1.气体的等温变化

合集下载

气体的等温变化课件

气体的等温变化课件
在化学反应动力学研究中,气体的等温变化原理被用于研 究化学反应速率与温度的关系,为化学反应机理和动力学 模型的研究提供重要依原理是研究热力学性质 和状态方程的重要基础,如范德华方程、维里方程等。
在日常生活中的应用
压力锅
温度调节
压力锅是利用气体的等温变化原理来 提高烹饪效率的厨房用具。通过加压 烹饪,可以缩短烹饪时间并保持食物 的营养和口感。
验结果的影响。
数据记录
准确记录实验数据,避 免遗漏或误差。
实验后处理
实验结束后,应关闭气 瓶阀门,清理实验装置
,确保实验室整洁。
04
等温变化的实验结果分析
实验数据记录与整理
数据记录
在实验过程中,需要详细记录气体的 温度、压力和体积等数据,确保数据 的准确性和完整性。
数据整理
将实验数据整理成表格或图表形式, 便于分析和比较不同条件下的实验结 果。
在日常生活中,温度调节设备如空调 、暖气等都利用了气体的等温变化原 理。通过调节温度和压力,实现室内 温度的调节和控制。
气球和飞艇
气球和飞艇利用气体的等温变化原理 来调节浮力和姿态。通过充气和放气 ,气球和飞艇可以实现升空、悬浮和 下降等动作。
感谢您的观看
THANKS
如化工、制药、食品加工 等领域,利用等温变化原 理进行气体分离、液化、 压缩等操作。
科学实验研究
在实验室中模拟等温变化 过程,研究气体性质和反 应机理。
02
理想气体定律
理想气体定律的表述
理想气体定律的表述
在等温、等压条件下,气体的体积与气体的物质的量成正比。
公式表示
V1/n1=V2/n2 或 p1V1=p2V2
理想气体定律的适用范围
适用范围

气体的等温变化

气体的等温变化

1.4气体的等温变化【学习目标】1.知道气体的温度、体积和压强为气体的状态参量.2.知道温度、体积和压强的准确定义及各自的单位。

3.知道大气压强和大气压强的特点及测量方法.4.会计算不同运动状态下密闭气体的压强。

5.知道什么是等温变化.6.知道气体等温变化时应遵守玻意耳定律及定律内容和表达式.7.知道-p V 图象上等温变化的图线及物理意义.8.掌握利用-p V 图象和等温变化规律分析解决实际问颞.【要点梳理】要点一、气体的状态参量用以描述气体宏观性质的物理量,叫状态参量,对于一定质量的某种气体来说,描述其宏观性质的物理量有温度、体积、压强三个.我们把温度、体积、压强三个物理量叫气体的状态参量.1.体积(1)气体的体积就是指气体分子所能达到的空间.(2)单位:国际单位3m ,常用单位还有L m L 、.331 L 10m31 dm -,631 mL 10m3 1 cm -.要点诠释:气体分子可以自由移动,所以气体总要充满容器的整个空间,因此气体的体积就是容器的容积.2.温度(1)温度是表示物体冷热程度的物理量.(2)温度的微观含义:温度是物体分子平均动能的标志,表示物体内部分子无规则运动的剧烈程度.(3)温度的两个单位:①摄氏温度:规定1标准大气压下,冰水混合物的温度为0℃,沸水的温度为100℃.表示符号为t .②热力学温度:规定273.15-℃为热力学温度的0K 。

