数据的频数分布练习题
《数据的频数分布》单元测试题.docx
《数据的频数分布》单元测试题(总分100分时量45分钟)班级_____________ 姓名—、精心选一选,旗开得胜(本大题共8道小题,每小题4分,满分32分)1、在统计里,频数分布的主要作用是()A.可以反映总体的平均水平B.可以反映总体的波动大小C.可以估计总体的分布情况D.可以看出总体的最大值和最小值。
2、下列说法中,正确的个数有()①频数越大,频率越大;②所有频率之和等于1 ;③频数表示每个对象出现的次数;④频数一定是一个正数.A. 1B. 2C. 3D. 43、对某班40名学牛的分数在81〜90组的频率是0. 2,那么分数在81〜90的学生为()A. 20 人B. 10 人C. 8 人D. 12 人4、列频数分布表时,落在各个小组内的数据个数叫作()A.组距B.频数C.频率D.组数5、一组数据的最大值与最小值的差为80,若定组距为9,则分成组数为()A. 7B. 8C. 9D. 106、八年级某班有男生30人,女生占全班人数的40%,则男生频率和女生频数分别是()A. 30 和40%B. 30 和60%C. 40%和20D. 60%和207、已知一组数据10, 8, 10, 8,6, 13, 11, 10, 12, 9,11, 12, 9, 10, 11, 10, 7, 8, 12, 9o那么频率为0.2的范围是()A. 5.5-7.5B. 7.5-9.5C. 9.5-11.5D. 11.5-13.58、在一次选举中,某同学的选票没有超过半数,那么它是指频率()A.大于0.5B.等于0.5C.小于或等于0.5D.大于或等于0. 5二、细心填一填,一锤定音(本大题共8道小题,每小题4分,满分32分)9、小明练习投篮,连续投了30次,投屮18次,他的命屮率是_____ ・10、某班有48名同学,在一次英语单词竞赛进行统计时,去绩在81-90这一分数段的人数所占的频率是0. 25,那么成绩在这个分数段的人数有—人。
湘教版八年级下册数学第5章 数据的频数分布含答案(最新)
湘教版八年级下册数学第5章数据的频数分布含答案一、单选题(共15题,共计45分)1、抽取50个作为样本进行统计,频数分布表中,54.5~57.5这一组的频率是0.12,那么,该样本数据落在54.5~57.5之间的有()A.6个B.12个C.60个D.120个2、已知一组数据有80个,其中最大值为143,最小值为50,取组距为10,则可分成( ).A.10组B.9组C.8组D.7组3、在一次选举中,某候选人的选票没有超过半数,则其频率( )A.大于0.5B.等于0.5C.小于0.5D.小于或等于0.54、2000辆汽车通过某一段公路时的时速的频率分布直方图如下图所示,时速大于等于50且小于60的汽车大约有()A.30辆B.60辆C.300辆D.600辆5、有若干个数据,最大值是124,最小值是103.用频数分布表描述这组数据时,若取组距为3,则应分为()A.6组B.7组C.8组D.9组6、统计得到一组数据,其中最大值是132,最小值是50,取组距为10,可以分成()A.10组B.9组C.8组D.7组7、下列说法错误的是()A.在频数分布直方图中,频数之和为数据个数B.频率等于频数与组距的比值C.在频数分布表中,频率之和为1D.频率等于频数与样本容量的比值8、为了了解某中学学生的身高情况,随机抽取50名男生进行身高测量,将所得数据整理后,画出频数直方图(如图)则抽取的男生中身高在之间的人数是()A.12B.18C.20D.249、在1∼100这些自然数中,4的倍数出现的频率为()A.0.25B.0.33C.0.35D.0.210、某小组在“用频率估计概率”的实验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的实验最有可能的是()A.袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中随机地取出一个球是黄球B.