平面图形的密铺

合集下载

平面图形的密铺(1)

平面图形的密铺(1)
总结得非常好,这些图形都能镶嵌,因为它们的内角和度数都是360°的约数。
2)学生讨论完成课本Pቤተ መጻሕፍቲ ባይዱ4的议一议
3)动手操作:
A在一个正方形的内部按图1的方式剪去一个正三角形,并平移,形成图2,以这个新图案为“基本单位”能否进行密铺?若能,请设计一幅精美的密铺图案。
B将以上正方形剪成4个全等的直角三角形,用这4个直角三角形拼出符合下列要求的图形(全部用上)。
2、用多边形进行密铺时,相拼接的边相等,每个拼接点处各个角的和等于360°.
3、用同一种三角形和同一种四边形都可以进行密铺.
1)完成P55习1
2)请同学们设计一幅多边形镶嵌的美丽图案.看哪位同学的设计有新意!相信同学们都能发挥自己的聪明才智,设计出绚丽多彩的图案来
通过图案理解密铺的定义
学生动手制作,三角形、四边形的形状,可以是任意的,但裁剪出的每种图形一定是全等形.
(1)不是正方形的菱形(一个)
(2)不是正方形的矩形(一个)
(3)梯形(一个)
(4)不是矩形和菱形的平行四边形(一个)
(5)不是梯形和平行四边形的四边形(一个)
(6)与以上画出的图形不全等的其他四边形(能拼几个)
通过本节课的学习你有哪些收获?
1、用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙,不重叠地铺成一片,这就是平面图形的密铺.
用任意三角形可以镶嵌成一个平面图案,用任意四边形也可以镶嵌成一个平面图案
归纳得出多边形平面图形密铺的条件
以小组为单位,任意剪出一些形状、大小相同的四边形,拼拼看
平面图形的密铺.
板书
设计
七板书设计
平面图形的密铺
定义
条件
课后反思
教学

镶嵌(数学八年级上P26)

镶嵌(数学八年级上P26)

镶嵌(八年级上P26)1.平面图形的镶嵌(密铺)概念:用形状、大小完全相同的一种或几种平面图形实行拼接,彼此之间不留空隙、不重叠地铺成一片,就是平面图形的镶嵌(密铺)。

2.理解平面图形的密铺:(1)要用几个形状、大小完全相同的图形不留空隙、不重叠地密铺一个平面,需使得拼接点处的各角之和为360°。

(2)单一多边形密铺:任意三角形(6个)、四边形(4个)、正六边形(3个)能够密铺;(3)单一正n边形密铺的条件:假设360°除以正n边形的一个内角等于整数,则能够单独用它密铺;就是说:正多边形的一个内角度数能整除360°。

(4)多种正多边形组合起来镶嵌成一个平面的条件:a. n个正多边形中的一个内角的倍数的和是360°;b. n个正多边形的边长相等,或其中一个或n个正多边形的边长是另一个或n个正多边形的边长的整数倍。

典型例题为了美化校园环境,在学校广场用两种边长相等的正多边形地砖镶地面,现已有一种正方形,则另一种正多边形能够是()A.正三角形B.正五边形C.正六角形D.正三角形或正八边形答案:D解析:分别求出各个正多边形的每个内角的度数,结合镶嵌的条件即可求出答案.解:正三角形的每个内角是60°,正方形的每个内角是90°,∵3×60°+2×90°=360°,∴正三角形能够;正五边形每个内角是180°-360°÷5=108°,正方形的每个内角是90°,108m+90n=360°显然n取任何正整数时,m不能得正整数,故不能铺满;正方形的每个内角是90°,正六边形的每个内角是120度.90m+120n=360°,m=4-4/3n,显然n取任何正整数时,m不能得正整数,故不能铺满;正方形的每个内角是90°,正八边形的每个内角为:180°-360°÷8=135°,∵90°+2×135°=360°,∴正八边形能够.应选D.。

《平面图形的密铺》教学案例 水果湖一中刘军

《平面图形的密铺》教学案例 水果湖一中刘军

如何引导学生开展探究性数学学习-------------《平面图形的密铺》教学案例湖北省水果湖第一中学刘军·使用教材义务教育课程标准实验教科书数学(北师大版)八年级下册·教学环境多媒体教室(有视频展示台)一、教学目标1. 知识与技能目标:(1)通过对“拼地板”的探索,让学生经历探索多边形密铺(镶嵌)的条件的过程,强化学生对多边形内角和其及有关几何事实的认识,知道任意一个三角形、四边形或正六边形可以密铺;并能运用这几种图形进行简单的密铺设计;(2)培养学生观察、动手操作能力。

2. 过程与方法目标:渗透初步的数学“建模”思想,引导学生在拼接实验的过程中,通过观察、判断、归纳、总结并发现规律,并能用所发现的规律去解决一些实际问题,进一步发展学生的合情推理能力。

3. 情感与态度目标:(1)让学生进一步体会平面图形在现实生活中的广泛应用,将书本知识与生产生活实践有机地结合;(2)开发、培养学生实践意识、创新精神和团结协作的精神;(3)学生在活动中感受数学的朴实之美,数学的和谐之美,进一步发展学生的审美情趣。