热力学温度与摄氏温度单位等大.表示符号为T ,单位为开尔文,符号为K 。

热力学温度是国际单位制中七个基本物理量之一.0K 称为绝对零度,是低温的极限。

③热力学温度与摄氏温度的关系是:273.15K T t ,一般地表示为273K T t .3.压强(1)定义:气体作用在器壁单位面积上的压力叫做气体的压强.(2)单位:国际单位Pa ,常用单位还有标准大气压atm 、毫米汞柱mmHg .21P a 1N /m .51a t m 1.01310P a.1m m H g 133P . 1 atm76 cmHg760 mmHg .(3)微观解释①气体的压强是由气体中大量做无规则热运动的分子对器壁频繁持续的碰撞产生的,压强就是大量气体分子作用在器壁单位面积上的平均作用力.②气体压强的决定因素气体分子的平均动能与分子的密集程度.分子平均动能越大,分子碰撞器壁对器壁产生的作用力就越大,气体的压强就越大;在分子平均动能一定时,气体分子越密集,每秒撞击器壁单位面积的分子数就越多,气体压强也就越大.③理想气体压强公式2/3p n .式中/n N V ,是单位体积的分子数,表示分子分布的密集程度,是分子的平均动能.要点诠释:一定质量的气体,它的温度、体积和压强三个状态参量的变化是相关联的.如果这三个量都不改变,则气体处于一定的状态中;如果三个量中有两个发生改变,或者三个都发生改变,则气体状态发生了改变.要点二、容器静止、匀速运动或加速运动时求封闭气体的压强1.容器静止或匀速运动时求封闭气体的压强(1)连通器原理:在连通器中,同一液体(中间液体不间断)的同一水平液面上的压强是相等的.(2)在考虑与气体接触的液柱所产生的附加压强p gh 时,应特别注意h 是表示液面间竖直高度,不一定是液柱长度.(3)求由液体封闭的气体压强,应选择最低液面列平衡方程.(4)求由固体封闭(如汽缸和活塞封闭)气体的压强,应对此固体(如活塞或汽缸)进行受力分析,列出力平衡方程.要点诠释:若选取的是一个参考液片,则液片自身重力不计;若选取的是某段液柱或固体,则它们自身的重力也要加以考虑.一般的计算步骤为:选取研究对象,分析对象的受力情况,建立力的平衡方程,若可消去横截面积,则进一步得到压强平衡方程.最后解方程得到封闭气体的压强,计算时要注意单位的正确使用.2.容器加速运动时求封闭气体的压强(1)当容器加速运动时,通常选择与气体相关联的液体柱、固体等作为研究对象,进行受力分析,画出分析图示.(2)根据牛顿第二定律列出方程.(3)结合相关原理解方程,求出封闭气体的压强.(4)根据实际情况进行讨论,得出结论.3.气体压强与大气压强因密闭容器中的气体密度一般很小,由气体自身重力产生的压强极小,可以忽略不计,故气体压强由气体分子碰撞器壁产生,与地球引力无关.气体对上下左右器壁的压强大小都是相等的.测量气体压强用压强计.如金属压强计(测较大的压强)和液体压强计(测较小的压强).大气压强却是由于空气受到重力作用紧紧包围地球而对“浸”在它里面的物体产生的压强.由于地球引力作用的原因,大气层的分子密度上方小、下方大,从而使得大气压的值随高度的增加而减小.测量大气压强用气压计,它根据托里拆利管的原理制成,借助于一端封闭,另一端插入槽内的玻璃管中的水银柱高度来测量大气压强,其静止时的读数等于外界大气压强的值要点三、气体的等温变化1.等温变化气体的状态由状态参量决定,对一定质量的气体来说,当三个状态参量都不变时,我们就说气体的状态一定.否则气体的状态就发生了变化.对于一定质量的气体,压强、温度、体积三个状态参量中只有一个量变而其他量不变是不可能的,起码其中有两个量变或三个量都发生变化.一定质量的气体,在温度不变时发生的状态变化过程,叫做气体的等温变化.2.探究气体等温变化的规律(1)实验:见课本P18.(2)数据处理.以压强p 为纵坐标,以体积的1V为横坐标,把以上各组数据在坐标系中描点,得到如图所示图象.要点诠释:①温度控制等温变化本身已明确了控制变量的研究方法,做实验时要缓慢进行,避免做功升温,不要用手直接接触气体部分玻璃管,避免影响温度.②实验数据处理采用1V来处理,化曲线为直线,便于观察规律和图线描绘,这也是物理学研究的方法.3.玻意耳定律(1)内容:一定质量的某种气体,在温度不变的情况下,压强p 与体积V 成反比,即pV常量,或1122pV p V .其中11p V 、和22p V 、分别表示气体在12、两个不同状态下的压强和体积.(2)研究对象:一定质量的气体,且这一部分气体保持温度不变.(3)适用条件:压强不太大(与大气压相比),温度不太低(与室温相比).(4)数学表达式:1221p V p V ,或1122pV p V ,或pVC (常数).要点诠释:①此定律中的恒量C 不是一个普通恒量,它与气体所处的温度高低有关,温度越高,恒量C 越大.②由于经常使用1122pV p V 或1221p V p V 这两种形式,故对单位要求使用同一单位即可.要点四、气体等温变化的p V 图1.气体等温变化的p V 图(1)pV 图象.一定质量的气体发生等温变化时的p V 图象如图所示,图象为双曲线的一支.要点诠释:①平滑的曲线是双曲线的一段。

