汽轮机轴向位移与胀差的分析与控制

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽轮机轴向位移与胀差的分析与控制
汽轮机轴向位移与胀差 (1)
一、汽轮机轴向位移增大的原因 (1)
二、汽轮机轴向位移增大的处理 (1)
三、汽机轴向位移测量失灵的运行对策.......................................................................... 1汽轮机的热膨胀和胀差............................................................................................................. 2相關提問:
..........................................................................................................................
21、轴向位移和胀差的概念................................................................................................
32、轴向位移和胀差产生的原因(影响机组胀差的因素)............................................ 3使胀差向正值增大的主要因素简述如下:
.............................................................. 3使胀差向负值增大的主要原因:
.............................................................................. 4正胀差-影响因素主要有:....................................................................................
43、轴向位移和胀差的危害................................................................................................
64、机组启动时胀差变化的分析与控制............................................................................
61、汽封供汽抽真空阶段。

........................................................................................
72、暖机升速阶段。

....................................................................................................
73、定速和并列带负荷阶段。

....................................................................................
75、汽轮机推力瓦温度的防控热转贴.............................................................................. 91润滑油系统异常.................................................................................................. 92轴向位移增大...................................................................................................... 93汽轮机单缸进汽................................................................................................ 104推力轴承损坏.................................................................................................... 105任意调速汽门门头脱落.................................................................................... 106旁路系统误动作................................................................................................ 107结束语. (10)
汽轮机轴向位移与胀差
轴向位移增大原因及处理
一、汽轮机轴向位移增大的原因
1)负荷或蒸汽流量突变;
2)叶片严重结垢;
3)叶片断裂;
4)主、再热蒸汽温度和压力急剧下降;
5)轴封磨损严重,漏汽量增加;
6)发电机转子串动;
7)系统xx变化幅度大;
8)凝汽器真空下降;
9)汽轮机发生水冲击;
10)推力轴承磨损或断油。

二、汽轮机轴向位移增大的处理
1)当轴向位移增大时,应严密监视推力轴承的进、出口油温、推力瓦金属温度、胀
差及机组振动情况;
2)当轴向位移增大至报警值时,应报告值长、运行经理,要求降低机组负荷;3)若主、再热蒸汽参数异常,应恢复正常;
4)若系统周波变化大、发电机转子串动,应与PLN调度联系,以便尽快恢复正常;5)当轴向位移达-1.0mm或+1.2mm时保护动作机组自动停机。

否则手动打闸紧急停机;
6)轴向位移增大虽未达跳机值,但机组有明显的摩擦声及振动增加或轴承回油温度
明显升高应紧急停机;
7)若轴向位移增大而停机后,必须立即检查推力轴承金属温度及轴承进、回油温度,
并手动盘车检查无卡涩,方可投入连续盘车,否则进行定期盘车。

必须经检查推力轴承、汽轮机通流部分无损坏后方可重新启动。

三、汽机轴向位移测量失灵的运行对策
1)严密监视推力轴承的进、出口油温、推力瓦金属温度,当有超过两块推力瓦金属
温度均异常升高,应立即汇报值长,按规程要求采取相应的措施。

2)当判定汽机轴向位移确实增大时,应按上述汽轮机轴向位移增大的处理措施进行
处理。

汽轮机的热膨胀和胀差
(內文數值僅供舉例方便,切勿參照,必須依各汽機廠商或運行規定)
相關提問:
1〃什么叫汽轮机的轴向位移?
答:
汽轮机头推力盘对于推力轴承支架的相对轴向位置,就是汽轮机的轴向位移。

推力
盘对位于其两侧的推力轴承瓦块施加轴向压力,轴瓦磨损,造成转子的轴向位移由测量装置显示出来。

2〃什么叫汽轮机的胀差?胀差测点在哪里?
答:
蒸汽进入汽轮机后,转子及汽缸均要膨胀。

由于转子质量较小,温升较快,故而汽
缸更为迅速,转子与汽缸沿轴向膨胀之差值称为转子与汽缸的相对胀差,简称胀差。

胀差测点在#4瓦与盘车大齿轮之间。

3〃轴向位移与胀差有何关系?
答:
轴向位移与胀差的零位均在推力瓦处,而且零点的定位法相同。

轴各位移变化时,
其数值虽然小,但大轴总位移发生变化。

轴向位移为正值时,大轴向发电机方向位移,胀差向正值(增加)方向变化;轴向位移向负值方向变化时,转
子向车头方向位移,胀差向负值(减小)方向变化;机组负荷不变,参数不变,轴向位移与胀差不发生变化。

