41 函数的值域(讲师版)

合集下载

北大师版高一数学上册--第一单元 求函数值域的八种方法(教师讲义)(含答案)

北大师版高一数学上册--第一单元 求函数值域的八种方法(教师讲义)(含答案)

高中数学:求函数值域的十三种方法一、观察法(☆ ) 五、判别式法(☆) 二、配方法(☆) 六、换元法(☆☆☆) 三、分离常数法(☆) 七、函数单调性法(☆) 四、反函数法(☆) 八、图像法(数型结合法)(☆)一、观察法:从自变量x 的范围出发,推出()y f x =的取值范围。

【例1】求函数1y =的值域。

0≥11≥,∴函数1y =的值域为[1,)+∞。

【例2】求函数的值域。

【解析】∵ ∴ 显然函数的值域是:【例3】已知函数()112--=x y ,{}2,1,0,1-∈x ,求函数的值域。

【解析】因为{}2,1,0,1-∈x ,而()()331==-f f ,()()020==f f ,()11-=f 所以:{}3,0,1-∈y 注意:求函数的值域时,不能忽视定义域,如果该题的定义域为R x ∈,则函数的值域为{}1|-≥y y 。

练习:1、求242-+-=x y 的值域. 2.求函数y =的值域.二. 配方法:配方法式求“二次函数类”值域的基本方法。

形如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法。

x 1y =0x ≠0x 1≠),0()0,(+∞-∞Y【例1】 求函数225,[1,2]y x x x =-+∈-的值域。

【解析】将函数配方得:∵由二次函数的性质可知:当x=1 ∈[-1,2]时,,当时,故函数的值域是:[4,8]【变式】已知232x x ≤,求函数f x x x ()=++21的最值。

【解析】由已知232x x ≤,可得032≤≤x ,即函数f x ()是定义在区间032,⎡⎣⎢⎤⎦⎥上的二次函数。

将二次函数配方得f x x ()=+⎛⎝ ⎫⎭⎪+12342,其对称轴方程x =-12,顶点坐标-⎛⎝ ⎫⎭⎪1234,,且图象开口向上。

显然其顶点横坐标不在区间032,⎡⎣⎢⎤⎦⎥内,如图2所示。

函数f x ()的最小值为f ()01=,最大值为f 32194⎛⎝ ⎫⎭⎪=。

求解函数定义域、值域、解析式讲义(精华版)

求解函数定义域、值域、解析式讲义(精华版)

3. 已知函数 f( x 1) x 2 x ,求函数 f (x) 的解析式。
4. 方程组法
当关系式中同时含有 f ( x) 与 f ( x) 或 f ( x) 与 f ( 1) 时,常将原式中的 x 用 x (或 1 )代替,
x
x
从而得到另一个同时含 f ( x) 与 f ( x) 或 f ( x) 与 f ( 1 ) 的关系式, 将这两个关系式联立, 解方程组解出 f ( x) 。 x
出参数的范围。
【例 1】 ( 1)若函数 f ( x)
(a 2 1) x2 ( a 1) x 2 的定义域为 R,求实数 a 的取值范围。 a1
(2)判断 k 为何值时,函数 y
2kx 8 kx2 2kx
关于 x 的定义域为 1
R。
2. 函数值域的逆向应用
【例 2】 求使函数 y
x2 x2
ax x
2 的值域为 ( 1
【例 1】 求下列函数的定义域
( 1) y x 1
( 2) y
1
2x
( 3) y
1
( x 1)0
2x
【例 2】 求下列函数的定义域
(1) y
1; 11
1x
( 2) y
4 x2 ; x1
))))))
))))))))
( 3) y
1
3 x2 5
7 - x2 ;
(4) y
x2 3x 10 x11
【当堂检测】
( 3)若函数 f ( x) 是整式型函数,则定义域为全体实数。
( 4)若函数 f ( x) 是分式型函数,则定义域为使分母不为零的实数构成的集合。
( 5)若函数 f (x ) 是偶次根式,则定义域为使被开方式非负的实数构成的集合。 ( 6)由实际问题确定的函数,其定义域由自变量的实际意义确定。 ( 7)如果已知函数是由两个以上的数学式子的和、差、积、商的形式构成时,定义域是使其各部分有

2012届高考数学(文)一轮复习课件5函数的定义域与值域(人教A版)

2012届高考数学(文)一轮复习课件5函数的定义域与值域(人教A版)

答案:B
2019/4/12
5.函数y=f(x)的值域是[-2,2],定义域是R,则函数y=f(x-2)的值域是( )
A.[-2,2]
C.[0,4]
B.[-4,0]
D.[-1,1]
答案:A
2019/4/12
类型一
函数的定义域
解题准备:(1)已知解析式求定义域的问题,应根据解析式中各部分
的要求,首先列出自变量应满足的不等式或不等式组,然后解这
2019/4/12
③当函数y=f(x)用解析式给出时,函数的值域由函数的定义域及其
对应关系唯一确定; ④当函数由实际问题给出时,函数的值域由问题的实际意义确定.
2019/4/12
考点陪练
2019/4/12
2019/4/12
考点陪练
1.(2010 湖北)函数 3 A. ,1 4 C.(1, )
2019/4/12
⑨抽象函数f(2x+1)的定义域为(0,1),是指x∈(0,1)而非0<2x+1<1;已
知函数f(x)的定义域为(0,1),求f(2x+1)的定义域时,应由0<2x+1<1 得出x的范围即为所求.
2019/4/12
【典例 1】求函数f x
lg ( x 2 2 x) 9 x
∴要使f(x2)有意义,则必有0≤x2≤1,
解得-1≤x≤1.
∴f(x2)的定义域为[-1,1].
2019/4/12
②由0≤ x 1≤1得1≤ x≤2.1≤x≤4(x≥0时, x才有意义) 函数f ( x 1)的定义域为1, 4 2 f lg x 1 的定义域为 0,9 , 0≤x≤9,1≤x 1≤10, 0≤lg x 1 ≤1 f x 的定义域为 0,1.由0≤2 x ≤1, 解得x≤0. f 2 x 的定义域为 , 0 .

函数值域的常见求法8大题型(解析版)

函数值域的常见求法8大题型(解析版)

函数值域的求法8大题型命题趋势函数的值域是函数概念中三要素之一,是高考中的必考内容,具有较强的综合性,贯穿整个高中数学的始终。

在高考试卷中的形式千变万化,但万变不离其宗,真正实现了常考常新的考试要求,考生在复习过程中首先要掌握一些简单函数的值域求解的基本方法,其次要多看多练在其他板块中涉及值域类型的内容。

满分技巧一、求函数值域的常见方法1.直接法:对于简单函数的值域问题,可通过基本初等函数的图象、性质直接求解;2.逐层法:求f 1(f 2⋯f n (x ))型复合函数的值域,利用一些基本初等函数的值域,从内向外逐层求函数的值域;3.配方法:配方法是二次型函数值域的基本方法,即形如“y =ax x +bx +c (a ≠0)”或“y =a [f (x )]2+bf (x )+c (a ≠0)”的函数均可用配方法求值域;4.换元法:利用换元法将函数转化为易求值域的函数,常用的换元有(1)y =ax +b cx +d或y =cx +dax +b 的结构,可用“cx +d =t ”换元;(2)y =ax +b ±cx +d (a ,b ,c ,d 均为常数,a ≠0,c ≠0),可用“cx +d =t ”换元;(3)y =bx ±a 2-x 2型的函数,可用“x =a cos θ(θ∈[0,π])”或“x =a sin θθ∈-π2,π2”换元;5.分离常数法:形如y =ax +b cx +d (ac ≠0)的函数,应用分离常数法求值域,即y =ax +b cx +d=ac +bc -adc 2x +d c ,然后求值域;6.基本不等式法:形如y =ax +bx(ab >0)的函数,可用基本不等式法求值域,利用基本不等式法求函数的值域时,要注意条件“一正、二定、三相等”,即利用a +b ≥2ab 求函数的值域(或最值)时,应满足三个条件:①a >0,b >0;②a +b (或ab )为定值;③取等号的条件为a =b ,三个条件缺一不可;7.函数单调性法:确定函数在定义域上的单调性,根据函数单调性求出函数值域(或最值)(1)形如y =ax +b -cx +d (ac <0)的函数可用函数单调性求值域;(2)形如y =ax +bx的函数,当ab >0时,若利用基本不等式等号不能成立时,可考虑利用对勾函数求解;公众号:高中数学最新试题当ab <0时,y =ax +bx在(-∞,0)和(0,+∞)上为单调函数,可直接利用单调性求解。

6函数的概念、定义域、值域求法-教师版

6函数的概念、定义域、值域求法-教师版

教学内容概要教学内容【知识精讲】一、函数的概念1、函数的定义:设A B 、是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数。

记作:(),y f x x A =∈。

其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合(){}f x x A ∈叫做函数的值域。

2、函数的三要素分别指函数的定义域、值域、对应法则;当两个函数的定义域、对应法则分别相同时,那么这两个函数是同一函数。

3、函数的表示方法一般有解析法、列表法、图像法当图像满足和,x a a R =∈的图像最多只有一个交点时才可作为函数图像。

分段函数:在用解析法表示函数的时候,往往在其定义域的不同子集上,因对应法则不同而用几个式子来表示的函数即分段函数。

分段函数是一个函数,而不是几个函数。

在解决问题过程中,要处理好整体与局部的关系。

4、函数的运算:对于两个函数()()1D x x f y ∈=,()()2D x x g y ∈=,设φ≠⋂=21D D D 把函数()()()D x x g x f ∈+叫做函数()()1D x x f y ∈=与()()2D x x g y ∈=的和函数 把函数()()()D x x g x f ∈叫做函数()()1D x x f y ∈=与()()2D x x g y ∈=的积函数 6、复合函数:对于两个函数()()1D x x f y ∈=,()()2D x x g y ∈=,若满足()1D x g ∈的x 的取值范围为E ,设φ≠⋂=2D E D ,把函数()()x g f y =叫做函数()()1D x x f y ∈=,()()2D x x g y ∈=的复合函数,x 是复合函数()()x g f y =的自变量,定义域为D ,()x g 叫做内函数,()x f 叫做外函数。

第1讲 函数的定义域及值域(教师版)

第1讲 函数的定义域及值域(教师版)