高二物理气体的等温变化知识点

高二物理气体的等温变化知识点

高二物理气体的等温变化知识点气体的等温变化是指在恒定的温度下,气体所发生的体积变化。

在高二物理学习中,理解气体的等温变化对于建立对气体性质的深入认识至关重要。

在本文中,我们将详细介绍高二物理气体的等温变化的知识点。

一、气体的等温过程与特点气体的等温过程是指气体在恒定温度下发生的变化。

在等温过程中,气体的温度保持不变,因此气体分子的平均动能也保持不变。

根据理想气体状态方程P V = nRT,可以得出等温过程中气体体积和压强之间的关系为 P₁V₁=P₂V₂,即等温变化下气体的体积和压强成反比。

二、气体的等温膨胀与等温压缩1. 气体的等温膨胀在等温膨胀情况下,气体受热后体积增大,但压强保持不变。

根据等温变化公式P₁V₁=P₂V₂,可得知等温膨胀中气体体积的增大是由于压强的减小引起的。

2. 气体的等温压缩在等温压缩情况下,气体受到外界的压力使其体积减小,但压强保持不变。

根据等温变化公式P₁V₁=P₂V₂,可得知等温压缩中气体体积的减小是由于压强的增加引起的。

三、等温变化中的功与热量转化在气体的等温变化过程中,气体与外界发生的功与热量之间存在转化关系。

根据热力学第一定律,气体的内能变化等于外界对气体所做的功与热量的代数和。

等温膨胀中,气体受到外界的压力使其体积增大,外界对气体做正功。

根据热力学第一定律,气体的内能增加,这部分内能增加来自外界对气体所做的功。

等温压缩中,气体受到外界的压力使其体积减小,气体对外界做正功。

根据热力学第一定律,气体的内能减少,这部分内能减少转化为外界对气体所做的功。

四、实际气体的等温变化在实际气体的等温变化过程中,受到分子间相互作用力的影响,不再满足理想气体状态方程。

此时,气体的体积与压强之间的关系将有所差异。

实际气体的等温膨胀中,由于分子间的相互作用力,气体的体积增大的程度会受到一定的限制,体积增加的压强下降速度也会减小。

实际气体的等温压缩中,由于分子间的相互作用力,气体的体积减小的程度会受到一定的限制,体积减小的压强增加速度也会减小。

1.气体的等温变化.ppt

1.气体的等温变化.ppt

• 解=pp22V=1析2.0,1:×.5p×11=01p5013、P5×aPp.1a由30.可5于直PAa,接→V从B1过=p-程5 V为L图,等中V温2读=变出1化0,,L分,由别即玻为3意×p耳11=0定5×3律×5=可10p得52×Ppa11V、01=,p3 • 答案: 3×105 1.5×105 1×105
• 设潜入水下的深度为h,玻璃管的横截面积为S,气体的初末状态参量分 别为
初状态:p1=p0,V1=12S. 末状态:p2=p0+ρgh,V2=10S. 由玻意耳定律:p1V1=p2V2,得:p0+p0ρgh=1102SS. 解得h=2 m.
• 答案: 2 m
• 解析: 根据等温图线的物理意义可知A、B选项都对,气体的温度 越高时,等温图线的位置就越高,所以C错,D对.答案为A、B、D.
• 答案: ABD
• 【跟踪发散】 2-1:如图所示是某气体状态变化的p-V图象,则下列 说法中正确的是( )
• A.气体作的是等温变化 • B.从A至B气体的压强一直减小 • C.从A至B气体的体积一直增大 • D.气体的三个状态参量一直都在变
• (pA+ph0)S=(p0+ph+ph0)S.即pA=p0+ph. • 3.力平衡法:选与封闭气体接触的液柱(或活塞、汽缸)为研究对象进行
受力分析,由F合=0列式求气体压强.

