方程、不等式与函数思想探讨
函数与方程不等式之间的关系
函数与方程不等式之间的关系
函数、方程和不等式是数学中的基本概念,它们之间存在密切的联系。
函数是描述两个变量之间关系的数学模型,通常表示为 y = f(x),其中 x 和
y 是变量,f 是函数关系。
函数有多种类型,其中一次函数是最简单的一种,表示为 y = ax + b,其中 a 和 b 是常数,a ≠ 0。
方程是含有未知数的等式,用来表示未知数和已知数之间的关系。
一元一次方程是最简单的一类方程,形如 ax + b = 0,其中 a 和 b 是已知数,a ≠ 0。
解这个方程可以得到未知数的值。
不等式是用不等号连结的两个解析式,表示两个量之间的大小关系。
一元一次不等式是最简单的一类不等式,形如 ax + b > 0 或 ax + b < 0,其中 a 和 b 是已知数,a ≠ 0。
解这个不等式可以得到满足不等式的值的范围。
函数、方程和不等式之间存在密切的联系。
一次函数和一元一次方程、一元一次不等式之间的关系特别重要。
对于一次函数 y = ax + b,当函数的值等于 0 时,自变量 x 的值就是一元一次方程 ax + b = 0 的解。
如果一次函数的值大于 0,则自变量 x 的值满足一元一次不等式 ax + b > 0;如果一次函数的值小于 0,则自变量 x 的值满足一元一次不等式 ax + b < 0。
因此,函数、方程和不等式是相互联系的,可以通过它们之间的关系来理解和解决数学问题。
函数方程不等式思想
∵f(x)定义域为[α,β],∴α>3
设β≥x1>x2≥α,有
当0<m<1时,f(x)为减函数,当m>1时,f(x)为增函数.
(2)若f(x)在[α,β]上的值域为[logmm(β-1),logmm(α-1)]
∵0<m<1, f(x)为减函数.
函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。
方程思想是:实际问题→数学问题→代数问题→方程问题。函数和多元方程没有什么本质的区别,如函数y=f(x),就可以看作关于x、y的二元方程f(x)-y=0。可以说,函数的研究离不开方程。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。
一.巧用函数思想证明不等式
1、利用函数的单调性
例1、求证:≤ (a、b∈R)
分析:本题若直接运用比较法或放缩法,很难寻其线索。若考虑构造函数,运用函数的单调性证明,问题将迎刃而解。
证明:令 f(x)=,可证得f(x)在[0,∞)上是增函数(证略)
而 0<∣a+b∣≤∣a∣+∣b∣
∵当x>0时,1-2x<0 ,故f(x)<0
当x<0时,根据图象的对称性知f(x)<0
故当 x≠0时,恒有f(x)<0
即:< (x≠0)
小结:本题运用了比较法,实质是根据函数的奇偶性来证明的,本题也可以运用分类讨论思想。但利用偶函数的轴对称性和奇函数的中心对称性,常能使所求解的问题避免复杂的讨论。
函数与方程、不等式之间的关系教案-高一上学期数学人教B版(2019)必修第一册
函数与方程、不等式之间的关系【第1课时】【教学目标】【核心素养】1.理解函数零点的概念以及函数的零点与方程的根之间的关系.(难点)2.会求函数的零点.(重点)3.掌握函数与方程、不等式之间的关系,并会用函数零点法求不等式的解集.(重点、难点)1.借助函数零点概念的理解,培养数学抽象的素养.2.通过函数与方程、不等式之间的关系的学习,提升逻辑推理的素养.3.利用零点法求不等式的解集,培养数学运算的素养.【教学过程】一、新知初探1.函数的零点(1)函数零点的概念:一般地,如果函数y=f(x)在实数α处的函数值等于零,即f(α)=0,则称实数α为函数y=f(x)的零点.(2)三者之间的关系:函数f(x)的零点⇔函数f(x)的图像与x轴有交点⇔方程f(x)=0有实数根.2.二次函数的零点及其与对应方程、不等式的关系(1)ax2+bx+c=0(a≠0)的解是函数f(x)=ax2+bx+c的零点.(2)ax2+bx+c>0(a≠0)的解集是使f(x)=ax2+bx+c的函数值为正数的自变量x的取值集合;ax2+bx+c<0(a≠0)的解集是使f(x)=ax2+bx+c 的函数值为负数的自变量x的取值集合.3.图像法解一元二次不等式的步骤(1)解一元二次不等式对应的一元二次方程;(2)求出其对应的二次函数的零点;(3)画出二次函数的图像;(4)结合图像写出一元二次不等式的解集.二、初试身手1.函数y=1+1x的零点是()A.(-1,0)B.x=-1 C.x=1 D.x=0 答案:B解析:令1+1x=0解得x=-1,故选B.2.根据表格中的数据,可以断定方程e x-(x+2)=0(e≈2.72)的一个x -1012 3e x0.3712.727.4020.12x+21234 5A.(-1,0)B.(0,1)C.(1,2)D.(2,3)答案:C解析:令f(x)=e x-(x+2),则f(-1)=0.37-1<0,f(0)=1-2<0,f(1)=2.72-3<0,f(2)=7.40-4=3.40>0.由于f(1)·f(2)<0,∴方程e x-(x+2)=0的一个根在(1,2)内.3.若f(x)=-x2+mx-1的函数值有正值,则m的取值范围是()A.m<-2或m>2 B.-2<m<2C.m≠±2D.1<m<3答案:A解析:∵f(x)=-x2+mx-1有正值,∴Δ=m2-4>0,∴m>2或m<-2.4.不等式1+x1-x≥0的解集为________.答案:[-1,1)解析:原不等式等价于(x+1)(x-1)≤0,且x-1≠0,∴-1≤x<1.三、合作探究类型1:函数的零点及求法例1:求函数f(x)=x3-7x+6的零点.解:令f(x)=0,即x3-7x+6=0,∴(x3-x)-(6x-6)=0,∴x(x-1)(x+1)-6(x-1)=(x-1)·(x2+x-6)=(x-1)(x-2)(x+3)=0,解得x1=1,x2=2,x3=-3,∴函数f(x)=x3-7x+6的零点是1,2,-3.规律方法求函数y=f(x)的零点通常有两种方法:一是令y=0,根据解方程f(x)=0的根求得函数的零点;二是画出函数y=f(x)的图像,图像与x轴的交点的横坐标即为函数的零点.跟踪训练1.如图所示是一个二次函数y=f(x)的图像.(1)写出这个二次函数的零点;(2)试比较f(-4)·f(-1),f(0)·f(2)与0的大小关系.解:(1)由图像可知,函数f(x)的两个零点分别是-3,1.