第1讲 函数的定义域及值域【知识梳理】一.函数的基本概念 (1)函数的定义设A ,B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A . (2)函数的定义域、值域在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(3)函数的三要素:定义域、对应关系和值域. (4)函数的表示法表示函数的常用方法有解析法、图象法和列表法. 二.映射的概念设A ,B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射. 三.函数解析式的求法求函数解析式常用方法有待定系数法、换元法、配凑法、消去法. 四.常见函数定义域的求法 (1)分式函数中分母不等于零. (2)偶次根式函数被开方式大于或等于0. (3)一次函数、二次函数的定义域为R .(4)y =a x (a >0且a ≠1),y =sin x ,y =cos x ,定义域均为R .(5)y =tan x 的定义域为⎩⎨⎧⎭⎬⎫x |x ∈R 且x ≠k π+π2,k ∈Z .(6)函数f (x )=x α的定义域为{x |x ∈R 且x ≠0}.【题型归纳全解】题型一 函数的概念例1. 有以下判断:①f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1 (x ≥0)-1 (x <0)表示同一函数;②函数y =f (x )的图象与直线x =1的交点最多有1个; ③f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;④若f (x )=|x -1|-|x |,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=0. 其中正确判断的序号是________. 答案 ②③解析 对于①,由于函数f (x )=|x |x 的定义域为{x |x ∈R 且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧1 (x ≥0)-1 (x <0)的定义域是R ,所以二者不是同一函数;对于②,若x =1不是y =f (x )定义域内的值,则直线x =1与y =f (x )的图象没有交点,如果x =1是y =f (x )定义域内的值,由函数定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于③,f (x )与g (t )的定义域、值域和对应关系均相同,所以f (x )和g (t )表示同一函数;对于④,由于f ⎝⎛⎭⎫12=⎪⎪⎪⎪12-1-⎪⎪⎪⎪12=0,所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=f (0)=1. 综上可知,正确的判断是②③.题型二 求函数的解析式例2. (1)如果f (1x )=x1-x,则当x ≠0且x ≠1时,f (x )等于( )A.1xB.1x -1C.11-xD.1x -1 (2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,则f (x )=________.(3)已知函数f (x )的定义域为(0,+∞),且f (x )=2f (1x)·x -1,则f (x )=________.答案 (1)B (2)2x +7 (3)23x +13解析 (1)令t =1x ,得x =1t ,∴f (t )=1t 1-1t =1t -1,∴f (x )=1x -1.(2)设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b ,即ax +5a +b =2x +17不论x 为何值都成立, ∴⎩⎪⎨⎪⎧ a =2,b +5a =17,解得⎩⎪⎨⎪⎧a =2,b =7,∴f (x )=2x +7.(3)在f (x )=2f (1x )x -1中,用1x代替x ,得f (1x )=2f (x )1x -1,将f (1x )=2f (x )x-1代入f (x )=2f (1x )x -1中,可求得f (x )=23x +13.题型三 求函数的定义域 例3. (1)函数f (x )=ln (2+x -x 2)|x |-x 的定义域为( )A .(-1,2)B .(-1,0)∪(0,2)C .(-1,0)D .(0,2)(2)已知函数f (x )的定义域为[1,2],则函数g (x )=f (2x )(x -1)0的定义域为________.答案 (1)C (2)[12,1)解析 (1)f (x )有意义,则⎩⎪⎨⎪⎧2+x -x 2>0,|x |-x ≠0,解之得⎩⎪⎨⎪⎧-1<x <2,x <0,∴-1<x <0,∴f (x )的定义域为(-1,0).(2)要使函数g (x )=f (2x )(x -1)0有意义,则必须有⎩⎪⎨⎪⎧1≤2x ≤2x -1≠0,∴12≤x <1,故函数g (x )的定义域为[12,1). 题型四 分段函数例4. (1)已知函数f (x )=⎩⎪⎨⎪⎧2x,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于( )A .-3B .-1C .1D .3(2)设函数y =f (x )在R 上有定义.对于给定的正数M ,定义函数f M (x ) =⎩⎪⎨⎪⎧f (x ),f (x )≤M ,M ,f (x )>M ,则称函数f M (x )为f (x )的“孪生函数”.若给定函数f (x )=2-x 2,M =1,则f M (0)的值为 ( )A .2B .1 C. 2 D .- 2 答案 (1)A (2)B解析 (1)由题意知f (1)=21=2.∵f (a )+f (1)=0, ∴f (a )+2=0.①当a >0时,f (a )=2a,2a +2=0无解;②当a ≤0时,f (a )=a +1,∴a +1+2=0,∴a =-3. (2)由题设f (x )=2-x 2≤1,得 当x ≤-1或x ≥1时, f M (x )=2-x 2;当-1<x <1时,f M (x )=1.∴f M (0)=1.【课堂训练】1. 函数f (x )=1ln (x +1)+4-x 2的定义域为( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]答案 B解析 由⎩⎪⎨⎪⎧x +1>0ln (x +1)≠04-x 2≥0,得-1<x ≤2,且x ≠0.2. (2012·江西)设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x ,x >1,则f (f (3))等于( )A.15 B .3 C.23 D.139 答案 D解析 由题意知f (3)=23,f ⎝⎛⎭⎫23=⎝⎛⎭⎫232+1=139,∴f (f (3))=f ⎝⎛⎭⎫23=139.3. 若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )答案 B解析 可以根据函数的概念进行排除,使用筛选法得到答案.4. 已知函数f (x )满足f (2x +|x |)=log 2x |x |,则f (x )的解析式是( )A .f (x )=log 2xB .f (x )=-log 2xC .f (x )=2-xD .f (x )=x -2答案 B解析 根据题意知x >0,所以f (1x )=log 2x ,则f (x )=log 21x=-log 2x .5. 某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( )A .y =[x10]B .y =[x +310]C .y =[x +410]D .y =[x +510]答案 B解析 方法一 取特殊值法,若x =56,则y =5,排除C ,D ; 若x =57,则y =6,排除A ,选B.方法二 设x =10m +α(0≤α≤9,m ,α∈N ),当0≤α≤6时,[x +310]=[m +α+310]=m =[x10],当6<α≤9时,[x +310]=[m +α+310]=m +1=[x10]+1,所以选B.6. 下表表示y答案 {2,3,4,5}解析 函数值只有四个数2、3、4、5,故值域为{2,3,4,5}. 7. 已知f (x -1x )=x 2+1x 2,则f (3)=________.答案 11解析 ∵f (x -1x )=x 2+1x 2=(x -1x )2+2,∴f (x )=x 2+2(x ≠0),∴f (3)=32+2=11.8. 若函数f (x )=2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________. 答案 [-1,0]解析 由题意知2x 2+2ax -a -1≥0恒成立. ∴x 2+2ax -a ≥0恒成立, ∴Δ=4a 2+4a ≤0,∴-1≤a ≤0.9. 已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1.求函数f (x )的解析式. 解 设f (x )=ax 2+bx +c (a ≠0),又f (0)=0, ∴c =0,即f (x )=ax 2+bx .又∵f (x +1)=f (x )+x +1.∴a (x +1)2+b (x +1)=ax 2+bx +x +1. ∴(2a +b )x +a +b =(b +1)x +1,∴⎩⎪⎨⎪⎧2a +b =b +1a +b =1,解得⎩⎨⎧a =12b =12.∴f (x )=12x 2+12x .10. 某人开汽车沿一条直线以60 km /h 的速度从A 地到150 km 远处的B 地.在B 地停留1 h后,再以50 km/h 的速度返回A 地,把汽车与A 地的距离x (km)表示为时间t (h)(从A 地出发开始)的函数,并画出函数的图象. 解x =⎩⎪⎨⎪⎧60t 0≤t ≤52150 52<t ≤72150-50(t -72) 72<t ≤132.图象如右图所示.【课下作业】1. 已知a ,b 为两个不相等的实数,集合M ={a 2-4a ,-1},N ={b 2-4b +1,-2},f :x →x表示把M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .1B .2C .3D .4答案 D解析 由已知可得M =N ,故⎩⎪⎨⎪⎧ a 2-4a =-2,b 2-4b +1=-1⇒⎩⎪⎨⎪⎧a 2-4a +2=0,b 2-4b +2=0,所以a ,b 是方程x 2-4x +2=0的两根,故a +b =4.2. 设函数f (x )=⎩⎪⎨⎪⎧x 2+4x +6,x ≤0-x +6,x >0,则不等式f (x )<f (-1)的解集是( )A .(-3,-1)∪(3,+∞)B .(-3,-1)∪(2,+∞)C .(-3,+∞)D .(-∞,-3)∪(-1,3) 答案 A解析 f (-1)=3,f (x )<3,当x ≤0时,x 2+4x +6<3, 解得x ∈(-3,-1);当x >0时,-x +6<3,解得x ∈(3,+∞),故不等式的解集为(-3,-1)∪(3,+∞),故选A.3. 已知函数f (x )=⎩⎪⎨⎪⎧e x ,x ≥0,-2x ,x <0,则关于x 的方程f (f (x ))+k =0,给出下列四个命题:①存在实数k ,使得方程恰有1个实根; ②存在实数k ,使得方程恰有2个不相等的实根; ③存在实数k ,使得方程恰有3个不相等的实根; ④存在实数k ,使得方程恰有4个不相等的实根.其中正确命题的序号是________.(把所有满足要求的命题序号都填上) 答案 ①②解析依题意,知函数f (x )>0, 又f (f (x ))=⎩⎪⎨⎪⎧ee x ,x ≥0,e -2x ,x <0,依据y =f (f (x ))的大致图象(如右图所示),知存在实数k ,使得方程f (f (x ))+k =0恰有1个实根或恰有2个不相等的实根;不存在实数k ,使得方程恰有3个不相等的实根或恰有4个不相等的实根.4. 行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫 作刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度. 解 (1)由题意及函数图象,得⎩⎨⎧402200+40m +n =8.4602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70. ∵x ≥0,∴0≤x ≤70.故行驶的最大速度是70千米/时.5. 运货卡车以每小时x 千米的速度匀速行驶130千米(50≤x ≤100)(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油(2+x 2360)升,司机的工资是每小时14元.(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.解 (1)行车所用时间为t =130x(h),y =130x ×2×(2+x2360)+14×130x ,x ∈[50,100].所以,这次行车总费用y 关于x 的表达式是 y =2 340x +1318x ,x ∈[50,100].(2)y =2 340x +1318x ≥2610,当且仅当2 340x =1318x ,即x =1810时,上述不等式中等号成立.故当x =1810时,这次行车的总费用最低,最低费用为2610元.。

高三数学高考求函数值域的方法(整理)知识点分析人教版

高三数学高考求函数值域的方法(整理)知识点分析人教版

求函数的值域的常见方法求函数的值域是高中数学的重点学习内容,其方法灵活多样,针对不同的问题情景,要求解题者,选择合适的方法,切忌思维刻板。

本文就已知解析式求函数的值域,这类问题介绍几种常用的方法。

一、 直接法函数值的集合叫做函数的值域,根据定义,由函数的映射法则和定义域,直接求出函数的值域。

例1. 已知函数()112--=x y ,{}2,1,0,1-∈x ,求函数的值域。

解:因为{}2,1,0,1-∈x ,而()()331==-f f ,()()020==f f ,()11-=f 所以:{}3,0,1-∈y ,注意:求函数的值域时,不能忽视定义域,如果该例的定义域为R x ∈,则函数的值域为{}1|-≥y y 。

请体会两者的区别。

二、 反函数法反函数的定义域就是原函数的值域,利用反函数与原函数的关系,求原函数的值域。

例2.求函数1251+-=xy 的值域。

分析与解:注意到02>x,由原函数求出用y 表示x2的关系式,进而求出值域。

由1251+-=xy 得:=x2, 因为02>x,所以14014<<-⇒>-+y yy , 值域为:{}14|<<-y y三、 函数的单调性例3.求函数xx y 1+=在区间()+∞∈,0x 上的值域。

分析与解答:任取()+∞∈,0,21x x ,且21x x <,则()()()()212121211x x x x x x x f x f --=-,因为210x x <<,所以:0,02121><-x x x x ,当211x x <≤时,0121>-x x ,则()()21x f x f >;当1021<<<x x 时,0121<-x x ,则()()21x f x f <;而当1=x 时,2min =y 于是:函数xx y 1+=在区间()+∞∈,0x 上的值域为),2[+∞。

取值范围的四种常用方法-讲义(教师版)

取值范围的四种常用方法-讲义(教师版)

