× (1+6%)2 ×(1+6%) = 10 000×(1+6%)3=11 910(元) 依此类推,第 n 年末的终值为: Fn = 10 000×(1+6%)n
(P/A,i,n)。上式也可写作: P=A·(P/A,i,n)
【例8】某企业租入一台设备, 每年年末需要支付租 金120元,年折现率为10%, 则5年内应支付的租金总
财务管理-货币时间价值PPT课件
等待多久可以涨到 $10,000? 这个规则对于在5%~20%这个范围内的折现率是相当准确的。
12
复利记息和贴现图示:
元
以 9%的 利率 复利计 息
¥ 2 367.36
¥ 1 000
¥ 1 90 0 单利值 ¥ 1 000
¥ 422.41
以 9%的 利率 贴现
1 2 3 4 5 6 7 8 9 10 未来某年
例2:利率多少是足够的?
根据现值、终值、期数求利率?
假设一所大学的教育费用在你的孩子18岁上大学时总数将达到 $50,000 。你今天有$5,000用于投资。 利息率为多少时你从投 资中获得的收入可以解决你孩子的教育费用?
解r:
FVT = PV (1 + r)T 50000 = 5000 x (1 + r)18 (1 + r)18= 10 (1 + r) = 10(1/18) r= 0.13646 = 13.646%
30
•非普通年金的终值及现值的计算
➢预付年金终值的计算:
n1
FV AA(1r)t A
t0
31
例1:购房计划写到这里
你准备购买一套住房,支付预付定金和按揭借款手 续费共计$20,000. 借款手续费预计为按揭借款额 的4%. 你的年收入为$36,000,银行同意你以月收 入的28%做为每月的抵押偿还额. 这笔借款为30年 期的固定利率借款,年利率为6% ,每月计息一次 (即月息.5%). 请问银行愿意提供的借款额为多少? 你愿意出价多少购买这套住房?
第3章 货币时间价值
1. 单利与复利 2. 终值与现值 3. 年金
1
关键概念和技巧
如何确定今天的一笔投资在未来的价值 如何确定未来的一笔现金流入在今天的价值 如何确定投资回报率 能计算具有多重现金流量的项目的终值、现
12
复利记息和贴现图示:
元
以 9%的 利率 复利计 息
¥ 2 367.36
¥ 1 000
¥ 1 90 0 单利值 ¥ 1 000
¥ 422.41
以 9%的 利率 贴现
1 2 3 4 5 6 7 8 9 10 未来某年
例2:利率多少是足够的?
根据现值、终值、期数求利率?
假设一所大学的教育费用在你的孩子18岁上大学时总数将达到 $50,000 。你今天有$5,000用于投资。 利息率为多少时你从投 资中获得的收入可以解决你孩子的教育费用?
解r:
FVT = PV (1 + r)T 50000 = 5000 x (1 + r)18 (1 + r)18= 10 (1 + r) = 10(1/18) r= 0.13646 = 13.646%
30
•非普通年金的终值及现值的计算
➢预付年金终值的计算:
n1
FV AA(1r)t A
t0
31
例1:购房计划写到这里
你准备购买一套住房,支付预付定金和按揭借款手 续费共计$20,000. 借款手续费预计为按揭借款额 的4%. 你的年收入为$36,000,银行同意你以月收 入的28%做为每月的抵押偿还额. 这笔借款为30年 期的固定利率借款,年利率为6% ,每月计息一次 (即月息.5%). 请问银行愿意提供的借款额为多少? 你愿意出价多少购买这套住房?
第3章 货币时间价值
1. 单利与复利 2. 终值与现值 3. 年金
1
关键概念和技巧
如何确定今天的一笔投资在未来的价值 如何确定未来的一笔现金流入在今天的价值 如何确定投资回报率 能计算具有多重现金流量的项目的终值、现
财务管理学货币时间价值 PPT
大家好
一、时间价值的含义
--来源--马克思的劳动价值理论
基本观点
按照马克思的劳动价值理论,时间价值产生的根 源并不在于拥有资金时间的变化,而是由于劳动者在 资金的周转使用过程中为社会劳动所创造的剩余价值 的存在。
因为,企业的资金投入经营活动后,劳动者利用资金 不仅生产出新的产品,而且还创造了新价值,实现了 价值的增值。所以,资金时间价值的实质是资金周转 使用所形成的增值额。
FVIFi,n:Future Value Interest Factor 该系数不用求,可以查表(附录一)
大家好
(二)复利终值和现值的计算
FVIFi,n 能从附录的复利终值系数表中查得.