(2)根据图像可知,f(-4)·f(-1)<0,f(0)·f(2)<0.类型2:二次函数的零点及其与对应方程、不等式的关系例2:利用函数求下列不等式的解集:(1)x2-5x-6>0;(2)(2-x)(x+3)<0;(3)4(2x2-2x+1)>x(4-x).解:(1)方程x2-5x-6=0的两根为x1=-1,x2=6.结合二次函数y=x2-5x-6的图像知,原不等式的解集为(-∞,-1)∪(6,+∞).(2)原不等式可化为(x-2)(x+3)>0.方程(x-2)(x+3)=0的两根为x1=2,x2=-3.结合二次函数y=(x-2)(x+3)的图像知,原不等式的解集为(-∞,-3)∪(2,+∞).(3)由原不等式得8x 2-8x +4>4x -x 2,即9x 2-12x +4>0.解方程9x 2-12x +4=0,解得x 1=x 2=23.结合二次函数y =9x 2-12x +4的图像知,原不等式的解集为⎝ ⎛⎭⎪⎫-∞,23∪⎝ ⎛⎭⎪⎫23,+∞. 规律方法利用函数求不等式解集的基本步骤1.把一元二次不等式化成一般形式,并把a 的符号化为正;2.计算其对应一元二次方程的根的判别式Δ;3.求其对应一元二次方程的根;4.写出解集大于取两边,小于取中间. 跟踪训练2.利用函数求下列不等式的解集:(1)2x 2+7x +3>0;(2)-x 2+8x -3>0;(3)x 2-4x -5<0;(4)-4x 2+18x -814>0.解:(1)对于方程2x 2+7x +3=0,因为Δ=72-4×2×3=25>0,所以方程2x 2+7x +3=0有两个不相等的实数根,x 1=-3,x 2=-12.又因为二次函数y =2x 2+7x +3的图像开口向上,所以原不等式的解集为(-∞,-3)∪⎝ ⎛⎭⎪⎫-12,+∞. (2)对于方程-x 2+8x -3=0,因为Δ=82-4×(-1)×(-3)=52>0, 所以方程-x 2+8x -3=0有两个不相等的实数根,x 1=4-13,x 2=4+13. 又因为二次函数y =-x 2+8x -3的图像开口向下,所以原不等式的解集为(4-13,4+13).(3)原不等式可化为(x -5)(x +1)<0,所以原不等式的解集为(-1,5).(4)原不等式可化为⎝ ⎛⎭⎪⎫2x -922<0, 所以原不等式的解集为∅.类型3:用函数零点法求一元高次不等式的解集例3:求函数f(x)=(x-1)(x-2)(x+3)的零点,并作出函数图像的示意图,写出不等式f(x)≥0和f(x)<0的解集.解:函数的零点为-3,1,2.x (-∞,-3)(-3,1)(1,2)(2,+∞)f(x)-+-+由此可以画出此函数的示意图如图.由图可知,f(x)≥0的解集为[-3,1]∪[2,+∞),f(x)<0的解集为(-∞,-3)∪(1,2).规律方法解题步骤:1.求出零点;2.拆分定义域;3.判断符号;4.写出解集.注意判断符号的方法,将最高项的系数化为正数,最右边的区间内为正,然后往左依次负正相间.跟踪训练3.求函数f(x)=(1-x)(x-2)(x+2)的零点,并作出函数图像的示意图,写出不等式f(x)≥0和f(x)<0的解集.解:函数的零点为-2,1,2.x (-∞,-2)(-2,1)(1,2)(2,+∞)f(x)+-+-由此可以画出此函数的示意图如图.由图可知,f(x)≥0的解集为(-∞,-2]∪[1,2],f(x)<0的解集为(-2,1)∪(2,+∞).四、课堂小结1.方程f(x)=g(x)的根是函数f(x)与g(x)的图像交点的横坐标,也是函数y=f(x)-g(x)的图像与x轴交点的横坐标.2.二次函数的零点及其与对应方程、不等式的关系(1)ax2+bx+c=0(a≠0)的解是函数f(x)=ax2+bx+c的零点.(2)ax2+bx+c>0(a≠0)的解集是使f(x)=ax2+bx+c的函数值为正数的自变量x的取值集合;ax2+bx+c<0(a≠0)的解集是f(x)=ax2+bx+c的函数值为负数的自变量x的取值集合.3.图像法解一元二次不等式的步骤(1)解一元二次不等式对应的一元二次方程;(2)求出其对应的二次函数的零点;(3)画出二次函数的图像;(4)结合图像写出一元二次不等式的解集.五、当堂达标1.下列图像表示的函数中没有零点的是()答案:A解析:B,C,D的图像均与x轴有交点,故函数均有零点,A的图像与x 轴没有交点,故函数没有零点.2.方程5x2-7x-1=0的根所在的区间是()A.(-1,0)B.(1,2)C.一个根在(-1,0)上,另一个根在(1,2)上D.一个根在(0,1)上,另一个根在(-2,-1)上答案:C解析:∵f(-1)·f(0)<0,f(1)·f(2)<0,∴选C.3.函数f(x)=x-1x零点的个数是()A.0 B.1 C.2 D.3答案:C解析:令x-1x=0,即x2-1=0,∴x=±1.∴f(x)=x-1x的零点有两个.4.函数f(x)=(x2-1)(x+2)2(x2-2x-3)的零点个数是________.答案:4解析:f(x)=(x+1)(x-1)(x+2)2(x-3)(x+1)=(x+1)2(x-1)(x+2)2(x-3).可知零点为±1,-2,3,共4个.【第2课时】【教学目标】【核心素养】1.掌握函数零点的存在性定理,并会判断函数零点的个数.(重点)2.了解二分法是求方程近似解的常用方法,掌握二分法是求函数零点近似解的步骤.(难点)3.理解函数与方程之间的联系,并能用函数与方程思想分析问题、解决问题.(重点、难点)1.通过存在性定理的学习,培养逻辑推理的素养.2.通过二分法的学习,提升数据分析,数学建模的学科素养.3.理解函数与方程之间的联系,提升数学抽象的学科素养.【教学过程】一、新知初探1.函数零点的存在性定理如果函数y=f(x)在区间[a,b]上的图像是连续不断的,并且f(a)f(b)<0(即在区间两个端点处的函数值异号),则函数y=f(x)在区间[a,b]中至少有一个零点,即∃x0∈[a,b],f(x0)=0.2.二分法的定义(1)二分法的条件:函数y=f(x)在区间[a,b]上连续不断且f(a)f(b)<0.(2)二分法的过程:通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法,称为二分法.由函数的零点与相应方程根的关系,也可以用二分法求方程的近似解.3.用二分法求函数零点近似值的步骤给定精确度ε,用二分法求函数f (x )在[a ,b ]上的零点近似值的步骤是:第一步:检查|b -a |<2ε是否成立,如果成立,取x 1=a +b 2,计算结束;如果不成立,转到第二步.