取值范围的四种常用方法在圆锥曲线的取值范围类问题中,我们得到了讨论对象的最终表达式后,不可避免地要进行函数值域的研究. 在这些最终表达式里面,分式型的函数是最令人感到头疼的.求解分式型函数的值域,关键是利用换元等手段将其转成我们常见的函数形式.一、分离常数经典例题1.求函数的值域.【答案】【解析】,由于,故有,【标注】【知识点】求函数的值域题目分析方法一:用【分离常数】求的值域------------------------------【观察特征+解题动作】------------------------------------------------------------【一气呵成】------------------------------观察特征解题动作①分子和分母次数 相同尝试分离常数得②分离常数后,分式部分的分子为 常数只需研究分母值域即可巩固练习(1)(2)2.已知椭圆,若、是椭圆上关于轴对称的任意两点,设,连接交椭圆于另一点.求证:直线过定点,并求出点的坐标.过点的直线交椭圆于,两点,求的取值范围.【答案】(1)(2)直线过轴上的定点.的取值范围是.【解析】(1)(2)根据对称性易得:若直线过定点,则该定点一定在轴上.由题意可知直线的斜率存在,设直线的方程为,由消去得,设点,,所以,,又因为,所以直线的方程为,又因为,所以直线的方程为,令,得,将,代入上式并整理,得,整理得,所以,直线过轴上的定点.当过点的直线的斜率不存在时,直线的方程为,,,此时,当过点的直线的斜率存在时,设直线的方程为,且,在椭圆上,由,得,则,故有,,从而,所以,由,得,综上,的取值范围是.【标注】【知识点】椭圆的标准方程;直线和椭圆的位置关系;定点问题;向量问题(1)(2)3.的圆心为,直线过点且与轴不重合,交圆于,两点,过作的平行线交于点.证明为定值,并写出点的轨迹方程;设点的轨迹为曲线,直线交于,两点,过且与垂直的直线与圆交于,两点,求四边形面积的取值范围.【答案】(1)(2)证明见解析;点的轨迹为一个椭圆,方程为,()【解析】(1)圆的方程整理为,点的坐标为,如图,–6–5–4–3–2–112345y–5–4–3–2–112345O x,∴,∵,∴,,∴,(2),又,所以点的轨迹为一个椭圆,方程为,();–5–4–3–2–112345y–4–3–2–11234O x;设,因为,所以,联立,得;则;圆心到的距离,所以,.【标注】【知识点】面积问题;最值问题四边形二、换元法-双勾型经典例题4.求函数的值域.【答案】【解析】令,则有,,由于在上单调递增,故有,【标注】【知识点】求函数的值域题目分析方法二:用【换元法】,结合【双勾函数】求的值域------------------------------【观察特征+解题动作】------------------------------------------------------------【一气呵成】------------------------------在上单调递增.观察特征解题动作①分母比分子次数更高换元令,则②新元形式为确定新元范围③分子只有一项且不为0同除分子,出现双勾形式巩固练习(1)(2)5.已知椭圆,过点作倾斜角互补的两条不同直线,,设与椭圆交于、两点,与椭圆交于,两点.若为线段的中点,求直线的方程.记,求的取值范围.【答案】(1).(2).【解析】(1)(2)设直线的方程为,即,设,,由,消可得,∴,,∵为线段的中点,∴,解得,∴直线的方程为,即为.由()可知,,设直线的方程为,即,同理可得,∴,当时,,当且仅当时取等号,当时,当且仅当时取等号,∴,∴,∵由于与是不同的直线,斜率,∴,∴的取值范围.【标注】【知识点】直线和椭圆的位置关系(1)(2)6.在平面直角坐标系中,已知定点,点在轴的非正半轴上运动,点在轴上运动,满足,点关于点的对称点为,设点的轨迹为曲线.求曲线的方程.已知点,动直线与相交于,两点,求过,,三点的圆在直线上截得的弦长的最小值.【答案】(1)(2)..【解析】方法一:方法二:(1)方法一:(2)设,,,因为,所以,所以,又点为的中点,所以,①,所以②,将①,②式代入,得,所以曲线的方程为.如图,过点作轴的垂线,垂足为,交的延长线于点,连接,因为为的中点,所以也为的中点,易证≌,所以,,易证≌,所以,由得点在直线上,即为点到直线的距离,由抛物线的定义可知,点的轨迹是以为焦点,为准线的抛物线,所以曲线的方程为.由()可知,抛物线的方程为,令,得,设,,方法二:由于点,关于轴对称,所以过,,三点的圆的圆心在轴上,设,由得,,化简并整理得,圆的方程为,令,解得,,所以圆在直线上截得的弦长为,又因为,且,所以,所以,当且仅当,即或(舍去)时取等号,所以当时,圆在直线上截得的弦长的最小值为.由()可知,抛物线的方程为,令,得,设,,由于点,关于轴对称,所以过,,三点的圆的圆心在轴上,设,由得,,化简并整理得,设圆在直线上截得的弦为,由垂径定理得,所以,又因为,且,所以,所以,当且仅当,即或(舍去)时取等号,所以当时,圆在直线上截得的弦长的最小值为.【标注】【知识点】最值问题;向量问题;抛物线与圆结合(1)(2)7.已知椭圆,直线与椭圆交于不同的两点、.若,求的值.试求(其中为坐标原点)的最大值.【答案】(1)(2)..【解析】(1)(2)由,消去并整理得,∵直线与椭圆交于不同的两点、,∴,即,设,,则,,,即,解得.∵,,∴,∵,∴,即的最大值为.(当且仅当时,取得最大值)【标注】【知识点】直线和椭圆的位置关系;弦长求解问题;最值问题(1)(2)8.已知抛物线的焦点为,直线与轴的交点为,与曲线的交点为,且.求抛物线的方程.过点任意作互相垂直的两条直线,,分别交曲线于点,和,.设线段,的中点分别为,.求面积的最小值.【答案】(1)(2)..【解析】(1)延长交直线于点,(2)则,∵,∴,即点为线段中点,∵点坐标为,∴点坐标为,∵点在抛物线上,∴,∴,∴抛物线的方程为.不妨设直线和的方程分别为和,设,,,,联立,得,由韦达定理知,,∴,∴点的坐标为,∴,联立得,由韦达定理知,,∴,∴点的坐标为,∴,∵,∴,∵,∴,当且仅当时取等号,∴的最小值为.【标注】【知识点】面积问题;最值问题三、换元法-二次型经典例题9.求函数的值域.【答案】【解析】令,则有,.故有,函数值域为.【标注】【知识点】求函数的值域题目分析方法三:用【换元法】,结合【二次函数】求的值域------------------------------【观察特征+解题动作】------------------------------------------------------------【一气呵成】------------------------------在处取最大值 .观察特征解题动作①分母是某个整体的完全平方换元令,则②分母只有一项分子依次除以分母,③这是复合的二次函数形式配方,巩固练习(1)(2)10.已知椭圆:的左右两个焦点分别为,,以坐标原点为圆心,过,的圆的内接正三角形的面积为,以为焦点的抛物线:的准线与椭圆的一个公共点为,且.求椭圆和抛物线的方程.过作相互垂直的两条直线,其中一条交椭圆于,两点,另一条交抛物线于,两点,求四边形面积的最小值.【答案】(1)(2)抛物线,椭圆..【解析】(1)由题意得,圆半径为,故内接正三角形的面积为,∴,即抛物线,又,,故,(2)∴,∴,∴椭圆.由已知得直线的斜率存在,记为.①当时,,,故,②当时,设,代入,得:,则,,∴,此时,,代入得:,则,,∴,∴,令,,综上,.【标注】【知识点】最值问题;面积问题;椭圆的标准方程四边形四边形四边形登堂入室(1)(2)11.已知圆的圆心为,点是圆上的动点,点,点在线段上,且满足.求点的轨迹的方程.过点作斜率不为的直线与()中的轨迹交于,两点,点关于轴的对称点为,连接交轴于点,求面积的最大值.【答案】(1)(2)..【解析】(1)方法一:(2),.∵,∴,即.又在线段上,∴.又,∴点轨迹是以,为焦点的椭圆,设的轨迹方程为,则,即,,∴,∴点的轨迹方程为.:设斜率为,设,,则,则,,∴,,,∴,,,.所在直线:,当时,,∴,方法二:点到直线的距离为,.令,则,令,,令,则,最大值在此处取得.∴,,.由题意可知直线斜率存在且不为,设直线的方程为,,,则,联立方程组,消元得:,由可得,解得.由根与系数的关系可得:,,∴,直线的方程为,令可得,即,∴到直线的距离,∴,令,则,∴.∴当时,取得最大值,∴的最大值为.【标注】【知识点】最值问题四、判别式法经典例题12.求函数的值域.【答案】【解析】视为参数,由于对有,即恒有,则的值域即为使方程关于有解的值.整理得关于有解,讨论:当时,方程有解.当时,由解得且.综上,的值域为.【标注】【知识点】求函数的值域题目分析方法四:用【判别式法】求的值域【核心思路】值域的意义:函数所有可能取到的值的集合. 值域里的所有值都有对应的值,也即把这条式子看作一个关于的方程,使这个方程有解的值的集合即为的值域.------------------------------【观察特征+解题动作】------------------------------这个形式虽然可以使用换元,但已经可以想见后续过程会比较丑陋,因此考虑使用判别式法.------------------------------【一气呵成】------------------------------当时,方程化为 ,有解.当时:由,解得且.综上,.观察特征解题动作①分子和分母次数 相同尝试分离常数得观察特征解题动作①分母判别式为 负 ,分母恒 正设为参数,移项得:②这可能是一个一次或者二次方程根据是否等于 进行分类讨论巩固练习(1)(2)13.已知椭圆:()的离心率为,直线与椭圆仅有一个公共点.求椭圆的方程.直线被圆:所截得的弦长为,且与椭圆交于、两点,求面积的最大值.【答案】(1)(2)..【解析】(1)(2)由,得,即,∴,则椭圆方程为,联立,消去得,,由,解得:.∴椭圆方程为:.∵直线被圆:所截得的弦长为,∴原点到直线的距离为.①当直线的斜率不存在时,直线的方程为,代入椭圆,得,不妨设,,则;②当直线的斜率存在时,设直线的方程为,即,由,得.联立,消去得,.,,∴.设,令,则,当时,可得,符合题意;当时,由,得且.综上,.∴当斜率存在时,.综①②可知,面积的最大值为.【标注】【知识点】直线和椭圆的位置关系;面积问题(1)(2)14.已知椭圆经过点,且右焦点.求椭圆的标准方程.过的直线交椭圆于,两点,记,若的最大值和最小值分别为,,求的值.【答案】(1)(2)..【解析】(1)(2)由椭圆的右焦点为,知,即,则:,,又椭圆过点,则,又,求得.∴椭圆方程:.当直线斜率存在时,设的方程为,,,由得,即,∵在椭圆内部,,∴,则,,③,将①②代人③得∴,∴,,①②则,∴,即,又,是的两根,∴,当直线斜率不存在时,联立得,不妨设,,,,.可知.综上.【标注】【知识点】直线和椭圆的位置关系;最值问题;向量问题方法总结研究分式型函数的值域有许多方法,在具体解题过程当中,我们常进行如下的判断与动作:1、判次数:分子次数大于或等于分母时需进行分离常数;2、选基准:换元时常以次数较低或已成整体(主要是完全平方)的部分为基准进行换元;3、凑常见:换元后常将函数整理成一次、二次、双勾函数以及它们的倒数与复合形式;4、定主元:在上述过程中,若系数不方便计算,考虑使用判别式法(主元法)计算值域.注意事项1、换新元要确定新元的取值范围,解值域要判断自变量的取值范围,常见限制包括:①圆锥曲线中和的有界性,如椭圆中、;②交点相关问题中,参数(如直线中的)应使联立所得二次方程的;③圆锥曲线焦半径的取值范围,如椭圆中焦半径的取值范围是.2、基本不等式难解取值范围,在最值问题中存在无法取等的可能性,使用时要谨慎!3、判别式法在自变量限制不多时比较好用,复杂情况下升级为根的分布问题,得不偿失.【备注】形式判断只能确定大方向,若函数在形式上同时适用几种不同的方法,不需要纠结孰优孰劣.登堂入室(1)(2)15.已知抛物线的焦点为,是抛物线上的一点,.求抛物线的方程.过点的直线与抛物线交于、两点,且为线段的中点,若线段的中垂线交轴于,求面积的最大值.【答案】(1)(2)..【解析】(1)(2)设点的坐标为,依题意得,,即,∴,,∴代入抛物线方程,即,∴(舍去)或,所以抛物线的方程为.由题意可得,直线的斜率存在,所以设直线的方程为,,,联立得,∴,由根与系数的关系得,因为是线段的中点,所以有,即,①,即,∴,②中垂线的方程为:,令得,【备注】【提示】有的式子换元后也许不太能直接判断单调性,这时可以考虑强行求导求得最值.所以点,设点到直线的距离为,则,弦长,所以,.,由②式可得:,令,则,又,由②式得到即,∴,换元,,,∴,,单调递增;,,单调递减,故函数,此时,,所以得:,,直线的方程,所以,面积的最大值为.【标注】【知识点】面积问题;最值问题;直线和抛物线的位置关系;抛物线的标准方程登峰造极(1)(2)16.已知椭圆的焦点与抛物线的焦点重合,且椭圆的右顶点到的距离为.求椭圆的方程.设直线与椭圆交于,两点,且满足,求面积的最大值.【答案】(1)(2)..【解析】(1)(2)设椭圆的半焦距为,依题意,可得,且,,,.∴椭圆的方程为.依题意,可设直线,的斜率存在且不为零,不妨设直线,则直线,联立:得,则.同理可得:,∴的面积为:,当且仅当,即是面积取得最大值.【标注】【知识点】椭圆与抛物线结合;面积问题;最值问题【备注】【提示】分式换元时,我们无法用3次项来表示4次项(3次项能表示的是6次、9次等……). 那么能否同时改变分子和分母的次数,使其变成可以用分子来表示分母的形式呢?五、补充练习:求参数取值范围经典例题(1)(2)17.已知双曲线的焦点在轴上,焦距为,且的渐近线方程为.求双曲线的方程.若直线与椭圆及双曲线都有两个不同的交点,且与的两个交点和满足(其中为原点),求的取值范围.【答案】(1).(2).【解析】(1)(2)依题意设双曲线的方程为,则,,又,于是由,故的方程为.将代入得,由直线与椭圆有两个不同的交点得,即①,将代入得,由直线与双曲线有两个不同的交点,得,即且②,设,,则,,得,而,于是,解此不等式得,或③,由①,②,③得,或,故的取值范围为.【标注】【知识点】数量积的坐标表达式;双曲线的标准方程;向量问题。

高一函数定义域和值域讲解

高一函数定义域和值域讲解

函数定义域、值域求法总结(一)求函数定义域1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;4、对复合函数y=f[g(x)]的定义域的求解,应先由y=f(u)求出u的范围,即g(x)的范围,再从中解出x的范围I1;再由g(x)求出y=g(x)的定义域I2,I1和I2的交集即为复合函数的定义域;5、分段函数的定义域是各个区间的并集;6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;(二)求函数的值域1、函数的值域即为函数值的集合,一般由定义域和对应法则确定,常用集合或区间来表示;2、在函数f:A→B中,集合B未必就是该函数的值域,若记该函数的值域为C,则C 是B的子集;若C=B,那么该函数作为映射我们称为“满射”;3、分段函数的值域是各个区间上值域的并集;4、对含参数的函数的值域,求解时须对参数进行分类讨论;叙述结论时要就参数的不同范围分别进行叙述;5、若对自变量进行分类讨论求值域,应对分类后所求的值域求并集;6、求函数值域的方法十分丰富,应注意总结一、定义域是函数()y f x =中的自变量x 的范围。

求函数的定义域需要从这几个方面入手:(1)分母不为零(2)偶次根式的被开方数非负。

(3)对数中的真数部分大于0。

(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。

(6)0x 中x 0≠二、值域是函数()y f x =中y 的取值范围。

函数专题:函数值域的6种常用求法-【题型分类归纳】高一数学上学期同步讲与练(解析版)

函数专题:函数值域的6种常用求法-【题型分类归纳】高一数学上学期同步讲与练(解析版)

