函数知识点总结

合集下载

函数知识点总结

函数知识点总结

函数知识点总结(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、合同协议、总结报告、演讲致辞、规章制度、自我鉴定、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as workplace documents, contract agreements, summary reports, speeches, rules and regulations, self-assessment, emergency plans, teaching materials, essay summaries, other sample essays, etc. If you want to learn about different sample essay formats and writing methods, please stay tuned!函数知识点总结函数知识点总结总结是在某一特定时间段对学习和工作生活或其完成情况,包括取得的成绩、存在的问题及得到的经验和教训加以回顾和分析的书面材料,它是增长才干的一种好办法,是时候写一份总结了。

各种函数的知识点总结

各种函数的知识点总结

各种函数的知识点总结1. 函数的定义函数的定义包括参数、返回值和函数体。

参数是函数的输入,可以有多个参数;返回值是函数的输出,可以是任意类型的值;函数体是包含一段逻辑代码的部分,用来实现具体的功能。

2. 函数的调用函数的调用是指在代码中使用函数来实现特定的功能。

调用函数时,需要传入参数,并获取函数的返回值。

3. 函数的声明和定义在编程中,函数需要先声明再定义。

声明函数是指在代码中告诉编译器有一个函数存在,并告诉编译器函数的参数和返回值类型;定义函数是指在代码中实现具体的函数逻辑。

4. 函数的参数函数的参数包括形参和实参。

形参是在函数声明和定义中用来表示函数输入的变量,实参是在函数调用时实际传入的值。

函数的参数可以是任意类型的值,包括基本类型、数组、结构体、指针等。

5. 函数的返回值函数的返回值可以是任意类型的值,包括基本类型、数组、结构体、指针等。

在函数中使用return语句来返回具体的数值。

6. 函数的重载函数的重载是指在同一个作用域中,可以有多个同名函数,但它们的参数列表不同。

在调用函数时,编译器会根据参数列表的不同选择调用哪个函数。

7. 函数的递归函数的递归是指函数调用自身的过程。

递归函数可以实现一些复杂的逻辑,比如遍历树、计算阶乘等。

8. 函数的作用域函数的作用域指的是函数的可见范围。

在C语言中,函数的作用域是局部的,只在函数内部可见。

在C++中,函数的作用域可以是全局的,也可以是局部的。

9. 函数的参数传递函数的参数传递包括值传递、引用传递和指针传递。

值传递是指将实参的值复制一份传递给形参,函数内部改变形参的值不会影响实参的值;引用传递是指将实参的引用传递给形参,函数内部改变形参的值会影响实参的值;指针传递是指将实参的地址传递给形参,函数内部通过指针可以改变实参的值。

10. 函数模板函数模板是一种通用的函数定义,可以在不同的类型之间进行操作。

函数模板可以实现任意类型的函数,比如比较两个数的大小、排序数组等。

大学函数重要知识点总结

大学函数重要知识点总结

大学函数重要知识点总结一、函数的定义和性质1. 函数的定义函数是一个从一个集合到另一个集合的映射关系,通常表示为f: X -> Y,其中X为定义域,Y为值域。

2. 函数的性质(1)定义域和值域:函数的定义域是所有定义在函数上的自变量的集合,值域是所有函数值的集合。

(2)单值性:每个自变量对应唯一的函数值。

(3)奇偶性:奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。

(4)周期性:如果存在正数T,使得f(x+T)=f(x),则称函数f(x)为周期函数。

(5)上下界:如果在一定的定义域内,函数f(x)的值都在一个范围内,则称函数有上下界。

(6)单调性:如果在一定的定义域内,函数f(x)的值随着自变量x的增大而增大(或减小),则称函数具有单调性。

二、基本初等函数1. 常数函数常数函数的表达式为f(x)=C,C为常数。

2. 一次函数一次函数的表达式为f(x)=kx+b,k为斜率,b为截距。

3. 幂函数幂函数的表达式为f(x)=x^a,a为实数。

4. 指数函数指数函数的表达式为f(x)=a^x,a为正实数且不等于1。

5. 对数函数对数函数的表达式为f(x)=log_a(x),a为正实数且不等于1。

包括正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数。

三、函数的运算1. 基本初等函数的四则运算(1)加法和减法:f(x)=g(x)±h(x)(2)乘法:f(x)=g(x)·h(x)(3)除法: f(x)=g(x)/h(x),其中h(x)≠02. 复合函数如果存在函数u(x)和v(x),则复合函数为:f(x)=u(v(x))。

