数学平面图形的密铺PPT课件

合集下载

图形的密铺ppt课件

图形的密铺ppt课件

形状、大小完全相同的平行四边形可以密铺。
猜一猜:
哪些图形可以密铺?
( )( ) ( ) ( ) ( )( )
怎样知道大家 的猜测是否正 确呢?
咱们来试一 试吧!
汇报:
(×)(√) (√) (√) (×) (√) 正三角形、长方形、梯形、正六边 形可以进行密铺 。 圆形和正五边形不能进行密铺。
不能密铺。
用了(12 )块,所占 面积是( 6 )平方厘 米。
在我的图案中,
用了(12)块,所占面积是 (6 )平方厘米。
用了(12)块,所占面积是 ( 6 )平方厘米。
让我们放飞理想, 翱翔于数学殿堂。
先看下面几个密铺的图案
观察下图,这些图形在拼接时有什么特点?
平面图形的密铺
用形状、大小完全相同的一种 或几种平面图形进行拼接,彼此之 间不留空隙、不重叠地铺成一片,
这就是平面图形的密铺,又称作
平面图形的镶嵌。
下面我们具体来研究下密铺现象
猜一猜形状、大小完全相同的 平行四边形可以密铺吗?
看我的!
呀,可以!
我的也 可以。
1.用形状、大小完全相同的任意
三角形能否密铺?
1Leabharlann 3122
2
2
2
2
1
31
31
31
31
3
31
3
2
2
2
2
1
31
31
3
2
形状、大小完全相同的三角形可以密铺
在用三角形密铺的图案中,观察每个拼接点处有几个角?
它们与这种三角形的三个内角有什么关系?
1
3
1
2
2
2
2
2

平面图形的密铺课件

平面图形的密铺课件
平面图形的密铺
探索平面图形的密铺,了解它的定义、重要性以及在实际生活和数学领域中 的应用。
什么是平面图形的密铺?
平面图形的密铺是指将一个或多个几何图形重复无缝地填充平面,使整个平面覆盖无遗。
为什么要学习平面图形的密铺?
1 美学价值
2 数学应用
3 创造力培养
平面图形的密铺可以创造出 美观的图案和装饰,提升空 间的美感。
平面图形密铺的稳定性与对称性
1 稳定性
密铺的图案应该能够保持平衡和稳定,不易倾斜或塌陷。
2 对称性
对称的图案可以增加美感和吸引力,使整个设计更加平衡。
平面图形密铺在日常生活中的应用
1
地板和墙面瓷砖
通过平面图形的密铺,可以打造出独特的地板和墙面装饰效果。
2
纺织品设计
பைடு நூலகம்
平面图形的密铺经常用于设计纺织品,如窗帘、地毯和床上用品。
制作自己的平面图形密铺
利用几何板或计算机软件,你可以创建自己的平面图形密铺图案。发挥创意, 加入你的个性。
选择合适的材料和工具
平面图形模具
可以使用模具来制作符合规定 形状的平面图形。
数学工具
尺子、直角板等工具可以帮助 你精确测量和绘制图形。
颜料和画笔
如果你想制作手绘的密铺图案, 准备一些颜料和画笔。
平面图形密铺的发展
探索平面图形密铺的未来发展,挖掘现有技术的不足和未解决的问题。
创新思维对平面图形密铺的影响和作用
研究创新思维如何推动平面图形密铺的发展和应用,探索破旧立新的可能性。
平面图形密铺在现代艺术设计 中的应用
探索平面图形密铺在现代艺术中的独特应用,结合数学原理和艺术创意。
平面图形密铺与可持续发展的 关系