二、教材分析教学重点:探索多边形密铺的条件的过程以及多边形密铺的条件。

教学难点:如何运用多边形的有关知识,解决密铺中的问题,并寻找多边形密铺的条件。

三、学校及学生状况分析我校是湖北省教育厅直属的示范中学,办学条件良好,有一栋教学楼,一栋实验楼,一栋综合楼,一栋办公楼,一个多功能报告厅,3间多媒体教室,每个班配有电脑和大屏幕电视。

本班的学生绝大部分来自武汉大学等高校和省直机关,有较好的学习基础。

四、课前准备教学设备或教辅工具:1.将学生按四人一组进行分组。

2.多媒体、教学图片。

3.颜色各异的各种多边形图纸。

学生课前准备:全等的多边形纸板、胶水、笔、纸等。

五、教学实录1.创设情境,提出本次学习活动的主题师:在我们的周围有一些美丽、神奇的图案,请我们一起来欣赏一组图案:(多媒体展示一组时装秀和密铺图案)师:这些图案有什么共同特征呢?(同学们分组讨论、交流)生:这些图案是用一种或几种形状相同的图形组成的。

平面图形的密铺课件

平面图形的密铺课件
平面图形的密铺
探索平面图形的密铺,了解它的定义、重要性以及在实际生活和数学领域中 的应用。
什么是平面图形的密铺?
平面图形的密铺是指将一个或多个几何图形重复无缝地填充平面,使整个平面覆盖无遗。
为什么要学习平面图形的密铺?
1 美学价值
2 数学应用
3 创造力培养
平面图形的密铺可以创造出 美观的图案和装饰,提升空 间的美感。
平面图形密铺的稳定性与对称性
1 稳定性
密铺的图案应该能够保持平衡和稳定,不易倾斜或塌陷。
2 对称性
对称的图案可以增加美感和吸引力,使整个设计更加平衡。
平面图形密铺在日常生活中的应用
1
地板和墙面瓷砖
通过平面图形的密铺,可以打造出独特的地板和墙面装饰效果。
2
纺织品设计
பைடு நூலகம்
平面图形的密铺经常用于设计纺织品,如窗帘、地毯和床上用品。
制作自己的平面图形密铺
利用几何板或计算机软件,你可以创建自己的平面图形密铺图案。发挥创意, 加入你的个性。
选择合适的材料和工具
平面图形模具
可以使用模具来制作符合规定 形状的平面图形。
数学工具
尺子、直角板等工具可以帮助 你精确测量和绘制图形。
颜料和画笔
如果你想制作手绘的密铺图案, 准备一些颜料和画笔。
平面图形密铺的发展
探索平面图形密铺的未来发展,挖掘现有技术的不足和未解决的问题。
创新思维对平面图形密铺的影响和作用
研究创新思维如何推动平面图形密铺的发展和应用,探索破旧立新的可能性。
平面图形密铺在现代艺术设计 中的应用
探索平面图形密铺在现代艺术中的独特应用,结合数学原理和艺术创意。
平面图形密铺与可持续发展的 关系

初中数学知识点精讲精析 平面图形的密铺

初中数学知识点精讲精析 平面图形的密铺

4·7 平面图形的密铺1. 密铺的定义用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠的铺成一片,叫作平面图形的密铺.2. 密铺的特征(1)边长都相等;(2)顶点公用;(3)在一个顶点处各正多边形的内角和为3600.3. 能够密铺的多边形能够密铺的多边形有三种:三角形、四边形、正六边形.学习中不仅要了解能密铺的多边形有哪些,还要了解为什么这些图形能够密铺,除了通过实际操作探索外,还要明白内在的数学上的理由.因为三角形的内角和是180°,把相同三角形的顶点拼结在一起时能够容纳6个角(其中三组角两两相等,恰好是两个三角形的内角),可以无重叠无空隙地拼接在一起,四边形是同样的解释.正六边形是因为它的每个内角是120°,把三个正六边形拼接在一起,三个内角的和恰为360°,也能无重叠、无空隙地拼接在一起.难点:不理解密铺所具备的条件.密铺所具备的条件是:多边形的几个内角拼在一起,恰好是360°,即这几个内角的和为360°.易错点:误认为边数为偶数的正多边形都能够密铺.比如:认为正八边形、正十边形可以密铺;其实正八边形、正十边形不能密铺,理由是正八边形的每个内角为135°,两个内角拼在一起小于360°,三个内角拼在一起大于 360°.不能无重叠、无空隙地拼在一起;正十边形也是同样的道理. 例1. 由7个大小、形状完全相同的矩形不重复,无重叠地拼成如图所示的大矩形,大矩形的周长为68,则此大矩形的面积为多少?解:设小矩形的长为x ,宽为y ,由图可知:53452y x y y x ++==⎧⎨⎩即:63452y x y x +==⎧⎨⎩∴=∴=y x 410,∴小矩形的面积为4×10=40,大矩形的面积为7×40=280一变:如图所示,正方形是由K 个形状大小完全相同的矩形密铺而成,其中上下各横排2个,中间竖排若干个,求K 的值.一变解:∴中间有4个矩形,∴共有8个矩形,即:K=8.点拨:此种题要与代数知识、及密铺的一些知识结合起来考虑.设正方形的边长为,矩形的宽为,则矩形的长为a x a 2由图可知:,a x a x a 224+==。