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6C.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”D.掷一枚质地均匀的硬币,落地时结果是“正面向上”11、某校在开展“阳光体育活动”过程中,对八年级学生的体能情况进行了随机抽查,测试了30名学生1分钟仰卧起坐的次数,并绘制成如图所示的频数分布直方图,则仰卧起坐次数在25~30次的频率是()A.0.1B.0.2C.0.3D.0.412、某校七年级在“数学小论文”评比活动中,共征集到论文30篇,并对其进行评比、整理,分成组画出频数分布直方图(如图),从左到右各小长方形的高度比为2:4:3:1,则第2组的频数为()A.12B.10C.9D.613、某个样本的频数分布直方图中一共有4组,从左至右的组中值依次为5,8,11,14,频数依次为5,4,6,5,则频率为0.2的一组为()A.6.5~9.5B.9.5~12.5C.8~11D.5~814、小红把一枚硬币抛掷10次,结果有4次正面朝上,那么()A.正面朝上的频数是0.4B.反面朝上的频数是6C.正面朝上的频率是4D.反面朝上的频率是615、列频数分布表考查50名学生年龄时,这些学生的年龄落在5个小组中,第一、二、三、五组的数据个数分别是1,9,15,5,则第四组的频数是()A.10B.9C.15D.20二、填空题(共10题,共计30分)16、某校为了解七年级同学的体能情况,随机选取部分学生测试一分钟仰卧起坐的次数,并绘制了如图所示的直方图,学校七年级共有600人,则计该校一分钟仰卧起坐的次数不少于25次的有________人.17、某校901班共有50名同学,如图是该次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数),则测试成绩的中位数所在的组别是________.18、已知一个样本的容量为50,在频数分布直方图中,各小长方形高之比为2:4:1:3,第二组的频数是________.19、一个样本容量为80的样本,最大值是137,最小值是67,取组距为10,则可分________ 组.20、某记者抽样调查了某校一些学生假期用于读书的时间(单位:分钟)后,绘制了频数分布直方图,从左到右的前5个长方形相对应的频率之和为0.8,最后- -组的频数是10,则此次抽样调查的人数为 ________人. (注:横轴上每组数据包含最小值不包含最大值)21、为了了解某区5500名初三学生的体重情况,随机抽测了400名学生的体重,统计结果列表如下:体重(kg)频数频率40﹣45 4445﹣50 6650﹣55 8455﹣60 8660﹣65 7265﹣70 48那么样本中体重在50~55范围内的频率是________.22、已知一组数据:68,69,70,66,68,65,64,65,69,62,67,66,65,67,63,65,64,61,65,66共20个,则落在64.5~66.5这一小组的频数是________。
《频数分布表和频数分布直方图》课后练习
《频数分布表和频数分布直方图》课后练习一、选择题:1. 一个容量为80的样本最大值为141,最小值为50,取组距为10, 则可以分成( ).A. 10 组B. 9 组C. 8 组D. 7 组2. 已知在一个样本中,50 个数据分别落在5 个组内, 第一、二、三、五组数据频数分别为2、8、15、5,则第四组数据的频数和频率分别为( )A.25 .50%B. 20 。