如图所示,竖直放置的U形管,左端开口,右端封闭,管
内有a、b两段水银柱,将A、B两段空气柱封闭在管内.已知水银柱
a长10 cm,水银柱b两个液面间的高度差为5 cm,大气压强为75
T2>T1.
• 如图,粗细均匀的弯曲玻璃管A、B两端开口,管内有一段水银柱, 右管内气体柱长为39 cm,中管内水银面与管口A之间气体柱长为40 cm. 先将B端封闭,再将左管竖直插入水银槽中,设整个过程温度不变,稳 定后右管内水银面比中管内水银面高2 cm,求:

气体的等温变化课件

气体的等温变化课件

答案 2.02 m
发散练习3.一定质量的气体,压强为3 atm,保持温度不变,
当压强减小了2 atm,体积变化了4 L,则该气体原来的体积
(3)根据玻意耳定律列方程求解.(注意统一单位)
(4)注意分析隐含条件,作出必要的判断和说明.
例2
如图5所示,活塞的质量为m,缸套的质量为M,通
过弹簧吊在天花板上,汽缸内封住一定质量的气体,缸
套和活塞间无摩擦,活塞面积为S,大气压强为p0,则封
闭气体的压强为(
Mg A.p=p0+ S
Mg C.p=p0- S
pA-ph2=(65-5)cmHg=60 cmHg.
答案 65 cmHg 60 cmHg
发散练习1.求图中被封闭气体A的压强.其中(1)、(2)、(3)图中
的玻璃管内都装有水银,(4)图中的小玻璃管浸没在水中.大气
压强p0=76 cmHg.(p0=1.01×105 Pa,g=10 m/s2,ρ水=1×103 kg/m3)
(4)气体等温变化的p-V图象:气体的压强p随体积V的变化
关系如图1所示,图线的形状为 双曲线 ,它描述的是温度
不变时的p-V关系,称为 等温线.一定质量的气体,不同温 度下的等温线是不同的.
图1
想一想
如图1所示,为同一气体在不同温度下的等温线,
T1和T2哪一个大?Fra bibliotek答案 T1大于T2.因为体积相同时,温度越高,压强越大.
图2
2.活塞封闭气体 选与封闭气体接触的液柱或活塞为研究对象,进行受力 分析,再利用平衡条件求压强.如图3甲所示,汽缸截面积 为S,活塞质量为M.在活塞上放置质量为 m的铁块,设大 气压强为p0,试求封闭气体的压强.
图3
以活塞为研究对象,受力分析如图乙所示 .由平衡条件得: M+mg Mg+mg+p0S=pS,即:p=p0+ . S

《气体的等温变化》PPT课件

《气体的等温变化》PPT课件

精选ppt
3
隔离活塞:活塞受力情况为: PS+F-mg-P0S=0
计算的方法是: 对固体(活塞或汽缸)进行受力分析,列出平 衡方程,进而求解出封闭气体的压强.
精选ppt
4
2.如图所示,气缸由两个横截面不同的圆筒连接而成.活 塞A、B被轻质刚性细杆连接在一起,可无摩擦移动.A、 B的质量分别为mA,mB,横截面积分别为SA,SB.一定质 量的理想气体被封闭在两活塞之间,活塞外侧大气压强 p0。气缸水平放置达到平衡状态如图(a)所示, 将气缸 竖直放置达到平衡后如图(b)所示. 求两种情况下封闭 气体的压强.
的,B端开口向上。两管中水银面的高度差h=20cm。
外界大气压强为76cmHg。求A管中封闭气体的压强。
A
B
(提示:76cmHg=760mmHg=1.01×105Pa h 液体压强公式:P= ρgh)
计算的方法步骤是:
图8-2
①选取一个假想的液体薄片(其自重不计)为研究对
象(选最低液面);
②分析液片两侧受力情况,建立力的平衡方程,消去
第八章 气体
1、气体的等温变化
精选ppt
1
气体的状态参量
1、温度
热力学温度T ,单位:开 尔文 T = t + 273 K
宏观上表示物体的冷热程度,微观上表示物
体内部分子无规则运动的剧烈程度。
复 习 2、体积
体积 V 单位:有L、mL等
气体的体积是指气体分子所能达到的空间,等
于容器的容积。
3、压强
2、表达式: PVC P1V1P2V2
3、图像: P
P
精选ppt
V
1/1V5
三、玻意耳定律
点拨:(1)玻意耳定律是实验定律,由英国科学家 玻意耳和法国科学家马略特各自通过实验独立发现的。