函数专题:函数值域的6种常用求法一、函数的最大(小)值1、最大值:对于函数y=f(x),其定义域为D,如果存在x0∈D,f(x)=M,使得对于任意的x∈D,都有f(x)≤M,那么,我们称M是函数y=f(x)的最大值,即当x=x0时,f(x0)是函数y=f(x)的最大值,记作y max=f(x0).2、最小值:对于函数y=f(x),其定义域为D,如果存在x0∈D,f(x)=M,使得对于任意的x∈D,都有f(x)≥M,那么,我们称M是函数y=f(x)的最小值,即当x=x0时,f(x0)是函数y=f(x)的最小值,记作y min=f(x0).3、几何意义:函数最大值对应图象中的最高点,最小值对应图象中的最低点,它们不一定只有一个.二、求函数值域的6种常用求法1、单调性法:如果一个函数为单调函数,则由定义域结合单调性可快速求出函数的最值(值域).(1)若函数y=f(x)在区间[a,b]上单调递增,则y max=f(b),y min=f(a).(2)若函数y=f(x)在区间[a,b]上单调递减,则y max=f(a),y min=f(b).(3)若函数y=f(x)有多个单调区间,那就先求出各区间上的最值,再从各区间的最值中决定出最大(小)值.函数的最大(小)值是整个值域范围内的最大(小)值.2、图象法:作出函数的图象,通过观察曲线所覆盖函数值的区域确定值域,以下函数常会考虑进行数形结合.(1)分段函数:尽管分段函数可以通过求出每段解析式的范围再取并集的方式解得值域,但对于一些便于作图的分段函数,数形结合也可很方便的计算值域.(2)()f x的函数值为多个函数中函数值的最大值或最小值,此时需将多个函数作于同一坐标系中,然后确定靠下(或靠上)的部分为该()f x函数的图象,从而利用图象求得函数的值域.3、配方法:主要用于二次函数或可化为二次函数的函数,要特别注意自变量的取值范围.4、换元法:换元法是将函数解析式中关于x的部分表达式视为一个整体,并用新元t代替,将解析式化归为熟悉的函数,进而解出最值(值域).(1)在换元的过程中,因为最后是要用新元解决值域,所以一旦换元,后面紧跟新元的取值范围.(2)换元的作用有两个:①通过换元可将函数解析式简化,例如当解析式中含有根式时,通过将根式视为一个整体,换元后即可“消灭”根式,达到简化解析式的目的.②可将不熟悉的函数转化为会求值域的函数进行处理 5、分离常数法:主要用于含有一次的分式函数,形如+=+ax b y cx d 或2++=+ax bx e y cx d(a ,c 至少有一个不为零)的函数,求其值域可用此法以+=+ax by cx d为例,解题步骤如下: 第一步,用分子配凑出分母的形式,将函数变形成=++a ey c cx d的形式, 第二步,求出函数=+e y cx d 在定义域范围内的值域,进而求出+=+ax by cx d的值域。

