第三章结构力学(李廉锟第五版)资料
结构力学(李廉锟第五版)(课堂PPT)
内部可 F
变性
结构力学 D
A
中南大学
找刚片
E
.
退出
返回
B 41 03:16
§2-5 机动分析示例
A
C
结构力学 E
DD E
如何才能不变? 可变吗? 有多余吗?
B
中南大学
.
退出
返回
42
03:16
§2-5 机动分析示例
结构力学
中南大学
加减二元体
.
退出
返回
43
03:16
§2-6 三刚片虚铰在无穷远处的讨论 (a) 一铰无穷远情况
几何可变体系: 瞬变 , 常变
• 例:(图2-17) 二刚片三链杆相联情况
• (a)三链杆交于一点;
• (b)三链杆完全平行(不等长);
• (c)三链杆完全平行(在刚片异侧) ;
• (d)三链杆完全平行(等长)
中南大学
.
退出
返回
32
03:15
§2-5 机动分析示例
结构力学
例2-1 对图示体系作几何组成分析。
6. 运用三刚片规则时,如何选择三个刚片是关键,刚 片选择的原则是使得三者之间彼此的连接方式是铰结。
7. 各杆件要么作为链杆,要么作为刚片,必须全部 使用,且不可重复使用。
中南大学
.
退出
返回
39
03:16
§2-5 机动分析示例
结构力学
中南大学
F
G
D
E
如何变静定? 唯一吗?
.
退出
返回
40
03:16
§2-5 机动分析示例
铰
中南大学
Ⅱ
.
李廉锟《结构力学》笔记和课后习题(含考研真题)详解-第3章 静定梁与静定刚架【圣才出品】
第3章 静定梁与静定刚架
3.1 复习笔记【知识框架】
【重点难点归纳】
一、单跨静定梁 ★★★★
1.内力
表3-1-1 内力的基本概念
图3-1-1
图3-1-22.内力与外力间的微分关系及积分关系(1)由平衡条件导出的微分关系式
计算简图如图3-1-3所示,微分关系式为
(Ⅰ)
d d d d d d s
s N
F q x
x M F
x F p x
x ⎧=⎪⎪⎪=
⎨⎪⎪=-⎪⎩-()()
图3-1-3
(2)荷载与内力之间的积分关系
如图3-1-4
所示,结合式(Ⅰ)可得梁的内力积分公式,积分公式及其几何意义见表3-1-2。
图3-1-4
表3-1-2 内力的积分公式及几何意义
3.叠加法作弯矩图
表3-1-3 常用叠加法及其作图步骤
图3-1-5
图3-1-6
二、多跨静定梁 ★★★★
多跨静定梁是由构造单元(如简支梁、悬臂梁)多次搭接而成的几何不变体系,其计算简图见图3-1-7,几何构造、计算原则、传力关系见表3-1-4。
李廉锟《结构力学》(上册)配套题库【课后习题】(静定梁与静定刚架)【圣才出品】
第3章静定梁与静定刚架复习思考题1.用叠加法作弯矩图时,为什么是竖标的叠加,而不是图形的拼合?答:因为有时叠加弯矩图时的基线与杆轴不重合,如果用图形拼合,不能完全保证叠加后弯矩值是实际同一点的两个弯矩相加后的值。
2.为什么直杆上任一区段的弯矩图都可以用简支梁叠加法来作?其步骤如何?答:(1)因为根据内力分析可以求出直杆任一区段两端的内力,所以直杆任一区段两端均可以看成两端有外力(集中力或集中力偶)的简支梁。
(2)设有直杆任一区段简支梁AB,具体步骤如下①分解作用区段AB上的荷载;②分别作出分解荷载下的弯矩图;③求解出区段AB两端的弯矩M A和M B;④将两端弯矩M A和M B绘出并连以直线(虚线);⑤以步骤④中的虚线为基线叠加各个分解荷载下的弯矩图(竖标叠加),得最终弯矩图。
3.试判断图3-1所示刚架中截面A、B、C的弯矩受拉边和剪力、轴力的正负号。
图3-1答:轴力以受压为负,受拉为正;剪力以使截面顺时针旋转为正。