Period 1 2 3 4 5
6% 1.060 1.124 1.191 1.262 1.338
7% 1.070 1.145 1.225 1.311 1.403
《财务管理》第2章
财务管理基础概念
大家好
1
基本框架
货币时间价值
第2章
风险与报酬 证券估价
大家好
第一节 资金时间价值
一、资金时间价值的概念 二、资金时间价值的计算
t 财务管理的精髓 t+n
Time Va大lu家e好of Money
问题的引入: 一诺千金的玫瑰花信誉
拿破仑1797年3月在卢森堡第一国立小学演讲时说了这样一 番话:“为了答谢贵校对我,尤其是对我夫人约瑟芬的盛情款 待,我不仅今天呈上一束玫瑰花,并且在未来的日子里,只要 我们法兰西存在一天,每年的今天我将亲自派人送给贵校一束 价值相等的玫瑰花,作为法兰西与卢森堡友谊的象征。”
大家好
图解复利终值
如果1,000 存2年,复利年利率7% ,
一、时间价值的含义
--来源--马克思的劳动价值理论
基本观点
按照马克思的劳动价值理论,时间价值产生的根 源并不在于拥有资金时间的变化,而是由于劳动者在 资金的周转使用过程中为社会劳动所创造的剩余价值 的存在。
因为,企业的资金投入经营活动后,劳动者利用资金 不仅生产出新的产品,而且还创造了新价值,实现了 价值的增值。所以,资金时间价值的实质是资金周转 使用所形成的增值额。
FVIFi,n:Future Value Interest Factor 该系数不用求,可以查表(附录一)
大家好
(二)复利终值和现值的计算
FVIFi,n 能从附录的复利终值系数表中查得.
Period 1 2 3 4 5
6% 1.060 1.124 1.191 1.262 1.338
7% 1.070 1.145 1.225 1.311 1.403
《财务管理》第2章
财务管理基础概念
大家好
1
基本框架
货币时间价值
第2章
风险与报酬 证券估价
大家好
第一节 资金时间价值
一、资金时间价值的概念 二、资金时间价值的计算
t 财务管理的精髓 t+n
Time Va大lu家e好of Money
问题的引入: 一诺千金的玫瑰花信誉
拿破仑1797年3月在卢森堡第一国立小学演讲时说了这样一 番话:“为了答谢贵校对我,尤其是对我夫人约瑟芬的盛情款 待,我不仅今天呈上一束玫瑰花,并且在未来的日子里,只要 我们法兰西存在一天,每年的今天我将亲自派人送给贵校一束 价值相等的玫瑰花,作为法兰西与卢森堡友谊的象征。”
大家好
图解复利终值
如果1,000 存2年,复利年利率7% ,
财务管理第二章货币的时间价值PPT课件
• 某公司决定连续5年于每年年初存入100万元,作为住房基金,银行的存款 利率为10%。则该公司在第5年末能一次取出本利和是多少?
• F=100* [(F/A,10%,5+1)-1] • =100*(7.716-1)=671.6
第32页/共49页
预付年金现值
01
2
34
A
A
A
A
A
A0 A÷(1+10%)0
第一节 货币时 间 价 值 的 概 念
• 两层含义:
(1)资金在运动的过程中,资金的价值会随着时 间的变化而增加。此时,资金的时间价值表现为 利息或利润。
(2)投资者将资金用于投资就必须推迟消费或者 此项资金不能用于其它投资,此时,资金的时间 价值就表现为推迟消费或放弃其他投资应得的必 要 补 偿 ( 机 会 成 本 ) 。第1页/共49页
A2=A×(1+10%)3
A1=A×(1+10%)4
A3 A2 A1
第17页/共49页
1.普通年金的终值计算:
01
23
r ...
F=? n
A
(1 r)n 1
F A
A( F A, r, n)
r
• 普通年金的终值系数(F/P,i,n)
• 经济含义:从第一年年末到第n年年末,每 年存入 银行1元钱,在利率为r的情况下,在 第n年年末能 取 出多少钱?