北师大版 四年级下册数学《密铺》(课件) (3)

 北师大版 四年级下册数学《密铺》(课件) (3)
为什么可以呢?
为什么三角形和四边形都可以密铺呢?
密铺的定义 用形状、大小完全相同的一种或几种平 面图形进行拼接,彼此之间不留空隙、不重叠地铺 成一片,这就是平面图形的密铺,又称做平面图形 的镶嵌。 三角形的内角和是180°,是一个周角的一半,四边 形的内角和是360°,正好是一个周角,所以三角形 和四边形都可以密铺。
交流反思
1.请按照下面的方法试一试,你有什么发现?
2.在上面的活动中,你有什么收获?还有那些想要进一步研究的 问题?
密铺与图形的 角有关系······
让我们继续写下去! 所有的图形 都能密铺吗?
结合下面的图形说一说:真的什么图形都能密铺吗?Βιβλιοθήκη 并不是所有图形都可以密铺的:
正三角形、正四边形和正六边形外,其它正多边形都不可 以密铺。 正六边形可以密铺,因为它的每个内角都是120°,在每个拼接 点处恰好能容纳3个内角;正五边形不可以密铺,因为它的每 个内角都是108度,而360°不是108的整数倍,在每个拼接点 处的内角不能保证没空隙或重叠现象;除正三角形、正四边形 和正六边形外,其它正多边形都不可以密铺平面。
1.什么图形可以密铺?
2.为什么有的图形可以密铺呢?
来聊聊你的收获吧!
谢谢大家!
数学好玩
探索:密铺
观察下列图片,说一说什么是密铺。
密铺,即面图形的镶嵌,用形状、大小完全相同的几种 或几十种平面图形进行拼接,彼此之间不留空隙、不重 叠地铺成一片,这就是平面图形的密铺,又称做平面图 形的镶嵌。
提出问题
什么图形可以密铺?
为什么有的图形可以密铺呢?
······
这些问题,我们都留到课后来探索 相信认真听讲的你,马上就会解答出来!
本次活动任务: 三角形能不能密铺? 四边形可不可以?

平面图形的密铺知识精讲

平面图形的密铺知识精讲
成 30 , 6 。 因而 可 由 以下 几 种 铺 法 . 解 : 法 如 图 4所 示 : 铺
. .. .+ ; + 。+ 。. ; . . .



.. 。.
。+
。.
。.
。.
。.
。.
。.
- 致掌大世界 0。 . ◆ . ◆ . ++ 。. + _ . 。; 。; 。
图 3
三角形可 以密铺 ; 因为正方 形的内角是 9 。 30 9 。 0 ,6 。÷ 0 :4 所 以正 方形 可 以密 铺 ; , 因为 正 六 边形 的 内角 是 10 ,6 。 2 。 , 以正六 边形 可 以密铺. 2 。30 ÷10 =3 所 而正 五
图4










知识 点 2 能 密 铺 的 同一 种 图 形 : 当 绕一 点 拼 在 一 起 的 几 个 多 边 形 的 内 角 加 在 一 起 恰好组成一个周角时 , 或者说当一个正 多边形 的内角能 整 除 30 时 , 个 正 多 边形 就 可 以密铺 . 6。 这 因 为正 三 角 形 的 内角 是 6 。30 ÷ 0 = , 以 正 0 。6 。 6 。 6 所

实践与应用 : 请用正三角形和正方形尽 可能多的设 计出不 同效果的铺满平面的方法. 分析 可用正三角形 和正方形绕一点混铺 , 也可以 绕一点分别利用一种单独铺设 ; 正三角形 的内角是 6 。 o, 正方形 的内角是 9 。 当 3个 6 。 2个 9 。 一点时 , 0, o与 0绕 可 围 成一 个 30 ; 6 。6个 6 。 围 成 30 ; o可 6 。4个 9 。 可 围 0也

数学中密铺的定义

数学中密铺的定义

数学中密铺的定义
密铺(Tiling),在数学领域中,尤其是在几何学和组合学里,指的是用一种或多种形状的图形填满平面上一个给定区域的过程,不留任何空隙,也不重叠。