(1)截面A:左边受拉,剪力为负,轴力为负;(2)截面B:右边受拉,剪力为正,轴力为正;(3)截面C:左边受拉,剪力为正,轴力为正。
4.怎样根据静定结构的几何构造情况(与地基按两刚片、三刚片规则组成,或具有基本部分与附属部分等)来确定计算反力的顺序和方法?答:(1)与地基按两刚片,例如简支梁,支座反力只有三个,对某一端点取矩直接解除约束反力。
(2)与地基按三刚片规则组成,例如三铰刚架,支座反力有四个,考虑结构整体的三个平衡方程外,还需再取刚架的左半部(或右半部,一般取外荷载较少部分)为隔离体建立一个平衡方程方可求出全部反力。
(3)具有基本部分与附属部分时,按先附属后基本的计算顺序,求解支座反力。
5.当不求或少求反力而迅速作出弯矩图时,有哪些规律可以利用?答:当不求或少求反力而迅速作出弯矩图时,如下规律可以利用(1)结构上若有悬臂部分及简支梁部分(含两端铰接直杆承受横向荷载)弯矩图可先行绘制出;(2)直杆的无荷区段弯矩图为直线和铰处弯矩为零;(3)刚结点的力矩平衡条件;(4)外力与杆轴重合时不产生弯矩;(5)外力与杆轴平行及外力偶产生的弯矩为常数;(6)对称性的合理利用;(7)区段叠加法作弯矩图。
结构力学第五版 李廉锟 第三章讲诉
dx
(3)角以由x轴的正方向逆时针转到切线方向时为正,反时针方向为负。
B
mB 0; FA 6 m1 4q 2 0
4m
FB
FA 6kN
Fy 0; FA FB 4q 0
FB 18kN
第三章 静定梁与静定刚架
m=12kN.m q=6kN/m
1 A1
23 5 23 5
4 4B
AC:
A
MC
左
Fs2 6kN
2m C
FA=6kN 6kN
Fs图 ⊕
4m
FB=18kN FA
K
n
(a)
F2 B FB
内力符号规定 :
F1
FAX A
FAY
M
K
FN
FS
(b)
第三章 静定梁与静定刚架
(2)M、FS、FN图正负号规定 ①弯矩M:对梁而言,使杆件上凹者为正(也即下侧纤
维受拉为正),反之为负。一般情况下作内力图时,规定弯 矩图纵标画在受拉一侧,不标注正负号。
②剪力FS:使截开后保留部分产生顺时针旋转者为正, 反之为负。
单跨静定梁
从支承情况不同又分为:
简支梁
伸臂梁
悬臂梁
第三章 静定梁与静定刚架
1. 反力 以整体为研究对象,利用静力平衡条件求支座反力(简支 梁、外伸梁) 三个支座反力 整体隔离体——平衡方程求解
第三章 静定梁与静定刚架
2. 内力 (1)截面法,取隔离体利用静力平衡条件求截面内力
F1
FAX
A
FAY
m
第三章 静定梁与静定刚架
例 用叠加法画图示梁的弯矩图。
P=4kN 8kN.m q=2kN/m
结构力学(李廉锟第五版)
变形:结构在外部因素作用下发生的形状的变化。
两者之间的关系:有形变必有位移;有位移不一 定有形变。
中南大学
退出
返回
22:16
§6-1 概述
结构力学
2. 位移的分类
P
A
A
Ay
A
位移
线位移 转角位移
Ax
A A点线位移
Ax A点水平位移
Ay A点竖向位移
A截面转角
dn
1 2
Md
d ds d ds d kds
1 ds
所以
dw
1 2
FNds
1 2
FSds
1 2
Mκds
由胡克定律有:
FN , FS , 1 M
EA
GA EI
故
dw 1 FN2 ds 1 FS2 ds 1 M 2 ds
2 EA 2 GA 2 EI
实功数值上就等于微段的应变能。
中南大学
退出
返回
22:17
§6-2 变形体系的虚功原理
结构力学
例:当A支座向上移动一个
A'
已知位移c1,求点B产生的竖向
位移⊿。
c1
A
a
C
B
△
b
在拟求线位移的方向加单位力