3. 反函数如果两个函数f和g满足f(g(x))=x和g(f(x))=x,那么f和g互为反函数,且g=f^-1。

4. 函数的求导对函数进行求导可以得到函数的导数,导数表示函数在某一点的变化速度。

5. 函数的积分对函数进行积分可以得到函数的不定积分和定积分,不定积分是函数的原函数,定积分表示函数在一定范围内的面积或体积。

函数知识点总结大全

函数知识点总结大全

函数知识点总结大全一、概念与特点1. 函数是一种特殊的关系,指的是在一个数的范围内,与这个数对应的唯一的另一个数。

2. 在数学中,函数通常用字母f, g, h等表示,函数的自变量和因变量分别是x和y。

即y=f(x)。

3. 函数的特点:单值性(对于同一个自变量,函数有唯一的因变量)、可定义域(函数的自变量的取值范围)、值域(函数的因变量的取值范围)。

二、函数的分类1. 一元函数:函数的自变量只有一个。

2. 多元函数:函数的自变量有两个或两个以上。

3. 显式函数:函数的表达式中,因变量能够用自变量唯一表示。

4. 隐式函数:函数的表达式中,因变量无法用自变量唯一表示。

5. 参数方程:函数的表达式中,因变量和自变量都用参数表示。

三、数学函数1. 常用的数学函数有:多项式函数、指数函数、对数函数、三角函数、幂函数、根函数等。

2. 多项式函数:由常数项、一次项、二次项等有限多项组成的函数。

3. 指数函数:以常数e为底的函数。

4. 对数函数:以常数e为底的对数函数。

5. 三角函数:正弦函数、余弦函数、正切函数、余切函数等。

6. 幂函数:指数为自然数的幂函数。

7. 根函数:开平方根、立方根等。

四、函数的运算1. 函数的和、差、积、商:设有函数f(x)和g(x),则它们的和、差、积、商分别为f(x)±g(x)、f(x)g(x)和f(x)/g(x)。

2. 复合函数:将一个函数作为另一个函数的自变量,形成的新函数。

3. 反函数:设有函数f(x),如果存在一个函数g(x),使得g(f(x))=x,同时f(g(x))=x,那么g(x)就是f(x)的反函数。

4. 基本初等函数的复合:常用基本初等函数的复合形成新的函数。

五、函数的图像与性质1. 函数的图像:通过函数的表达式,可以画出函数的图像,通常用直角坐标系表示。

2. 函数的奇偶性:函数在该定义域内,满足f(-x)=f(x)的函数是偶函数;满足f(-x)=-f(x)的函数是奇函数。

数学高考知识点总结函数

数学高考知识点总结函数

数学高考知识点总结函数一、函数的基本概念1.1 函数的定义在数学中,函数是一种对应关系,它描述了一个集合中的每个元素与另一个集合中的唯一元素之间的关系。

如果对于集合X中的每一个元素x,都有集合Y中的唯一元素y与之对应,那么我们就称这种对应关系为函数。

通常用f(x)表示函数,其中x是自变量,f(x)是因变量。

1.2 函数的表示函数可以用不同的形式进行表示,常见的表示形式包括:① 变量关系式表示:y=f(x)或者y=f(x₁,x₂,…,xₙ)。

② 表格表示:将自变量和因变量的对应关系列成表格。

③ 图像表示:通过绘制函数的图像来表示函数的关系。

二、函数的性质2.1 奇函数和偶函数奇函数和偶函数是函数的一种性质,它们的定义如下:① 奇函数:如果对于任意的x,都有f(-x)=-f(x),那么我们称函数f(x)是奇函数。

② 偶函数:如果对于任意的x,都有f(-x)=f(x),那么我们称函数f(x)是偶函数。

奇函数以原点对称,而偶函数以y轴对称。

2.2 周期函数如果函数f(x)满足对于任意的x,都有f(x+T)=f(x),其中T为一个正常数,那么我们称函数f(x)是周期函数,T称为函数的周期。

2.3 单调性函数的单调性是指函数在定义域内的增减性质,可以分为严格单调增、严格单调减、非严格单调增、非严格单调减四种类型。

2.4 凹凸性函数的凹凸性描述了函数图像的凹凸形状,它可以分为凹函数和凸函数两种类型。

2.5 极值函数的极值是指函数在一定区间内取得最大值或最小值的点,可以分为最大值和最小值两种。

三、函数的图像3.1 函数的图像基本性质函数的图像是函数在平面直角坐标系中的几何形象,它具有以下基本性质:① 函数的图像可以用方程y=f(x)来表示。

② 函数的图像关于y轴对称,当且仅当函数f(-x)=f(x)时。

③ 函数的图像可以用表格来表示,通过将自变量和因变量的对应关系列成表格。

3.2 常见函数的图像常见的函数包括一次函数、二次函数、指数函数、对数函数、幂函数、三角函数等,它们都有各自的特点和图像形状。

函数初步知识点归纳总结

函数初步知识点归纳总结

函数初步知识点归纳总结一、函数的定义和调用1. 函数是一段可以重复使用的代码块。

2. 函数的定义一般包括函数名、参数列表和函数体,例如:def function_name(parameter1, parameter2):# 函数体3. 调用函数时,需要传入实际参数,例如:result = function_name(value1, value2)二、函数的参数1. 形参和实参- 形参:函数定义时的参数- 实参:函数调用时传入的参数2. 位置参数和关键字参数- 位置参数:依据参数的位置来确定其值- 关键字参数:通过参数名来确定其值3. 默认参数- 在函数定义时,可以给参数设置默认值,调用函数时没有传入该参数时,会使用默认值三、函数的返回值1. return语句- 函数可以通过return语句返回一个值,也可以返回多个值2. 没有return语句的函数,默认返回None四、函数的作用域1. 全局变量和局部变量- 在函数外部定义的变量为全局变量- 在函数内部定义的变量为局部变量2. 变量的查找顺序:- 在函数内部先查找局部变量,如果没有找到,再查找全局变量五、函数的嵌套1. 在一个函数内部可以定义另一个函数2. 嵌套函数只能在外层函数内调用六、匿名函数1. 使用lambda关键字定义匿名函数2. 匿名函数只能包含单个表达式七、内置函数1. Python提供了许多内置函数,如print()、len()、max()、min()等2. 通过调用内置函数,可以完成一些常见的操作,而不需要自己编写函数八、递归函数1. 函数内部调用自身的函数称为递归函数2. 递归函数需要有结束条件,防止无限递归以上是函数初步的知识点归纳总结,这些知识点是Python函数部分的基础内容,掌握好这些知识点,对于学习和使用函数会有很大的帮助。