第二步:计算区间[a ,b ]的中点a +b 2对应的函数值,若f ⎝ ⎛⎭⎪⎫a +b 2=0,取x 1=a +b 2,计算结束;若f ⎝ ⎛⎭⎪⎫a +b 2≠0,转到第三步. 第三步 若f (a )f ⎝ ⎛⎭⎪⎫a +b 2<0,将a +b 2的值赋给b ⎝ ⎛⎭⎪⎫用a +b 2→b 表示,下同,回到第一步;若f ⎝ ⎛⎭⎪⎫a +b 2f (b )<0,将a +b 2的值赋给a ,回到第一步. 二、初试身手1.下列函数不宜用二分法求零点的是( )A .f (x )=x 3-1B .f (x )=ln x +3C .f (x )=x 2+22x +2D .f (x )=-x 2+4x -1 答案:C解析:因为f (x )=x 2+22x +2=(x +2)2≥0,不存在小于0的函数值,所以不能用二分法求零点.2.若函数f (x )在区间[a ,b ]上为单调函数,且图像是连续不断的曲线,则下列说法中正确的是( )A .函数f (x )在区间[a ,b ]上不可能有零点B .函数f (x )在区间[a ,b ]上一定有零点C .若函数f (x )在区间[a ,b ]上有零点,则必有f (a )·f (b )<0D .若函数f (x )在区间[a ,b ]上没有零点,则必有f (a )·f (b )>0 答案:D解析:函数f (x )在区间[a ,b ]上为单调函数,如果f (a )·f (b )<0,可知函数在(a ,b )上有一个零点,如果f (a )·f (b )>0,可知函数在[a ,b ]上没有零点,所以函数f (x )在区间[a ,b ]上可能没有零点,也可能有零点,所以A 不正确;函数f (x )在区间[a ,b ]上可能有零点,也可能没有零点;所以B 不正确; 若函数f (x )在区间[a ,b ]上有零点,则可能f (a )·f (b )<0,也可能f (a )·f (b )=0所以C 不正确;若函数f(x)在区间[a,b]上没有零点,则必有f(a)·f(b)>0,正确;故选D.]3.用“二分法”可求近似解,对于精确度ε说法正确的是()A.ε越大,零点的精确度越高B.ε越大,零点的精确度越低C.重复计算次数就是εD.重复计算次数与ε无关答案:B解析:依“二分法”的具体步骤可知,ε越大,零点的精确度越低.4.若函数f(x)的图像是连续不断的,且f(0)>0,f(1)·f(2)·f(4)<0,则下列命题正确的是________.①函数f(x)在区间(0,1)内有零点;②函数f(x)在区间(1,2)内有零点;③函数f(x)在区间(0,2)内有零点;④函数f(x)在区间(0,4)内有零点.答案:④解析:∵f(0)>0,而由f(1)·f(2)·f(4)<0,知f(1),f(2),f(4)中至少有一个小于0.∴(0,4)上有零点.三、合作探究类型1:判断函数零点所在的区间例1:求证:方程x4-4x-2=0在区间[-1,2]内至少有两个实数解.证明:设f(x)=x4-4x-2,其图像是连续曲线.因为f(-1)=3>0,f(0)=-2<0,f(2)=6>0,所以方程在(-1,0),(0,2)内都有实数解.从而证明该方程在给定的区间内至少有两个实数解.规律方法一般而言,判断函数零点所在区间的方法是将区间端点代入函数求出函数的值,进行符号判断即可得出结论.此类问题的难点往往是函数值符号的判断,可运用函数的有关性质进行判断.跟踪训练1.若函数y=f(x)在区间[a,b]上的图像为连续不断的一条曲线,则下列说法正确的是()A.若f(a)f(b)>0,则不存在实数c∈(a,b)使得f(c)=0B.若f(a)f(b)<0,则存在且只存在一个实数c∈(a,b)使得f(c)=0C.若f(a)f(b)>0,则有可能存在实数c∈(a,b)使得f(c)=0D.若f(a)f(b)<0,则有可能不存在实数c∈(a,b)使得f(c)=0 答案:C解析:对于A选项,可能存在,如y=x2;对于B选项,必存在但不一定唯一,选项D一定存在.类型2:对二分法概念的理解例2:下列图像与x轴均有交点,其中不能用二分法求函数零点的是()答案:B解析:利用二分法求函数的零点必须满足零点两侧函数值异号,在选项B 中,不满足零点两侧函数值异号,不能用二分法求零点.由于A、C、D中零点的两侧函数值异号,故可采用二分法求零点.规律方法二分法是求一般函数的零点的一种通法,使用二分法的前提条件是:函数零点的存在性.对“函数在区间[a,b]上连续”的理解如下:不管函数在整个定义域内是否连续,只要找得到包含零点的区间上函数图像是连续的即可.跟踪训练2.如图是函数f(x)的图像,它与x轴有4个不同的公共点.给出下列四个区间,不能用二分法求出函数f(x)的零点近似值的是()A.(-2.1,-1)B.(1.9,2.3)C.(4.1,5)D.(5,6.1)答案:B解析:只有B 中的区间所含零点是不变号零点. 类型3:用二分法求函数零点例3:求函数f (x )=x 2-5的负零点.(精确度为0.1) 解:由于f (-2)=-1<0,f (-3)=4>0, 故取区间(-3,-2)作为计算的初始区间, 区间 中点的值 中点函数近似值 (-3,-2) -2.5 1.25 (-2.5,-2) -2.25 0.0625 (-2.25,-2) -2.125 -0.4844 (-2.25,-2.125) -2.1875-0.2148 (-2.25,-2.1875)-2.21875-0.0771由于|-2.25-(-2.1875)|=0.0625<0.1, 所以函数的一个近似负零点可取-2.25. 规律方法利用二分法求函数零点应关注三点1.要选好计算的初始区间,这个区间既要包含函数的零点,又要使其长度尽量小.2.用列表法往往能比较清晰地表达函数零点所在的区间.3.根据给定的精确度,及时检验所得区间长度是否达到要求,以决定是停止计算还是继续计算.跟踪训练3.证明函数f (x )=2x +3x -6在区间[1,2]内有唯一零点,并求出这个零点(精确度为0.1).解:由于f (1)=-1<0,f (2)=4>0,又函数f (x )在[1,2]内是增函数,所以函数在区间[1,2]内有唯一零点,不妨设为x 0,则x 0∈[1,2].