由平衡条件 F yA b a
A F yA
1
C B
令虚设的平衡力系在实际的位移状态下做功,得虚
功方程
Δ1 c1 F yA 0
总的来讲: 单位位移法的虚功方程
平衡方程
单位荷载法的虚功方程
几何方程
中南大学
退出
返回
22:17
§6-3 位移计算的一般公式 单位荷载法 结构力学
【经典】结构力学(李廉坤第五版) 上
§2-4 瞬变体系
分析图示体系: 三根链杆平行且等长 从异侧连出时。体系 为瞬变体系。
§2-5 机动分析示例
例2-1 试分析图所示多跨静定梁的几何构 造。
解:地基与AB段梁看作一个刚片(两刚片 规上则述)刚;片与BC段梁扩大成一个刚片(两刚 片上规述则大)刚;片与CD段梁又扩大成一个刚片(两 刚DE片段规梁则同)样;分析(两刚片
需的最少联系
图示体系数计目算,自而由布度置W不=0,
当会成为几何可变但;布置不当,上部有多余 联系,
下 体部 系缺 计少 算联 自系 由,度是W≤几0何,可
变 是的 体。 系几何不变的必要条 件。
§2-3 几何不变体系的基本组成规则
三刚片规则 三个刚片用不在同一直线上的三个单
铰两两相连,组成的体系是几何不变的,且 没有多余联系。如图。
§2-3 几何不变体系的基本组成规则
两刚片规则
两个刚片用一个铰和一根不通过此铰
的链杆相连,组成的体系是几何不变的,且
没有多余联系。如图。
图示体系
也是按三刚片规则
组成的。将链杆看
作一个刚片,组成
的体系是几何不变
§2-3 几何不变体系的基本组成规则
如图所示,刚
片I和刚片II可以绕O点 转动;O点成为刚片I和
点O作相对转动,但发生
微小转动后,三根杆就 不再交于同一点,运动 也就不再继续发生。体
§2-4 瞬变体系
分析图示体系: 三根链杆平行不等长时, 交于无穷远处的同一点, 两刚片可相对平动,发 生微小相对移动后,三 杆分不析再图全示平体行系。:体系为 瞬三变根体链系杆。平行且等长时, 两刚片的相对平动一直 持续下去。体系为可§1-4 支座和结点的类型
支座:连接结构与基础的装置。 (1)活动铰支座
(NEW)李廉锟《结构力学》(第5版)(下册)笔记和课后习题(含考研真题)详解
目 录第12章 结构动力学12.1 复习笔记12.2 课后习题详解12.3 名校考研真题详解第13章 结构弹性稳定13.1 复习笔记13.2 课后习题详解13.3 名校考研真题详解第14章 结构的极限荷载14.1 复习笔记14.2 课后习题详解14.3 名校考研真题详解第15章 悬索计算15.1 复习笔记15.2 课后习题详解15.3 名校考研真题详解第12章 结构动力学12.1 复习笔记【知识框架】动力荷载与静力荷载基本概念自由振动和强迫振动 结构动力计算的目的 振动自由度的定义结构振动的自由度 结构按自由度的数目分类:单自由度结构和多自由度结构 确定结构的振动自由度 无限自由度结构 自由振动的原因:初始位移、初始速度单自由度结构的自由振动 不考虑阻尼时的自由振动 考虑阻尼时的自由振动 简谐荷载作用下单自由度受迫振动单自由度结构在简谐荷载作用下的受迫振动 不考虑阻尼的纯受迫振动考虑阻尼的纯受迫振动 瞬时冲量作用于质点单自由度结构在任意荷载作用下的受迫振动 任意动力载荷作用下的质点位移公式 振动微分方程 两种特殊载荷作用下的质点位移公式 按柔度法求解多自由度结构的自由振动按刚度法求解主振型的正交性多自由度结构在筒谐荷载作用下的的受迫振动 按柔度法求解振型分解法的优点 按刚度法求解振型分解法振型分解法的步骤 振动微分方程组的建立多自由度结构在任意荷载作用下的受迫振动 振动微分方程组的解耦待定常数的确定求解的具体步骤 地震作用的基本概念 地震作用的定义地震作用的计算 地震作用的分类:水平地震和竖向地震地震作用的实质单自由度结构的地震作用计算 多自由度结构的地震作用计算 梁的自由振动无限自由度结构的振动简谐均布干扰力作用下的受迫振动计算频率的近似计算方法:能量法、集中质量法、用相当梁法计算桁架的最低频率【重点难点归纳】一、基本概念1.动力载荷与静力载荷(1)静力载荷静力荷载是指施力过程缓慢,不致使结构产生显著的加速度,因而可以略去惯性力影响的荷载。