小学数学四年级下册《图形的密铺》课件

小学数学四年级下册《图形的密铺》课件

常见密铺图形:正方形、长方形、 三角形、平行四边形、正六边形等。
添加标题
添加标题
添加标题
添加标题
特点:密铺的特点是每个拼接点处 有相同的拼接形状,且拼接形状之 间没有空隙和重叠。
密铺的应用:在建筑、装饰、艺术 等领域中,密铺被广泛应用于设计 图案和背景。
图形的密铺特点
平面图形:只能 用同一种图形密 铺平面
PPT,a click to unlimited possibilities
汇报人:PPT
目录
课件封面
副标题:小学数学四年级下 册
图片:一幅与密铺相关的精 美图片
标题:图形的密铺
配色:清新、简洁的色彩搭 配
课件目录
封面
此处输入你的智能图 形项正文
目录
此处输入你的智能图 形项正文
教学目标
此处输入你的智能图 形项正文
添加标题
准备材料:正方形、长方形、三角形、平行四边形 等形状的纸片
添加标题
动手拼摆:让学生尝试用不同形状的纸片拼摆出密 铺图案
添加标题
观察分析:引导学生观察拼摆出的密铺图案,分析 不同形状的纸片在密铺中的特点
添加标题
实践操作:让学生动手操作,用不同形状的纸片拼 摆出自己喜欢的密铺图案
添加标题
案例分析:展示一些成功的密铺案例,分析其特点, 引导学生思考如何更好地进行密铺设计
教学内容
此处输入你的智能图 形项正文
教学过程
此处输入你的智能图 形项正文
总结与反思
此处输入你的智能图 形项正文
作业与练习
此处输入你的智能图 形项正文
参考文献
此处输入你的智能图 形项正文
什么是图形的密铺
定义:用形状、大小完全相同的一 种或几种平面图形进行拼接,彼此 之间不留空隙、不重叠地铺成一片。

《平面图形的密铺》 ppt课件

《平面图形的密铺》  ppt课件
不能密铺
正九边形(一个内角是140度)
不能密铺
正十边形(一个内角是144度)
不能密铺
ppt课件
18
早在公元前300年
让我告诉你
前后,亚历山大的巴
鲁士就研究过蜜蜂房
的形状,他认为蜂房里到处是等边的正六边形
图案,非常匀称规则.蜜蜂凭着它本能的智慧,
选择了边数最多的正六边形.这样,它们就可
以用同样多的原材料,使蜂房具有最大的容量,
啊!拼不了啦,
为什么呢?你
13 2
能说说道理
吗?
∠1+∠2+∠3=?
ppt课件
13
平 面 图形 的
密铺
请你想一想,这些图形在ppt课拼件 接时有什么特点? 14
平面密铺的特点
(1)用一种或几种全等图形进行拼 接.
(2)拼接处不留空隙、不重叠. (3)能连续铺成一片.
ppt课件
15
图案中每一个交叉点,周围各个角的度数和是 360º,即为密铺图形。
个公共顶点处几个内角
的和为360°,两个正
多边形就能进行镶嵌。
ppt课件
41
小结
(1)密铺的定义
(2)用多边形进行密铺时,相拼接的边相等, 每个拼接点处各个角的和等于360度
(3)用同一种三角形和同一种四边形都可以 进行密铺
(4)如果只用一种正多边形密铺,那么只有 正三角形,正方形和正六边形可以密铺
ppt课件
42
ppt课件
43
34 43
1 2
3
4
12
2 3
1
4
ppt课件
25
2
2
1
3
1
3

平面图形的密铺课件

平面图形的密铺课件
,还能降低建筑物的重量和成本。
新技术的应用
总结词
随着数字化和智能化技术的快速发展,新的 设计软件和制造技术为平面图形的密铺提供 了更高效和精准的实现方式。
详细描述
利用计算机辅助设计软件,设计师可以更加 方便地创建和修改密铺图案。同时,提供了可能。这些技术不仅可以提高 设计效率,还能降低生产成本,实现个性化 定制。
01
拼图需要多块不同形状的图形拼 凑在一起,而密铺则是由单一或 多个相同或不同形状的图形完整 地填满一个平面。
02
拼图通常需要一定的技巧和耐心 ,而密铺则更多地关注图形的特 性和规律。
02 常见的平面图形
三角形
三角形可以密铺成平面图案,通过将等边或等腰三角形进行拼接,可以形成丰富多 样的图案。
三角形密铺时,需要确保相邻的三角形之间没有空隙,并且每个三角形的顶点都与 其它三角形的顶点相接。
在实际应用中,这一规则对于保证密 铺的质量和效果至关重要,任何边长 的不匹配都可能导致密铺失败或效果 不佳。
这一规则确保了密铺的连续性和完整 性,使得图形之间无缝衔接,形成连 续的表面覆盖。
完全相等的角
与边长相等的规则类似,所有用于密铺 的图形角度也必须完全相等。这要求在 密铺过程中,每个图形的内角和外角都
密铺的特性
密铺图形之间没有重叠,也没有 空隙,能够完全填满一个封闭的 空间。
密铺的特性
01
02
03
完整性
密铺图形能够完全填满一 个平面,不留任何空隙。
无重叠性
密铺图形之间不会出现重 叠现象,每个图形都有其 固定的位置。
无空隙性
密铺图形之间没有空隙, 紧密相连,形成一个完整 的图案。
密铺与拼图的区别
装饰画制作