希望以上内容对你有所帮助。

函数常用公式及知识点总结

函数常用公式及知识点总结

函数常用公式及知识点总结一、基本的函数类型及其表达式1. 线性函数线性函数是最简单的一类函数,其表达式可以写成y = kx + b的形式,其中k和b是常数,k代表斜率,b代表截距。

线性函数的图像通常是一条直线,斜率决定了直线的倾斜程度,截距决定了直线和y轴的交点位置。

2. 二次函数二次函数的一般形式是y = ax^2 + bx + c,其中a、b、c分别是二次项系数、一次项系数和常数。

二次函数的图像通常是一条开口向上或向下的抛物线,抛物线的开口方向取决于二次项系数a的正负。

3. 指数函数指数函数的一般形式是y = a^x,其中a是底数。

指数函数的特点是以指数形式增长或衰减,当底数a大于1时,函数图像呈现增长趋势;当底数a介于0和1之间时,函数图像呈现衰减趋势。

4. 对数函数对数函数的一般形式是y = log_a(x),其中a是底数。

对数函数和指数函数是互为反函数的关系,对数函数的图像通常是一条斜率逐渐趋近于零的曲线。

5. 三角函数常见的三角函数包括正弦函数、余弦函数和正切函数,它们分别表示了角的正弦值、余弦值和正切值。

三角函数的图像是周期性的波形,具有很强的周期性和对称性特点。

二、函数的常见性质和变换1. 奇偶性函数的奇偶性是指当x取相反数时,函数值是否相等。

如果函数满足f(-x) = f(x),则称其为偶函数;如果函数满足f(-x) = -f(x),则称其为奇函数。

2. 周期性周期性是指函数在一定范围内具有重复的规律性。

对于三角函数和指数函数等周期函数,周期可以通过函数表达式或图像来确定。

3. 平移、缩放和翻转函数可以通过平移、缩放和翻转等方式进行变换。

平移指的是将函数图像沿着x轴或y轴进行平移,缩放指的是改变函数图像的大小或形状,翻转指的是将函数图像进行对称变换。

4. 复合函数复合函数是指一个函数作为另一个函数的自变量,通过这种方式可以得到新的函数。

复合函数的求导、积分和求极限等运算与单个函数类似,但需要注意变量的替换和链式求导法则。

函数的基本性质知识点总结

函数的基本性质知识点总结

函数的基本性质知识点总结1.函数的定义:函数是一种数学对象,它将一个集合中的每个元素映射到另一个集合中的唯一元素上。

函数通常以符号表示,例如f(x)。

2.定义域:函数的定义域是指函数能够接受的自变量的值的集合。

它是函数能够有效进行计算的自变量的范围。

通常用符号表示为D(f)。

3.值域:函数的值域是指函数在定义域上所有可能的函数值的集合。

它是因变量的取值范围。

通常用符号表示为R(f)。

4.图像:函数的图像是指由函数的所有有序对(x,f(x))组成的点的集合。

可以通过将自变量的取值代入函数的表达式来确定函数的图像。

5.奇偶性:函数的奇偶性指函数在坐标系中的对称性。

一个函数被称为奇函数,如果对于定义域上的任何x值,-x处的函数值等于x处的相反数。

一个函数被称为偶函数,如果对于定义域上的任何x值,-x处的函数值等于x处的函数值。

6.单调性:函数的单调性指函数在定义域上的增减趋势。

一个函数被称为严格递增函数,如果对于定义域上的任意两个x值,f(x1)<f(x2)。

一个函数被称为严格递减函数,如果对于定义域上的任意两个x值,f(x1)>f(x2)。

7.周期性:函数的周期性指函数在定义域上以一定的周期重复。

一个函数被称为周期函数,如果存在一个正整数T,对于定义域上的任意x值,有f(x+T)=f(x)。

8.连续性:函数的连续性指函数在定义域上的无间断性。

一个函数在点x=c处连续,如果当x趋近于c时,f(x)趋近于f(c)。

一个函数在整个定义域上连续,如果它在每个点都连续。

9.可导性:函数的可导性指函数在一些点上的导数是否存在。

函数f(x)在点x=c处可导,如果当x趋近于c时,f(x)的斜率存在,并且等于c处的导数。

10.极值:函数的极值指函数在定义域上的最大值和最小值。

一个局部最大值是指函数在一些区间上的最大值,而不一定是整个定义域上的最大值。

一个局部最小值是指函数在一些区间上的最小值,而不一定是整个定义域上的最小值。

函数运算知识点总结

函数运算知识点总结

函数运算知识点总结一、函数的概念1.1 函数的定义函数是一种数学对象,它表示输入到输出的映射关系。

一个函数通常用一个或多个自变量表示,通过特定的规则,计算得到相应的因变量。

一个函数可以表示为 f(x)=y,其中 x 是自变量,y 是因变量,f(x) 表示函数在自变量 x 下的取值。

1.2 函数的图像函数的图像是函数在坐标系中的几何表示,它是函数横坐标和纵坐标的关系。

函数的图像可以用函数的表达式绘制成图形,通过观察函数的图像可以了解函数的性质和行为。

1.3 函数的定义域和值域函数的定义域是指函数定义的自变量的取值范围,函数的值域是指函数在定义域内的所有可能的因变量的取值范围。

函数的定义域和值域在确定函数的性质和行为上起到了重要的作用。

1.4 初等函数初等函数是指一些基本的函数形式,包括代数函数、三角函数、指数函数、对数函数等。

初等函数是用于描述自然界和社会现象的一种数学模型,对于初等函数的研究在数学和物理等领域具有重要的意义。

1.5 函数运算函数运算是指对函数进行加、减、乘、除等运算,包括函数的复合、反函数、逆函数等。

函数运算的目的是得到新的函数,以便对函数进行更复杂的研究和应用。

二、函数的性质2.1 函数的奇偶性一个函数的奇偶性是指该函数在坐标系中的对称性。

若函数满足 f(-x)=f(x) ,则称其为偶函数;若函数满足 f(-x)=-f(x) ,则称其为奇函数。

奇偶性是函数性质的重要特征,在函数的图像和性质分析中起到重要的作用。

2.2 函数的单调性一个函数的单调性是指函数图像在定义域内的单调增加或单调减少的性质。

若函数满足对于任意的 x1<x2 ,有 f(x1)<f(x2) ,则称其为单调增加函数;若函数满足对于任意的x1<x2 ,有 f(x1)>f(x2) ,则称其为单调减少函数。