结构力学(李廉锟第五版)_图文
§4-3 三铰拱的合理拱轴线
在均匀静水压力作用下,q=常数,因而
三铰拱在均匀静水压力作用下,其合理轴线的曲 率半径为一常数, 就是一段圆弧。
因此,拱坝的水平截面常是圆弧形,高压隧洞 常采用圆形截面。
拱桥实例介绍
5)刚架拱桥
1989江苏无锡100米下甸桥
变截面,四分点附近截面高度最大,分别向拱脚、跨中减小 。取消斜撑,拱上建筑采用23m预应力混凝土简支梁以过渡 。
§4-3 三铰拱的合理拱轴线
例4-3 设三铰拱上作用有沿拱轴均匀分布的竖向 荷载(如自重),试求其合理拱轴线。
解:当拱轴线改变时,荷载也随之改变。 令p(x)为沿拱轴线每单位长的自重,荷载沿水平
方向的集度为q(x) 由 有
§4-3 三铰拱的合理拱轴线
将
代入方程(4-5),得
由于规定y 向上为正, x 向右为正,q 向下为 正,故上式右边为正号。
§4-3 三铰拱的合理拱轴线
或
积分后,得 如p(x)=常数=p ,则
即 式中A为积分常数。
§4-3 三铰拱的合理拱轴线
由于当x =0时,
,故常数A等于零,即
再积分一次,得 由于当x=0时,y=0, 故
最后得 等截面拱在自重荷载作用下,合理轴线为一悬链线。
§4-3 三铰拱的合理拱轴线
在一般荷载作用下,为了寻求相应的合理轴线,可假 定拱处于无弯矩状态并写出相应的平衡微分方程。
§4-1 概 述
拱与其同跨度同荷载的简支梁相比其弯矩要小 得多,所以拱结构适用于大跨度的建筑物。它广泛 地应用房屋桥梁和水工建筑物中。由于推力的存在 它要求拱的支座必须设计得足够的牢固,这是采用 拱的结构形式时必须注意的。
§4-2 三铰拱的数值解 一、三铰拱的反力和内力计算。
(NEW)李廉锟《结构力学》(第5版)(下册)配套题库【名校考研真题+课后习题+章节题库+模拟试题】
目 录第一部分 名校考研真题第12章 结构动力学第13章 结构弹性稳定第14章 结构的极限荷载第15章 悬索计算第二部分 课后习题第12章 结构动力学第13章 结构弹性稳定第14章 结构的极限荷载第15章 悬索计算第三部分 章节题库第12章 结构动力学第13章 结构弹性稳定第14章 结构的极限荷载第15章 悬索计算第四部分 模拟试题李廉锟《结构力学》(第5版)(下册)配套模拟试题及详解第一部分 名校考研真题第12章 结构动力学一、填空题1.设直杆的轴向变形不计,则图12-1所示体系的质量矩阵[M]=]______。
[西南交通大学2007研【答案】【解析】首先判断结构有两个动力自由度:最右端m1的竖向自由度和水平方向上的自由度。
竖向自由度对应的质点的质量为m1,水平自由度对应的质点的质量为2m1,故该结构的质量矩阵为。
2.如图12-2所示结构的动力自由度为______(不计杆件质量)。
[中南大学2003研]图12-2二、选择题1.如图12-3所示结构,不计阻尼与杆件质量,若要发生共振,θ应等于( )。
[天津大学2005研]A .B .3【答案】一个自由质点的动力自由度为两个(不考虑转动自由度),本题所示结构中有三个质点,第一层的两个质点只有一个水平自由度,第二层的质点有水平和竖向两个自由度,故一共有三个动力自由度。