下面用二分(a ,b ) (a ,b )的中点f (a ) f (b ) f ⎝⎛⎭⎪⎫a +b 2 (1,2)1.5f (1)<0f (2)>0f (1.5)>0(1,1.5) 1.25 f (1)<0 f (1.5)>0 f (1.25)>0 (1,1.25) 1.125f (1)<0 f (1.25)>0f (1.125)<0 (1.125,1.25)1.1875 f (1.125)<0f (1.25)>0f (1.1875)<0因为|1.1875-1.25|=0.0625<0.1,所以函数f (x )=2x +3x -6的精确度为0.1的近似零点可取为1.25.类型4:用二分法求方程的近似解例4:用二分法求方程2x 3+3x -3=0的一个正实数近似解(精确度为0.1). 解:令f (x )=2x 3+3x -3,经计算,f (0)=-3<0,f (1)=2>0,f (0)·f (1)<0, 所以函数f (x )在(0,1)内存在零点, 即方程2x 3+3x -3=0在(0,1)内有解.取(0,1)的中点0.5,经计算f (0.5)<0,又f (1)>0, 所以方程2x 3+3x -3=0在(0.5,1)内有解. (a ,b ) 中点c f (a ) f (b ) f ⎝⎛⎭⎪⎫a +b 2 (0,1) 0.5 f (0)<0 f (1)>0 f (0.5)<0 (0.5,1) 0.75 f (0.5)<0 f (1)>0 f (0.75)>0 (0.5,0.75) 0.625 f (0.5)<0 f (0.75)>0 f (0.625)<0 (0.625,0.75) 0.6875f (0.625)<0f (0.75)>0f (0.6875)<0(0.6875,0.75)|0.6875-0.75|=0.0625<0.1由于|0.6875-0.75|=0.0625<0.1,所以0.75可作为方程的一个正实数近似解.规律方法用二分法求方程的近似解应明确两点(1)根据函数的零点与相应方程的解的关系,求函数的零点与求相应方程的解是等价的.求方程f (x )=0的近似解,即按照用二分法求函数零点近似值的步骤求解.(2)对于求形如f (x )=g (x )的方程的近似解,可以通过移项转化成求形如F(x)=f(x)-g(x)=0的方程的近似解,然后按照用二分法求函数零点近似值的步骤求解.跟踪训练4.求方程x2=2x+1的一个近似解.(精确度0.1)解:设f(x)=x2-2x-1.∵f(2)=-1<0,f(3)=2>0.∴在区间(2,3)内,方程x2-2x-1=0有一解,记为x0.取2与3的平均数2.5,∵f(2.5)=0.25>0,∴2<x0<2.5;再取2与2.5的平均数2.25,∵f(2.25)=-0.4375<0,∴2.25<x0<2.5;如此继续下去,有f(2.375)<0,f(2.5)>0⇒x0∈(2.375,2.5);f(2.375)<0,f(2.4375)>0⇒x0∈(2.375,2.4375).∵|2.375-2.4375|=0.0625<0.1,∴方程x2=2x+1的一个精确度为0.1的近似解可取为2.4375.四、课堂小结1.二分法就是通过不断地将所选区间一分为二,使区间的两个端点逐步逼近零点,直至找到零点附近足够小的区间,根据所要求的精确度,用此区间的某个数值近似地表示真正的零点.2.并非所有函数都可以用二分法求其零点,只有满足:(1)在区间[a,b]上连续不断;(2)f(a)·f(b)<0,上述两条的函数方可采用二分法求得零点的近似值.五、当堂达标1.函数y=-x2+8x-16在区间[3,5]上()A.没有零点B.有一个零点C.有两个零点D.有无数个零点答案:B解析:令-x2+8x-16=0,得x=4,故函数y=-x2+8x-16在[3,5]上有一个零点.2.用二分法求函数f (x )=x 3+x 2-2x -2的一个正零点的近似值(精确到0.1)时,依次计算得到如下数据:f (1)=-2,f (1.5)=0.625,f (1.25)≈-0.984,f (1.375)≈-0.260,关于下一步的说法正确的是( )A .已经达到精确度的要求,可以取1.4作为近似值B .已经达到精确度的要求,可以取1.375作为近似C .没有达到精确度的要求,应该接着计算f (1.4375)D .没有达到精确度的要求,应该接着计算f (1.3125) 答案:C解析:由二分法知,方程x 3+x 2-2x -2=0的根在区间(1.375,1.5),没有达到精确度的要求,应该接着计算f (1.4375).故选C .3.函数图像与x 轴均有交点,但不宜用二分法求交点横坐标的是( )答案:B4.用二分法求函数零点,函数的零点总位于区间[a n ,b n ]上,当|a n -b n |<ε时,函数的近似零点a n +b n2与真正零点的误差不超过A .εB .12εC .2εD .14ε 答案:B解析:根据用“二分法”求函数近似零点的步骤知,当|a n -b n |<ε时,区间[a n ,b n ]的中点x n =12(a n +b n )就是函数的近似零点,这时计算终止,从而函数的近似零点与真正零点的误差不超过12ε.故选B .。
二次函数与一元二次方程及不等式的关系探析
程 ax2+bx+c=0(a≠0)在实数范围内无解
(或称无实数根)。
二次函数是我们初中数学中的一个
难点,我们一定要掌握好二次函数与一元
二次方程的关系,使我们在面对二次函数
时,能够巧妙地结合方程来解决二次函数 的相关问题。
四、进一步的拓展应用
在二次函数与一元二次方程关系的 基础上,我们其实还可利用二次函数的图 像去解一元二次不等式,我们可以结合二 次函数图像与 x 轴交点的情况来判断一 元二次不等式的解集;下面以 a>0 为例说 明,抛物线 y=ax2+bx+c(a≠0)与 x 轴无交 点时,不等式 ax2+bx+c>0(或 <0)(a>0)的 解集为全体实数或无解;抛物线
参考文献: [1]石慧英,秦继东.从“有形无图”到 “以形助数”— —— 一道中考题的解法与变 式探究[J].中学数学,2020(14):67-69. [2]仓猛.复习课“三个关注”:目标、教 材与“考向”———以“二次函数与一元二次 方程”复习课为例[J].中学数学,2019(22): 41-42. [3]徐章韬.从二次函数到一元二次方 程———教育数学研究之九[J].教育研究与 评论(中学教育教学),2019(08):43-46. [4]沈莉.基于机会的教学立意———以 “二次函数与方程、不等式的关系”教学为 例[J].中学数学,2018(18):10-12. [5]陆炜锋.重新建构学材,提升学习 能力—— —以“二次函数与一元二次方程” 教学为例[J].中学数学,2017(18):15-17.