2.3 函数的极值和最值一个函数在定义域内的最小值和最大值称为函数的最值,而取得最值的自变量称为函数的极值点。

函数初二知识点总结

函数初二知识点总结

函数初二知识点总结一、函数的概念。

1. 变量与常量。

- 在一个变化过程中,数值发生变化的量称为变量,数值始终不变的量称为常量。

例如,在行程问题中,速度不变时,路程s = vt,v是常量,s和t是变量。

2. 函数的定义。

- 一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。

例如,y = 2x+1,对于x的每一个值,都能通过这个式子算出唯一的y值。

3. 函数的表示方法。

- 解析法:用数学式子表示两个变量之间的函数关系,如y = 3x - 2。

- 列表法:通过列出自变量与函数的对应值来表示函数关系。

例如,某商店销售一种商品,记录不同销售量x(件)时的销售额y(元),如下表:x1 2 3 4.y5 10 15 20.- 图象法:用图象表示两个变量之间的函数关系。

如在平面直角坐标系中画出y = x^2的图象。

二、函数自变量的取值范围。

1. 整式型函数。

- 对于y = 2x+3这样的整式函数,自变量x的取值范围是全体实数。

2. 分式型函数。

- 对于y=(1)/(x),因为分母不能为0,所以x≠0。

3. 二次根式型函数。

- 对于y = √(x),被开方数x≥slant0。

如果是y=√(2x - 1),则2x - 1≥slant0,解得x≥slant(1)/(2)。

三、函数图象的画法。

1. 列表。

- 对于y = 2x+1,可以选取一些x的值,如x=-2,-1,0,1,2,然后分别计算出对应的y值:- 当x = - 2时,y=2×(-2)+1=-3;- 当x=-1时,y = 2×(-1)+1=-1;- 当x = 0时,y=2×0 + 1=1;- 当x = 1时,y=2×1+1 = 3;- 当x = 2时,y=2×2+1=5。