【解析】C .D.图12-3【解析】当体系的自振频率与外部激励荷载的频率相同时,体系发生共振。
首先求该结构的自振频率,设m 处的位移为u (t ),质量m 处的惯性力向下为,质量3m 处的惯性力向下,弹性力向上为,向左端铰支座处取矩,列运动方程为:。
所以体系的自振频率为。
2.如图12-4所示体系(不计阻尼)的稳态最大动位移y max =4Pl 3/9EI ,则最大的动力弯矩为( )。
[浙江大学2007研]A .7Pl/3 B .4Pl/3C .Pl D .Pl/3B【答案】图12-4【解析】在质点m 处的静位移为:,则动力放大系数R d =;最大静力弯矩为Pl ,故最大动力弯矩为。
结构力学绪论(李廉锟)
三大结构形式
(b)壳体结构
(a)杆系结构
(c)实体结构
建筑物或构筑 物中承受、传递 荷载而起骨架作 用的部分称为结 构。如:房屋中 的框架结构、桥 梁、大坝等。
万里长城
天安门城楼
国家大剧院
三峡大坝
印度泰姬陵
意大利比萨斜塔
凯旋门
埃菲尔铁塔
吉隆坡石油双塔
世界第一悬索桥——日本明石海峡大桥
三堆子金沙江大桥,单跨192米 在结点荷载作用下,各杆发生沿轴线方向伸长或缩短为主的变形, 并产生以轴力为主的内力。因此,桁架杆又称二力杆。
⑸ 组合结构:
由桁架和梁或桁架和刚架等组合在一起的结构。
杆件结构的分类:
1.梁
2.桁架
3.拱
4.刚架
5.组合结构
平面结构和空间结构
RA
RB
§1.6 结构力学的学习方法 (1) 与其它课程的关系
大桥全长3910m,主跨1991m。在主缆施工中,首次利用 直升飞机架设引导索。建设期间,在1995年1月17日遇到 阪神大地震,大桥经受住了考验,不影响继续建设。
江阴长江公路大桥是20世纪“中国第一、世界第四” 大钢箱梁悬索桥 ,大桥全长3071米,主跨1385米 。总 投资36.25亿元
多多罗桥目前是世界上最大跨径 (890M)的斜拉桥
钢结构梁、柱
埃菲尔铁塔
2. 板壳结构 ——厚度远小于其长度与宽度的结构
悉尼歌剧院
大礼堂
3. 实体结构 ——长、宽、高三个尺寸相近的结构
大坝
按杆轴线与外力的空间位置分 (1) 平面结构
各杆轴线、外力均在同一平面内
(2) 空间结构
各杆轴线、外力均不在同一平面内
结构力学的研究对象系指由杆件组成的平面杆系结构。
李廉锟结构力学3
【例3-1】 1.反力 2.控制截面 C-A-(D)-EF-GL-GR-B 3.FS-连线 4.M-连线 直线 曲线
(极值)
滚小球作Q图 力推小球同向走,力尽小球平行走 集中力偶中间铰,方向不变无影响 反推小球回到零,上正下负剪力图
斜梁 基本方法 ——截面法 斜杆内力 ——FS、FN随截面方向倾斜 1.支座反力 2.内力: M FS、FN:投影方向 3.内力图 4.斜长分布→水平分布
§3—2 多跨静定梁
1. 几何组成 基本部分——独立地维持其几何不变的部分 附属部分——依靠基本部分才能维持其几何不变 的部分 层叠图——层次关系
2.受力分析——特点 基本部分——荷载作用其上,附属部分不受力 附属部分——荷载作用其上,基本部分受力 3.内力分析步骤 未知反力数 = 独立平衡方程数 计算——按几何组成的相反次序求解 (避免解联立方程) 反力、内力计算,内力图绘制——同单跨梁
【例3-5】
1.简支
-反力 2.M图 3.FS图 4.FN图 5.校核
【例3-6】 1、反力* 2、M图 3、FS图 AD、BE *DC、CE: -M→FS 4、FN图 AD、BE DC、EC (结点)