2021·9
解:(1)①当 m=0 时,原方程可化为
x-2=0,解得 x=2;
②当 m≠0 时,方程为一元二次方程,
第1讲 函数、方程、不等式的思想(讲学稿)2
【课题】函数与方程的思想方法【课型】复习课【上课时间】2011-3-7【学习目标】1.掌握初等函数的基本性质;2.通过建立函数关系式或构造中间函数,把方程和不等式问题转化为函数问题来解决;3.体会数学知识之间的相互联系,养成分析问题和总结方法的习惯。
【学习过程】一、热身训练1.若方程013422=-++m mx x 有两个负根,则实数m 的取值范围是2.方程012lg =-+x x 的实数解的个数是3.不等式042>+-k x kx 恒成立,则实数k 的取值范围是4.数列n n n n a a ⎪⎭⎫ ⎝⎛+=1110)1(},{,,N n ∈则当=n 时,n a 最大。
二、新课讲解订正栏例题1 方程222=+-x x 的实数解的个数是 。
练习(1)不等式12+>-x x 的解集是(2)已知α是方程42=+x x 的根,β是方程4log 2=+x x 的根,则=+βα例题2 已知关于x 的方程0122=+++m mx x 的两个实数根1x 与2x 满足212x x <<,求实数m 的取值范围。
例题3 已知关于x 的方程0322=++a ax x 在]1,1[-上有实数解,求实数a 的取值范围。
练习(1)若关于x 的方程0532=+-a x x 的一个根在)0,2(-内,另一个根在)3,1(内,求a 的取值范围。
(2)已知a 是实数,函数a x ax x f --+=322)(2,如果函数)(x f y =在区间]1,1[-上有零点,则实数a 的取值范围是(3)(2010上海高考)若0x 是方程3121x x =⎪⎭⎫ ⎝⎛的解,则0x 属于区间( ) A.)1,32( B.)32,21( C.)21,31( D.)31,0(例题4 对满足40≤≤p 的一切实数,不等式342-+>+p x px x 恒成立,试求x 的范围。
练习:设不等式)2(442x m x x ->+-对满足1||≤m 的一切实数m 的取值都成立,求x 的取值范围。
一元二次不等式、方程和函数的关系
一元二次函数、方程和不等式一、定义1、等式的定义等式是数学中表示两个量或两个表达式之间相等关系的式子。
它由等号(=)连接,等号两边的数值或表达式在特定条件下是相等的。
换句话说,如果两个量或两个表达式用等号连接,那么这两个量或表达式就构成了等式。
2、不等式的定义不等式是数学中表示两个量或两个表达式之间大小关系的式子。
它不使用等号(=)连接,而是使用大于(>)、小于(<)、大于等于(≥)、小于等于(≤)或不等号(≠)这样的关系符号来连接两边的数值或表达式。
二、性质1、等式的性质:性质1:如果a=b ,那么b=a性质2:如果a=b ,b=c ,那么a=c性质3:如果a=b ,那么a±c=b±c性质4:如果a=b ,那么ac=bc 。
性质5:如果a=b ,c ≠0,那么c b c a =2、不等式的性质:性质1:如果a >b ,那么b <a;如果b <a ,那么a >b .即:a >b ⇔b <a 。
性质2:如果a >b ,b >c ,那么a >c 。
即:a >b ,b >c ⇒a >c .性质3:如果a >b ,那么cb c a ++>性质4:如果a >b ,c>0,那么ac >bc ;如果a>b ,c<0,那么ac<bc性质5:如果d c b a >,>,那么db c a ++>性质6:如果0d c 0b a >>,>>,那么bdac >性质7:如果a >b >0,那么),(>2n n b a nn ≥∈N三、基本不等式对于∀a >0,b >0,ab 2b a ≥+变形为2b a ab +≤①当且仅当a=b 时,等号成立.通常我们称不等式①为基本不等式。
其中2b a +叫做正数a ,b 的算术平方根,ab 叫做正数a ,b 的几何平均数基本不等式表明:两个正数的算术平均数不小于它们的几何平均数四、用分析法证明基本不等式分析法是一种“执果索因”的证明方法,即从要证明的结论出发,逐步寻求使他成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理)为止要证明2b a ab +≤,只要证明b a ab 2+≤,要证明b a ab 2+≤,只要证明0b a ab 2≤--,要证明0b a ab 2≤--,只要证明0b a 2≤--)(,要证明0b a 2≤--)(,只要证明0b a 2≥-)(,很显然,平方恒大于等于0,0b a 2≥-)(成立,当且仅当a=b 时,0b a 2≥-)(中的等号成立。
3.2 函数与方程、不等式之间的关系
(2)一次函数y=kx+m(k≠0)的图像与x轴的交点坐标是什么?这个
交点的坐标与方程kx+m=0的根有何关系?
提示:交点坐标为 - ,0 ,其中交点的横坐标恰好为方程kx+m=0
的根.
课前篇
自主预习
一
二
三
/yyk/cdsgyy/
/yyk/tjybgcyy/
/yyk/whrayy/
/yyk/whzafcyy/
/yyk/whdhyy/
/yyk/shxknkyy/
/yyk/csygyy/
/yyk/cdsbykyy/
/yyk/szrayy/
/yyk/zbaeykyy/
/yyk/shxjgkyy/
/yyk/shjlnzyy/
1
2
C.f(x)=x +x D.f(x)=
四
)
解析:由函数零点的定义,看是否存在实数x,使f(x)=0,若存在,则f(x)
有零点,若不存在,则f(x)无零点.
1
1
由于函数 f(x)=中,对任意自变量 x 的值,均有≠0,故函数不存在零
点.
答案:D
课前篇
自主预习
一
二
三
四
知识点二、二次函数、一元二次方程和一元二次不等式之间的
/yyk/wxybzygcyy/
/yyk/whyhyy/
/yyk/scpcyy/
/yyk/xakd/
/yyk/whbszysgcyy/
/yyk/csbjmlyfcyy/
如果f(a0)·f(x0)>0,则零点位于区间[x0,b0]中,令a1=x0,b1=b0.
浅谈方程、函数、不等式三者之间的关系
浅谈方程、函数、不等式三者之间的关系作者:谢文芳来源:《学校教育研究》2014年第24期在初中阶段,方程、函数、不等式都是比较重要的知识点。
在初中数学教学中占重要地位。
对于它们之间的关系应该如何理解和认识,在这里笔者谈一点粗浅看法。
第一,函数、方程和不等式是初中数学学习的主要内容之一。
这三部分内部之间有着很密切的联系,知识点体系主要采用以函数为主线,将函数图像、性质和方乘及不等式的相关知识,进行综合运用,用函数观点看方程(组)与不等式数形结合思想的又一体现,它交给我们从另一个方位来思考方程(组)与不等式的问题,让人耳目一新,让我们领略了数学思维的多元性,进一步体验了数形结合的重要性。
在学习方程和不等式的时候加入与函数的联系,在学习中让学生比较好的理解它们之间的内在的联系是十分重要的内容,这也是初中阶段数学最为重要的内容之一。
而新课程标准中把这个联系提到了十分明朗、鲜明的程度。
因此,应该重视这部分的教学。
第二,在教学中,这部分内容应该抓好两个要点:第一个要点是各个内容之间相关概念之间的联系、第二个要点是各个内容之间相关性质之间的联系。
例如,方程与函数之间相对应问题?实际上,想对应的问题就是求函数的零点,即函数图像与横轴交点的横坐标的值。
在不等式中,方程的根又是如何体现的?方程的根就是不等式解集中的特殊值。
反之,函数的零点从方程的角度看,就是方程的根,从不等式的角度看,就是解集中的特殊的解。
不等式的解集从函数的角度看,就是图像在横轴的上方或下方,从方程的角度看,就是先解方程,求出方程的根,以两根为端点写出不等式的解集。
这三个不同内容之间,一些概念是相通的,但是名称又不完全一样。
但本质上是一致的。
1.一元一次方程、一元一次不等式及一次函数的关系一次函数及其图像与一元一次方程及一元一次不等式有着密切的关系,函数y=ax+b(a≠0,a,b为常数)中,函数的值等于0时自变量x的值就是一元一次方程ax+b=0(a≠0)的解,所对应的坐标(1 ,0)是直线y=ax+b与x轴的交点坐标,反过来也成立;•直线y=ax+b 在x轴的上方,也就是函数的值大于零,x的值是不等式ax+b>0(a≠0)的解;在x轴的下方也就是函数的值小于零,x的值是不等式ax+b<0(a≠0)的解。
用函数思想解决方程或不等式中的参数问题
m= 一 +1而求 解 函数 . )=一 一 +1在 一 . 厂 (
且对任 意 , Y∈R 都 有 f +) , )+ (,. ( , )= ( , ) 若 ) 间上有解 , 而求f ) 这个 区问上 的值 域的问 从 ( 在 - ・ + 一 2 0对任意 ER恒成立, 厂 3) 3 9 一 )< ( 题. 当然要进行这个转化的第一步必须是分离参数 求实数 的取值范围. , . n 利用函数的单调性和奇偶性可将原不等式转化 类题练 习 1 已知关 于 的方 程 0 : h+t n ・ +1 为3 一( + )・ 2 0对任意 E 1 后 3+ > R成立 , 等价 0 有实根 , 求实数 t 的取值范围. 于 t一( ) + 0 令 3 ) 任 意 t 0恒成 1+ t 2> ( =£对 > 点拨 : 本题很 自然的会 把 0 作为一个整体换 立. 将左 边视 为关 于 t 若 的二 次 函数 z t一( )= 1+ 元, 令 =口 , > 将原 问题 转化 为 关 于 u的方 程 0,
侈 已知集 合 A:{ , ) +, 一,+ 0 1 ( Y I 眦 , 2= 0}集合 B={ ,) ~ , ( y I Y+1 0,≤ = 0 ≤2}又 An , B≠f , 2 求实数 r的取值 范 围. j r / , 分 析 : AnB≠0两 集合 的交集 非 空转 化 为方 将 程 +懈 一 +1=0在 [ , ] 有 实 数 解. 大 多 02 上 绝
是gu ( )=一 一 在 ( , 0 +∞ ) 的值 域. 上
“
类 题练 习 2 已知 方程 2i : s x+CS +2 3= n O 口一 0 在 [ ,盯] 0 2 内恰 有 两 个 不 同 的实 根 , 。的取值 范 求
围.