列出表格如下:x-2 -1 0 1 2.y-3 -1 1 3 5.2. 描点。

函数知识点大全总结

函数知识点大全总结

函数知识点大全总结一、函数的定义和调用1. 函数的定义:函数是一段封装了特定功能的可重复使用的代码块,通常包括函数名、参数列表和函数体。

2. 函数的调用:使用函数名和参数列表来调用函数,传递参数并获取函数的返回值。

二、函数的参数1. 形参和实参:在函数定义中使用的参数叫做形参,到实际函数调用时传递的参数叫做实参。

2. 位置参数:按照参数的位置来传递参数值的方式。

3. 关键字参数:按照参数名来传递参数值的方式。

4. 默认参数:在函数定义时为参数指定默认值,调用时如果不传递该参数则会采用默认值。

5. 可变参数:允许函数接受任意数量的参数。

在 Python 中可以使用 *args 和 **kwargs 来实现可变参数。

三、函数的返回值1. 返回单个值:函数可以返回一个具体的数值、字符串、变量等。

2. 返回多个值:使用元组或列表等数据结构返回多个值。

四、函数的作用域1. 全局作用域:在函数外部定义的变量拥有全局作用域,可以在整个程序中进行访问。

2. 局部作用域:在函数内部定义的变量拥有局部作用域,只能在函数内部进行访问。

3. 嵌套作用域:当函数嵌套定义时,内部函数可以访问外部函数的变量。

五、函数的返回类型1. 无返回值函数:即返回值为 None 的函数。

2. 有返回值函数:返回具体的值或变量。

3. 返回类型注解:某些编程语言支持在函数定义时注明返回值的数据类型。

六、函数的递归1. 递归函数:函数内部调用自身的函数。

2. 递归终止条件:递归函数需要有终止条件,否则会进入无限循环。

七、匿名函数1. Lambda 表达式:一种简洁的定义小型匿名函数的方式。

2. 使用场景:适用于在不需要创建具体函数名的场合,通常用于函数式编程中。

八、高阶函数1. 函数作为参数:将函数作为参数传递给另一个函数。

2. 函数作为返回值:返回另一个函数,使得函数可以嵌套调用。

九、闭包1. 闭包定义:内部函数会引用外部函数的变量,并将其保留在内存中,形成闭包。

函数必考知识点总结

函数必考知识点总结

函数必考知识点总结一、函数的定义和调用1. 函数的定义:函数是一段可以重复调用的代码块,它可以接受参数并返回结果。

在大多数编程语言中,函数的定义通常包括函数名、参数列表、返回类型和函数体。

2. 函数的调用:调用函数时,可以向函数传递参数,并接收函数返回的结果。

函数的调用可以简化代码逻辑,提高代码的可重用性。

二、函数的参数1. 形参和实参:在函数定义中,参数列表中的参数称为形参;在函数调用中,传递给函数的参数称为实参。

2. 默认参数:在函数定义中,可以给参数指定默认值。

当调用函数时不传递该参数,则会使用默认值。

3. 可变参数:在一些语言中,函数的参数列表中可以指定可变长度的参数,这样可以接受不定数量的参数。

4. 关键字参数:在函数调用中,可以使用参数名指定传递的参数值,这样可以避免参数位置的混乱。

三、函数的返回值1. 返回类型:函数可以指定返回值的类型,可以是基本类型、引用类型或者结构体类型。

2. 返回多个值:有些语言支持函数返回多个值,这样可以更灵活地使用函数的返回结果。

四、函数的作用域1. 局部变量:在函数内部定义的变量称为局部变量,它只在函数内部有效。

2. 全局变量:在函数外部定义的变量称为全局变量,它在整个程序中都可以访问。

五、递归函数1. 递归函数:递归函数是指在函数体内调用函数本身的函数。

递归函数可以简化问题的描述和求解。

2. 递归的基线条件和递归条件:在编写递归函数时,需要明确递归的基线条件和递归条件,以免出现死循环。

六、匿名函数1. 匿名函数:匿名函数是指在不需要显式定义函数名的情况下,直接定义和使用函数的一种方式。

匿名函数通常用于函数式编程。

七、高阶函数1. 高阶函数:高阶函数是指可以接受函数作为参数,或者返回函数作为结果的函数。

高阶函数可以使代码更加灵活和通用。

总结:以上就是函数的一些必考知识点的总结。

函数作为编程中的基本构建块,掌握好函数的相关知识对于基础编程知识的掌握至关重要。

数学函数概念知识点总结

数学函数概念知识点总结

数学函数概念知识点总结一、函数的基本概念1. 函数的定义函数是一种数学关系,它将某个集合的每个元素都对应到另一个集合的唯一元素上。

通常用f(x)表示函数,其中f表示函数名,x表示自变量。

2. 自变量和因变量在函数中,自变量是输入的值,因变量是输出的值。

自变量通常用x表示,因变量通常用y表示。

3. 函数的定义域和值域函数的定义域是指自变量的取值范围,值域是指因变量的取值范围。

函数在定义域上的取值构成了函数的值域。

4. 函数的图像函数的图像是函数在坐标系上的表示,通常用曲线或者点来表示函数的图像。

函数的图像可以帮助我们直观地理解函数的性质和特点。

5. 函数的性质函数可以有多种性质,包括奇偶性、周期性、单调性等。

这些性质可以通过函数的图像和代数表达式来进行分析和判断。

二、常见的函数类型1. 一次函数一次函数是指函数的最高次项为1的函数,通常表示为y=ax+b,其中a和b为常数。

一次函数的图像是一条直线,斜率a决定了直线的斜率,常数b决定了直线与y轴的交点。

2. 二次函数二次函数是指函数的最高次项为2的函数,通常表示为y=ax^2+bx+c,其中a、b、c为常数且a不等于0。

二次函数的图像是抛物线,a决定了抛物线的开口方向,b决定了抛物线在x轴上的位置,c决定了抛物线在y轴上的位置。

3. 幂函数幂函数是指函数的表达式为y=ax^n的函数,其中a为常数,n为整数。

幂函数的图像通常呈现出不同的形状,包括指数增长、指数衰减以及平方、立方等曲线形状。

4. 指数函数指数函数是一种特殊的幂函数,表达式为y=a^x,其中a为底数,x为指数。

指数函数的图像通常呈现出指数增长或者指数衰减的趋势。

5. 对数函数对数函数是指函数的表达式为y=log_a(x),其中a为底数。

对数函数的图像通常呈现出对数增长或者对数衰减的趋势。

6. 三角函数三角函数包括正弦函数、余弦函数、正切函数等,它们是以圆上的角度为自变量的周期函数。

三角函数在物理、工程、天文等领域有着广泛的应用。

函数知识点与公式总结

函数知识点与公式总结

函数知识点与公式总结一、函数的定义和性质函数的定义:函数是一个对应关系,它把一个集合的元素对应到另一个集合的元素。

一个简单的函数可以用如下的记号来表示:f:X→Y,表示一个函数f从集合X到集合Y的映射关系。

其中,X称为定义域,Y称为值域。

函数的性质:1. 定义域和值域:定义域是指函数的输入可以取的值的集合,值域是函数的输出可以取的值的集合。

2. 单调性:函数的单调性是指在定义域内,函数的增减趋势。

可以分为递增和递减两种情况。

3. 奇偶性:函数的奇偶性是指函数的图像是否关于原点对称。

如果对于任意x∈定义域,都有f(-x)=f(x),那么函数是偶函数;如果对于任意x∈定义域,都有f(-x)=-f(x),那么函数是奇函数。

4. 周期性:函数的周期性是指函数在一定范围内具有重复的性质。

5. 函数的图像:函数的图像是函数在直角坐标系中的点的集合,描述了函数的性质和特点。

二、常见的函数公式1. 线性函数线性函数是指函数的图像是一条直线的函数。

线性函数的一般形式为y=ax+b,其中a和b 是常数,a称为斜率,b称为截距。

2. 二次函数二次函数是指函数的图像是一个抛物线的函数。

二次函数的一般形式为y=ax^2+bx+c,其中a、b和c是常数,a≠0。

3. 指数函数指数函数是以常数e为底数的幂函数,一般形式为y=a^x,其中a为底数,x为指数。

4. 对数函数对数函数是指以常数a为底数的对数函数,一般形式为y=log_a(x),其中a为底数,x为真数。

5. 三角函数三角函数包括正弦函数、余弦函数、正切函数等,它们描述了角度和弧度之间的关系。

6. 反比例函数反比例函数是指函数的图像是一条反比例曲线的函数,一般形式为y=k/x,其中k是常数。

7. 绝对值函数绝对值函数的一般形式为y=|x|,它表示x的绝对值,即x的正数部分。

8. 分段函数分段函数是指在定义域的不同区间上有不同函数式的函数,一般形式为f(x)=```{g(x),a≤x≤bh(x),b<x<c}```9. 复合函数复合函数是指一个函数的自变量(或生成元素)是另一个函数的值域,即f[g(x)],表示函数f和g的复合。