4〃本机组胀差、轴向位移“零”值如何确定?轴向位移为什么是负值?
答:
汽轮机在全冷态下,将推力盘向发电机侧(紧靠工作面瓦片)推足时的位置定为轴
向位移基准零位,轴向位移指示为“零”值。

有某厂胀差用相对值表示,不用正负值表示,例如这时的胀差指示为
2.52mm,但
2.52mm以下相当于负值。

习惯上规定:
当转子轴向膨胀值大于汽缸的轴向膨胀值时,胀差为正,反之胀差为负。

胀差为正时,说明转子的膨胀大于汽缸的膨胀。

胀差为负时说明转子的收缩值较汽缸收缩值大。

內文:
1、轴向位移和胀差的概念
轴位移指的是轴的位移量而胀差则指的是轴相对于汽缸的相对膨胀量,一般轴向位移变化时其数值较小。

轴向位移为正值时,大轴向发电机方向移,若此时汽缸膨胀远小于轴的膨胀,胀差不一定向正值方向变化;如果机组参数不变,负荷稳定,胀差与轴向位移不发生变化。

机组启停过程中及蒸汽参数变化时,胀差将会发生变化,由于负荷的变化而轴向位移也一定发生变化。

运行中轴向位移变化,必然引起胀差的变化。

汽轮机的转子膨胀大于汽缸膨胀的胀差值称为正胀差,当汽缸膨胀大于转子膨胀时的胀差值称为负胀差。

根据汽缸分类又可分为高差、中差、低I差、低II差。

胀差数值是很重要的运行参数,若胀差超限,则热工保护动作使主机脱扣,避免动静部分发生碰撞,损坏设备。

启动时,一般应用加热装置来控制汽缸的膨胀量,而转子主要依靠汽轮机的进汽温度和流量以及轴封汽的汽温和流量来控制转子的膨胀量。

启动时胀差一般向正方向发展。

汽轮机在停用时,随着负荷、转速的降低,转子冷却比汽缸快,所以胀差一般向负方向发展,特别是滑参数停机时尤其严重,必须采用汽加热装置向汽缸夹层和法兰通以冷却蒸汽,以免胀差保护动作。