1、气体的等温变化

1、气体的等温变化
5
由活塞受力平衡得:p2 S mg p0 S mg 5 0.8 10 Pa , V2 L2 S 末态:p2 p0 S
由玻意耳定律 p1V1 p2V2 得
p1L1 p2 L2
p1 L1 L2 15cm p2
二、P-V图像(等温线)
p p
A · 0
·
B
1/V
0
就容器而言,里面气体的跑了,似乎是变质量问 题,但是若我们视容器内气体“出而不走”,那 么质量就不变了。
练习2
一个足球的容积是2.5L,用打气筒给这个足球 打气,每打一次都把体积为125mL、压强与大气 压强相同的空气打进去,如果足球在打气前就 已是球形,内部空气压强与大气压相同,那么 打了20次以后,足球内部空气的压强是大气压 的多少倍?(设足球内部的温度保持不变)

M
p0s
以活塞为研究对象 mg+PS = P0S
S
mg ps
m

S
m
M
以气缸为研究对象 Mg+PS = P0S
例题
如图所示, 长为1m,开口竖直向上的玻璃管内,封闭着长为15cm 的水银柱,封闭气体的长度为20cm,已知大气压强为75cmHg,求: (1)玻璃管水平放置时, 管内气体的长度。 (2)玻璃管开口竖直向下时, 管内气体的长度。 (假设水银没有流出)
1、内容:一定质量的气体,在温度不变的情况下,它的压强 跟体积成反比
1 P V
C P V
2、表达式:
PV C
P
P 1V1 P 2V2
P
3、图像:
V
4、适用范围:温度不太低,压强不太大
1/V
5、特点: (1)等温线是双曲线的一支。