函数知识点总结(很好)

函数知识点总结(很好)

函数知识点总结一.函数的概念1.函数三要素:定义域, 解析式, 值域.2.函数相等:是指两个函数的定义域相同,解析式一致二.函数的表示法1. 函数的三种表示方法:解析法.图象法.列表法.三.单调性与最大(小)值;1.单调递增:12x x >时,有12()()f x f x > ,概括为:大x 对大y ,小x 对小y2.单调递减:12x x >时,有12()()f x f x < ,概括为:大x 对小y ,小x 对大y3. 注意函数单调性证明的五步过程:①取点 ②作差 ③变形 ④定号 ⑤判断单调四.奇偶性 (定义域关于原点对称)1. 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么就称函数()x f 为偶函数.偶函数图象关于y 轴对称.2. 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么就称函数()x f 为奇函数.奇函数图象关于原点对称.五.指数与指数幂的运算1. 一般地,如果a x n=,那么x 叫做a 的n 次方根。

其中+∈>N n n ,1.2. 当n 为奇数时,a a n n =;当n 为偶数时,a a n n =.3. 我们规定:⑴m n m na a = ()1,,,0*>∈>m N n m a ; ⑵()01>=-n aa n n ; 4. 运算性质:⑴()Q s r a aa a s r s r ∈>=+,,0 ⑵()()Q s r a a a rs s r ∈>=,,0; ⑶()()Q rb a b a ab r r r ∈>>=,0,0.六.指数函数及其性质记住图象:()1,0≠>=a a a y x七.对数与对数运算1.x N N a a x =⇔=log ;2.a a N a =log .3.01log =a ,1log =a a .4.当0,0,1,0>>≠>N M a a 时:⑴()N M MN a a a log log log +=; ⑵N M N Ma a a log log log -=⎪⎭⎫ ⎝⎛ ; ⑶M n M a n a log log =. 5.换底公式:ab bc c a log log log = ()0,1,0,1,0>≠>≠>b c c a a . 6. ab b a log 1log = ()1,0,1,0≠>≠>b b a a . 八.对数函数及其性质1. 记住图象:()1,0log ≠>=a a x y a九.幂函数: 几种幂函数的图象:十.方程的根与函数的零点1.方程()0=x f 有实根⇔函数()x f y =的图象与x 轴有交点⇔函数()x f y =有零点.2. 性质:如果函数()x f y =在区间[]b a , 上的图象是连续不断的一条曲线,并且有()()0<⋅b f a f ,那么,函数()x f y =在区间()b a ,内有零点,即存在()b a c ,∈,使得()0=c f ,这个c 也就是方程()0=x f 的根..。

函数概念知识点总结

函数概念知识点总结

函数概念知识点总结一、函数的定义和基本概念1. 函数的定义:函数是一段封装了特定功能的代码块,它接受输入参数,进行特定的计算或操作,然后返回结果。

函数可以被多次调用,以便在程序中重复使用。

2. 函数的作用:函数的主要作用是将程序分解为小的模块,以便于组织、调试和维护。

函数可以提高代码的可重用性和可读性,减少代码的重复编写,同时也可以提高程序的性能和可维护性。

3. 函数的组成部分:函数通常由函数名、参数列表、返回类型、函数体和返回语句等组成。

函数名用于标识函数的唯一性,参数列表用于接受输入参数,返回类型用于指定函数返回值的类型,函数体用于定义具体的功能实现,返回语句用于指定函数返回的结果。

4. 函数的调用:函数调用是指在程序中使用函数的过程,通过指定函数名和参数列表进行调用。

调用函数时,程序会跳转到函数体执行特定的操作,然后返回运行结果。

二、函数的参数和返回值1. 参数的概念:参数是函数定义中用于接受输入的变量,它可以让函数具有一定的灵活性和通用性。

函数可以接受零个或多个参数,参数可以是不同的数据类型,也可以有默认值。

2. 参数的传递方式:参数的传递方式包括值传递和引用传递。

值传递是指将参数的值复制一份给函数,函数使用的是参数的副本,原始参数不受影响。

引用传递是指将参数的地址传递给函数,函数使用的是参数的原始值,通过地址可以修改原始参数的值。

3. 返回值的概念:返回值是函数执行结果的输出,它可以是任意数据类型的值。

函数可以返回一个值,也可以返回多个值,甚至可以不返回任何值。

4. 返回类型的设定:返回类型用于指定函数返回值的数据类型,它可以是基本数据类型、自定义类型、指针类型等。

在函数定义中,可以使用void表示函数不返回任何值,也可以使用具体的数据类型来指定返回值的类型。

三、函数的分类和用途1. 内置函数和自定义函数:内置函数是指语言内置提供的函数,如数学运算函数、字符串处理函数等;自定义函数是由程序员自行编写的函数,用于实现特定的功能或逻辑。

最全函数知识点归纳总结

最全函数知识点归纳总结

最全函数知识点归纳总结一、函数的定义1. 函数的定义函数的定义通常包括函数名、参数列表和函数体。

函数名用于标识函数,参数列表用于接受输入参数,函数体用于实现具体的功能。

函数定义的一般形式如下:```pythondef func_name(param1, param2, ...):# function body```其中,`func_name`表示函数名,`param1`、`param2`等表示参数列表,`function body`表示函数体。