50%C. 20.40%D.25.40%3. 下列说法正确的是( )A. 样本的数据个数等于频数之和B. 扇形统计图可以告诉我们各部分的数量分别是多少C. 如果一组数据可以用扇形统计图表示,那么它一定可以用频数分布直方图表示•D. 将频数分布直方图中小长方形上面一边的一个端点顺次连结起来, 就可以得到频数折线图.4. 在1000个数据中,用适当的方法抽取50 个作为样本进行统计,频数分布表中54.5~57.5 这一组的频率为0.12,那么估计总体数据落在54.5~57.5 之间的约有( )A. 120 个B. 60 个C. 12 个D. 6 个5. 在样本的频数分布直方图中,有11个小长方形,若中间一个长方形的面积等于其他10个小长方形面积的和的四分之一,且样本数据有160个,则中间一组的频数为( )A. 0.2B. 32C. 0.25D. 40二、填空题:6. 对某班同学的身高进行统计( 单位:厘米),频数分布表中165.5~170.5 这一组学生人数是12,频率为0.25,则该班共有_____ 名同学.7. 为了帮助班上的两名贫困学生解决经济困难,班上的20 名学生捐出了息的零化钱,他们捐款数如下:( 单位:元) 19,20,25,30,24,23,25, 29,27,27,28,28,26,27,21,30,20,19,22,20. 班主任老师准备将这组数据制成频数分布直方图,以表彰他们的爱心. 制图时先计算最大值与最小值的差是___,若取组距为2,则应分成_______ 组; 若第一组的起点定为18.5. 则在26.5~28.5 范围内的频数为三.解答题:8.2003年中考结束后,某市从参加中考的12000名学生中抽取200名学生的数学成绩(考生得分均为整数,满分120分)进行统计,评估数学考试情况,经过整理得到如下频数分布直方图,请回答下列问题:(1)此次抽样调查的样本容量是____ ;(2)补全频数分布直方图⑶若成绩在72分以上(含72分) 为及格,请你评估该市考生数学成绩的及格率与数学考试及格人数。
中考数学专项复习(频数分布直方图(2))练习 试题
币仍仅州斤爪反市希望学校频数分布直方图〔02〕一、填空题1.八年级〔1〕班全体学生参加了举办的平安知识竞赛,如图是该班学生竞赛成绩的频数分布直方图〔总分值为100分,成绩均为整数〕,假设将成绩不低于90分的评为优秀,那么该班这次成绩到达优秀的人数占全班人数的百分比是.二、解答题2.小明对自己所在班级的50名学生平均每周参加课外活动的时间进行了调查,由调查结果绘制了频数分布直方图,根据图中信息答复以下问题:〔1〕求m的值;〔2〕从参加课外活动时间在6~10小时的5名学生中随机选取2人,请你用列表或画树状图的方法,求其中至少有1人课外活动时间在8~10小时的概率.3.为了进一步了解某校九年级学生的身体素质,体育老师从该年级各班中随机抽取50名学生进行1分钟跳绳次数测试,以测试数据为样本,绘制出如图表.表:组别次数x 频数频率第1组80≤x<100 4 0.08第2组100≤x<120 6 0.12第3组120≤x<140 18 0.36第4组140≤x<160 a b第5组160≤x<180 10 0.2合计﹣﹣50 1〔1〕求表中a和b的值:a= ;b= .〔2〕请将频数分布直方图补充完整:〔3〕假设在1分钟内跳绳次数大于等于120次认定为合格,那么从全年级任意抽测一位同学为合格的概率是多少?〔4〕今年该校九年级有320名学生,请你估算九年级跳绳工程不合格的学生约有多少人?4.某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年月平均用水量〔单位:吨〕,并将调查数据进行如下整理:4.0 4.0 7.0频数分布表分组划记频数2.0<x≤正正11<x≤5.0 195.0<x≤<x≤8.08.0<x≤合计2 50〔1〕把上面频数分布表和频数分布直方图补充完整;〔2〕从直方图中你能得到什么信息?〔写出两条即可〕;〔3〕为了鼓励节约用水,要确定一个用水量的HY,超出这个HY的局部按倍价格收费,假设要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?5.某班在一次班会课上,就“遇见路人摔倒后如何处理〞的主题进行讨论,并对全班50名学生的处理方式进行统计,得出相关统计表和统计图.