《气体的等温变化》课件

《气体的等温变化》课件
《气体的等温变化》ppt课件
目录
• 气体的等温变化概述 • 理想气体模型 • 波义耳定律 • 等温变化的实验验证 • 等温变化的工程应用
01
气体的等温变化概述
等温变化的概念
等温变化
在等温过程中,气体的温度保持 不变,即气体与外界没有热量交
换。
等温变化的过程
气体在等温条件下经历的状态变化 。
等温变化的条件
理想气体模型的应用
在科学研究、工业生产和日常生活中,理想气体模型被广泛用于描述气体的性质和 行为。
在化学反应、燃烧过程、热力学等领域,理想气体模型为理论分析和实验研究提供 了基础。
通过理想气体模型,我们可以推导出许多重要的热力学公式和定律,如波义耳定律 、查理定律等。
03
波义耳定律
波义耳定律的表述
02
理想气体模型
理想气体模型的定义
01
理想气体模型是一种理论模型, 用于描述气体在一定条件下(如 温度和压力)的行为。
02
它忽略了气体分子间的相互作用 和分子自身的体积,只考虑气体 分子的平均动能。
可以忽略不计。
气体的温度保持恒定 ,即等温变化。
气体分子本身的体积 相比于容器容积可以 忽略不计。
在管道输送过程中,等温过程 可以减少气体温度的变化,保 证输送效率。
在气瓶压力控制过程中,等温 过程可以保证气瓶压力的稳定 性,提高气瓶的使用安全性。
THANKS
感谢观看
波义耳定律的应用实例
总结词
波义耳定律的应用实例
详细描述
波义耳定律在日常生活和工业生产中有着广泛的应用。例如,在气瓶压力不足时,可以通过减小体积来增大压力 ;在气瓶压力过高时,可以通过增大体积来减小压力。此外,波义耳定律还应用于气体压缩、气体输送、气体分 离等领域。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理选修3-3同步训练试题解析
一、选择题
1.一个气泡由湖面下20 m深处上升到湖面下10 m深处,它的体积约变为原来体积的(温度不变)()
A.3倍B.2倍
C.1.5倍D.0.7倍
解析:外界大气压相当于10 m水柱产生的压强,对气泡p1=3p0,p2=2p0,由p1V1=p2V2知V2=1.5V1,故C项正确.
答案: C
2.如图所示,在一端封闭的玻璃管中,用一段水银将管内气体与外界隔绝,管口向下放置,若将管倾斜,待稳定后则呈现的物理现象是()
A.封闭端内气体的压强增大B.封闭端内气体的压强减小
C.封闭端内气体的压强不变D.封闭端内气体的体积减小
解析:玻璃管由竖直到倾斜,水银柱压强p h减小,由p+p h=p0知气体压强增大,再由玻意耳定律知其体积减小,故A、D正确.
答案:AD
3.如图为一定质量的气体的两条等温线,则下列关于各状态温度的说法正确的有()
A.t A=t B B.t B=t C
C.t C>t A D.t D>t A
解析:两条等温线,故t A=t B,t C=t D,故A项正确.两条等温线比较,t D>t A,t C>t A,故B项错,C、D项正确.
答案:ACD
4.放飞的氢气球上升到一定高度会胀破,是因为()
A.球内氢气温度升高B.球内氢气压强增大
C.球外空气压强减小D.以上说法均不正确
解析:气球上升时,由于高空处空气稀薄,球外气体的压强减小,球内气体要膨胀,到一定程度时,气球就会胀破.
答案: C
5.如图所示,活塞的质量为m,缸套的质量为M.通过弹簧吊在天花板上,汽缸内封有一定质量的气体.缸套和活塞间无摩擦,活塞面积为S.大气压强为p0.则封闭气体的压强为()
A.p=p0+mg/S B.p=p0+(M+m)g/S
C.p=p0-Mg/S D.p=mg/S
答案: C
6.氧气瓶在储存过程中,由于密封不严,出现缓慢漏气,其瓶内氧气的压强和体积变化如图中A到B所示,则瓶内氧气的温度(设环境温度不变)()
A.一直升高B.一直下降
C.先升高后降低D.不变
解析:易错选B,错误原因是只简单地对A、B及A到B的过程进行分析后,作出各状态下的等温线,如图所示,从图中可以看出t A>t1>t2>t B,从而误选B,而忽略了只有一定质量的气体才满足t A>t1>t2>t B.
正确答案应为D.密封不严说明漏气,说明气体质量变化,B不正确;漏气缓慢进行,故氧气瓶中氧气可充分同外界进行热交换,隐含与外界“等温”.
答案: D
7.用活塞气筒向一个容积为V的容器内打气,每次能把体积为V0,压强为p0的空气打入容器内,若容器内原有空气的压强为p,打气过程中温度不变,则打了n次后容器内气体的压强为()
A.p 0V 0V
B .p 0+np 0
C .p +n ⎝⎛⎭⎫
p 0V 0V