这些图形通常是多边形,如正方形、三角形或其他多边形,它们能够按照一定的规则排列,使得它们的边缘精确对齐,完全覆盖目标区域。

密铺有一些重要的特征:
1. 无空隙:图形之间紧密排列,不存在未被覆盖的空白区域。

2. 不重叠:用于密铺的图形不会相互重叠,每个图形都占据自己独立的空间。

3. 周期性:在密铺中,图形的排列通常具有某种程度的规律性和周期性,可以沿一个或多个方向平移而重现相同的图案。

4. 边界匹配:图形边缘之间的匹配必须精确无误,这样才能保证整个平面的连续性。

密铺可以分为几种类型:
正规铺砌(Regular tiling):使用同一种多边形进行铺砌,并且每个顶点周围的图形环境和排列顺序都相同。

半正铺砌(Semiregular tiling):由两种或两种以上不同的多边形构成,这些多边形按照一定的方式组合在一起,并且在顶点处呈现对称性。

阿基米德铺砌(Archimedean tiling):由两种或两种以上的多
边形组成,这些多边形在顶点处相遇的次数是相同的,但它们的形状不一定相同。

彭罗斯铺砌(Penrose tiling):非周期的密铺方式,由两种或两种以上的菱形组成,无法通过平移来复制整个图案。

密铺不仅是数学研究的对象,它在艺术、建筑、计算机科学等领域也有广泛的应用。

在数学中,研究密铺可以帮助我们理解平面和空间的填充问题,以及如何利用几何形状创造美观且实用的设计。

平面图形的密铺课件

平面图形的密铺课件
,还能降低建筑物的重量和成本。
新技术的应用
总结词
随着数字化和智能化技术的快速发展,新的 设计软件和制造技术为平面图形的密铺提供 了更高效和精准的实现方式。
详细描述
利用计算机辅助设计软件,设计师可以更加 方便地创建和修改密铺图案。同时,提供了可能。这些技术不仅可以提高 设计效率,还能降低生产成本,实现个性化 定制。
01
拼图需要多块不同形状的图形拼 凑在一起,而密铺则是由单一或 多个相同或不同形状的图形完整 地填满一个平面。
02
拼图通常需要一定的技巧和耐心 ,而密铺则更多地关注图形的特 性和规律。
02 常见的平面图形
三角形
三角形可以密铺成平面图案,通过将等边或等腰三角形进行拼接,可以形成丰富多 样的图案。
三角形密铺时,需要确保相邻的三角形之间没有空隙,并且每个三角形的顶点都与 其它三角形的顶点相接。
在实际应用中,这一规则对于保证密 铺的质量和效果至关重要,任何边长 的不匹配都可能导致密铺失败或效果 不佳。
这一规则确保了密铺的连续性和完整 性,使得图形之间无缝衔接,形成连 续的表面覆盖。
完全相等的角
与边长相等的规则类似,所有用于密铺 的图形角度也必须完全相等。这要求在 密铺过程中,每个图形的内角和外角都
密铺的特性
密铺图形之间没有重叠,也没有 空隙,能够完全填满一个封闭的 空间。
密铺的特性
01
02
03
完整性
密铺图形能够完全填满一 个平面,不留任何空隙。
无重叠性
密铺图形之间不会出现重 叠现象,每个图形都有其 固定的位置。
无空隙性
密铺图形之间没有空隙, 紧密相连,形成一个完整 的图案。
密铺与拼图的区别
装饰画制作

《平面图形的密铺》(一)

《平面图形的密铺》(一)

济宁第十五中学导学案济宁第十五中学导学案周次 1 课时 4 备课人Zjw教后反思课题8.2简单的平移作图(2)学习目标1、经历对图形进行观察、分析、欣赏和动手操作、画图等过程,掌握有关画图等过程,掌握有关画图的操作技能,发展初步的审美能力,增强对图形欣赏的意识。

2、能在直角坐标系中作出简单平面图形平移后的图形,会根据图形平移前后一对对应点的坐标及其它点的坐标,写出这些点平移后(或前)对应点的坐标。

重点:会根据图形平移前后一对对应点的坐标及其他点的坐标,写出这些点平移后(或前)对应点的坐标。

难点:能在方格纸上作出简单平面图形平移后的图形。

复习引入导入新知1、作图需要的条件是什么?2、作图的方法基本方法是什么?3、想一想:(小组合做)如图中的图形是将点(-2,2),(-1,6),(1,6),(2,2),(-2,2)用线段顺次连接而得到的。

⑴如果将图中图形上所有各点的横坐标分别加6,纵坐标保持不变,你能得到一个怎样的图形?画一画⑵如果再将(1)中得到的图形上所有各点的横坐标保持不变,纵坐标分别减4,你又能得到一个怎样的图形?画一画⑶如果将图中图形上所有各点的横坐标分别加6,纵坐标分别减4,你会得到一个怎样的图形?图形原来的位置、平移的方向以及平移的距离以局部带整体的平移作图方法,确定图形的关键点动手操作,体⑷比较⑴⑵中的两次变化与⑶中的一次变化,你有什么发现?典例精析巩固新知例如图,A,B,C三点的坐标分别为A (1,-1),B(3,1)C (2,3),将△ABC平移后得到△A'B'C',已知点A平移到点A'(-3,1).⑴写出B',C'两点的坐标。

⑵画出△A'B'C'.当堂检测强化新知1.图中的图案是由一个正方形挖去一个半圆和一个等腰直角三角形得到的。

已知这个图案上的点M(1,-3)经过平移后坐标变为M '(5,-6)。

⑴分别写出点A,B,C,D平移后得到的点A',B',C',D'的坐标;⑵画出该图案平移后的图案。

平面图形密铺的特点:

平面图形密铺的特点:

平面图形密铺的特点(1)用一种或几种全等图形进行拼接。

(2)拼接处不留空隙、不重叠。

(3)连续铺成一片。

能密铺的图形在一个拼接点处的特点是:几个图形的内角拼接在一起时,其和等于360º,并使相等的边互相重合.问题1:用形状大小完全相同的正三角形能否密铺?观察每个拼接点处有几个角?他们之间有什么关系?用大小完全相同的正三角形可以密铺,每个拼接点处有六个角,他们的和为360度所以,用6个这样的三角形就可以组合起来密铺成一个平面。

问题2:用同一种正方形可以密铺吗?观察每个拼接点处有几个角?他们之间有什么关系?拿出自制的正方形演示拼接,观察分析,小组交流探讨出结论。

也可以密铺,每个拼接点处有四个角,他们的和也是360度。

问题3:正五、六边形能否密铺?正七、八边形呢?请简述你的理由。

通过上面的长方形、正方形的学习的方法学生很快就会知道:正六边形能密铺。

因为正六边形的每个内角都120度,在每个拼接点处,恰好能容纳下3个内角,而且相互不重叠,没有空隙。

而正五边形的每个内角都是108°,360不是108的整数倍。

在每个拼接点处,三个内角之和为324°,小于360°,而四个内角之和又大于360°。

在每个拼接处,拼三个内角不能保证没空隙,而拼四个角时,必定有重叠现象. 通过实际的拼摆、探究看一看得出:要用正多边形密铺成一个平面的关键是看:这种正多边形的一个内角的倍数是否是360°,在正多边形里,正三角形的每个内角都是60°,正四边形的每个内角都是90°,正六边形的每个内角都是120°,这三种多边形的一个内角的倍数都是360°,而其他的正多边形的每个内角的倍数都不是360°,所以说:在正多边形里只有正三角形、正四边形、正六边形可以密铺,而其他的正多边形不可密铺。

只有正三角形、正方形和正六边形可以密铺,其他正多边形不可以密铺吗?探究二:用一种任意多边形密铺问题1:用任意几个全等的三角形能否密铺?观察每个拼接点处有几个角?他们与这种三角形有什么关系?(学生分组拼接、讨论,寻找规律,教师巡视指导) 结论:任意全等的一种三角形可以密铺,每个拼接点处有六个角(其中有三组分别相等)这六个角的和是360 。

初一知识点:平面图形的密铺知识点

初一知识点:平面图形的密铺知识点

初一知识点:平面图形的密铺知识点读书使学生认识丰富多彩的世界,猎取信息和知识,拓展视野。

接下来小编为大伙儿精心预备了平面图形的密铺知识点,期望大伙儿喜爱!1.用形状、大小完全相同的三角形能够密铺.因为三角形的内角和为18 0°,因此,用6个如此的三角形就能够组合起来镶嵌成一个平面.从用三角形密铺的图案中,观看到:每个拼接点处有6个角,这6个角分别是这种三角形的内角(其中有三组分别相等),它们能够组成两个三角形的内角,它们的和为360°.2.用同一种四边形也能够密铺,在用四边形密铺的图案中,观看到:每个拼接点处的四个角恰好是一个四边形的四个内角.四边形的内角和为36 0°,因此它们的和为360°.3.从拼接活动中,我们明白了:要用几个形状、大小完全相同的图形不留间隙、不重叠地密铺一个平面,需使得拼接点处的各角之和为360°.通过探究活动,我们得知:用形状、大小完全相同的四边形或三角形能够密铺一个平面,那么其他的多边形能否密铺?下面大伙儿来想一想,议一议:(1)正六边形能否密铺?简述你的理由.(2)分析如下图,讨论正五边形不能密铺.课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也专门难做到恰如其分。

什么缘故?依旧没有完全“记死”的缘故。

要解决那个问题,方法专门简单,每天花3-5分钟左右的时刻记一条成语、一则名言警句即可。

能够写在后黑板的“积存专栏”上每日一换,能够在每天课前的3分钟让学生轮番讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。

如此,一年就可记300多条成语、30 0多则名言警句,日积月累,终究会成为一笔不小的财宝。

这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会为所欲为地“提取”出来,使文章增色添辉。

要练说,得练听。

听是说的前提,听得准确,才有条件正确仿照,才能不断地把握高一级水平的语言。

平面图形的密铺(PPT-36)

平面图形的密铺(PPT-36)

内角和 180°360°540°720° ( n -2)180°
每个内角的度数 60° 90° 108°120°( n -2)180°/ n
能否密铺
能 能否 能