组别 A B C D处理方式迅速离开马上救助视情况而定只看热闹人数m 30 n 5请根据表图所提供的信息答复以下问题:〔1〕统计表中的m= ,n= ;〔2〕补全频数分布直方图;〔3〕假设该校有2000名学生,请据此估计该校学生采取“马上救助〞方式的学生有多少人?分组频数频率50.5~60.5 4 0.0860.5~70.5 14 0.2870.5~80.5 1680.5~90.590.5~100.5 10 0.20合计 1.00〔1〕填写频率分布表中的空格,并补全频率分布直方图;〔2〕假设成绩在70分以上〔不含70分〕为心理健康状况良好,同时,假设心理健康状况良好的人数占总人数的70%以上,就表示该校学生的心理健康状况正常,否那么就需要加强心里辅导.请根据上述数据分析该校学生是否需要加强心里辅导,并说明理由.7.为了了解初三年级学生体育跳绳的训练情况,从初三年级各班随机抽取了50名学生进行了60秒跳绳的测试,并将这50名学生的测试成绩〔即60秒跳绳的个数〕从低到高分成六段记为第一到六组,最后整理成下面的频数分布直方图:请根据直方图中样本数据提供的信息解答以下问题.〔1〕跳绳次数的中位数落在哪一组?由样本数据的中位数你能推断出初三年级学生关于60秒跳绳成绩的一个什么结论?〔2〕假设用各组数据的组中值〔各小组的两个端点的数的平均数〕代表各组的实际数据,求这50名学生的60秒跳绳的平均成绩〔结果保存整数〕;〔3〕假设从成绩落在第一和第六组的学生中随机抽取2名学生,用列举法求抽取的2名学生恰好在同一组的概率.组别分数段频数频率一50.5~60.5 16 0.08二60.5~70.5 30 0.15三70.5~80.5 50 0.25四80.5~90.5 m 0.40五90.5~100.5 24 n〔1〕本次抽样调查的样本容量为,此样本中成绩的中位数落在第组内,表中m= ,n= ;〔2〕补全频数分布直方图;〔3〕假设成绩超过80分为优秀,那么该校八年级学生中汉字听写能力优秀的约有多少人?9.为创立“国家园林城〞,某校举行了以“爱我〞为主题的图片制作比赛,评委会对200名同学的参赛作品打分发现,参赛者的成绩x均满足50≤x<100,并制作了频数分布直方图,如图.根据以上信息,解答以下问题:〔1〕请补全频数分布直方图;〔2〕假设依据成绩,采取分层抽样的方法,从参赛同学中抽40人参加图片制作比赛总结大会,那么从成绩80≤x<90的选手中应抽多少人?〔3〕比赛共设一、二、三等奖,假设只有25%的参赛同学能拿到一等奖,那么一等奖的分数线是多少?10.关于体育选考工程统计图工程频数频率A 80 bB c 0.3C 20 0.1D 40 0.2合计 a 1〔1〕求出表中a,b,c的值,并将条形统计图补充完整.表中a= ,b= ,c= .〔2〕如果有3万人参加体育选考,会有多少人选择篮球?11.如图是某数学兴趣小组参加“奥数〞后所得成绩绘制成的频数,频率分布表和频数分布直方图.请你根据图表提供的信息,解答以下问题〔成绩取整数,总分值为100分〕分组 0﹣1 1﹣3 3﹣5 5﹣7 7﹣100 合计频数 1 5 6 30 b 50 频率 0.02 a 0.12 0.60 0.16 1 〔1〕频数、频率分布表中a= ,b= .〔2〕补全频数分布直方图.〔3〕假设在80分以上的小组成员中选3人参加下一轮竞赛,小明本次竞赛的成绩为90分,他被选中的概率是多少?〔4〕从该图中你还能获得哪些数学信息?〔填写一条即可〕12.我某校在推进新课改的过程中,开设的体育选修课有:A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球,学生可根据自己的爱好选修一门,李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图〔如图〕.〔1〕请你求出该班的总人数,并补全频数分布直方图;〔2〕该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人任选2人了解他们对体育选课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.13.