平面图形的密铺(PPT-36)

平面图形的密铺(PPT-36)

内角和 180°360°540°720° ( n -2)180°
每个内角的度数 60° 90° 108°120°( n -2)180°/ n
能否密铺
能 能否 能

乘胜前进
请同学们用准备好的多边形进行试验探索:用形状、 大小完全相同的任意三角形能否密铺?用形状、大 小完全相同的任意四边形能否密铺?其它多边形呢?
能否密铺
成果展示 正三角形、正方形、正六边形可以密铺。
正多边形边数 3 4 5
内角和 180°360°
每个内角的度数 60° 90°
能否密铺
能能
6 720° 120°

n (>6)
密铺时:在每个拼接点处,所有角之和为3600。 相邻的边一般长度要相等。
成果展示
正三角形、正方形、正六边形可以密铺。 正五边形为什么不可以密铺?
2. 用多边形进行密铺时,要注意两点: ①两个多边形在拼接时,相邻的边一般长度要相等; ②几个多边形在每个拼接点处的角之和为3600。
3. 三角形、四边形和正六边形都可以单独密铺。
密铺在现实生活中应用非常广泛
课后作业
1、优化测试P51-52 2、注意观察周围的密铺图案,欣赏的同时,分析是由什 么“基本图形”铺成的。 3、自己创作一幅漂亮的密铺图案。
成果展示
12
3 3
12
3 2
21
3 3
1 2
12
1
1 23
3 2
13
2 13 32
1
21
11
12
31
3
21 3
2
3
21 3

3 2
22 311 3
12
31

密铺ppt课件

密铺ppt课件

感谢您的观看
THANKS
常见的无限密铺图形包括平心线、三 角形平分线等。
无限密铺的数学原理在于,对于一组 特定的几何图形,可以通过数学计算 和证明,证明它们可以无限地重复排 列,形成一个完整的图案。
无限密铺的特性包括无限性、重复性 和规律性,这些特性使得无限密铺在 数学、美学和艺术等领域有着广泛的 应用。
03
密铺在艺术中的应用
拓扑学
拓扑学是研究图形或物体在连续变形下保持不变性质的数学分支。密铺问题在拓扑学中也有着重要的应用,例 如在研究地图的染色问题中,密铺理论可以提供重要的思路和方法。
物理学领域
固体物理学
在固体物理学中,密铺理论被广泛应用于晶体结构的研究。 晶体中的原子或分子通过特定的排列方式,以最小能量状态 稳定存在,这些排列方式与密铺理论密切相关。

常见的平面密铺图形有正方形、等边三角形 、正六边形等。
平面密铺的数学原理在于,对于任意一个正 多边形,都可以找到另一个正多边形,其内 角和它相加等于360度,从而在平面上实现 无空隙密铺。
平面密铺的特性包括对称性、重复性和统一 性,这些特性使得密铺图形具有很高的美学 价值。
空间密铺
空间密铺的数学原理在于,对于 任意一个几何体,都可以找到其 他几何体,使得它们组合后能够 占据整个空间。
空间密铺的特性包括空间性、层 次性和立体感,这些特性使得空 间密铺在建筑设计、装饰艺术等 领域有着广泛的应用。
01
空间密铺是指将几何体按照一定 的规律和顺序进行排列,使得它 们之间没有空隙和重叠。
02
03
04
常见的空间密铺几何体包括球体 、立方体、圆柱体等。
无限密铺
无限密铺是指将一组特定的几何图形 无限地重复排列,不留空隙和重叠。