用函数的观点看方程与不等式教学设计
用函数的观点看方程与不等式教学设计观美中学张少青函数和方程,函数与不等式,它们是几个不同的概念,但它们之间有着紧密的联系,一个函数若有解析表达式,那么那个表达式就可看成是一个方程;一个二元方程,两个变量存在着对应关系,假如那个对应关系是函数,那么那个方程能够看成是一个函数。
许多有关方程、不等式的问题能够用函数的方法解决;反之,许多有关函数的问题也能够用方程和不等式的方法解决,用函数的观点看方程与不等式,是学生应该学会的一种思想方法。
【教学目标】1、明白得一次函数与一元一次方程、一元一次不等式、二元一次方程组的关系,会依照一次函数的图象解决方程与不等式的求解问题。
2、学习用函数的观点看待方程与不等式的方法,初步感受用全面的观点处理局部问题的思想。
3、经历方程和不等式与函数关系问题的探究过程,学习用联系的观点看待数学问题的辨证思想。
【教学重点】一次函数与一元一次方程、一元一次不等式、方程组的关系的明白得。
【教学难点】对应关系的明白得及实际问题的探究建模。
【教学过程】一、创设情境同学们,你们熟悉龟兔赛跑的故事吗?(请一学生简述)请看屏幕,从图象上看出这是几百米赛跑?表示兔子的图象是哪一条?兔子什么时候开始睡觉?什么时候乌龟追上了兔子?由两条直线的交点坐标来确定相应的两个解析式组成的方程组的解,实际上,一次函数是两个变量之间符合一定关系的一种互相对应,互相依存。
它与我们往常学过的一元一次方程,一元一次不等式,二元一次方程组有着必定的联系。
今天我们将研究用函数的观点看方程与不等式。
(设计意图;一、以学生熟悉的龟兔赛跑故事引入,然后用函数图象形象说明了它们赛跑的过程,把一次函数与学生之间的距离拉近了。
二、点明学习本节内容的必要性:(1)函数与方程、方程组、不等式有着必定的联系;(2)用函数的观点看待方程、方程组、不等式是我们学数学应该把握的思想方法。
)二、探讨1、我们先来看下面的两个问题有什么关系:(1)解方程2x + 20 = 0.(2)当自变量为何值时,函数y = 2x + 20的值为零?问:①关于2x + 20 = 0和y = 2x + 20,从形式上看,有什么相同和不同的地点?②从问题的本质上看,(1)和(2)有什么关系?③作出直线y = 2x + 20,看看(1)与(2)是如何样的一种关系?(设计意图:用具体的问题作对比,关心学生明白得;让学生在探究过程中理解两个问题的同一性。
研究指数函数与对数函数的方程与不等式
研究指数函数与对数函数的方程与不等式指数函数和对数函数是数学中常见的函数类型,在许多数学问题中,我们经常需要研究它们的方程和不等式。
本文将探讨指数函数和对数函数的方程与不等式及其解法。
一、指数函数的方程和不等式指数函数的一般形式为y = a^x,其中a为常数且a>0且a≠1,x为未知数。
我们来研究指数函数的方程。
1. 指数函数方程当我们需要求解指数函数的方程时,常使用对数函数来解决。
对数函数的一般形式为y = loga(x),其中a为底数,x为未知数。
对于指数函数y = a^x,等式a^x = b可以转化为对数方程loga(b) = x,求解该方程能够得到指数函数的解。
2. 指数函数不等式对于指数函数的不等式,我们可以利用指数函数的性质来求解。
(1)a^x > b,解集为x > loga(b);(2)a^x < b,解集为x < loga(b)。
二、对数函数的方程和不等式对数函数的一般形式为y = loga(x),其中a为底数且a>0且a≠1,x为未知数。
我们来研究对数函数的方程和不等式。
1. 对数函数方程对于对数函数的方程y = loga(x),我们可以通过指数函数来求解。
(1)loga(x) = b,等式x = a^b,求解该方程能够得到对数函数的解。
2. 对数函数不等式对于对数函数的不等式,我们可以利用对数函数的性质来求解。
(1)loga(x) > b,解集为x > a^b;(2)loga(x) < b,解集为x < a^b。
三、指数函数与对数函数综合运用在实际问题中,指数函数和对数函数常常综合运用。
我们来看一个例子。
例子:求解方程2^(x+1) + 3^(2x) = 31。
解:首先将方程转化为对数方程。
2^(x+1) + 9^x = 31取对数,得到log2(2^(x+1) + 9^x) = log2(31)因为指数函数的底数为2,我们利用对数函数的性质将方程转化为指数函数方程。
从函数的观点看方程及不等式
从函数的观点看方程及不等式数学是研究现实世界的量的关系的学科——恩格斯。
由于数学概念、理论和方法都源于实际,是从现实世界的材料中抽象出来的。
数学内容之间相互联系,充满运动变化和对立统一的辨证关系。
函数和方程(方程组)及不等式的这种对应关系正是这种辨证关系的真实写照。
一、函数与方程的关系(一)从关系式上看。
一次函数的关系式为:y=ax+b(a≠0),一元一次方程的一般形式为:ax+b=0(a≠0)从形式上可以看出,当把一次函数关系式中的因变量y改写为整数0就可将函数式转化为方程式;反之,把一元一次方程一般式等号右边的0改写为一个变量y就可将方程式转化为函数式。
同理,二次函数的关系式为y=ax2+bx+c(a≠0),一元二次方程的一般形式为ax2+bx+c=0(a≠0),当把二次函数关系式中的因变量y改写为整数0就可将函数式转化为方程式;将方程式右边的0换成一个变量y则方程式变为函数式。
(二)从函数的图象与方程的解来看。
一次函数的图象是一条直线,这条直线必与x轴相交,其交点坐标为(-,0),也就是当因变量y=0时其自变量x=-,这个x的值就是方程ax+b=0(a≠0)的解,换句话说,方程ax+b=0(a≠0)的解就是相对应函数的图象直线y=ax+b上无数个点中的与x 轴相交的那一点的横坐标;二次函数的图象是一条抛物线,这条抛物线与x轴的位置关系有三种情况:当抛物线与x轴有一个交点时,相对应的方程ax2+bx+c=0(a≠0)就有两个相等的实数根x1=x2=-,当抛物线与x轴有两个交点时,相对应的方程ax2+bx+c=0(a≠0)就有两个不相等的实数根x1=,x2=,当抛物线与x轴没有交点时,相对应的方程ax2+bx+c=0(a≠0)就没有实数根。
换句话说,方程ax2+bx+c=0(a≠0)的解就是相对应抛物线上无数个点中的与x轴相交的那一点或两点的横坐标。
二、函数与二元一次方程组的关系当把二元一次方程组中每个方程右边的0改写成变量y,就可将方程组转化为两个一次函数式。