为了提高学生书写汉字的能力,增强保护汉字的意识,我举办了首届“汉字听写大赛〞,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,假设每正确听写出一个汉字得1分,根据测试成绩绘制出局部频数分布表和局部频数分布直方图如图表:组别成绩x分频数〔人数〕第1组25≤x<30 4第2组30≤x<35 8第3组35≤x<40 16第4组40≤x<45 a第5组45≤x<50 10请结合图表完成以下各题:〔1〕求表中a的值;〔2〕请把频数分布直方图补充完整;〔3〕假设测试成绩不低于40分为优秀,那么本次测试的优秀率是多少?〔4〕第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.14.为了了解“通话时长〞〔“通话时长〞指每次通话时间〕的分布情况,小强收集了他家1000个“通话时长〞数据,这些数据均不超过18〔分钟〕.他从中随机抽取了假设干个数据作为样本,统计结果如下表,并绘制了不完整的频数分布直方图.0<x≤3 3<x≤6 6<x≤9 9<x≤12 12<x≤15 15<x≤18 “通话时长〞〔x分钟〕次数36 a 8 12 8 12根据表、图提供的信息,解答下面的问题:〔1〕a= ,样本容量是;〔2〕求样本中“通话时长〞不超过9分钟的频率:;〔3〕请估计小强家这1000次通话中“通话时长〞超过15分钟的次数.15.某公司为了解员工对“六五〞普法知识的知晓情况,从本公司随机选取40名员工进行普法知识考查,对考查成绩进行统计〔成绩均为整数,总分值100分〕,并依据统计数据绘制了如下尚不完整的统计表.解答以下问题:组别分数段/分频数/人数频率1 50.5~60.52 a2 60.5~70.5 6 0.153 70.5~80.5 b c4 80.5~90.5 12 0.305 90.5~100.56 0.15合计40 1.00〔1〕表中a= ,b= ,c= ;〔2〕请补全频数分布直方图;〔3〕该公司共有员工3000人,假设考查成绩80分以上〔不含80分〕为优秀,试估计该公司员工“六五〞普法知识知晓程度到达优秀的人数.16.九年级〔1〕班开展了为期一周的“敬老爱亲〞社会活动,并根据学生做家务的时间来评价他们在活动中的表现,老师调查了全班50名学生在这次活动中做家务的时间,并将统计的时间〔单位:小时〕分成5组:≤x<1 B.1≤x<1.5 C.≤x<2 D.2≤x<≤x<3;并制成两幅不完整的统计图〔如图〕:请根据图中提供的信息,解答以下问题:〔1〕这次活动生做家务时间的中位数所在的组是;〔2〕补全频数分布直方图;〔3〕该班的小明同学这一周做家务2小时,他认为自己做家务的时间比班里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计知识说明理由.17.第一次模拟试后,数学科陈老师把一班的数学成绩制成如图的统计图,并给了几个信息:①前两组的频率和是0.14;②第一组的频率是0.02;③自左到右第二、三、四组的频数比为3:9:8,然后布置学生〔也请你一起〕结合统计图完成以下问题:〔1〕全班学生是多少人?〔2〕成绩不少于90分为优秀,那么全班成绩的优秀率是多少?〔3〕假设不少于100分可以得到A+等级,那么小明得到A+的概率是多少?18.某校八年级一班进行为期5天的图案设计比赛,作品上交时限为周一至周五,班委会将参赛逐天进行统计,并绘制成如下列图的频数直方图.从左到右各矩形的高度比为2:3:4:6:5.且周三组的频数是8.〔1〕本次比赛共收到件作品.〔2〕假设将各组所占百分比绘制成扇形统计图,那么第五组对应的扇形的圆心角是度.〔3〕本次活动共评出1个一等奖和2个二等奖,假设将这三件作品进行编号并制作成反面完全相同的卡片,并随机抽出两张,请你求出抽到的作品恰好一个一等奖,一个二等奖的概率.19.