图形的密铺ppt课件

图形的密铺ppt课件

寒假来临,不少的高中毕业生和大学 在校生 都选择 去打工 。准备 过一个 充实而 有意义 的寒假 。但是 ,目前 社会上 寒假招 工的陷 阱很多
寒假来临,不少的高中毕业生和大学 在校生 都选择 去打工 。准备 过一个 充实而 有意义 的寒假 。但是 ,目前 社会上 寒假招 工的陷 阱很多
像这样,用两种或几种图形没有重叠,没有空隙的铺在平面上也是 密铺
寒假来临,不少的高中毕业生和大学 在校生 都选择 去打工 。准备 过一个 充实而 有意义 的寒假 。但是 ,目前 社会上 寒假招 工的陷 阱很多
寒假来临,不少的高中毕业生和大学 在校生 都选择 去打工 。准备 过一个 充实而 有意义 的寒假 。但是 ,目前 社会上 寒假招 工的陷 阱很多
寒假来临,不少的高中毕业生和大学 在校生 都选择 去打工 。准备 过一个 充实而 有意义 的寒假 。但是 ,目前 社会上 寒假招 工的陷 阱很多
寒假来临,不少的高中毕业生和大学 在校生 都选择 去打工 。准备 过一个 充实而 有意义 的寒假 。但是 ,目前 社会上 寒假招 工的陷 阱很多
寒假来临,不少的高中毕业生和大学 在校生 都选择 去打工 。准备 过一个 充实而 有意义 的寒假 。但是 ,目前 社会上 寒假招 工的陷 阱很多
寒假来临,不少的高中毕业生和大学 在校生 都选择 去打工 。准备 过一个 充实而 有意义 的寒假 。但是 ,目前 社会上 寒假招 工的陷 阱很多
寒假来临,不少的高中毕业生和大学 在校生 都选择 去打工 。准备 过一个 充实而 有意义 的寒假 。但是 ,目前 社会上 寒假招 工的陷 阱很多
经典的设计
寒假来临,不少的高中毕业生和大学 在校生 都选择 去打工 。准备 过一个 充实而 有意义 的寒假 。但是 ,目前 社会上 寒假招 工的陷 阱很多

八年级数学上册《平面图形的密铺》课件

八年级数学上册《平面图形的密铺》课件
教学重难点
重点是认识三角形、四边形、正六边形是密铺图形
难点是密铺原理的认识。
四、教法和学法
关于教法和学法,通过学习我认为教师应该 从关注教师的教转化为高度关注学生的学,因此 我在这部分将重点以学案导学谈谈我的教法和学 生的学法。采用DJP教学模式,即导学—讲解— 评价。
学案导学:先学后教,课前教师讲解导学要 求,学生在学案的引导和帮助下,独立阅读教材、 自主探索密铺的概念,完成学习准备的内容。
解:因为正三角形的内角是60°,正六边形的内角是120°,
设一个拼接点处有x个正三角形的内角,y个正六边形的内角,
根据密铺原理,有60°x+120°y=360°
化简得
x+2y=6
因为x,y都是正整数,所以x=2,y=2或x=4,y=1
即在一个拼接点处有2个正三角形和2个正六边形,或者4个正 三角形和1个正六边形
三、教学目标和要求
(1)知识与技能:通过探索平面图形的密铺,知道任意一个 三角形、四边形或正六边形可以密铺,并能运用这几种 图形进行简单的密铺设计。
(2)过程与方法:经历探索多边形密铺条件的过程,进一步 发展学生的合情推理能力。
(3)情感与态度:在探索活动中,培养学生的合作交流意 识和审美观,使学生进一步体会平面图形在现实生活中 的广泛应用。
编辑ppt33五达标检测1用下列正多边形木板铺地面要求顶点重合且木板之间不留空隙现有三角形四边形五边形六边形八边形则符合条件的有填序号2已知一个图案在某个顶点处由三个边长相等的正多边形密铺而成其中有两个正八边形那么另外一个是a正三角形b正方形c正五边形d正六边形编辑ppt343边长相等的正三角形正方形正六边形如果同时用三种图形进行拼图能密铺吗
第15课时 平面图形的密铺