汽轮发电机中,由于蒸汽在动叶中做功,以及隔板汽封间隙中的漏汽等原因,使动叶前后的蒸汽压力有一个压降。

这个压降使汽轮机转子顺着蒸汽流动方向形成一个轴向的推力,从而产生轴向位移。

如果轴向位移大于汽轮机动静部分的最小间隙就会使汽轮机静、转子相碰而损坏。

轴向位移增大,会使推力瓦温度开高,乌金烧毁,机组还会出现剧烈振动,故必须紧急停机,否则将带来严重后果。

差胀保护是指汽轮机转子和汽缺之间的相对膨胀差。

在机组启、停过程中,由于转子相对汽缸来说很小,热容量小,温度变化快,膨胀速度快。

若不采取措施加以控制升温速度,将使机组转子与汽缸摩擦造成损坏。

故运行中差胀不能超过允许值。

汽轮机转子停止转动后,负胀差有可能会更加发展,因此应当维持一定温度的轴封蒸汽,以免造成恶果。

2、轴向位移和胀差产生的原因(影响机组胀差的因素)
使胀差向正值增大的主要因素简述如下:
1)启动时暖机时间太短,升速太快或升负荷太快。

2)汽缸夹层、法兰加热装置的加热汽温太低或流量较低,引起汽加热的作用较弱。

3)滑销系统或轴承台板的滑动性能差,易卡涩,汽缸胀不出。

4)轴封汽温度过高或轴封供汽量过大,引起轴颈过份伸长。

5)机组启动时,进汽压力、温度、流量等参数过高。

6)推力轴承工作面、非工作面受力增大并磨损,轴向位移增大。

7)汽缸保温层的保温效果不佳或保温层脱落,在严禁季节里,汽机房室温太低或有
穿堂冷风。

8)双层缸的夹层中流入冷汽(或冷水)。

9)胀差指示器零点不准或触点磨损,引起数字偏差。

10)多转子机组,相邻转子胀差变化带来的互相影响。

11)真空变化的影响(真空降低,引起进入汽轮机的蒸汽流量增大)。

12)转速变化的影响(转速降低)。

13)各级抽汽量变化的影响,若一级抽汽停用,则影响高差很明显。

14)轴承油温太高。

15)机组停机惰走过程中由于“泊桑效应”的影响。

16)差胀指示表不准,或频率,电压变化影响。

使胀差向负值增大的主要原因:
1)负荷迅速下降或突然甩负荷。

2)主汽温骤减或启动时的进汽温度低于金属温度。

3)水冲击。

4)轴承油温太低。

5)轴封汽温度太低。

6)轴向位移变化。

7)真空过高,相应排汽室温降低而影响。

8)启动进转速突升,由于转子在离心力的作用下轴向尺寸缩小,尤其低差变化明显。

9)双层汽缸夹层中流入高温蒸汽,可能来自汽加热装置,也可能来自进汽套管的漏
汽或者轴封漏汽。

12)差胀值示表不准,或频率,电压变化影响。

正胀差-影响因素主要有:
(1)蒸汽xx或温降速度大
(2)负价苛变化速度的影响
(3)轴封供汽温度的影响
(4)凝汽器真空的影响
(5)环境温度的影响
(6)摩擦鼓风的影响
(7)其他:
汽缸xx螺栓加热装置的影响
1〃蒸汽xx或温降速度大
启动时,一般应用加热装置来控制汽缸的膨胀量,而转子主要依*汽轮机的进汽温度和流量以及轴封汽的汽温和流量来控制转子的膨胀量。

启动时胀差一般向正方向发展。

汽轮机在停用时,随着负荷、转速的降低,转子冷却比汽缸快,所以胀差一般向负方向发展,特别是滑参数停机时尤其严重,必须采用汽加热装置向汽缸夹层和法兰通以冷却蒸汽,以免胀差保护动作。

汽轮机转子停
止转动后,负胀差可能会更加发展,为此应当维持一定温度的轴封蒸汽,以免造成恶果。

2〃负价苛变化速度的影响
当负荷变化时,各级蒸汽流量发生变化,特别是在低负荷范围内,各级蒸汽温度的变化较大,负荷增长速度愈快,蒸汽的温升速度也愈快.与金属表向降负荷速度加快,汽缸和转子温升速度的差别愈大。

负荷增加速度加快,正胀差增大;降负荷速度加快,正胀差缩小,以致出现负胀差。

3〃轴封供气温度的影响
轴封供气对转子的轴封段和轴封体加热,由于轴封体是嵌在汽缸两端,其膨胀对汽缸轴同长度几乎没有影响,但转子轴封段的膨胀却影响转子的长度,因而使正胀差加大。