函数的定义域、值域--高考数学【解析版】

函数的定义域、值域--高考数学【解析版】

专题06 函数的定义域、值域函数的定义域作为函数的要素之一,是研究函数的基础,函数的定义域问题也是高考的热点.函数的值域(最值)也是高考中的一个重要考点,并且值域(最值)问题通常会渗透在各类题目之中,成为解题过程的一部分.【重点知识回眸】1.函数的有关概念 (1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据. (4)函数的表示法表示函数的常用方法有:解析法、图象法、列表法.提醒:两个函数的值域和对应关系相同,但两个函数不一定相同,例如,函数f (x )=|x |,x ∈[0,2]与函数f (x )=|x |,x ∈[-2,0]. 2.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.提醒:分段函数是一个函数,而不是几个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集. 3.常见函数定义域的求法类型x 满足的条件2()nf x (n ∈N *) f (x )≥0 21()n f x (n ∈N *)f (x )有意义 1()f x 与[f (x )]0 f (x )≠0 log a f (x )(a >0且a ≠1) f (x )>0 a f (x )(a >0且a ≠1)f (x )有意义 tan[f (x )]f (x )≠π2+k π,k ∈Z四则运算组成的函数 各个函数定义域的交集实际问题使实际问题有意义4.①若()y f x =的定义域为(),a b ,则不等式()a g x b <<的解集即为函数()()y f g x =的定义域;②若()()y f g x =的定义域为(),a b ,则函数()g x 在(),a b 上的的值域即为函数()y f x =的定义域.5.常见函数的值域:在处理常见函数的值域时,通常可以通过数形结合,利用函数图像将值域解出,熟练处理常见函数的值域也便于将复杂的解析式通过变形与换元向常见函数进行化归.(1)一次函数(y kx b =+):一次函数为单调函数,图像为一条直线,所以可利用边界点来确定值域.(2)二次函数(2y ax bx c =++),给定区间.二次函数的图像为抛物线,通常可进行配方确定函数的对称轴,然后利用图像进行求解.(关键点:①抛物线开口方向,②顶点是否在区间内).(3)反比例函数:1y x=(1)图像关于原点中心对称(2)当,0x y →+∞→ ,当,0x y →-∞→. (4)对勾函数:()0ay x a x=+> ① 解析式特点:x 的系数为1;0a >注:因为此类函数的值域与a 相关,求a 的值时要先保证x 的系数为1,再去确定a 的值 例:42y x x =+,并不能直接确定4a =,而是先要变形为22y x x ⎛⎫=+ ⎪⎝⎭,再求得2a =② 极值点:,x a x a ==③ 极值点坐标:(,2,,2a a a a --④ 定义域:()(),00,-∞+∞⑤ 自然定义域下的值域:(),22,a a ⎡-∞-+∞⎣(5)函数:()0ay x a x=-> 注意与对勾函数进行对比① 解析式特点:x 的系数为1;0a > ② 函数的零点:x a =③ 值域:R(5)指数函数(xy a =):其函数图像分为1a >与01a <<两种情况,可根据图像求得值域,在自然定义域下的值域为()0,+∞(6)对数函数(log a y x =)其函数图像分为1a >与01a <<两种情况,可根据图像求得值域,在自然定义域下的值域为()0,+∞(7)三角函数的有界性,如sin [1,1],x ∈-cos [1,1]x ∈-. 6.函数值域问题处理策略 (1)换元法:① ()()(),log ,sin f x a y ay f x y f x ===⎡⎤⎡⎤⎣⎦⎣⎦:此类问题在求值域时可先确定()f x 的范围,再求出函数的范围.② ()()(),log ,sin x a y f a y f x y f x ===:此类函数可利用换元将解析式转为()y f t =的形式,然后求值域即可.③形如y ax b cx d =++(2)均值不等式法:特别注意“一正、二定、三相等”.(3)判别式法:若原函数的定义域不是实数集时,应结合函数的定义域,将扩大的部分剔除.(4)分离常数法:一般地, ① ax by cx d+=+:换元→分离常数→反比例函数模型② 2ax bx c y dx e ++=+:换元→分离常数→ay x x=±模型③ 2dx ey ax bx c+=++:同时除以分子:21y ax bx c dx e=+++→②的模型④ 22ax bx cy dx ex f++=++:分离常数→③的模型(5)单调性性质法:利用函数的单调性(6)导数法:利用导数与函数的连续性求图复杂函数的极值和最值, 然后求出值域 (7)数形结合法【典型考题解析】热点一 已知函数解析式求定义域【典例1】(广东·高考真题(文))函数f (x )=11x-+lg(1+x )的定义域是( )A .(-∞,-1)B .(1,+∞)C .(-1,1)∪(1,+∞)D .(-∞,+∞)【答案】C 【解析】根据函数解析式建立不等关系即可求出函数定义域. 【详解】 因为f (x )=11x-+lg(1+x ), 所以需满足1010x x -≠⎧⎨+>⎩,解得1x >-且1x ≠,所以函数的定义域为(-1,1)∪(1,+∞), 故选:C【典例2】(山东·高考真题(文))函数21()4ln(1)f x x x =-+( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]【答案】B 【解析】 【详解】x 满足2101140x x x +>⎧⎪+≠⎨⎪-≥⎩,即1022x x x >-⎧⎪≠⎨⎪-≤≤⎩. 解得-1<x <0或0<x ≤,选B.【典例3】(2019·江苏·高考真题)函数276y x x =+-_____. 【答案】[1,7]-. 【解析】 【分析】由题意得到关于x 的不等式,解不等式可得函数的定义域. 【详解】由已知得2760x x +-≥, 即2670x x --≤ 解得17x -≤≤, 故函数的定义域为[1,7]-.【典例4】(2022·北京·高考真题)函数1()1f x x x=-_________. 【答案】()(],00,1-∞⋃【解析】 【分析】根据偶次方根的被开方数非负、分母不为零得到方程组,解得即可; 【详解】 解:因为()11f x x x =-100x x -≥⎧⎨≠⎩,解得1x ≤且0x ≠,故函数的定义域为()(],00,1-∞⋃; 故答案为:()(],00,1-∞⋃ 【总结提升】已知函数的具体解析式求定义域的方法(1)简单函数的定义域:若f(x)是由一些基本初等函数通过四则运算构成的,则它的定义域为各基本初等函数的定义域的交集.(2)复合函数的定义域:先由外层函数的定义域确定内层函数的值域,从而确定对应的内层函数自变量的取值范围,还需要确定内层函数的定义域,两者取交集即可. 热点二 求抽象函数的定义域【典例5】(全国·高考真题(理))已知()f x 的定义域为(1,0)-,则函数(21)f x +的定义域为 ( ) A .(1,1)- B .1(1,)2--C .(1,0)-D .1(,1)2【答案】B 【解析】 【详解】试题分析:因为函数()f x 的定义域为(1,0)-,故函数(21)f x +有意义只需-1210x <+<即可,解得1-1-2x <<,选B .【典例6】(2023·全国·高三专题练习)已知函数()31f x +的定义域为[]1,7,求函数()f x 的定义域. 【答案】[]4,22 【解析】 【分析】根据复合函数定义域的性质进行求解即可. 【详解】因为()31f x +的定义域为[]1,7,所以17x ≤≤,所以43122x ≤+≤.令31x t +=,则422t ≤≤.即()f t 中,[]4,22t ∈. 故()f x 的定义域为[]4,22.【典例7】(2022·全国·高三专题练习)已知函数(1)y f x +=的定义域为112⎡⎤-⎢⎥⎣⎦,,则函数2(log )y f x =的定义域为( )A .(0,)+∞B .(0,1)C .22⎡⎤⎢⎥⎣⎦D .2⎡⎤⎣⎦,【答案】D 【解析】 【分析】根据(1)y f x +=的定义域可知1122x ≤+≤,故21log 22x ≤≤,即可求出答案. 【详解】解:∵函数(1)y f x +=的定义域为112⎡⎤-⎢⎥⎣⎦, ∴112x -≤≤,1122x ≤+≤∴函数2(log )y f x =中,21log 22x ≤≤ 24x ≤≤所以函数2(log )y f x =的定义域为2,]. 故选:D 【总结提升】(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由a ≤g (x )≤b 求出. (2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. 热点三 求函数的值域(最值)【典例8】(江西·高考真题(理))若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是( ) A .1[,3]2B .10[2,]3 C .510[,]23D .10[3,]3【答案】B 【解析】 【详解】试题分析:设()f x =t,则1,32t ⎡⎤∈⎢⎥⎣⎦,从而()F x 的值域就是函数11,,32y t t t ⎡⎤=+∈⎢⎥⎣⎦的值域,由“勾函数”的图象可知,102()3F x ≤≤,故选B .【典例9】(2023·全国·高三专题练习)已知函数()y f x =的定义域是R ,值域为[]1,2,则下列四个函数①()21y f x =-;①()21y f x =-;①()12f x y -=;①()2log 11y f x =++,其中值域也为[]1,2的函数个数是( ) A .4 B .3 C .2 D .1【答案】B 【解析】 【分析】求出①②③④中各函数的值域,即可得出合适的选项. 【详解】对于①,因为()12f x ≤≤,则()[]211,3y f x =-∈,①不满足条件;对于②,对于函数()21y f x =-,21x -∈R ,则函数()21y f x =-的值域为[]1,2,②满足条件;对于③,因为()12f x ≤≤,则()[]1,221f x y -∈=,③满足条件; 对于④,因为()12f x ≤≤,()[]11,2f x +∈,则()[]2log 111,2y f x =++∈,④满足条件. 故选:B.【典例10】(2023·全国·高三专题练习)已知函数2()(2)sin(1)1xf x x x x x =--+-在[1,1)-(1,3]⋃上的最大值为M ,最小值为N ,则M N +=( )A .1B .2C .3D .4【答案】B 【解析】 【分析】令1x t -=,()f x 转化为()21sin sin 1g t t t t t =+-+,令()21sin sin h t t t t t=+-,根据奇偶性的定义,可判断()h t 的奇偶性,根据奇偶性,可得()h t 在(][2,0)0,2-⋃最大值与最小值之和为0,分析即可得答案. 【详解】由21()[(1)1]sin(1)11f x x x x =---++- 令1x t -=,因为[1,1)(1,3]x ∈-⋃,所以(][2,0)0,2t ∈-⋃;那么()f x 转化为()21sin sin 1g t t t t t =+-+,(][2,0)0,2t ∈-⋃,令()21sin sin h t t t t t=+-,(][2,0)0,2t ∈-⋃,则()()()()()()2211sin sin sin sin h t t t t t t t h t t t ⎛⎫-=--+--=-+-=- ⎪-⎝⎭,所以()h t 是奇函数可得()h t 的最大值与最小值之和为0, 那么()g t 的最大值与最小值之和为2. 故选:B .【典例11】(2022·河南·郑州四中高三阶段练习(文))高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的美誉,用其名字命名的“高斯函数”:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,也称取整函数,例如:[]1.32-=-,[]3.43=,已知()11313x f x =-+,则函数()y f x ⎡⎤=⎣⎦的值域为______. 【答案】{}1,0- 【解析】 【分析】根据指数函数的性质分析()f x 的值域,进而得到()y f x ⎡⎤=⎣⎦的值域即可 【详解】 ∵()11313x f x =-+,()30,x∈+∞, ∴令30x t =>,则()()1112,1333f x g t t ⎛⎫==-∈- ⎪+⎝⎭故函数()()y f x g t ==⎡⎤⎡⎤⎣⎦⎣⎦的值域为{}1,0-, 故答案为:{}1,0-【典例12】(2023·全国·高三专题练习)函数()21f x x x =+-________;函数24y x x =-________.【答案】 2 22,2⎡⎤-⎣⎦【解析】 【分析】()f x 1x t -换元后化为二次函数可得最大值,函数24y x x =-2cos ([0,])x θθπ=∈,然后利用两角和的余弦公式化函数为一个角的一个三角函数形式,再由余弦函数的性质得取值范围. 【详解】(1)1x -t (t ≥0),所以x =1-t 2.所以y =f (x )=x 1x --t 2+2t =-t 2+2t +1=-(t -1)2+2.所以当t =1即x =0时,y max =f (x )max =2. (2)由4-x 2≥0,得-2≤x ≤2, 所以设x =2cos θ(θ∈[0,π]),则y =2cos θ244cos θ-θ-2sin θ2()4πθ+,因为5[,]444πππθ+∈, 所以cos ()4πθ+∈2⎡-⎢⎣⎦,所以y ∈[-22].故答案为:2;[2,2]-.【典例13】(2023·河南·洛宁县第一高级中学一模(文))已知函数()211122f x x x =++. (1)求()f x 的图像在点()()22f ,处的切线方程; (2)求()f x 在1,22⎡⎤⎢⎥⎣⎦上的值域.【答案】(1) 7420x y --=; (2)[]2,3. 【解析】 【分析】对于第一小问,把点()()22f ,代入函数解析式,得切点坐标,通过函数求导,得到过切点的切线的斜率,根据直线的点斜式方程,求切线方程.对于第二小问,解不等式()0f x '>,得函数增区间,解不等式()0f x '<,得函数减区间,结合1,22x ⎡∈⎤⎢⎥⎣⎦,确定函数单调性,求得最值,进而得值域.(1) 因为()211122f x x x =++,所以()21f x x x '=-,所以()23f =,()724f '=, 故所求切线方程为()7324y x -=-,即7420x y --=. (2)由(1)知()()()2322111x x x x f x x x -++-'==,1,22x ⎡∈⎤⎢⎥⎣⎦. 令()0f x '>,得12x <≤;令()0f x '<,得112x ≤<.所以()f x 在1,12⎡⎤⎢⎥⎣⎦上单调递减,在[]1,2上单调递增,所以()()min 12f x f ==. 又12128f ⎛⎫= ⎪⎝⎭,()23f =,所以()23f x ≤≤,即()f x 在1,22⎡⎤⎢⎥⎣⎦上的值域为[]2,3.热点四 求参数的值或取值范围【典例14】(2023·全国·高三专题练习)设a R ∈,函数()2229,1163,1x ax x f x x a x x ⎧-+≤⎪=⎨+->⎪⎩,若()f x 的最小值为()1f ,则实数a 的取值范围为( ) A .[]1,2 B .[]1,3 C .[]0,2 D .[]2,3【答案】A 【解析】 【分析】当1x >时,结合不等式求得其最小值为123a -,当1x ≤时,()()229f x x a a =-+-,根据函数()f x 的最小值为()1f ,列出不等式组,即可求解. 【详解】 当1x >时,22231688883333123x a x a x a a x x x x x+-=++-≥⨯⨯=-, 当且仅当28x x=时,等号成立; 即当1x >时,函数()f x 的最小值为123a -,当1x ≤时,()()222299f x x ax x a a =-+=-+-,要使得函数()f x 的最小值为()1f ,则满足()11102123a f a a ≥⎧⎨=-≤-⎩,解得12a ≤≤,即实数a 的取值范围是[]1,2. 故选:A.【典例15】(2022·全国·高三专题练习)已知函数()221f x ax x =++R ,则实数a 的取值范围是__. 【答案】[1,+∞) 【解析】 【分析】等价于ax 2+2x +1≥0恒成立,再对a 分类讨论得解. 【详解】解:函数()221f x ax x ++R , 即为ax 2+2x +1≥0恒成立, 若a =0,则2x +1≥0不恒成立; 当a >0,∆=4﹣4a ≤0, 解得a ≥1;当a <0,ax 2+2x +1≥0不恒成立. 综上可得,a 的取值范围是[1,+∞). 故答案为:[1,+∞).【典例16】(2016·北京·高考真题(理))设函数33,(){2,x x x af x x x a -≤=->. ①若0a =,则()f x 的最大值为____________________; ②若()f x 无最大值,则实数a 的取值范围是_________________. 【答案】2 (,1)-∞- 【解析】 【分析】试题分析:如图,作出函数3()3g x x x =-与直线 2y x =-的图象,它们的交点是(1,2),(0,0),(1,2)A O B --,由 2'()33g x x =-,知1x =是函数 ()g x 的极小值点,①当0a =时, 33,0(){2,0x x x f x x x -≤=->,由图象可知()f x 的最大值是 (1)2f -=;②由图象知当1a ≥-时, ()f x 有最大值(1)2f -=;只有当 1a <-时,332a a a -<-,()f x 无最大值,所以所求 a 的取值范围是(,1)-∞-.【精选精练】1.(2023·全国·高三专题练习)若集合-1|2M x y x ==⎧⎨⎩,{}2|N y y x -==,则( )A .M N ⋂=∅B .M N ⊆C .N M ⊆D .M =N【答案】B 【解析】 【分析】利用集合间的基本关系来进行运算即可. 【详解】集合M 表示函数21y x =-2x -1>0,解得12x >.集合N 表示函数2y x 的值域,值域为()0,∞+,故选:B.2.(2022·全国·高三专题练习)下列函数中,其定义域和值域分别与函数lg 10x y =的定义域和值域相同的是( ) A .y =x B .y =lg xC .y =2xD .y x【答案】D 【解析】 【分析】求出函数lg 10x y =的定义域和值域,对选项逐一判断即可. 【详解】因函数lg 10x y =的定义域和值域均为()0,∞+, 对于A ,y x =的定义域和值域均为R ,故A 错误;对于B ,lg y x =的定义域和值域分别为()0,,R +∞,故B 错误; 对于C ,2y x =的定义域和值域均为R ,故C 错误;对于D ,y x=定义域和值域均为()0,∞+,故D 正确; 故选:D .3.(2022·全国·高三专题练习)若函数()21f x ax ax =-+R ,则a 的范围是( ) A .()0,4 B .[)0,4 C .(]0,4 D .[]0,4【答案】D 【解析】 【分析】分0a =、0a >、0a <讨论即可求解. 【详解】若()f x 的定义域为R ,则当0a =时,()1f x =满足题意;当0a ≠时,20Δ40a a a >⎧⎨=-≤⎩,解得:04a <≤; 当0a <时,无法满足定义域为R . 综上所述:04a ≤≤,D 正确. 故选:D4.(2023·全国·高三专题练习)已知函数()f x 的定义域为[]0,1,值域为[]1,2,那么函数()2f x +的定义域和值域分别是( )A .[]0,1,[]1,2B .[]2,3,[]3,4C .[]2,1--,[]1,2D .[]1,2-,[]3,4【答案】C 【解析】 【分析】由[]20,1x +∈可求出函数的定义域,由于()2y f x =+的图象是由()y f x =的图象向左平移2个单位得到,所以其值域不变,从而可得答案 【详解】令[]20,1x +∈得[]2,1x ∈--,即为函数()2y f x =+的定义域, 而将函数()y f x =的图象向左平移2个单位即得()2y f x =+的图象, 故其值域不变. 故选:C .5.(2022·江西·高三阶段练习(文))函数()s 2π2inxf x x =+在[0,1]上的值域为( ) A .[1,2] B .[1,3] C .[2,3] D .[2,4]【答案】B 【解析】 【分析】根据指数函数与正弦函数的单调性可得函数()f x 在上单调递增,从而可求()f x 的值域. 【详解】解:易知函数()s 2π2inxf x x =+在[0,1]上单调递增,且(0)1f =,(1)3f =, 所以()f x 在[0,1]上的值域为[1,3]. 故选:B .6.(2022·全国·高三专题练习)已知(12)3,1()ln ,1a x a x f x x x -+<⎧=⎨≥⎩的值域为R ,那么a 的取值范围是( ) A .(﹣∞,﹣1] B .(﹣1,12)C .[﹣1,12)D .(0,1)【答案】C 【解析】 【分析】先求出ln ,1y x x =≥的值域,然后确定(12)3,1y a x a x =-+<的值域所包含的集合,利用一次函数性质可得. 【详解】当x ≥1时,f (x )=ln x ,其值域为[0,+∞),那么当x <1时,f (x )=(1﹣2a )x +3a 的值域包括(﹣∞,0), ∴1﹣2a >0,且f (1)=(1﹣2a )+3a ≥0, 解得:12a <,且a ≥﹣1. 故选:C.7.(2023·全国·高三专题练习)函数f (x 2sin 12x π- )A .54,433k k πππ⎡⎤++⎢⎥⎣⎦ (k ∈Z ) B .154,433k k ⎡⎤++⎢⎥⎣⎦ (k ∈Z )C .54,466k k πππ⎡⎤++⎢⎥⎣⎦(k ∈Z ) D .154,466k k ⎡⎤++⎢⎥⎣⎦(k ∈Z )【答案】B 【解析】 【分析】由题意可得2sin 102x π-≥,然后利用正弦函数的性质求解即可【详解】 由题意,得2sin 102x π-≥,1sin22x π≥, 所以522,Z 626k x k k πππππ≤+≤≤+∈, 解得1544,Z 33k x k k +≤≤+∈,所以函数的定义域为()154,4Z 33k k k ⎡⎤++∈⎢⎥⎣⎦,故选:B8.(2023·山西大同·高三阶段练习)函数6()e 1||1x mxf x x =+++的最大值为M ,最小值为N ,则M N +=( ) A .3 B .4C .6D .与m 值有关【答案】C 【解析】 【分析】利用分离常数法对函数的式子变形,结合函数奇函数的定义及奇函数最值的性质即可求解. 【详解】由题意可知,()3e 16()3e 1||1e 1||1x x x mx mxf x x x =+=--+++++, 设()()3e 1e 1||1x x mxg x x =--+++,则()g x 的定义域为(),-∞+∞, 所以()()()()()3e 13e 1e 1||1e 1||1x x xx m x mx g x g x x x --⎡⎤-⎢⎥-=-+=--+=-+-+++⎢⎥⎣⎦--, 所以()g x 为奇函数, 所以()()max min 0g x g x +=,所以()()()()max min max min 336f x f x M N g x g x +=+=+++=, 故选:C.9.(2022·江苏南京·高三开学考试)已知函数()()()()5sin sin ,99f x x x g x f f x ππ⎛⎫⎛⎫=++-= ⎪ ⎪⎝⎭⎝⎭,则()g x 的最大值为( )A 2B 3C .32D .2【答案】B 【解析】 【分析】 记9t x π=+,()()33sin 2f x h t t t ==+,由三角函数的性质即可求出()g x 的最大值. 【详解】 记9t x π=+,则()()33sin sin sin 32f x h t t t t t π⎛⎫==++= ⎪⎝⎭, 所以()3sin 3,36h t t π⎛⎫⎡=+∈- ⎪⎣⎝⎭, 33π>,所以()()f f x 3故选:B.10.(2022·广东·石门高级中学高二阶段练习)函数()12cos f x x x x =+-的最小值为( ) A .1ππ B .22ππC .-1D .0【答案】C 【解析】 【分析】根据题意得到()f x 为偶函数,由0x ≥时,()12cos f x x x x =+-,利用导数求得函数的的单调区间,进而求得函数的最小值. 【详解】由题意,函数()12cos f x x x x =+-的定义域为R ,关于原点对称,且满足()()()1122cos cos f x x x x x x x f x -=-+---=+-=,所以()f x 为偶函数,当0x ≥时,()12cos f x x x x =+-, 可得()1sin 11022f x x xx=≥'+>,()f x 在单调递增,又由()f x 为偶函数,所以()f x 在(),0∞-单调递减,[)0,∞+单调递增, 所以()()min 01f x f ==-. 故选:C. 二、多选题11.(2023·全国·高三专题练习)已知函数122()log (2)log (4)f x x x =--+,则下列结论中正确的是( )A .函数()f x 的定义域是[4,2]-B .函数(1)=-y f x 是偶函数C .函数()f x 在区间[1,2)-上是减函数D .函数()f x 的图象关于直线1x =-对称 【答案】BD 【解析】 【分析】求出函数定义域为(4,2)-,A 选项错误;利用定义证明函数(1)=-y f x 是偶函数,B 选项正确;函数()f x 在区间[)1,2-上是增函数,故C 选项错误;可以证明f (x )的图象关于直线1x =-对称,故D 选项正确. 【详解】解:函数()()()()()1222log 2log 4log 24f x x x x x ⎡⎤=--+=--+⎣⎦, 由20,40x x ->+>可得42x -<<,故函数定义域为(4,2)-,A 选项错误;()()()21log 33y f x x x ⎡⎤=-=--+⎣⎦的定义域为()3,3-,设()()()2log 33,g x x x ⎡⎤=--+⎣⎦所以()()()()2log 33,g x x x g x ⎡⎤-=-+-+=⎣⎦即()1y f x =-是偶函数,B 选项正确;()()()()222log 24log 28f x x x x x ⎡⎤=--+=---+⎣⎦()22log 19x ⎡⎤=--++⎣⎦()212log 19x ⎡⎤=-++⎣⎦,当[)1,2x ∈-时,()219t x =-++是减函数,外层12log y t =也是减函数,所以函数()f x 在区间[)1,2-上是增函数,故C 选项错误;由()()()()22log 42=f x x x f x ⎡⎤--=-+-⎣⎦,可得f (x )的图象关于直线1x =-对称,故D 选项正确. 故选:BD 三、双空题12.(2023·全国·高三专题练习)已知函数()ln ,1e 2,1xx b x f x x +>⎧=⎨-≤⎩,若(e)3(0)f f =-,则b =_____,函数()f x 的值域为____. 【答案】 2 (][)2,e 22,--+∞【解析】【分析】根据(e)3(0)f f =-可解得b 的值,代入分段函数,结合对数函数及指数函数的值域求解分段函数的值域即可. 【详解】由(e)3(0)f f =-得13(1)b +=-⨯-,即2b =,即函数()ln 2,1e 2,1xx x f x x +>⎧=⎨-≤⎩, 当1x >时,ln 22y x =+>;当1x ≤时,(]e 22,e 2xy =-∈--.故函数()f x 的值域为(][)2,e 22,--+∞.故答案为:2;(][)2,e 22,--+∞.13.(2023·全国·高三专题练习)已知函数()121x f x a =+-为奇函数,则实数a =__,函数f (x )在[1,3]上的值域为__. 【答案】 1293,142⎡⎤⎢⎥⎣⎦【解析】 【分析】由()f x 是定义在(﹣∞,0)∪(0,+∞)上的奇函数可得f (﹣x )=﹣f (x ),代入可求出实数a ;再判断数f (x )在[1,3]上单调性,即可求出答案. 【详解】解:∵f (x )是(﹣∞,0)∪(0,+∞)上是奇函数, ∴f (﹣x )=﹣f (x ), 即121x -+-a121x =---a , 即212xx+-a 121x=---a , 则2a 121221121212x x xx x x=--=-=----1, 则a 12=, 则f (x )11212x =+-在[1,3]为减函数, 则f (3)≤f (x )≤f (1), 即914≤f (x )32≤, 即函数的值域为[914,32],故答案为:12;[914,32] 四、填空题14.(2022·全国·高三专题练习)函数()02lg 2112x y x x x -=++-的定义域是________.【答案】(3,1)(1,2)--⋃- 【解析】 【分析】要使该函数表达式有意义,只需20x ->,2120x x +->,10x +≠同时成立,解不等式即可求出结果. 【详解】 函数()02lg 2112x y x x x -=++-的解析式有意义,由22012010x x x x ->⎧⎪+->⎨⎪+≠⎩,即2341x x x <⎧⎪-<<⎨⎪≠-⎩,所以31x -<<-或12x -<<, 故该函数的定义域为(3,1)(1,2)--⋃-. 故答案为:(3,1)(1,2)--⋃-15.(2022·上海闵行·二模)已知函数()()41log 42x f x m x =+-的定义域为R ,且对任意实数a ,都满足()()f a f a ≥-,则实数m =___________;【答案】1 【解析】 【分析】根据条件得到()()f a f a =-,即()()41log 42xf x m x =+-为偶函数,根据()()f x f x -=列出方程,求出实数m 的值. 【详解】因为()()41log 42xf x m x =+-的定义域为R ,所以40x m +>恒成立, 故0m ≥,又因为对任意实数a ,都满足()()f a f a ≥-, 则对于实数a -,都满足()()f a f a -≥, 所以()()f a f a =-,所以()()41log 42x f x m x =+-为偶函数, 从而()()4411log 4log 422x x m x m x -++=+-, 化简得:()()4110x m --=,要想对任意x ,上式均成立,则10m -=,解得:1m =故答案为:116.(2022·上海市嘉定区第二中学模拟预测)已知函数()y f x =是定义域为R 的奇函数,且当0x <时,()1a f x x x=++.若函数()y f x =在[)3,+∞上的最小值为3,则实数a 的值为________.【答案】3【解析】【分析】根据已知条件及奇函数的定义求出当0x <时函数的解析式,再利用函数的单调性对a 进行分类讨论,确定单调性即可求解.【详解】由题意可知,因为0x >,所以0x -<, 所以()1a f x x x -=--+, 因为函数()f x 是定义域为R 的奇函数,所以()()1a f x f x x x=--=+-. 因为函数()y f x =在[)3,+∞上的最小值为3当0a ≤时,由函数的性质知,函数()f x 在[)3,+∞上单调递增;当3x =时,()f x 取得最小值为(3)23a f =+, 因为函数()y f x =在[)3,+∞上的最小值为3,所以233a +=,解得3a =(舍), 当09a <≤时,由函数的性质知,函数()f x 在[)3,+∞上单调递增;当3x =时,()f x 取得最小值为(3)23a f =+, 因为函数()y f x =在[)3,+∞上的最小值为3,所以233a +=,解得3a =, 当9a >时,由对勾函数的性质知,函数()f x 在),a ⎡+∞⎣上单调递增;在(a 上单调递减; 当x a =()f x 取得最小值为(11f a a a a ==,因为函数()y f x =在[)3,+∞上的最小值为3,所以213a =,解得1a =(舍), 综上,实数a 的值为3.故答案为:3.17.(2022·北京·清华附中模拟预测)已知函数()()2ln ,1,1x a x f x x a x +≥⎧⎪=⎨+<⎪⎩,下列说法正确的是___________.①当0a ≥时,()f x 的值域为[0,)+∞;②a ∀∈R ,()f x 有最小值;③R a ∃∈,()f x 在(0,)+∞上单调递增:④若方程1f x有唯一解,则a 的取值范围是(,2)-∞-.【答案】①②【解析】【分析】由分段函数解析式,讨论参数a ,结合二次函数、对数函数的性质研究()f x 的单调性、最值及对应值域,利用函数()f x 与1y =的交点情况判断参数范围.【详解】由2()y x a =+的对称轴x a =-,当1a >-时,则1x a =-<,且(,)a -∞-上递减,(,1)a -上递增,值域为[0,)+∞, 当1a =-时,则(,1)-∞上递减,值域为[0,)+∞,当1a <-时,则1x a =->,(,1)-∞上递减,值域为2((1),)a ++∞,对于ln y x a =+在[1,)+∞上递增,且值域为[,)a +∞,综上,0a ≥时()f x 的值域为[0,)+∞,①正确;当0a ≥时()f x 最小值为0,当0a <时()f x 最小值为a ,②正确;由211|(1)|ln1x x y a y a a ===+>=+=恒成立,故在(0,)+∞上不可能递增,③错误; 要使1f x 有唯一解,当1a <-时,在[1,)+∞上必有一个解,此时只需2(1)1a +≥,即2a ≤-;当1a =-时,在R 上有两个解,不合题设;当1a >-时,在(,)a -∞-上必有一个解,此时()211{1a a +≤>,无解.所以④错误.故答案为:①② 18.(2022·全国·高三专题练习)已知函数f (x )()221mx m x m =--+-的值域是[0,+∞),则实数m 的取值范围是__. 【答案】230⎡⎢⎣⎦, 【解析】【分析】将m 分为000m m m =><,, 三种情况讨论:当0m =时,()210f x x - 满足条件;当0m <时,由二次函数知开口向下,不满足条件;当0m >时,只需二次函数的0∆≥即可,解出m 的取值范围,综上得m 的取值范围.【详解】解:当0m =时,()()22121f x mx m x m x =--+--[0,+∞),满足条件;令()()221g x mx m x m =--+- ,()()0g x ≥当m <0时,()g x 的图象开口向下,故f (x )的值域不会是[0,+∞),不满足条件;当m >0时,()g x 的图象开口向上,只需()2210mx m x m --+-=的0∆≥,即(m ﹣2)2﹣4m (m ﹣1)≥0, ∴2323m ≤≤,又0m > ,所以230m <≤ 综上,230m ≤≤∴实数m 的取值范围是:230⎡⎢⎣⎦,, 故答案为:230⎡⎢⎣⎦,.。