(2023秋)冀教版五年级数学上册《 密铺》PPT课件

(2023秋)冀教版五年级数学上册《 密铺》PPT课件

2.选一选。 (4)形状、大小完全相同的( D )能密铺。
A.圆 C.正七边形
B.正八边形 D.梯形
2.选一选。 (5)贝贝家客厅的长是6米,宽是4.8米。准备 在地面上铺方砖,要求地面上都是整块方砖, 应该选择( B )的方砖。
A.边长为50厘米 C.边长为100厘米
B.边长为60厘米 D.以上都不对
课堂小结
这节课你们都学会了哪些知识?
1.几个正多边形的一个内角加在一起成为一个 周角时,这几个正多边形就可以进行密铺。
课堂小结
这节课你们都学会了哪些知识?
2.在所有的正多边形中,只有正三角形、正方 形、正六边形可以密铺(单一正多边形密铺); 形状、大小完全相同的任意四边形能密铺; 圆不能密铺。
义务教育冀教版五年级上册
冀教版 数学 五年级 上册
9 探索乐园
密铺
课前导入
同学们都见过地砖吧!你知道 如何把它铺满吗?
探究新知
密铺。
你知道什么叫做密铺吗? 九折
八五折
无论是什么形状的地砖,只要可以将一块地面的中 间既不留空隙,也不重叠地铺满,就是密铺。
用下面的图形可以密铺吗?
用等边三角形 可以密铺。
用正六边形也 可以密铺。
第九单元
第2课时
探索乐园
密铺
新课导入
说一说:用瓷砖铺地面或墙面时,有什么特点?
探究新知
密铺。
你知道什么叫做密铺吗?
无论是什么形状的地砖,只要可以将一块地面的中 间既不留空隙,也不重叠地铺满,就是密铺。
用下面的图形可以密铺吗?
等边三角形 正六边形
正八边形
用等边三角形可以密铺。
用正六边形也可以密铺。 用正八边形不 能密铺……
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

奇妙的图形密铺
无论什么形状的图形,如果能既无 空隙,又不重叠地铺在平面上,这种 铺法就叫做密铺.
蜂巢
龟壳
资料
埃舍尔(M.C.ESCHER1898-1972)荷兰现代版画艺术家。他 是一个将艺术与数学融合的画家,也因此享誉世界。
巧妙设计
★★★ 从你手中的这些平面图形中任意选 择多种不同的图形进行密铺,你能设计 出漂亮、新颖的图案吗?
无空叠地铺在平面上,这种铺法就 叫做密铺.
义务教育课程标准实验教科书五年级数学下册
奇妙的图形密铺
猜一猜:
下面几种图形也能密铺吗?
( ) ( ) ( ) ( )( )
怎样知道大家 的猜测是否正 确呢?
咱们来试一 试吧!
我的设计
用正方形和三角形。 用平行四边形和三角形。
★★★你能像埃舍尔那样进行密铺设计吗? 相信你们的作品一定独具创意!!
奇妙的图形密铺
无论什么形状的图形,如果能既无 空隙,又不重叠地铺在平面上,这种 铺法就叫做密铺.
巧妙设计 ★★★ 从你手中的这些平面图形中任意选择多种不同的 图形进行密铺,你能设计出漂亮、新颖的图案吗? ★★★你能像埃舍尔那样进行密铺设计吗? 相信你们的作品一定独具创意!!
你能从七巧板中选出两种不同的图形 密铺一个平面吗?小组合作试一试。
很多美丽的图案用两种或两种 以上不同的图形密铺的。
很多美丽的图案用两种或两种 以上不同的图形密铺的。
相信自己,试一试!
从你手中的这些平面图形中任意选择两种不同 的图形进行密铺,然后在方格纸上画出你设计的 图案.
圆不能密铺。
返回
五边形不可以密铺
1 3
2
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
谢谢你的到来
学习并没有结束,希望大家继续努力
Learning Is Not Over. I Hope You Will Continue To Work Hard
演讲人:XXXXXX 时 间:XX年XX月XX日
相关文档
最新文档