乘胜前进
请同学们用准备好的多边形进行试验探索:用形状、 大小完全相同的任意三角形能否密铺?用形状、大 小完全相同的任意四边形能否密铺?其它多边形呢?
能否密铺
成果展示 正三角形、正方形、正六边形可以密铺。
正多边形边数 3 4 5
内角和 180°360°
每个内角的度数 60° 90°
能否密铺
能能
6 720° 120°

n (>6)
密铺时:在每个拼接点处,所有角之和为3600。 相邻的边一般长度要相等。
成果展示
正三角形、正方形、正六边形可以密铺。 正五边形为什么不可以密铺?
2. 用多边形进行密铺时,要注意两点: ①两个多边形在拼接时,相邻的边一般长度要相等; ②几个多边形在每个拼接点处的角之和为3600。
3. 三角形、四边形和正六边形都可以单独密铺。
密铺在现实生活中应用非常广泛
课后作业
1、优化测试P51-52 2、注意观察周围的密铺图案,欣赏的同时,分析是由什 么“基本图形”铺成的。 3、自己创作一幅漂亮的密铺图案。
成果展示
12
3 3
12
3 2
21
3 3
1 2
12
1
1 23
3 2
13
2 13 32
1
21
11
12
31
3
21 3
2
3
21 3

3 2
22 311 3
12
31

平面图形的密铺李艳

平面图形的密铺李艳

《平面图形的密铺》教学设计一:背景说明平面图形的密铺这一节是新课标中增加的内容,在新课标中明确指出本节课的目的是让学生通过探索平面图形的镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用这几种图形进行简单的镶嵌设计。

可以看出,新课标对此内容的知识要求并不高,主要是让学生在课堂教学中经历探索多边形密铺条件的过程,从而发展学生的合情推理能力、合作交流意识和一定的审美情趣,进一步体会平面图形在现实生活中的广泛应用性和普遍存在性。

二、教学设计理念:依照建构主义情景教学理论,以学生原有的知识和经验为起点,利用多媒体辅助教学,让学生动手操作,尝试发现问题,解决问题,激发他们的求知欲望,并在数学活动过程中,关注学生的思维活动,关注学生的活动体验,揭示数学的应用价值,使不同层次的学生在活动中得到不同的发展。

三、教学目标:1、知识与技能目标:(1)通过多媒体操作,让学生经历探索多边形密铺的条件的过程,让学生了解密铺的特点,知道正三角形、正四边形、正六边形可以密铺,正五边形不可以密铺,全等的任意三角形可以密铺,全等的任意四边形可以密铺。

(2)培养学生观察、动手操作能力。

2、过程与方法目标:渗透初步的数学“建模”思想,引导学生在拼接实验的过程中,通过观察、判断、归纳、总结并发现规律,并能用所发现的规律去解决一些实际问题,进一步发展学生的合情推理能力。

3、情感与态度目标:让学生进一步体会平面图形在现实生活中的广泛应用,通过多媒体辅助教学体验学习活动充满着探索和创造,体验学习带来的快乐。

三、教学重点和难点教学重点:探索多边形密铺的条件的过程以及多边形密铺的条件。

教学难点:如何运用多边形的有关知识,解决密铺中的问题,并寻找多边形密铺的条件。

四、教学方法:动手实践、自主探索与合作交流五、教学过程2、议一议教师提问:为什么只有正三角形、正四边形、正六边形可以密铺?正五边形不可以密铺?其他的正多边形可以密铺吗?(2)、形状、大小完全相同的任意四边形可以密铺吗?(教师引导学生观察每个拼接点处的四个角与这种四边形的、议一议:由学生利用学具操作,并且小组交流展六:教学反思:创新,源于“问题”。

奇妙的图形密铺【最新】

奇妙的图形密铺【最新】

《平面图形的密铺》教学设计教学内容:五年级上册第109页~110页。

教材分析:密铺,也称为镶嵌,是生活中非常普遍的现象,它给我们带来了丰富的变化和美的享受。

教材在四年级下册就安排了密铺的内容,通过让学生观察用长方形、正方形、三角形密铺起来的图案,了解什么是密铺。

本册教材中,通过实践活动继续让学生认识一些可以密铺的平面图形,会用这些平面图形在方格纸上进行密铺,从而进一步理解密铺的特点,培养学生的空间观念。

整个实践活动分为两个层次:1、通过动手操作,探索哪些平面图形可以密铺,哪些不能密铺,使学生认识一些可以密铺的平面图形。

2、综合运用已有知识,在方格纸上根据给定的两组图形设计密铺图案,计算出每次密铺中不同平面图形所占的面积,使学生感受数学在生活中的应用,用数学的眼光欣赏美和创造美。