求函数值域的常用方法

求函数值域的常用方法

求函数值域(最值)的方法大全函数是中学数学的一个重点,而函数值域(最值)的求解方法更是一个常考点, 对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,因此能熟练掌握其值域(最值)求法就显得十分的重要,求解过程中若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。

本文旨在通过对典型例题的讲解来归纳函数值域(最值)的求法,希望对大家有所帮助。

一、值域的概念和常见函数的值域函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域. 常见函数的值域:一次函数()0y kx b k =+≠的值域为R.二次函数()20y ax bx c a =++≠,当0a >时的值域为24,4ac b a ⎡⎫-+∞⎪⎢⎣⎭,当0a <时的值域为24,4ac b a ⎛⎤--∞ ⎥⎝⎦.,反比例函数()0ky k x=≠的值域为{}0y R y ∈≠. 指数函数()01x y a a a =>≠且的值域为{}0y y >. 对数函数()log 01a y x a a =>≠且的值域为R.正,余弦函数的值域为[]1,1-,正,余切函数的值域为R. 二、求函数值域(最值)的常用方法 1. 直接观察法适用类型:根据函数图象.性质能较容易得出值域(最值)的简单函数例1、求函数y =211x +的值域 解: 22111,011x x +≥∴<≤+ 显然函数的值域是:(]0,1例2、求函数y =2-x 的值域。

解: x ≥0 ∴-x ≤0 2-x ≤2故函数的值域是:[-∞,2 ] 2 、配方法适用类型:二次函数或可化为二次函数的复合函数的题型。

配方法是求二次函数值域最基本的方法之一。

对于形如()20y ax bx c a =++≠或()()()()20F x a f x bf x c a =++≠⎡⎤⎣⎦类的函数的值域问题,均可用配方法求解.例3、求函数y=2x -2*+5,*∈[-1,2]的值域。

41三角函数的最值与值域

41三角函数的最值与值域

三角函数的最值与值域【本课目标】(1)会求基本三角函数及其在区间上的最值; (2)能利用正、余弦函数的有界性求函数最值 (3)综合利用三角函数的图象和性质解决有关问题 【预习导引】课前十分钟,翻翻课本,动手填填 1、函数]32,6[,sin ππ∈=x x y 的值域为 2、12sin cos y x x=++的最大值为_______________3、函数x x y 2sin 2cos 87--=的最大值为 4、函数y=)2,2( cos 2cos ππ-∈+x xx 的最小值为 5、设02x π⎛⎫∈ ⎪⎝⎭,,则函数22sin 1sin 2x y x +=的最小值为 .6、(1)sin 2cos 1sin x x y x=-的值域为(2)22sin cos sin 1x xy x -=+ 的值域为7、已知2()2cos 2,f x x x a =++当]2,0[π∈x 时,︱()f x ∣<2,求a 的范围。

【三基探讨】探究、合作、交流.(要作点记录噢!)【典型例题】课中练一练、听一听;注重规范、总结规律.例1:⑴已知2()sin cos 2sin 2f x x x a x b a =++-的定义域为[,]62ππ,值域为[1,2],求,a b 的值.⑵求函数()3sin(80)5sin(140)f x x x =+++ 的最小值.例2:求函数的最值.(1)2211()(0)sin cos 2f x x xxπ=+<<;(2)xx y cos 2sin 2--=例3:已知x a x x f 2cos sin )(⋅-=的最大值为817,求实数a 的值.例4:(备选题)体育馆计划用运动场的边角地建造一个矩形健身室,如图,ABCD 是正方形地皮,扇形CEF 是运动场的一部分,半径为40m ,矩形AGHM 就是计划的健身室,G 、M 分别在AB 、AD 上,H 在弧EF 上,设矩形AGHM 面积为S ,∠HCF=θ,将S 表达为θ的函数,并且指出H 在弧EF 上何处时,健身室面积最大,最大值是多少?BCD EFHG【学后反思】三角函数的最值与值域【检测反馈】看清问题,提高速度,力求准确 1.y =si n 4x +c os 4x -1的值域为2.如果x ∈[0,π],那么y=si nx -c os x 的值域是 3.函数5cos sin 的最大值为x b x a y +=,则实数a +b 的最小值为4.已知 x 2+ y 2= 4,则231x y -+的最大值为 5.函数)]tan 31(lg[cos x x y+=的最大值是_____________.6.已知2α+β=π,求y = cos β-6sin α的最大值_____________,最小值是_____________. 7.si nx +si ny =31,求u=si nx -c os 2y 的最大值与最小值分别为8.已知0≤x <2π,a 为常数,求函数1sin 2cos )(2-+=x a x x f 的最大值.9.如图,半径为1的扇形中心角为3π,一个矩形的一边在扇形的半径上,求此矩形的最大面积.10.(选做题)已知17()()cos (sin )sin (cos ),(,).12f tg x x f x x f x x ππ==⋅+⋅∈(Ⅰ)将函数()g x 化简成sin()A x B ωϕ++(0A >,0ω>,[0,2)ϕπ∈)的形式; (Ⅱ)求函数()g x 的值域.A BCDO。

(完整word版)函数定义域、值域求法总结,推荐文档

(完整word版)函数定义域、值域求法总结,推荐文档

函数定义域、值域求法总结一、定义域是函数 yf x 中的自变量 x 的范围。

求函数的定义域需要从这几个方面下手: (1)分母不为零 (2)偶次根式的被开方数非负。

(3)对数中的真数部分大于 0。

(4)指数、对数的底数大于 0,且不等于 1(5)y=tanx 中 x ≠k π+π/2; y=cotx 中 x ≠k π等等。

( 6 ) x 0 中 x 0二、值域是函数 yf x 中 y 的取值范围。

常用的求值域的方法: ( 1)直接法 (2)图象法(数形联合) (3)函数单一性法( 4)配方法 (5)换元法 (包含三角换元) (6)反函数法(逆求法)( 7)分别常数法 (8)鉴别式法 (9)复合函数法( 10)不等式法 (11)平方法等等这些解题思想与方法贯串了高中数学的一直。