函数方程不等式之间的关系
函数、方程与不等式的关系很多学生在学习中把函数、方程与不等式瞧作三个独立的知识点。
实际上,她们之间的联系非常紧密。
如果能熟练地掌握三者之间的联系,并在做题时灵活运用,将会有事半功倍的收效。
★函数与方程之间的关系。
先瞧函数解析式:(0)y ax b a =+≠,这就是一个一次函数,图像就是一条直线。
对于这个函数而言,x 就是自变量,对应的就是图像上任意点的横坐标;y 就是因变量,也就就是函数值,对应的就是图像上任意点的纵坐标。
如果令0y =,上面的解析式也就变成了0ax b +=,也就就是一个一元一次方程了。
我们知道,一般在求一个函数图像与x 轴交点的时候,令0y =(同理求一个函数图像与y 轴交点的时候,令0x =)。
所以上面的意义可以这样表达:将函数解析式中的y 变为0,那么就得到相应的方程。
这个方程的解也就就是原先的函数图像与x 轴交点的横坐标。
这就就是函数解析式与方程之间的关系,它适用于所有的函数解析式。
举例说明如下:例如函数23y x =-的图像如右所示:该函数与x 轴的交点坐标为3(,0)2,也就就是在函数解析式23y x =-中,令0y =即可。
令0y =也就意味着将一元一次函数23y x =-变成了一元一次方程230x -=,其解与一次函数与x 轴的交点的横坐标就是相同的。
接下来推广到二次函数:例如函数2252y x x =-+的图像如右图所示:很容易验证,该函数图象与x 轴的交点的横坐标正就是方程22520x x -+=的解。
如果右边的函数图象就是通过列表、描点、连线的方式作出来的,虽然比较精确,但过程十分繁琐。
在实际中,很多时候并不要求我们把函数图象作得很精准。
有时候只需要作出大致图像即可。
既然上面讲述了函数图象与对应的方程之间的关系,我们可不可以通过利用方程的根来绘制对应的函数图象呢?函数2252y x x =-+对应的方程就是22520x x -+=,先求出这个方程的两个解。
函数方程不等式之间的关系
函数、方程和不等式的关系很多学生在学习中把函数、方程和不等式看作三个独立的知识点。
实际上,他们之间的联系非常紧密。
如果能熟练地掌握三者之间的联系,并在做题时灵活运用,将会有事半功倍的收效。
★函数与方程之间的关系。
先看函数解析式:(0)y ax b a =+≠,这是一个一次函数,图像是一条直线。
对于这个函数而言,x 是自变量,对应的是图像上任意点的横坐标;y 是因变量,也就是函数值,对应的是图像上任意点的纵坐标。
如果令0y =,上面的解析式也就变成了0ax b +=,也就是一个一元一次方程了。
我们知道,一般在求一个函数图像与x 轴交点的时候,令0y =(同理求一个函数图像与y 轴交点的时候,令0x =)。
所以上面的意义可以这样表达:将函数解析式中的y 变为0,那么就得到相应的方程。
这个方程的解也就是原先的函数图像与x 轴交点的横坐标。
这就是函数解析式与方程之间的关系,它适用于所有的函数解析式。
举例说明如下:例如函数23y x =-的图像如右所示: 该函数与x 轴的交点坐标为3(,0)2,也就是在函数 解析式23y x =-中,令0y =即可。
令0y =也 就意味着将一元一次函数23y x =-变成了一元 一次方程230x -=,其解和一次函数与x 轴的交 点的横坐标是相同的。
接下来推广到二次函数:例如函数2252y x x =-+的图像如右图所示: 很容易验证,该函数图象与x 轴的交点的横坐标 正是方程22520x x -+=的解。
如果右边的函数图象是通过列表、描点、连线 的方式作出来的,虽然比较精确,但过程十分繁琐。
在实际中,很多时候并不要求我们把函数图象作得 很精准。
有时候只需要作出大致图像即可。
既然上面讲述了函数图象与对应的方程之间 的关系,我们可不可以通过利用方程的根来绘制 对应的函数图象呢?函数2252y x x =-+对应的方程是22520x x -+=,先求出这个方程的两个解。
很容易根据十字相乘法(21)(2)0x x --=得出该方程的两个解分别为12和2。
高中数学中函数与方程思想的研究
高中数学中函数与方程思想的研究函数与方程思想是数学学科中的两个重要思想,也是解决实际问题的重要方法。
在高中数学教学中,函数与方程思想的应用对于提高学生的数学素养和解决问题的能力具有重要意义。
本文旨在探讨函数与方程思想在普通高中教学中的实践研究,以期为优化高中数学教学提供参考。
普通高中教学的主要目标是培养学生的创新精神和实践能力,为其未来的发展奠定基础。
在这个过程中,数学学科作为一门重要的基础课程,需要着重培养学生的逻辑思维和解决问题的能力。
函数与方程思想作为数学学科的基本思想,也是解决高中数学教学问题的关键。
在普通高中教学中,函数与方程思想的实践主要包括以下环节:教学准备:教师需要深入理解函数与方程思想的概念和特点,掌握其在解决问题中的应用方法。
同时,教师应结合具体的教学内容和教学目标,准备好相应的教案和学案。
教学目标制定:教师需要明确函数与方程思想的教学目标,包括知识目标、能力目标和情感目标。
同时,教师需要根据学生的实际情况和需求,制定相应的教学计划。
教学实施:教师在课堂上需要采用多种教学方法和手段,如案例教学、探究式教学等,引导学生理解和掌握函数与方程思想,并运用它们解决实际问题。
教学反思:教师需要及时反思自己的教学过程和效果,发现问题并及时改进,以便更好地提高教学质量和效果。
以高中数学中“函数”章节的教学为例,教师可以通过以下方式将函数与方程思想融入教学中:帮助学生理解函数的概念和性质,如定义域、值域、单调性等,为后续的应用奠定基础。
通过实例让学生了解函数在解决实际问题中的应用,如利用函数解析式解决行程问题、利润问题等。
引导学生通过方程或不等式的方式描述实际问题,然后利用函数的性质和相关算法求解。
例如,帮助学生理解以下题目:某公司为了营销一款产品,计划在三个方面进行投入(x1, x2, x3),已知产品总成本为C元。
试求C关于x1, x2, x3的函数关系式。
教师可以引导学生列出成本与投入之间的方程,然后通过调整方程的形式,使学生理解函数关系式的意义和应用。
谈初中函数与方程(不等式)的关系
谈初中函数与方程(不等式)的关系岱山县高亭中学 郑金姬函数描述了自然界中数量之间的关系,它体现了“联系和变化”的辩证唯物主义观点。
而方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决。