2. 函数的调用函数的调用是指程序执行函数体中的代码。

函数调用的一般形式如下:```pythonresult = func_name(arg1, arg2, ...)```其中,`func_name`表示函数名,`arg1`、`arg2`等表示实际参数,`result`表示函数的返回值。

3. 匿名函数Python中可以使用`lambda`关键字定义匿名函数,匿名函数通常用于函数参数或者简单的函数实现。

匿名函数的一般形式如下:```pythonlambda param1, param2, ...: expression```其中,`param1`、`param2`等表示参数列表,`expression`表示函数体。

4. 内置函数Python中已经内置了大量的函数,这些函数具有丰富的功能,包括数学运算、字符串处理、文件操作等。

常用的内置函数包括`len()`、`print()`、`input()`、`sum()`等。

二、参数传递1. 位置参数位置参数是指在函数调用时按照参数顺序进行传递的参数。

位置参数在函数定义时需要指定参数的个数和顺序。

2. 关键字参数关键字参数是指在函数调用时通过参数名进行传递的参数。

关键字参数在函数定义时可以指定默认值。

3. 默认参数默认参数是指在函数定义时为参数指定默认值,当调用函数时没有传递参数时,会使用默认值。

4. 可变参数可变参数是指在函数调用时传递可变数量的参数。

函数必背知识点总结

函数必背知识点总结

函数必背知识点总结一、函数的定义与调用1. 函数的定义:函数是一段可重复使用的代码块,可以接受输入参数并返回值。

通常用来实现特定的功能。

2. 函数的调用:通过函数名和参数列表来调用函数,格式为`函数名(参数列表)`。

二、函数的参数与返回值1. 形参与实参:函数定义时的参数称为形参,调用函数时传入的参数称为实参。

2. 参数的传递方式:包括传值调用、传址调用和传引用调用。

3. 返回值:函数可以返回一个值,也可以不返回值。

三、函数的语法1. 函数声明:使用`def`关键字进行函数声明,后接函数名和参数列表。

2. 函数体:使用冒号`:`和缩进来定义函数体。

3. 返回语句:使用`return`关键字来返回函数的值。

4. 默认参数:在定义函数时可以设置参数的默认值,调用函数时可以不传入值。

5. 变长参数:使用`*args`和`**kwargs`来定义接受不定数量参数的函数。

6. 匿名函数:使用`lambda`关键字定义一个匿名函数。

7. 递归函数:函数自身调用自身的函数称为递归函数。

四、函数的作用域1. 局部变量:在函数内部声明的变量称为局部变量,只在函数内部有效。

2. 全局变量:在函数外部声明的变量称为全局变量,可以在整个程序中访问。

五、高级函数1. 高阶函数:可以接受函数作为参数或者返回一个函数的函数称为高阶函数。

2. map函数:对可迭代对象中的每个元素应用指定的函数。

3. filter函数:对可迭代对象中的元素进行过滤,只保留满足条件的元素。

4. reduce函数:对可迭代对象中的元素进行累积运算。

六、闭包与装饰器1. 闭包:函数内部定义的函数,并返回这个内部函数的结构称为闭包。

2. 装饰器:是一个返回函数的高阶函数,自动把装饰的函数作为参数传递到装饰器函数中。

七、异常处理1. try-except语句:使用`try`和`except`关键字捕获和处理异常。

2. 异常的类型:包括`NameError`、`TypeError`、`ValueError`等不同类型的异常。

函数全部知识点总结

函数全部知识点总结

函数全部知识点总结一、函数的定义和调用1.1 函数的定义函数的定义通常包括函数名、参数列表和函数体。

函数名用来标识函数,参数列表用来接收外部传入的数据,函数体是实际执行的代码块。

在不同的编程语言中,函数的定义语法可能会有所不同,但通常都遵循这个基本结构。

```python# Python中的函数定义def add(a, b):return a + b```1.2 函数的调用函数的调用是指程序执行到函数调用语句时,会跳转到函数体执行相应的操作,然后再返回到调用点继续执行。

函数的调用通常使用函数名加上参数列表的形式。

```python# 调用add函数result = add(3, 5)```二、函数参数2.1 形参和实参函数定义时所声明的参数称为形式参数(简称形参),函数调用时传入的参数称为实际参数(简称实参)。

形参和实参的作用是为了在函数调用时传递数据,使函数能够处理不同的输入。

```python# 定义函数时的形参a和bdef add(a, b):return a + b# 调用add函数时传入的实参3和5result = add(3, 5)```2.2 参数的传递方式参数的传递方式有传值调用和传引用调用两种。

传值调用是指在调用函数时,将实参的值拷贝给形参,形参和实参相互独立,函数内部的修改不会影响实参。

传引用调用是指在调用函数时,将实参的引用(地址)传递给形参,形参和实参指向同一块内存区域,函数内部的修改会直接影响实参。

不同的编程语言有不同的参数传递方式,例如Python是传引用调用,而C语言是传值调用。

```python# 传值调用def change_value(x):x = 10a = 5change_value(a)print(a) # 输出5# 传引用调用def change_list(lst):lst.append(4)my_list = [1, 2, 3]change_list(my_list)print(my_list) # 输出[1, 2, 3, 4]```2.3 默认参数和可变参数默认参数是指在函数定义时给参数指定了默认值,调用函数时如果没有传入对应的参数,则会使用默认值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数知识点总结(一)函数1、变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能取同一数值的量。