三、典例分析1、定义域问题例 1 求以下函数的定义域:① f ( x)1f ( x) 3x 2 ;③ f ( x)x 11;②2 xx 21解:①∵ x-2=0 ,即 x=2 时,分式无心义,1 x 2而 x 2 时,分式存心义,∴这个函数的定义域是x | x2 .2x②∵ 3x+2<0 ,即 x<-2时,根式3x 2 无心义,3而 3x 20 ,即 x2 2 才存心义,时,根式 3x32 ∴这个函数的定义域是{ x | x}.31③∵当 x1 0且2 x 0 ,即 x1 且 x2 时,根式 x1 和分式同时存心义,{ x | x 1 且 x 2 }2x∴这个函数的定义域是另解:要使函数存心义,一定:x 1 0 x 12 xx 2例 2 求以下函数的定义域:① f ( x)4 x 21② f (x)x 2 3x 4x 1 2③ f ( x)1 1111x⑤ yx2313x 73解:①要使函数存心义,一定:( x1) 0④ f ( x)x x4 x 2 1即:3x 3∴函数 f (x)4 x 21 的定义域为: [3, 3 ]②要使函数存心义,一定: x 23x 4 0x 4或 x 1x 1 2x3且 x 1x3或 3 x1或 x 4∴定义域为: { x| x3或 3 x1或 x 4}x1x③要使函数存心义,一定:1 0 x 1xx111 0211x1}∴函数的定义域为:{ x | x R 且 x 0, 1,2④要使函数存心义,一定:x 1 0x 1xxx 0∴定义域为:x | x1或 1xx 2 3 0x R⑤要使函数存心义,一定:x73x737 或x>7 ∴定义域为: { x | x 7}即 x<333例 3若函数 yax 2ax 1 的定义域是 R ,务实数 a 的取值范围a解:∵定义域是R,∴ ax 2ax1 0恒建立,a∴ 等价于a 010 a2a 24aa例 4 若函数 yf (x) 的定义域为 [ 1, 1],求函数 yf (x1) f ( x 1 ) 的定义域44解:要使函数存心义,一定:1 x15 314x33441 3 5 x41 x41 4x44∴函数 y f (x1) f ( x1) 的定义域为:x | 3x 3444 4例 5 已知 f(x) 的定义域为 [-1,1],求 f(2x -1)的定义域。

高三数学总复习 2.2函数的定义域和值域教案 新人教A版(1)

高三数学总复习 2.2函数的定义域和值域教案 新人教A版(1)

2014届高三数学总复习 2.2函数的定义域和值域教案新人教A版考情分析考点新知① 函数的定义域是研究一切函数的源头,求各种类型函数的定义域是高考中每年必考的试题.②函数的值域和最值问题也是高考的必考内容,一般不会对值域和最值问题单独命题,主要是结合其他知识综合考查,特别是应用题;再就是求变量的取值范围,主要是考查求值域和最值的基本方法.①会求简单函数的定义域.②掌握求函数值域与最值的常用方法.③能运用求值域与最值的常用方法解决实际问题.1. (必修1P27练习6改编)函数f(x)=x+1+12-x的定义域为________.答案:{x|x≥-1且x≠2}2. (必修1P27练习7改编)函数f(x)=(x-1)2-1,x∈{-1,0,1,2,3}的值域是________.答案:{-1,0,3}解析:f(-1)=f(3)=3,f(0)=f(2)=0,f(1)=-1,则所求函数f(x)的值域为{-1,0,3}.3. (必修1P31习题3改编)函数f(x)=2x5x+1的值域为____________.答案:⎩⎨⎧⎭⎬⎫y|y≠25解析:由题可得f(x)=2x5x+1=25-25(5x+1).∵ 5x+1≠0,∴ f(x)≠25,∴值域为⎩⎨⎧⎭⎬⎫y|y≠25.4. (原创)下列四组函数中的f(x)与g(x)表示同一函数的有________.(填序号)① f(x)=x0,g(x)=1x;② f(x)=xx,g(x)=x;③ f(x)=x2,g(x)=(x)4;④ f(x)=|x|,g(x)=⎩⎪⎨⎪⎧x,x≥0,-x,x<0.答案:④解析:两个函数是否为同一函数,主要是考查函数三要素是否相同,而值域是由定义域和对应法则所唯一确定的,故只须判断定义域和对应法则是否相同,④符合.5. (必修1P 36习题13改编)已知函数f(x)=x 2-2x ,x ∈[a ,b]的值域为[-1,3],则b -a 的取值范围是________.答案:[2,4]解析:f(x)=x 2-2x =(x -1)2-1,因为x∈[a,b]的值域为[-1,3],所以当a =-1时,1≤b ≤3;当b =3时,-1≤a≤1,所以b -a∈[2,4].1. 函数的定义域(1) 函数的定义域是指使函数表达式有意义的输入值的集合. (2) 求定义域的步骤① 写出使函数式有意义的不等式(组). ② 解不等式组.③ 写出函数定义域(注意用区间或集合的形式写出). (3) 常见基本初等函数的定义域 ① 分式函数中分母不等于零.② 偶次根式函数、被开方式大于或等于0. ③ 一次函数、二次函数的定义域为R .④ y =a x,y =sinx ,y =cosx ,定义域均为R . ⑤ y =tanx 的定义域为{x|x≠kπ+π2,k ∈Z }.⑥ 函数f(x)=x a的定义域为{x|x≠0}. 2. 函数的值域(1) 在函数y =f(x)中,与自变量x 的值对应的y 的值叫函数值,函数值的集合叫函数的值域.(2) 基本初等函数的值域① y =kx +b(k≠0)的值域是R .② y =ax 2+bx +c(a≠0)的值域:当a>0时,值域为[4ac -b24a,+∞);当a<0时,值域为⎝⎛⎦⎥⎤-∞,4ac -b 24a . ③ y =kx(k≠0)的值域为{y|y≠0}.④ y =a x(a>0且a≠1)的值域是(0,+∞). ⑤ y =log a x(a>0且a≠1)的值域是R . ⑥ y =sinx ,y =cosx 的值域是[-1,1]. ⑦ y =tanx 的值域是R . 3. 最大(小)值一般地,设函数f(x)的定义域为I ,如果存在实数M 满足: (1) 对于任意的x∈I,都有f(x)≤M(f(x)≥M);(2) 存在x 0∈I ,使得f(x 0)=M ,那么称M 是函数y =f(x)的最大(小)值. [备课札记]题型1 求函数的定义域例1 求下列函数的定义域: (1) y =12-|x|+lg(3x +1);(2) y =4-x2ln (x +1).解:(1)由⎩⎪⎨⎪⎧2-|x|≠0,3x +1>0⎩⎪⎨⎪⎧x≠-2且x≠2,x>-13, 解得x>-13且x≠2,所求函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x>-13且x≠2. (2) 由⎩⎪⎨⎪⎧ln (x +1)≠0,4-x 2≥0⎩⎪⎨⎪⎧x>-1且x≠0,-2≤x≤2, 解得-1<x<0或0<x≤2,所求函数的定义域为(-1,0)∪(0,2]. 变式训练(1) 求函数y =(x +1)|x|-x的定义域;(2) 若函数y =f(x)的定义域是[0,2],求函数g(x)=f (2x )x -1的定义域.解:(1) 由⎩⎪⎨⎪⎧x +1≠0,|x|-x>0,得⎩⎪⎨⎪⎧x≠-1,x<0, 所以x<-1或-1<x<0,即定义域是(-∞,-1)∪(-1,0).(2) 由⎩⎪⎨⎪⎧x -1≠0,0≤2x ≤2,得0≤x<1,即定义域是[0,1).题型2 求函数的值域例2 求下列函数的值域: (1) y =x -3x -2;(2) y =x 2-2x -3,x ∈(-1,4]; (3) y =2x -1x +1,x ∈[3,5];(4) y =x 2-4x +5x -1(x>1).解:(1) (换元法)设3x -2=t ,t ≥0,则y =13(t 2+2)-t =13⎝ ⎛⎭⎪⎫t -322-112,当t =32时,y 有最小值-112,故所求函数的值域为⎣⎢⎡⎭⎪⎫-112,+∞.(2) (配方法)配方,得y =(x -1)2-4,因为x∈(-1,4],结合图象知,所求函数的值域为[-4,5].(3) (解法1)由y =2x -1x +1=2-3x +1,结合图象知,函数在[3,5]上是增函数,所以y max=32,y min =54,故所求函数的值域是⎣⎢⎡⎦⎥⎤54,32.(解法2)由y =2x -1x +1,得x =1+y 2-y.因为x ∈[3,5],所以3≤1+y 2-y ≤5,解得54≤y ≤32,即所求函数的值域是⎣⎢⎡⎦⎥⎤54,32. (4) (基本不等式法)令t =x -1,则x =t +1(t>0),所以y =(t +1)2-4(t +1)+5t =t 2-2t +2t =t +2t -2(t>0).因为t +2t≥2t ·2t=22,当且仅当t =2,即x =2+1时,等号成立, 故所求函数的值域为[22-2,+∞). 备选变式(教师专享) 求下列函数的值域: (1) f(x)=1-x +x +3;(2) g(x)=x 2-9x 2-7x +12;(3) y =log 3x +log x 3-1.解:(1) 由⎩⎪⎨⎪⎧1-x≥0,x +3≥0,解得-3≤x≤1.∴ f ()x =1-x +x +3的定义域是[]-3,1. ∵ y ≥0,∴ y 2=4+2()1-x ()x +3,即y 2=4+2-()x +12+4()-3≤x≤1.令t ()x =-()x +12+4()-3≤x≤1.∵ x ∈[]-3,1,由t ()-3=0,t ()-1=4,t ()1=0, ∴ 0≤t ≤4,从而y 2∈[]4,8,即y∈[]2,22,∴ 函数f ()x 的值域是[]2,22.(2) g ()x =x 2-9x 2-7x +12=()x +3()x -3()x -3()x -4=x +3x -4=1+7x -4()x≠3且x≠4. ∵ x ≠3且x≠4,∴ g ()x ≠1且g ()x ≠-6.∴ 函数g ()x 的值域是()-∞,-6∪()-6,1∪()1,+∞. (3) 函数的定义域为{x|x>0且x≠1}. 当x>1时,log 3x>0,y =log 3x +log x 3-1≥2log 3x ·log x 3-1=1;当0<x<1时,log 3x<0,y =log 3x +log x 3-1 =-[(-log 3x)+(-log x 3)]≤-2-1=-3. 所以函数的值域是(-∞,-3]∪[1,+∞). 题型3 函数值域和最值的应用例3 已知函数f(x)=x 2+4ax +2a +6. (1) 若f(x)的值域是[0,+∞),求a 的值;(2) 若函数f(x)≥0恒成立,求g(a)=2-a|a -1|的值域. 解:(1) ∵ f(x)的值域是[0,+∞), 即f min (x)=0,∴ 4(2a +6)-(4a )24=0,∴ a =-1或32.(2) 若函数f(x)≥0恒成立,则Δ=(4a)2-4(2a +6)≤0,即2a 2-a -3≤0, ∴ -1≤a≤32,∴ g(a)=2-a|a -1|=⎩⎪⎨⎪⎧a 2-a +2,-1≤a≤1,-a 2+a +2,1<a ≤32. 当-1≤a≤1,g(a)=a 2-a +2=⎝ ⎛⎭⎪⎫a -122+74,∴ g (a)∈⎣⎢⎡⎦⎥⎤74,4; 当1<a≤32,g(a)=-a 2+a +2=-⎝ ⎛⎭⎪⎫a -122+94,∴ g (a)∈⎣⎢⎡⎭⎪⎫54,2. ∴ 函数g(a)=2-a|a -1|的值域是⎣⎢⎡⎦⎥⎤54,4. 备选变式(教师专享)已知函数f(x)=1-2a x -a 2x(a>1). (1) 求函数f(x)的值域;(2) 若x∈[-2,1]时,函数f(x)的最小值是-7,求a 的值及函数f(x)的最大值.解:(1) 由题意,知f(x)=2-(1+a x )2,因为a x>0,所以f(x)<2-1=1,所以函数f(x)的值域为(-∞,1).(2) 因为a>1,所以当x∈[-2,1]时,a -2≤a x ≤a ,于是f min (x)=2-(a +1)2=-7,所以a =2,此时,函数f(x)的最大值为2-(2-2+1)2=716.1. (2013·大纲)已知函数f(x)的定义域为(-1,0),则函数f(2x +1)的定义域为________.答案:⎝⎛⎭⎪⎫-1,-12 解析:由-1<2x +1<0,得-1<x<-12,所以函数f(2x +1)的定义域为⎝ ⎛⎭⎪⎫-1,-12.2. (2013·山东)函数f(x)=1-2x+1x +3的定义域为________.答案:(-3,0]解析:由题意,⎩⎪⎨⎪⎧1-2x≥0,x +3>0,所以-3<x≤0,即定义域为(-3,0].3. (2013·北京)函数f(x)=⎩⎪⎨⎪⎧log 12x ,x ≥1,2x ,x<1的值域为________.答案:(-∞,2)解析:当x≥1时,log 12x ≤log 121=0,即f(x)≤0;当x<1时,0<2x <21,即0<f(x)<2,所以函数f(x)的值域为(-∞,2).4. (2013·徐州三模)已知函数f(x)=⎩⎪⎨⎪⎧x +2,0≤x<1,2x +12,x ≥1,若a>b ≥0,且f(a)=f(b),则bf(a)的取值范围是________.答案:⎣⎢⎡⎭⎪⎫54,3解析:画出分段函数的图象,从图象可知,12≤b<1,1≤a<log 252,f(a)=f(b),得bf(a)=bf(b)=b(b +2)=(b +1)2-1在⎣⎢⎡⎭⎪⎫12,1上单调增,故bf(a)的取值范围是⎣⎢⎡⎭⎪⎫54,3.1. 设函数g(x)=x 2-2(x∈R ),f(x)=⎩⎪⎨⎪⎧g (x )+x +4,x <g (x ),g (x )-x ,x ≥g (x ),则f(x)的值域是________. 答案:⎣⎢⎡⎦⎥⎤-94,0∪(2,+∞)解析:由题意f(x)=⎩⎪⎨⎪⎧x 2+x +2,x <g (x ),x 2-x -2,x ≥g (x )=⎩⎪⎨⎪⎧x 2+x +2,x ∈(-∞,-1)∪(2,+∞),x 2-x -2,x ≥g (x ),x ∈(-1,2),下面分段求值域,再取并集. 2. 已知二次函数f(x)=ax 2-x +c(x∈R )的值域为[0,+∞),则c +2a +a +2c 的最小值为________.答案:10解析:由二次函数的值域是[0,+∞),可知该二次函数的图象开口向上,且函数的最小值为0,因此有a >0,4ac -14a =0,从而c =14a >0.又c +2a +a +2c =⎝ ⎛⎭⎪⎫2a +8a +⎝ ⎛⎭⎪⎫14a 2+4a 2≥2×4+2=10,当且仅当⎩⎪⎨⎪⎧2a =8a ,14a 2=4a 2,即a =12时取等号,故所求的最小值为10.3. 已知函数f(x)=log 13(-|x|+3)的定义域是[a ,b](a 、b∈Z ),值域是[-1,0],则满足条件的整数对(a ,b)有________对.答案:5解析:由f(x)=log 13(-|x|+3)的值域是[-1,0],易知t(x)=|x|的值域是[0,2],∵ 定义域是[a ,b](a 、b∈Z ),∴ 符合条件的(a ,b)有(-2,0),(-2,1),(-2,2),(0,2),(-1,2)共5个.4. 已知二次函数f(x)=ax 2+bx(a 、b 为常数,且a≠0)满足条件:f(x -1)=f(3-x),且方程f(x)=2x 有等根.(1) 求f(x)的解析式;(2) 是否存在实数m 、n(m <n),使f(x)定义域和值域分别为[m ,n]和[4m ,4n]?如果存在,求出m 、n 的值;如果不存在,说明理由.解:(1) f(x)=-x 2+2x.(2) 由f(x)=-x 2+2x =-(x -1)2+1,知f max (x)=1,∴ 4n ≤1,即n≤14<1.故f(x)在[m ,n]上为增函数,∴ ⎩⎪⎨⎪⎧f (m )=4m ,f (n )=4n ,解得⎩⎪⎨⎪⎧m =-1,n =0, ∴ 存在m =-1,n =0,满足条件.1. 函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质的基础,因此,我们一定要树立函数定义域优先意识.2. 函数的值域常常化归为求函数的最值问题,要重视函数单调性在确定函数最值过程中的作用.3. 求函数值域的常用方法有:图象法、配方法、换元法、基本不等式法、单调性法、分离常数法、导数法等,理论上一切函数求值域或最值均可考虑“导数法”,但在具体的解题中要与初等方法密切配合.请使用课时训练(A)第2课时(见活页).[备课札记]。