在初中数学里,我们常需要用函数模型,刻画运动变化的规律;刻画变化过程中同类量之间的大小,需要用不等式模型;同时刻画运动变化过程中的某一瞬间,又需要用方程模型。
所以在某种程度上说方程中有函数,函数中又包含了方程。
在北师大版八年级上册还出现“二元一次方程组与一次函数”的章节,谈到方程组中每个含有二元的一次方程都可看作一次函数,解方程组也是求二个函数图象的交点坐标。
更进一步点明方程与函数思想的互溶,显现出水乳交溶的现象。
同样,在浙教版的教材中,函数也是以一种“先抑后扬”的方式贯穿于整个初中阶段,通过逐步渗透,螺旋式的上升知识层次来达到函数思想的大现。
也正是这种融会贯通的特性,要求我们在平常的学习中能进一步揭示两者的内在联系,以求在解决相关问题时达到最佳效果。
一、函数与与方程(不等式)的有机融合在浙教版的七(上)中有《代数式》实一章的教学内容。
在教授代数式的值这一节内容过程时,一些老师可能没有引起足够的重视,甚至于认为代入求值这个过程实在太简单,以致于忽略了它里面所包含的一一对应的初步的函数思想,这种教学就显得有点暴殄天物了,函数的思想已暴露无遗,此时不加以渗透又更待何时?接着,在学习二元一次方程时,映射思想再一次得到体现,而后又学习了等式变形。
对于3x+2y=6,如何用x 来y 表示的题型,如果只是机械的运用等式的性质解答这类题目而没有从量之间的关系去加以理解的话,那么学习一次函数的时候,学生对下面这道题目会束手无策:例:以方程235x y -=的解为坐标,所有点组成的图象是直线A .2533y x =-B .2533y x =+C .2533y x =-+D .2533y x =-- ( ) 解答这道题的障碍来源于方程与函数之间的理解而非等式变形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方程、不等式与函数思想探讨
摘要:本文从四个方面,利用方程、不等式与函数关系,通过函数与方程、不等式的转化,不仅帮助学生解题,而且可以活跃学生思维,有助于学生理解数学概念,探索解题捷径,培养学生学习的兴趣,收到事半功倍的效果.
关键词:方程不等式函数思想探讨
函数的思想,就是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决.函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题.
方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决.方程的数学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题.方程思想是动中求静,研究运动中的等量关系.
函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y- f (x)=0.函数问题(例如求反函数,求函数的值域等)可以转化为方程问题来求解,方程问题也可以转化为函数问题来求解,如解方程f(x)=0,就是求函数y=f(x)的零点.
函数与不等式也可以相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式.
函数与方程是密切相联的.有时运用方程解函数问题,把函数关系式用解析式表达,并把解析式看做一个方程,通过解方程的手段或对方程的研究、讨论,使问题得以解决.运用函数的思想处理方程的问题,即把方程中的“未知数x”升华为函数的“自变量x”,变静态为动态的函数的思想和方法.
本文从四个方面,利用方程、不等式与函数关系,通过函数与方程、不等式的转化,不仅帮助学生解题,而且可以活跃学生思维,有助于学生理解数学概念,开拓解题捷径,培养学生学习的兴趣,收到事半功倍的效果.
一、深入理解概念,灵活解题
∴x=-9
a.奇函数
b.偶函数
c.非奇非偶函数
d.既是奇函数又是偶函数
分析:根据函数奇偶性定义
对于任意x∈{-∞,0)∪(0,+∞)
若g(-x)=g(x)成立,则g(x)是偶函数;
若g(-x)=-g(x)成立,则g(x)是奇函数;
若g(x)≠g(x)-g(x),则g(x)是非奇非偶函数.
由于函数关系式繁琐,不选用定义证明它的奇偶性.而挖掘其隐含条件,构造g(x)与g(-x)的关系式,体现了方程的思想.
由于g(x)是偶函数
∴有g(-x)=g(x)
解此方程得:g(-x)=-g(x)
根据函数奇偶性定义
∴g(x)是奇函数.
三、利用函数特征,巧设方程
分析:此题一个等式两个未知量.因此,需利用隐含条件,再造一个方程,组成方程组来解.
解:∵f(x)是偶函数
∴有f(-x)=f(x)
又∵g(x)是奇函数
∴有g(-x)=-g(x)
本题如按常规方法来解:平方展开,得出一个繁杂的式子,往下思路一般会受阻.下面结合图像,利用解析几何知识来解.
解:y=■+■
=■+■
所以将y看成是坐标平面上动点p(x,0)到定点a(0,-3),b(4,5)的距离之和.由于点p在x轴上,点a、b在x轴的两侧,因此|ap|+|bp|的最小值就是|ab|.(三角形两边之和必大于第三
边)
∴y■=|ab|=■=4■
此题这样处理,大大简化了运算量,而且很直观.
例6:当k∈(0,1/2)时,方程■=kx解的个数为(?摇?摇)
a.0
b.1
c.2
d.3
分析:在同一坐标系内作函数y=kx,k∈(0,1/2)和y=■的图像,得到三个交点,故选d.
例7:已知x,y∈[-π/4,π/4],a∈r且x■+sinx-2a=04y■+siny·cosy+a=0,则cos(x+2y)=?摇?摇?摇?摇.
解:已知表明x和-2y是方程u■-sinu-2a=0的根,
而f(u)=u■+sinu-2a在u∈[-π/4,π/4]为单调递增函数,所以x=-2y,
即cos(x+2y)=1.
函数思想与方程思想结合起来处理例7的综合问题.
总之,对函数的研究离不开方程、不等式知识,在处理有关方程、不等式的问题也离不开函数的观点,关键在于沟通它们之间的内在联系,系统地把握数学知识,寻找解决问题的捷径.
参考文献:
[1]蔡林森.教学革命——蔡林森与先学后教.首都师范大学出
版社,2010,2.
[2]车希海.现代职业教育教学实用手册.山东科学技术出版社,
2008,8,第一版.
[3]徐长青.简约教学在返璞归真中见实效.中国教育报,
2010-5-21.
[4]谭平,陈勇,巫俊平,熊德雅.打造“和谐教育”特色.促进学校内涵发展.中国教育报,2010-6-14.。