【例3-7】组成分析——基本、附属部分 按组成相反次序,分别按基本形式计算
§3-4 快速绘制 M 图
任意直杆段——适用 叠加法作M图 (1)求控制截面值 外力不连续点 (F,M作用点, q的起点,终点等) (考虑全部荷载) (2)分段画弯矩图 控制截面间无荷载 ——连直线 控制截面间有荷载(q、F) ——连虚线, ——再叠加标准M0图
5.绘制内力图的一般步骤 (1)求反力(悬臂梁可不求) (2)分段 ——外力不连续点:q端点,F、M作用点 (3)定点 ——求控制截面内力值(全部荷载) (4)连线 ——按微分关系 连直线 曲线:连虚线,叠加简支梁M0图
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3m
3m
32 kN m
EG
B
ⅢⅣ
FyB = 36 kN
2m 2m
也可以由截面Ⅳ-Ⅳ以
右隔离体的平衡条件 求得。
20 kN Fs1
FSⅣ B
MⅣ
FyB =36 kN
中南大学
退出
返回
13:50
§3-1 单跨静定梁
结构力学
2. 内力图
梁的内力图——弯矩图、剪力图、轴力图。
内力图的含义?需彻底弄清,以免与后面的影 响线混淆概念。
Y 0
MⅢ 4410 208 15 4 4 40 kN m
44 20 15 4 FSⅢ 0
FSⅢ 44 20 15 4 36 kN
中南大学
退出
返回
13:50
§3-1 单跨静定梁
结构力学
20 kN
A FxA =0
CD Ⅰ
FyA= 44 kN 2m 2m
15 kN/m Ⅱ
4m
32 kN m
AC
D
Ⅰ
15 kN/m Ⅱ
FyA= 44 kN
2m 2m
4m
3m
3m
32 kN m
EG
B
ⅢⅣ
FyB = 36 kN
2m 2m
由整体平衡: X 0
F20xkAN 0 Fs1
MA 0
20 2 15 4 6 32 FM1yB 12 0
44 kN
FyB 36 kN
15 kN/m
20 kN
Fs2
内力符号规定如下: 轴力以拉力为正; 剪力以绕微段隔离体顺时针转者为正; 当弯矩使杆件下侧纤维受拉者为正。
FS
F'S
FS
F'S
FN
+
F'N
-
M
M'
M FN
F'N M'
中南大学
退出
返回
13:50
§3-1 单跨静定梁
结构力学
求所示简支梁任一截面的内力过程演示。
FxA =0
解 (1)求出支座反力。
20 kN
EG
B
ⅢⅣ
FyB = 36 kN
2m 2m
3m
3m
计算梁上任一截面内力的规律如下:
梁上某一截面的2弯0 kN矩F数s1 值上等于该截面左侧(或右侧)所 有外力对该截面形心的力矩的代数和。
梁上某一截面的剪力数值上等于该截面左侧(或右侧)所 有外力在沿截面的切线方向投影的代数和。
如果荷载不垂直于杆轴线,则梁的内力就会有轴力。梁上 某一截面的轴力数值上等于该截面左侧(或右侧)所有外力 在沿截面的法线方向投影的代数和。
Y 0 44 20 FSI 0
FSⅠ 44 20 24 kN
返回
13:50
§3-1 单跨静定梁
结构力学
取截面Ⅱ-Ⅱ以左为隔离体
20 kN
AC
D
FxA =0
Ⅰ
FyA= 44 kN 2m 2m
15 kN/m Ⅱ
4m
32 kN m
EG
B
ⅢⅣ
FyB = 36 kN
2m 2m
3m
3m
15 kN/m
M B 0 FyA 12 201440kN15 4 6 3M22 0
FyA 44 kN
20 kN
15 kN/m
Fs3
中南大学
退出
44 kN
返回
M3
13:50
§3-1 单跨静定梁
结构力学
(2) 分别求截面Ⅰ-Ⅰ、Ⅱ-Ⅱ、Ⅲ-Ⅲ和Ⅳ-Ⅳ的内力。