值域(精讲)(基础版)(原卷版)

值域(精讲)(基础版)(原卷版)

8.3 值域(精讲)(基础版)思维导图考点呈现考点一 直接型【例1-1】(2022·全国·高三专题练习)下列函数中,值域为()0 ,+∞的是( ) A .2y x B .2y x=C .2x y =D .2log y x =【例1-2】(2022·全国·高三专题练习)(多选)下列函数中是偶函数,且值域为[)0,+∞的有( )A .()()ln 1f x x =+B .1()f x x x=-C .()x x f x e e -=+D .42()21f x x x =-+【一隅三反】1.(2022·全国·高三专题练习)函数2()32f x x x =+-的值域为( ) A .[0,4] B .(,2]-∞C .[2,)+∞D .[0,2]2.(2022·浙江·高三专题练习)下列函数中,函数值域为(0,)+∞的是( ) A .2(1),(0,)y x x =+∈+∞ B .2log ,(1,)y x x =∈+∞ C .21y x =- D .21y x =-3.(2022·河南·模拟预测(文))下列函数中最小值为6的是( )例题剖析A .226y x x =++B .9|cos ||cos |y x x =+ C .933x x y =+D .9ln ln y x x=+考点二 换元型【例2】(2022·黑龙江)求函数2112y x x =--______.【一隅三反】1.(2022·全国·高三专题练习)函数()1f x x x =-___________.2.(2022·全国·高三专题练习)函数()2f x x x =-___.3.(2022·全国·高三专题练习)函数24y x x =-________.考点三 分离常数型【例3-1】(2022·全国·高三专题练习)函数()133x y x x +=>-的值域是( ) A .()1,+∞ B .()0,∞+C .()3,+∞D .()4,+∞【例3-2】(2022·全国·高三专题练习)函数()2211x x f x x x --=++的最大值与最小值的和是( )A .53B .23C .1D .23-【例3-3】(2022·全国·高三专题练习)函数()1221x x f x +=+的值域为( )A .()0,1B .(]0,1C .()0,2D .()1,2【一隅三反】1.(2022·全国·江西科技学院附属中学模拟预测(文))函数23()31x f x x -=+的值域( )A .11,,33⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭B .33,,22⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .11,,33⎛⎫⎛⎫-∞-⋃-+∞ ⎪ ⎪⎝⎭⎝⎭D .22,,33⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭2.(2022·全国·高一专题练习)求函数2211()212x x y x x -+=>-的值域.3.(2022·全国·高三专题练习)求函数34()56x f x x +=+的值域.考点四 已知值域求参数【例4-1】(2022·全国·高三专题练习)已知函数()114,10lg ,10a x a x y x x ⎧-+<=⎨≥⎩的值域为R ,则实数a 的取值范围是( ) A .(),1-∞ B .9,4⎡⎫-+∞⎪⎢⎣⎭C .9,14⎡⎫-⎪⎢⎣⎭D .9,14⎛⎫- ⎪⎝⎭【例4-2】(2022·全国·高三专题练习)已知函数()24f x x x =-在[]0,m 上的值域为[]4,0-,则实数m 的取值范围是( ) A .(]0,2 B .[]2,4 C .(]0,4 D .(],2-∞.【一隅三反】1.(2022·全国·高三专题练习)若函数213()22f x x x =-+的定义域和值域都是[1,]b ,则b =( ) A .1 B .3C .3-D .1或32.(2022·全国·高三专题练习)已知函数()()343,1log ,1a x a x f x x x ⎧-+<=⎨≥⎩的值域为R ,则实数a的取值范围是( ) A .()2,4- B .[)2,4- C .(],2-∞- D .{}2-3.(2022·全国·高三专题练习)若函数()221++=+x x af x x ()0x ≥的值域为[),a +∞,则实数a 的取值范围是( ) A .(],2-∞B .0,1C .(],1-∞D .[]1,2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识梳理
在函数的三要素中, 定义域和值域起决定作用, 而值域是由定义域和对应法则共同确定。 研究函数的值域, 不但要重视对应法则的作用, 而且还要特别重视定义域对值域的制约作用。 确定函数的值域是研究函数不可缺少的重要一环。 定义:因变量 y 的取值范围叫做函数的值域(或函数值的集合) 。 求值域的几种方法: 一、观察法(根据函数图象、性质能较容易得出值域(最值)的简单函数) 二、 配方法 (当所给函数是二次函数或可化为二次函数的复合函数时, 可利用配方法求值域) 三、 反函数法 (分子、 分母只含有一次项的函数, 也可用于其它易反解出自变量的函数类型) 对于存在反函数且易于求得其反函数的函数, 可以利用 “原函数的定义域和值域分别为其反 函数的值域和定义域”这一性质,先求出其反函数,进而通过求其反函数的定义域的方法求 原函数的值域。 四 、 判 别式 法 (分子、分 母中含 有二次 项的函数 类型, 此函数 经过变形 后可以 化为
【适用场合】当堂例题 【难度系数】3
【试题来源】 【题目】求
1 上的值域 f ( x) x 2 ax 6 在 1,
【答案】见解析 【解析】解答:由函数的图像可知,函数的最值跟 a 的取值有关,所以进行分类讨论: ① 当 a 2 时,对称轴在 x 1 的左侧,所以根据图像可知,
高一课程
“函数的值域”
学生姓名 教师姓名 授课日期 授课时长

知识定位
本讲内容: 函数的值域;求函数值域的基本题型;函数值域的求解方法 掌握目标:1. 能够准确识别所求最值得类型 2. 运用适当的方法求解各类函数的值域 重点与难点:求函数的值域 平时考试分析: 函数问题是无论平时的考试或者高考中一定会考查的问题,是必须掌握的 基础, 它所涉及到的知识面广, 方法灵活多样, 只有方法运用适当, 才能起到简化运算过程, 避繁就简,事半功倍。
【试题来源】
2x 2 4x 7 【题目】求函数 y 2 的值域。 x 2x 3
【答案】见解析 【解析】由于本题的分子、分母均为关于 x 的二次形式,因此可以考虑使用判别式法,将原
x 函数变形为:
2
y 2 xy 3 y 2 x 2 4x 7 整理得: ( y 2) x 2 2( y 2) x 3 y 7 0 当 f ( x) x 2 2 x 3 0
【试题来源】 【题目】求函数 y
2x 的值域。 x 1
【答案】见解析 【解析】由于本题中分子、分母均只含有自变量的一次型,易反解出 x,从而便于求出反函 数。
y
y 2x x 反解得 x 即y 2 y x 1 2 x
故函数的值域为: y (,2) (2,) 。 (反函数的定义域即是原函数的值域) 【知识点】函数的值域 【适用场合】当堂例题 【难度系数】3
④ 当 2 a 时,对称轴在 x 1 的右侧,所以根据图像可知,
f max f (1) 7 a , f min f (1) 7 a
所以此时的值域为
7 a, 7 a
【知识点】函数的值域 【适用场合】当堂练习 【难度系数】4
知识点二: 求分式函数的值域问题
【试题来源】 【题目】求函数 y
1 的值域。 x 1 1
分析:首先由 解:
x 1 0,得 x 1 +1 1,然后在求其倒数即得答案。
1 1, 函数的值域为(0,1]. x 1 1
x 1 0 x 1 +1 1, 0<
【知识点】函数的值域 【适用场合】当堂练习 【难度系数】3
知识点一:求二次函数的值域问题
【试题来源】 【题目】函数 A. B. C. D. 【答案】 【解析】

的值域为()
【知识点】函数的值域 【适用场合】当堂例题 【难度系数】1
【试题来源】 【题目】求函数 y 【答案】见解析 【解析】先将此函数化成隐函数的形式得: yx
2
x 1 x2 2 x2
a2 6 , 7 a 所以此时的值域为 4
③ 当 0 a 2 时,对称轴在 y 轴与 x 1 之间,所以根据图像可知,
f max f (1) 7 a , f min
a a2 f( ) 6 2 4
a2 6 , 7 a 所以此时的值域为 4
a 2 b 2 2ab, a b 2 ab ) ,利用此法求函数的值域,要合理地添项和拆项,添项和拆
项的原则是要使最终的乘积结果中不含自变量,同时,利用此法时应注意取 " " 成立的条
件。 ) 八、分离常数法(分式且分子、分母中有相似的项,通过该方法可将原函数转化为为 y k f ( x) ( k为 常数)的形式) 九、单调性法(利用函数在给定的区间上的单调递增或单调递减求值域)
的值域。
(2 y 1) x 2 y 1 0 ,(1)
这是一个关于 x 的一元二次方程,原函数有定义,等价于此方程有解,即方程 (1)的判别式
(2 y 1) 2 4 y(2 y 1) 0 ,
解得:
1 2
y1 2。
1 1
故原函数的值域为: y [ 2 , 2 ] 。 【知识点】函数的值域
f max f (1) 7 a , f min f (1) 7 a
所以此时的值域为
7 a, 7 a
a a2 f( ) 6 2 4
② 当 2 a 0 时,对称轴在 x 1 与 y 轴之间,所以根据图像可知,
f max f (1) 7 a , f min
A( y) x 2 B( y) x C( y) 0 的形式,再利用判别式加以判断)
五、换元法(通过简单的换元把一个函数变为简单函数,其题型特征是无理函数、三角函数 (用三角代换)等) 六、数形结合法(对于一些能够准确画出函数图像的函数来说,可以先画出其函数图像,然 后利用函数图像求其值域) 七、不等式法(能利用几个重要不等式及推论来求得最值。 (如:
相关文档
最新文档