教学目标:1、知识与技能:(1)、通过铺一铺的实践活动,探究哪些平面图形可以密铺,在操作的过程中感受密铺,并感受这些图形的特点。

(2)、培养学生动手实践能力及创造能力。

2、过程与方法:让学生通过观察、猜测、验证等方式探究新知。

3、情感、态度与价值观:在活动中感受数学在生活中的应用,学会用数学的眼光欣赏美和创造美。

教学重、难点:重点:掌握密铺的特点,探究哪些图形可以密铺,哪些不能密铺。

难点:学会在方格纸上根据给定的图形设计密铺图案。

学具准备:蓝、黄两色彩笔教学过程:一、拼图感知密铺的定义:1、电脑拼图:老师也喜欢玩拼图。

电脑演示缺了一块的拼图。

提供三个图。

(1)小了。

出现了什么情况?和图形之间出现了缝隙。

(2)太大,和其他重合在一起(3)正好,与其他两块有什么不同?板:无空隙不重叠在同学们的帮助下,老师完成了拼图。

老师的拼图有图案,你们的拼图有图案吗?你们怎么知道拼好了?图形与图形之间无空隙,不重叠。

2、生活原型:大人工作时,有时候也像是玩拼图。

大人在干什么?(铺地砖)出示:铺的广场,街道,墙壁,为什么说大人工作时,也像是玩拼图?(也要做到无空隙不重叠,铺得比较平整,美观)3、总结定义:把图形无空隙不重叠地铺在平面上,数学家觉得这种现象很好玩,给它取个名字叫密铺。

平面图形的密铺教学设计

平面图形的密铺教学设计

平⾯图形的密铺教学设计课题:北师版数学⼋年级下册平⾯图形的密铺课型:新授课主备⼈涧头集镇第⼆中学李佰伟授课时间11⽉19⽇第⼆节课教学⽬标:1.通过探索平⾯图形的密铺,知道任意⼀个三⾓形、四边形、正六边形可以密铺,能运⽤这⼏种图形进⾏简单的密铺设计,培养学⽣的创造性思维。

2.促使学⽣在活动中,勇于探索图形间的相互关系,培养学⽣的空间观念,发展学⽣的合情推理能⼒提⾼分析问题、解决问题能⼒的同时渗透数形结合的思想。

教学重点:探索、发现多边形密铺的条件。

教学难点:运⽤三⾓形、四边形、正六边形进⾏简单的密铺设计。

教法及学法指导:从⽣活的例⼦引出课题探索、发现多边形密铺的条件开发、培养学⽣的创造性思维,使其理论联系实际。

培养学⽣的合作交流意识和⼀定的审美情感,使学⽣进⼀步体会平⾯图形在现实⽣活中的⼴泛应⽤。

教学准备:多媒体,导学案【教学过程】⼀、创设情景,引⼊课题师:⼤家知道我⼿⾥拿的是什么吗?对,拼图!玩过拼图吗?(⼿拿⼀幅拼图)⽣:玩过!师:在拼图过程中,你是如何判断两块拼板是否拼接的?⽣:从颜⾊⼀致及拼接时没有缝隙,可以连成⼀⽚来判断。

师:每当我们完成⼀幅拼图,我们会发现每⼀块拼板彼此之间不留缝隙。

师:观察这些图案中的拼接图形有哪些特点?⽣:第⼀幅和第⼆幅图是由⼤⼩相同的六边形和正⽅形组成。

第三幅和第四幅由⼏种形状、⼤⼩相同的图形组合⽽成。

师:这些图形在拼接时有什么特点?⽣:密密⿇⿇铺成⼀⽚,没有空隙。

定义:⽤形状、⼤⼩完全相同的⼀种或⼏种平⾯图形进⾏拼接,彼此之间不留空隙,不重叠地铺成⼀⽚,这就是平⾯图形的密铺,⼜称做平⾯图形的镶嵌。

⼆、⾛⼊⽣活,提出问题师:前⼏天,我去⼀位朋友家做客,发现他们家装潢得很漂亮。

(展⽰图⽚)师:在⽣活中,我们经常能见到各种花⾊和品种各异的地砖。

仔细观察,就能发现这些墙壁和地⾯通常是⽤⼏种多边形砖铺砌成美丽的图案。

如果你是房⼦的主⼈,你想⽤什么形状的地砖来设计你的房⼦。

初中数学实验创新设计方案平面图形的密铺

初中数学实验创新设计方案平面图形的密铺

初中数学实验创新设计方案平面图形的密铺1、实验主题:平面图形的密铺知识在生活中有着广泛的应用,其中最典型最常见的就是铺地板。

其特点是使用的基本图形简单,构造的图案美观,随处可见。

符合初中生的认知水平,能够吸引初中生的兴趣,具有说服力。

所以本节课,我们从生活中的“铺地板”入手,研究其中蕴含的平面图形的密铺知识。

在《新课程标准》中对图形的密铺作出明确的要求:知道任意一个三角形、四边形或正六边形可以图形的密铺,并能运用这几种图形进行简单的图形的密铺设计。

而平面图形的密铺知识在生活中也有着广泛的应用,其中最典型最常见的就是铺地板。

其特点是使用的基本图形简单,构造的图案美观,随处可见。

符合初中生的认知水平,能够吸引初中生的兴趣,具有说服力。

所以本节课,从生活中的“铺地板”入手,研究其中蕴含的平面图形的密铺知识。

试图通过研究用一种正多边形进行铺地板的条件,使学生了解平面图形的密铺的含义,能够综合应用多边形内角和知识解决平面图形的密铺问题,力图培养学生的动手能力、探究能力、问题意识和合作意识,体会数形结合的数学思想以及从特殊到一般的数学方法。