由于轴封段占转子长度的比例较小,故对总胀差影响较小,可是轴封处的局部胀差却比较大。

若轴封供气温度过高,则出现正胀差过大;反之,负胀差过大。

一般规定轴封气温度略高于轴封金属温度。

4〃真空对低压胀差的影视
真空降低,一方面排气温度升高,低压缸排气口压力升高,缸体内外压差减少,两者促进低压缸缸体膨胀,从而减少低压胀差。

另一方面,若轴封气压不变,低压缸轴封段轴封气量减少,转子加热减弱,也使低压胀差减少。

5.环境温度的影响
低压胀差对环境温度较敏感。

环境温度升高,低压胀差变小,环境温度降低,低压胀差升高。

主要原因一方面是环境温度降低,低压缸冷却加剧(低压缸无保温);另一方面是循环水温度降低使真空升高,排气温度降低,缸温下降。

经观察,在不同负荷下,变化规律是一样的。

在同一负荷下,冬季跟夏季低压胀差相差15%。

6.摩擦鼓风的影响
在机组启动和低负荷阶段,蒸汽流量较小,而高中低压级内产生较大的鼓风摩擦损失(与转速三次方成正比),损失产生的热量被蒸汽吸收,使其温度
升高。

由于叶轮直接与蒸汽相摩擦,因此转子温度比汽缸温度高,故出现正胀差。

随着转速升高,转子摩擦鼓风损失产生的热量相应加大,但此时由于流量增加,使产生的鼓风损失的级数相应减少,因此每千克蒸汽吸收摩擦鼓风损失产生的热量先随转速升高而增大,使高中低压缸正胀差增大,后又随转速升高而相应减少,对胀差的影响逐渐减少。

3、轴向位移和胀差的危害
1.泊桑效应影响机组低压胀差约10%,所以开机冲转前,低压胀差应保证10%以上。

在停机过程中尽量减少低压胀差(最好控制在90%以下),当低压胀差超过110%,必须紧急停机,这时随着转速下降,低压胀差会超过120%,在低转速区可能会有动静摩擦。

2.在冬季低压胀差过高时,要注意轴封气母管压力,若压力过高可适当调低,也可
用降低真空方法来减少低压胀差。

冬季减少开窗的地方,这是冬季减少低压胀差有效措施。

3.极热态启动时,轴封供气尽量选择高温气源,辅气作为气源时,必须保证其温度
控制在270℃左右,若温度太低,将造成高压轴封段大轴急剧冷却收缩,有可能导致前几级动静摩擦。

4.冷态启动时,轴封气源高于大轴金属温度,大轴将局部受热伸长,出现较大的正
胀差。

因此要选择与轴封金属温度相匹配的气源,不拖延启动时间。

低压胀差过大,可采用降低真空来调节,尽量提前冲转升速。

机组启动阶段低压正胀差超过限值时,可破坏真空停轴封气,待胀差正常后重新启动。

5.机组倒缸前,主蒸汽气温至少比高压缸金属温度高50℃以上,倒缸前应考虑轴向位移对高压胀差影响。

6.机组启停阶段胀差变化幅度大,影响因素多,调整难度大,因此要严格按规程操
作,根据汽缸金属温度选择适当的冲转参数,适当的升温升压曲线,确定合适升温速度,控制升速和暖机时间,带负荷后根据具体情况,及时分析和采取有效方法,才能有效控制胀差。

4、机组启动时胀差变化的分析与控制
汽轮机在启停过程中,转子与汽缸的热交换条件不同。

因此,造成他们在轴向的膨胀也不一致,即出现相对膨胀。

相对膨胀通常也称为胀差。

胀差的大小表明了汽轮机轴向动静间隙的变化情况。

监视胀差是机组启停过程中的一项重要任务。

为避免轴向间隙变化而使动静部分发生摩擦,不仅应对胀差进行严格的监视,而且胀差对汽轮机运行的影响应该有足够的认识。

受热后汽缸是从“死点”向机头方向膨胀的,所以,胀差的信号发生器一般安装在
汽缸相对基础的“死点”位置。

胀差发信器安装在前轴承箱座上。

机组的启动按启动前汽轮机金属温度水平分为:
冷态启动(金属温度150—180度)温态启动(180度—350度)热态启动(350度—450度)极热态启动(450度以上)。

现仅就常见的冷态启动和热态启动时机组胀差的变化与控制进行简单分析:
在机组冷态启动过程中,胀差的变化和对胀差的控制大致分为以下几个阶段:
1、汽封供汽抽真空阶段。