D .p 0+⎝⎛⎭⎫V 0V n
·
p 0 解析: 将n 次打气的气体和容器中原有气体分别看成是初态,将打气后容器内气体看成是末态,利用等温分态分式,有pV +np 0V 0=p ′V ,得n 次打气后容器内气体的压强p ′=p +n ⎝⎛⎭⎫
p 0V 0V ,即C 项正确.
答案: C
8.如图所示,有一压力锅,锅盖上的排气孔截面积约为7.0×10-
6 m 2,限压阀重为0.
7 N .使用该压力锅对水消毒,根据下列水的沸点与气压关系的表格,分析可知压力锅内的最高水温约为(大气压强为1.01×105 Pa)( )
p (×105
Pa)
1.01
1.43 1.54 1.63 1.73
1.82
1.91
2.01 2.12 2.21 t (℃) 100 110
112
114
116 118 120
122
124
126
C .122 ℃
D .124 ℃
解析: 由表格数据知,气压越大,沸点越高,即锅内最高温度越高.对限压阀分析受力,当mg +p 0S =pS 时恰好要放气,此时p =mg S +p 0=0.77.0×10-6+p 0=2.01×105 Pa 达到最大值,对应的最高温度为122 ℃
答案: C
9.容积V =20 L 的钢瓶充满氧气后,压强为p =30个大气压,打开钢瓶盖阀门,让氧气分别装到容积为V 0=5 L 的小瓶子中去,若小瓶子已抽成真空,分装到小瓶子中的氧气压强均为p 0=2个大气压,在分装过程中无漏气现象,且温度保持不变,那么最多可装的瓶数是( )
A .4瓶
B .50瓶
C .56瓶
D .60瓶
解析: 设最多可装的瓶数为n ,由玻意耳定律有pV =p 0(V +nV 0),所以 n =pV -p 0V p 0V 0=30×20-2×20
2×5=56瓶.
答案: C
二、非选择题
10.如图所示,为医院用于静脉滴注的装置示意图,倒置的输液瓶上方有一气
室A,密封的瓶口处的软木塞上插有两根细管,其中a管与大气相通,b管为输液软
管,中间又有一气室B,而其c端则通过针头接人体静脉.
(1)若气室A、B中气体的压强分别为p A、p B则它们与外界大气压强p0间的
大小关系应为________;
(2)当输液瓶的悬挂高度与输液软管内径确定时,药液滴注的速度________.(填“越滴越快”、“越滴越慢”或“恒定不变”)
解析:(1)因a管与大气相通,故可以认为a管上端处压强即为大气压强,这样易得p A <p0,而p B>p0,即有p B>p0>p A.
(2)当输液瓶的悬挂高度与输液软管的内径确定时,由于a管上端处的压强与人体血管中的压强都保持不变,故b管中气体的压强也不变,所以药液滴注的速度是恒定不变的.答案:(1)p B>p0>p A(2)恒定不变
11.在“探究气体等温变化的规律”实验中,封闭的空气如图所示,U型管粗细均匀,右端开口,已知外界大气压为76 cm汞柱高,图中给出了气体的两个不同的状态.
(1)实验时甲图气体的压强为________cm汞柱高;乙图气体压强为________cm汞柱高.
(2)实验时某同学认为管子的横截面积S可不用测量,这一观点正确吗?
________(选填“正确”或“错误”).
(3)数据测量完后在用图象法处理数据时,某同学以压强p为纵坐标,以体积V(或空气柱长度)为横坐标来作图,你认为他这样做能方便地看出p与V间的关系吗?
解析:(1)由连通器原理可知,甲图中气体压强为p0=76 cmHg,乙图中气体压强为p0+4 cmHg=80 cmHg.
(2)由玻意耳定律p1V1=p2V2,即p1l1S=p2l2S,即p1l1=p2l2,(l1、l2为空气柱长度),所以玻璃管的横截面积可不用测量.
(3)以p为纵坐标,以V为横坐标,作出p-V图是一条曲线,但曲线未必表示反比关系,所以应再作出p-1
图,看是否是过原点的直线,才能最终确定p与V是否成反比.
V
答案: (1)76 80 (2)正确 (3)不能
12.如图所示,密闭圆筒的中央有一个活塞,活塞两边封闭着两部分气体,它们的压强都是750 mmHg.现在用力把活塞向右移动,使活塞右边气体的体积变为原来的一半,那么活塞两边的压强差为多大?(假定气体温度不变)
解析: 在分析气体的变化规律时,由于质量一定且温度不变可以分别利用玻意耳定律研究左、右两部分气体的等温变化.
左边:p 0V 0=p 1·32V 0,得p 1=2
3p 0=500 mmHg
右边:p 0V 0=p 2·1
2V 0,得p 2=2p 0=1 500 mmHg
活塞两边的压强差Δp =p 2-p 1=1 000 mmHg 答案: 1 000 mmHg。

相关文档
最新文档