可以判定所有截面的轴力均为零, 取截面Ⅰ-Ⅰ以左为
结构力学
取截面Ⅲ-Ⅲ以左为隔离体
20 kN
AC
D
FxA =0
Ⅰ
FyA= 44 kN 2m 2m
15 kN/m Ⅱ
4m
32 kN m
EG
B
ⅢⅣ
FyB = 36 kN
2m 2m
3m
3m
由
20 kN 15 kN/m
A
C
20 kN Fs1
44 kN
D
E
FSⅢ MⅢ
MⅢ 0 4410 208 15 4 4 MⅢ 0
中南大学
退出
返回
13:50
§3-1 单跨静定梁
结构力学
按照这个规律,写出截面Ⅳ-Ⅳ的内力为:
FSⅣ 44 20 15 4 36 kN
MⅣ 4410 208 15 4 4 32 72 kN m
截面Ⅳ-Ⅳ的内力
20 kN
A FxA =0
CD Ⅰ
FyA= 44 kN 2m 2m
15 kN/m Ⅱ
中南大学
滚轴支座
F xA
计算简图
Fy
ACLeabharlann DBF yA
F yC
FyD FyB
退出
返回
13:50
§3-1 单跨静定梁 求解静定结构的方法
采用截面法、应用平衡方程。
结构力学
容易产生的错误认识:
“静定结构内力分析无非就是 选取隔离体,建立平衡方程,
以前早就学过了,没有新东西”
中南大学
切忌:浅尝辄止
退出
返回
13:50
§3-1 单跨静定梁
结构力学
梁:受弯构件,但在竖向荷载下不产生水平推力;其 轴线通常为直线(有时也为曲线)。
单跨静定梁
从支承情况不同又分为:
简支梁
中南大学
伸臂梁
退出
返回
悬臂梁
13:50
§3-1 单跨静定梁
结构力学
1. 任意截面的内力计算
通常先求出支座反力,采用截面法,建立平衡 方程,计算控制截面的内力。
A C 2200kkNND
FSⅡ
由
Fs1
MⅡ
44 kN
MⅡ 0
Y 0
446 20 4 15 21 MⅡ 0
MⅡ 446 20 4 15 21 154 kN m 44 20 15 2 FSⅡ 0
FSⅡ 44 20 15 2 6 kN
中南大学
退出
返回
13:50
§3-1 单跨静定梁
F F F xA
F yA
F yB
(a)静定梁
Fx M Fy
(b)静定刚架
中南大学
退出
返回
13:50
§3-1 单跨静定梁
结构力学
静定结构的基本特征
几何特征: 几何不变且无多余联系。 静力特征: 未知力的数目=独立平衡方程式的数目。
超静定结构是有多余约束的几何不变体系,其反力和 任意一截面的内力不能由静力平衡条件唯一确定。
弯矩图--习惯绘在杆件受拉的一侧,不需标正 负号
轴力和剪力图--可绘在杆件的任一侧,但需标 明正负号
作内力图:1 由内力方程式画出图形;
2 利用微分关系画出图形。
中南大学
退出
返回
13:50
结构力学 第三章 静定梁与静定刚架
§3-1 单跨静定梁 §3-2 多跨静定梁 §3-3 静定平面刚架 §3-4 少求或不求反力绘制弯矩图 §3-5 静定结构的特性
中南大学
退出
返回
13:50
§3-1 单跨静定梁
结构力学
静定结构定义
在荷载等因素作用下,其全部支座反力和任意 一截面的内力均可由静力平衡方程唯一确定的结构。
隔离体。
20 kN
15 kN/m
32 kN m
AC
D
FxA =0
Ⅰ
Ⅱ
EG
B
ⅢⅣ
FyA= 44 kN
FyB = 36 kN
2m 2m
4m
3m
3m
2m 2m
由 MⅠ 0
2200 kkNN
FFSsⅠ1
有
AC
44 kN
MM1Ⅰ
由
44 kN
15 kN/m
20 kN
有 Fs2
M2
44 kN
中南大学
退出
443 201 MⅠ 0 MⅠ 443 201 112 kN m