从汽封供汽抽真空到转子冲转前胀差值是一直向正方向变化的。

因为在加热或冷却过程中,转子温度升高或降低的速度都要比汽缸快,相应的膨胀或收缩的速度也要比汽缸快。

在我们投入均压箱对汽封供汽时,汽封套受热后向两侧膨胀,对整个汽缸的膨胀影响不大。

而与汽封相对应的转子主轴段受热后则
使转子伸长。

汽封供热对转子伸长值的影响是由供汽温度来决定的,但加热时间也有影响。

所以,冷态启动时5#机均压箱的压力不宜过高,一般应保持在0.1MPA以下,而温度则应在200摄氏度左右。

当抽气系统投入并开始抽真空后,如果胀差向正值变化过快,可以采取降低均压箱压力或适当提升凝汽器真空的方法,因为通过提升真空可以减少蒸汽在汽封中的滞留时间。

总体上来说,冷态开机,汽封来汽温度和压力应该低一些,真空应该提升的快一点,在确保安全的前提下尽早达到冲转的条件。

2、暖机升速阶段。

从冲转到定速,胀差基本上继续上升。

在这一阶段,蒸汽流量小,蒸汽主要在调节级内做功。

中速暖机以后再升速时,胀差值才会有减小的趋势。

这主要是因为随着转速的升高,离心力增大,轴向的分力也增大了,而使转子变粗缩短。

同时汽缸温度逐渐上升,气缸的膨胀速度也在上升,相对迟滞了转子的膨胀值。

对于5#机来说,在冲转时,蒸汽的压力和温度都应适当低一些,但是温度要保持一定的过热度,冲转速率要低。

在冲转过程当中要密切注意缸温的变化,此时如果胀差正值过高应稳定转速,或者降低真空,让蒸汽在汽缸中的滞留时间长一些,充分暖机。

有时在暖机升速过程中,如果汽缸本体疏水调节不当也会影响到胀差,所以,开机时应当注意控制汽缸本体疏水。

为了防止胀差表数据失真,我们还应当密切观察机组热膨胀和轴向位移的变化,通过热膨胀,轴向位移的对比来进一步判断胀差变化。

同时严密监视机组振动情况,特别是跨越临界转速时更为重要。

3、定速和并列带负荷阶段。

由于从升速到定速的时间较短,蒸汽温度和流量几乎不变化,对胀差的影响在定速后才能反映出来。

定速后,胀差增加的幅度较大,持续的时间较长,特别是在发电机并网以后。

在低负荷暖机阶段,蒸汽对转子和汽缸的加热比较剧烈。

并网后,随着调节汽阀的开大,调节级的温度上升比较快,调节汽门的开启速度对胀差的影响比较大,因此,5#机在并网后要缓慢开启调节汽门,并注意调节级的温度变化。

也就是说,为了防止胀差变化过快,并网后应但在低负荷状态下暖机一段时间,具体的低负荷暖机时间由汽缸上、下壁温度,调节级温度和胀差的变化趋势来定。

只有胀差值出现下降趋势而且比并网时的数值下降10%以后才能开始逐步提负荷,一旦胀差又出现上涨并且达到并网时的数值时就应当适当的减缓
总的来说,影响机组胀差的因素主要有以下几点:
暖机时间的长短,凝汽器真空的变化,轴封供汽温度的高低和供汽时间的长短,主蒸汽的温升、温降率,负荷变化的影响等。

而冷态启动机组简单的说就是要做到:
“调真空,稳供汽,缓升速,慢暖机。

低负荷,不要急,缸温上,再去提”。

转贴
5、汽轮机推力xx温度的防控热转贴
[
xx,xx文章录入:
imste 2009年第2期](蒙电华能热电股份有限公司包头第二热电厂,内蒙古包头014030)摘要:
文章就推力瓦温度升高的原因进行了分析,并提出了二种具体表现,这对保证机组的安全运行具有重要意义。

关键词:
汽轮机;推力xx;温度;温度防控
在机组运行中,影响推力瓦温度的原因很多,笔者针对以下几方面主要原因来阐述其原理及防控对策。

1润滑油系统异常
润滑油系统异常包括润滑油压力降低、润滑油温度升高及润滑油质恶化等内容。

从推力轴承的工作原理可以看出,润滑油压力降低,进入推力轴承的油量必然要减少,这样就不可能在推力盘与工作、非工作瓦块之间建立良好的油膜,使推力轴承工作出现异常,导致推力瓦温度升高。