第29页/共49页
1.预付年金终值
10%
01
2
34
5
AA
A
A
A
T
A A4=A×(1+10%)1 4
A3=A×(1+10%)2
A3
A2=A×(1+10%)3
• F=100* [(F/A,10%,5+1)-1] • =100*(7.716-1)=671.6
第32页/共49页
预付年金现值
01
2
34
A
A
A
A
A
A0 A÷(1+10%)0
第一节 货币时 间 价 值 的 概 念
• 两层含义:
(1)资金在运动的过程中,资金的价值会随着时 间的变化而增加。此时,资金的时间价值表现为 利息或利润。
(2)投资者将资金用于投资就必须推迟消费或者 此项资金不能用于其它投资,此时,资金的时间 价值就表现为推迟消费或放弃其他投资应得的必 要 补 偿 ( 机 会 成 本 ) 。第1页/共49页
A2=A×(1+10%)3
A1=A×(1+10%)4
A3 A2 A1
第17页/共49页
1.普通年金的终值计算:
01
23
r ...
F=? n
A
(1 r)n 1
F A
A( F A, r, n)
r
• 普通年金的终值系数(F/P,i,n)
• 经济含义:从第一年年末到第n年年末,每 年存入 银行1元钱,在利率为r的情况下,在 第n年年末能 取 出多少钱?
第29页/共49页
1.预付年金终值
10%
01
2
34
5
AA
A
A
A
T
A A4=A×(1+10%)1 4
A3=A×(1+10%)2
A3
A2=A×(1+10%)3
《财务管理第二章》PPT课件
期限为5年,年利率为10%,则到期时的本 利和为:
FV5=1000 ×(1+10% ×5)=15000(元)
• 2、单利现值
•
PV=FVn/(1+ni)
• 例2:某公司打算在3年后用60000元购置新
设备,目前的银行利率为5%,则公司现在
应存入:
PV=60000/(1+5% ×3)=52173.91(元)
– 某人存款2500元,年利率为8%,半年按复利计息一 次,试求8年后的本利和。
F2500(18% )164682.45 2
• 例:Harry以12%的名义年利率投资5000美元,按季复 利计息,那末他的资金五年后会变为多少?
[1 (0.12)]45 4
• 名义利率与实际利率:
– 名义利率只有在给出计息间隔期的情况下才有意义。 – 如若名义利率为10%,1美元每半年按复利计息情况下,
PVAn=A×[1-(1+i)-n]/i=A/i • 例:一项每年年底的收入为800元的永续年金投资,
利率为8%,则其现值为多少?
5、时间价值计算中的几个特殊问题
A、不等额现金流量现值的计算:
• 不等额现金流的终值计算公式: FVn=∑Ct(1+i)t
• 不等额现金流的现值计算公式: PVn=∑Ct/(1+i)t
• 2.若麦克每年拿出工资的5%,以利率8%存款,到 他60岁时,存款为多少?
• 3.若麦克打算在此后5年里等额消费这笔存款,每 年他可消费多少?
第二节风险衡量与风险报酬
• 问题引入: • 若买地要200万元,建造楼房要花费200
万元,但你的房地产顾问并不能肯定该 楼房未来的价值一定是420万元,而若 此时你可以花4 00万元购买政府债券从 而保证获得4 2万元收入时,你还会投资 建造楼房吗?
FV5=1000 ×(1+10% ×5)=15000(元)
• 2、单利现值
•
PV=FVn/(1+ni)
• 例2:某公司打算在3年后用60000元购置新
设备,目前的银行利率为5%,则公司现在
应存入:
PV=60000/(1+5% ×3)=52173.91(元)
– 某人存款2500元,年利率为8%,半年按复利计息一 次,试求8年后的本利和。
F2500(18% )164682.45 2
• 例:Harry以12%的名义年利率投资5000美元,按季复 利计息,那末他的资金五年后会变为多少?
[1 (0.12)]45 4
• 名义利率与实际利率:
– 名义利率只有在给出计息间隔期的情况下才有意义。 – 如若名义利率为10%,1美元每半年按复利计息情况下,
PVAn=A×[1-(1+i)-n]/i=A/i • 例:一项每年年底的收入为800元的永续年金投资,
利率为8%,则其现值为多少?
5、时间价值计算中的几个特殊问题
A、不等额现金流量现值的计算:
• 不等额现金流的终值计算公式: FVn=∑Ct(1+i)t
• 不等额现金流的现值计算公式: PVn=∑Ct/(1+i)t
• 2.若麦克每年拿出工资的5%,以利率8%存款,到 他60岁时,存款为多少?
• 3.若麦克打算在此后5年里等额消费这笔存款,每 年他可消费多少?
第二节风险衡量与风险报酬
• 问题引入: • 若买地要200万元,建造楼房要花费200
万元,但你的房地产顾问并不能肯定该 楼房未来的价值一定是420万元,而若 此时你可以花4 00万元购买政府债券从 而保证获得4 2万元收入时,你还会投资 建造楼房吗?