此外,由用一种正多边形铺地板可以延伸到对用两种正多边形进行铺地板,用三种正多边形进行铺地板的思考和研究,也可以拓展到对用任意三角形和任意四边形进行铺地板的研究。

从深度和广度上都有进一步探究的空间。

2、实验目的“课题学习”作为初中数学四大领域之一,是新课程标准的一大特色。

是在教师的指导下,以问题为核心、以问题解决为目标开展的探究式学习活动。

在初中阶段,通过一些具有挑战性的研究课题,让学生获得初步的研究经验,发展一定的研究能力。

七年级学生的自我意识、好奇心、表现欲和认知能力都处在上升的阶段。

这一时期,对培养学生的学习兴趣、动手能力和思考能力至关重要,也是预防厌学情绪的关键时期。

所以,我们可以充分利用如《平面图形的密铺》这样的课题学习来保护和提升学生学习数学的热情和信心,使学生开阔眼界、拓展知识、培养问题意识和创新精神。

《平面图形的密铺》教案

《平面图形的密铺》教案

《平面图形的密铺》教案一、教学目标:知识与技能:1. 学生能够理解平面图形的密铺的概念。

2. 学生能够运用平面图形的密铺原理进行实际问题的解决。

过程与方法:1. 学生通过观察、操作、交流等活动,培养空间观念和逻辑思维能力。

2. 学生能够运用画图工具或手工绘制出平面图形的密铺图形。

情感态度价值观:1. 学生体验数学与实际生活的联系,培养学习数学的兴趣。

2. 学生在解决实际问题的过程中,培养合作意识与团队精神。

二、教学重点与难点:重点:1. 平面图形的密铺概念的理解。

2. 平面图形的密铺方法的掌握。

难点:1. 平面图形的密铺原理的应用。

2. 复杂平面图形的密铺方法的探索。

三、教学准备:教师准备:1. 平面图形的密铺的相关教学材料。

2. 画图工具(如彩笔、直尺、剪刀等)。

学生准备:1. 完成预习任务,了解平面图形的密铺的基本概念。

2. 准备好画图工具。

四、教学过程:1. 导入:教师通过展示一些生活中的实例,如瓷砖铺贴、地板图案等,引导学生观察并思考这些实例中的平面图形的密铺现象。

2. 新课讲解:教师介绍平面图形的密铺的概念,讲解密铺的原理和方法,并通过示例进行讲解。

3. 实践操作:学生分组进行实践操作,运用画图工具或手工绘制出不同平面图形的密铺图形。

4. 交流分享:学生展示自己的作品,分享在操作过程中的发现和感悟,师生共同讨论并总结密铺的方法和技巧。

5. 巩固练习:教师给出一些实际问题,学生独立解决,运用密铺原理进行图形设计或计算。

五、作业布置:1. 绘制一个自己设计的平面图形的密铺图形,并写上设计思路和感受。

2. 完成课后练习题,巩固所学知识。

六、教学评价:1. 学生能够准确地解释平面图形的密铺的概念。

2. 学生能够熟练地运用平面图形的密铺原理进行实际问题的解决。

3. 学生能够通过实践操作,展示自己的创新能力和团队合作精神。

七、教学拓展:1. 引导学生探索更多平面图形的密铺方法,如五边形、六边形等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

背 种类繁多的马赛克图案的启发,创造了各
景 种并不局限于几何图形包括鱼、青蛙、狗、
人、蜥蜴等密铺作品。这些作品结合了数
学与艺术,给人留下深刻印象,更让人对
数学产生另一种看法。
作业: 用所学的数学知识创造一幅密铺作品
.
思考:正五边形为什么不能密铺?
1619年——数学家奇柏第一个利用正多
边形密铺平面。
密 铺 的 历 史
1891年——苏联物理学家弗德洛夫发现 了十七种不同的铺砌平面的对称图案。 1924年——数学家波利亚和尼格利重新 发现这个事实。
最富趣味的是荷兰艺术家埃舍尔与密
铺。他到西班牙旅行时,受到阿罕伯拉宫
冀教版小学数学五年级上册
墙面
地面
无论是什么形状的地砖,只要可以将一块地 面的中间无空隙、不重叠地铺满,就是密铺。
下面的铺法是密铺吗?为什么?
下面哪种平面图形可以单独密铺?
等边三角形 正五边形 正六边形 正八边形 圆
活动要求: 1、小组同学分工合作,每人选择一种形状的 图形拼一拼。 2、拼好后在小组内交流,重点说说你的发现; 小组长做好记录,填写活动报告单。
活动要求:算一算拼接点处每个角的度数。
.
想一想:拼接点处的所有内角拼成了一个( )角, 是( )°。
想一想:拼接点处的所有内角拼成了一个( )角, 是( )°。
1
21
2
3
.4 3
4
1
21
2
3434来自想一想:拼接点处的所有内角拼成了一个( )角, 是( )°。
.
如果一个图形的几个内角能拼成360°,这个图 形就能密铺。
相关文档
最新文档