而润滑油温度升高,一方面因为润滑油从推力轴承中带出的热量减少,使推力轴承工作中产生的大量热量散不出去,造成推力瓦温度升高。

润滑油温度升高,还会使透平油的粘度下降,对推力轴承油膜的形成造成很大的影响。

但润滑油温度也不能过低,因为润滑油温度下降,粘度会增加,当润滑油的粘度增大到一定的程度,也会对油膜的形成产生影响。

润滑油质恶化有杂质,会造成油的粘度降低,进入推力轴承油量不足,使推力轴承油膜破坏。

以上润滑油系统异常都会造成推力轴瓦温度升高,所以在正常运行中对润滑油参数的监视是非常重要的。

要严格控制润滑油温度、压力在规定范围。

一旦超限,要立即进行调整,保证系统正常用油。

如润滑油压力下降经采取措施无效达极限值时应立即停止机组运行,防止事故扩大。

另外还应定期对润滑油质进行化验,发现油质恶化应及时进行处理。

2轴向位移增大
引起轴向位移增大的原因主要有以下几方面:
2.1主汽参数不合格,汽轮机通流部分过负荷
汽轮机过负荷,主、再热蒸汽参数超过了设计值,高、中压缸轴向推力相应增大而造成轴向位移增大。

汽轮机加负荷过快,大量的高参数蒸汽进入高压缸,使高压转子前几级在进汽和出汽瞬间形成很大的压差,从而在高压转子上形成巨大的负推力,把高压转子推向前箱侧,这样巨大的推力使推力瓦的非工作瓦迅速磨损。

为什么这么大的负推力没有得到平衡呢?在通常情况下,设计上已通过将高、中压缸进汽对称布置和通流部件的设计使汽轮机转子上产生的轴向推力大部分被平衡掉,而不会存在过大的剩余推力,且剩余的轴向推力为正推力。

然而由于高、中压缸调整汽门瞬间开大或全开,大量蒸汽急剧地作用在高、中压
缸前几级上,在级后尚未建立正常压力的情况下,高压前几级的前后压差大大高于中压缸前几级的前后压差,(高、中压缸进汽压力约为6∶1的关系)产生了相当大的负推力。

机组在正常运行中,要严格控制主汽参数不得超限,且机组不得超负荷运行。


时间内不能恢复,应减负荷运行。

2.2汽轮机通流部分严重结垢或损坏
汽轮机通流部分严重结垢,造成汽轮机汽耗增加,导致汽轮机轴向推力增大,影响汽轮机正常运行。

在机组运行中,一定要保持汽水品质合格。

通流部分损坏的主要原因是启停或运行方式不合理、保温质量不良、法兰螺栓加热不当等。

动静部分在轴向和径向方向发生磨损的原因很难绝对分开,但仍然有所区别。

轴向磨损的主要原因是在启停、工况变化时或法兰加热装置投入不当时,使胀差超过正负极限值,致使轴向间隙消失而磨损;也有可能由于汽轮机进水、蒸汽低参数、叶片结垢、超出力等原因使轴向推力过大,使推力轴承过载毁坏而引起动静体碰磨。

径向磨损的主要原因是汽缸和转子热变形的结果,也可能是由于机组振动或径向轴承损坏等。

2.3汽轮机水击,使轴向位移增大,推力瓦温度升高,差胀减小或出现负差胀汽轮机发生水冲击时要破坏真空紧急停机,这是因为水的密度比蒸汽大得多,随蒸汽通过喷嘴时[CM(22]被蒸汽带至高速,但速度仍低于正常蒸汽速度,高速的水以极大的冲击力打击叶片背部,使叶片应力超限而损坏,水打击叶片背部本身就造成轴向推力大幅度升高。

此外,水有较大的附着力,会使通流部分阻塞,使蒸汽不能连续向后移动,使各级叶片前后压力差增大,并使各级叶片反动度猛增,产生巨大的轴向推力,使推力轴承烧坏,并使汽轮机动静之间摩擦碰撞损坏机组。

为防止机组严重损坏,汽轮机发生水冲击时,要果断的破坏真空紧急停机。

3汽轮机单缸进汽
多缸汽轮机设计高、中压缸进汽对称布置来平衡轴向推力,而多缸汽轮机单缸进汽,就会破坏这一平衡,引起正向或负向轴向推力增大,导致推力轴承烧瓦,产生动静摩损。

所以在机组运行中禁止汽轮机单缸进汽,如果运行中发。

相关文档
最新文档