2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。

*判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。

4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式6、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

(二)、平面直角坐标系1、定义:平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

其中水平的数轴叫做横轴(或x轴),取向右为正方向;竖直的数轴叫做纵轴(y轴),取向上为正方向;两轴的交点O叫做原点。

在平面内,原点的右边为正,左边为负,原点的上边为正,下边为负。

2、坐标平面内被x轴、y轴分割成四个部分,按照“逆时针方向”分别为第一象限、第二象限、第三象限、第四象限注意:x轴、y轴原点不属于任何象限。

3、平面直角坐标系中的点分别向x轴、y轴作垂线段,在x轴上垂足所显示的数称为该点的横坐标,在y轴上垂足所显示的数称为该点的纵坐标。

点的坐标反映的是一个点在平面内的位置。

写坐标的规则:横坐标在前,纵坐标在后,中间用“,”隔开,全部用小括号括起来。

如P(3,2)横坐标为3,纵坐标为2。

特别注意坐标的顺序不同,表示的就是不同位置的点。

所以点的坐标是一对有顺序的实数,称为有序实数对。

4、平面直角坐标系中的点与有序实数对一一对应。

5、坐标的特征(1)在第一象限内的点,横坐标是正数,纵坐标是正数;在第二象限内的点,横坐标是负数,纵坐标是正数;在第三象限内的点,横坐标是负数,纵坐标是负数;在第四象限内的点,横坐标是正数,纵坐标是负数;(2)x轴上点的纵坐标等于零;y轴上点的横坐标等于零.6、对称点的坐标特征(1)关于x轴对称的两点:横坐标相同,纵坐标绝对值相等,符号相反;(2)关于y轴对称的两点:横坐标绝对值相等,符号相反,纵坐标相同;(3)关于原点对称的两点:横坐标绝对值相等,符号相反,纵坐标也绝对值相等,符号相反。

(4)第一、三象限角平分线上点:横坐标与纵坐标相同;(5)第二、四象限角平分线上点:横坐标与纵坐标互为相反数。

7、点到两坐标轴的距离点A(a,b)到x轴的距离为|b|,点A(a,b)到y轴的距离为|a|。

(三)一次函数1、一次函数的定义一般地,形如(,是常数,且)的函数,叫做一次函数,其中x 是自变量。

当时,一次函数,又叫做正比例函数。

⑴一次函数的解析式的形式是,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当,时,仍是一次函数.⑶当,时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数.2、正比例函数及性质一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数. 注:正比例函数一般形式 y=kx (k不为零) ① k不为零② x指数为1 ③ b 取零当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,•直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.(1)解析式:y=kx(k是常数,k≠0)(2)必过点:(0,0)、(1,k)(3)走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象限(4)增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小(5)倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴3、一次函数及性质一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y=kx+b (k不为零) ① k不为零②x指数为1 ③ b 取任意实数一次函数y=kx+b的图象是经过(0,b)和(-,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)(1)解析式:y=kx+b(k、b是常数,k0) (2)必过点:(0,b)和(-,0)(3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限b>0,图象经过第一、二象限;b<0,图象经过第三、四象限直线经过第一、二、三象限直线经过第一、三、四象限直线经过第一、二、四象限直线经过第二、三、四象限(4)增减性: k>0,y随x的增大而增大;k<0,y随x增大而减小.(5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴.(6)图像的平移:当b>0时,将直线y=kx的图象向上平移b个单位;当b<0时,将直线y=kx的图象向下平移b个单位.一次函数,符号图象性质随的增大而增大随的增大而减小4、一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),.即横坐标或纵坐标为0的点.b>0b<0b=0k>0经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y随x的增大而增大k<0经过第一、二、四象限经过第二、三、四象限经过第二、四象限图象从左到右下降,y随x的增大而减小5、正比例函数与一次函数之间的关系一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移)“正比例函数”与“成正比例”的区别:正比例函数一定是y=kx这种形式,而成正比例则意义要广泛得多,它反映了两个量之间的固定正比例关系,如a+3与b-2成正比例,则可表示为:a+3=k(b-2)(k≠0)6、正比例函数和一次函数及性质正比例函数一次函数概念一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,是y=kx,所以说正比例函数是一种特殊的一次函数.自变量范围X为全体实数图象一条直线必过点(0,0)、(1,k)(0,b)和(-,0)走向k>0时,直线经过一、三象限;k<0时,直线经过二、四象限k>0,b >0,直线经过第一、二、三象限k>0,b<0直线经过第一、三、四象限k <0,b>0直线经过第一、二、四象限k<0,b<0直线经过第二、三、四象限增减性k>0,y随x的增大而增大;(从左向右上升)k<0,y随x的增大而减小。

(从左向右下降)倾斜度|k|越大,越接近y轴;|k|越小,越接近x轴图像的平移b>0时,将直线y=kx的图象向上平移个单位;b<0时,将直线y=kx的图象向下平移个单位.6、直线()与()的位置关系(1)两直线平行且(2)两直线相交(3)两直线重合且(4)两直线垂直7、用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式. 8、一元一次方程与一次函数的关系任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.9、一次函数与一元一次不等式的关系任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围.10、一次函数与二元一次方程组(1)以二元一次方程ax+by=c的解为坐标的点组成的图象与一次函数的图象相同.(2)二元一次方程组的解可以看作是两个一次函数的图象的交点.11、一次函数的图像与两坐标轴所围成三角形的面积一次函数y=kx+b的图象与两条坐标轴的交点:与y轴的交点(0,b),与x轴的交点(,0). 直线y=kx+b(b≠0)与两坐标轴围成的三角形面积为。

相关文档
最新文档