黔东南州某校为了解七年级学生课外学习情况,随机抽取了局部学生作调查,通过调查将获得的数据按性别绘制成如下的女生频数分布表和如下列图的男生频数分布直方图:学习时间t〔分钟〕人数占女生人数百分比0≤t<30 4 20%30≤t<60 m 15%60≤t<90 5 25%90≤t<120 6 n120≤t<150 2 10%根据图表解答以下问题:〔1〕在女生的频数分布表中,m= ,n= .〔2〕此次调查共抽取了多少名学生?〔3〕此次抽样中,学习时间的中位数在哪个时间段?〔4〕从学习时间在120~150分钟的5名学生中依次抽取两名学生调查学习效率,恰好抽到男女生各一名的概率是多少?20.某对本校初生完成家庭作业的时间做了总量控制,规定每天完成家庭作业的时间不超过小时,该校数学课外兴趣小组对本校初生回家完成作业的时间做了一次随机抽样调查,并绘制出频数分布表和频数分布直方图〔如图〕的一局部.时间〔小时〕频数〔人数〕频率0≤t<0.5 4 0.10.5≤t<1 a 0.31≤t<10 0.25≤t<2 8 b2≤t< 6 0.15合计 1〔1〕在图表中,a= ,b= ;〔2〕补全频数分布直方图;〔3〕请估计该校1400名初生中,约有多少学生在小时以内完成了家庭作业.21.某校为了了解学生大课间活动的跳绳情况,随机抽取了50名学生每分钟跳绳的次数进行统计,把统计结果绘制成如表和直方图.次数70≤x<90 90≤x<110 110≤x<130 130≤x<150 150≤x<170人数8 23 16 2 1根据所给信息,答复以下问题:〔1〕本次调查的样本容量是;〔2〕本次调查中每分钟跳绳次数到达110次以上〔含110次〕的共有的共有人;〔3〕根据上表的数据补全直方图;〔4〕如果跳绳次数到达130次以上的3人中有2名女生和一名男生,从这3人中抽取2名学生进行经验交流,求恰好抽中一男一女的概率〔要求用列表法或树状图写出分析过程〕.22.为了了解某地初中三年级学生参加消防知识竞赛成绩〔均为整数〕,从中抽取了1%的同学的竞赛成绩,整理后绘制了如下的频数分布直方图,请结合图形解答以下问题:〔1〕指出这个问题中的总体;〔2〕求竞赛成绩在8﹣8这一小组的频率;〔3〕如果竞赛成绩在90分以上〔含90分〕的同学可以获得奖励,请估计该地初三年级约有多少人获得奖励.23.某老师对本班所有学生的数学考试成绩〔成绩为整数,总分值为100分〕作了统计分析,绘制成如下频数、频率分布表和频数分布直方图,请你根据图表提供的信息,解答以下问题:分组4~5 5~6 6~7 7~8 8~100.5频数 2 a 20 16 8频率0.04 0.08 0.40 0.32 b 〔1〕求a,b的值;〔2〕补全频数分布直方图;〔3〕老师准备从成绩不低于80分的学生中选1人介绍学习经验,那么被选中的学生其成绩不低于90分的概率是多少?24.在开展“美丽泉城,创卫我同行〞活动中,某校建议七年级学生利用双休日在各自社区参加义务劳动,为了解同学们劳动情况,随机调查了局部同学的劳动时间,并用得到的数据绘制不完整的统计图表,如下列图:劳动时间〔时〕频数〔人数〕频率0.5 12 0.121 30 0.3x 0.42 18 y合计m 1〔1〕统计表中的m= ,x= ,y= .〔2〕被调查同学劳动时间的中位数是时;〔3〕请将频数分布直方图补充完整;〔4〕求所有被调查同学的平均劳动时间.25.为增强环境保护意识,争创“文明卫生城〞,某企业对职工进行了一次“生产和居住环境满意度〞的调查,按年龄分组,得到下面的各组人数统计表:各组人数统计表组号年龄分组频数〔人〕频率第一组20≤x<25 50 0.05第二组25≤x<30 a 0.35第三组30≤x<35 300 0.3第四组35≤x<40 200 b第五组40≤x≤45 100 0.1〔1〕求本次调查的样本容量及表中的a、b的值;〔2〕调查结果得到对生产和居住环境满意的人数的频率分布直方图如下列图.规定:本次调查满意人数超过调查人数的一半,那么称调查结果为满意.如果第一组满意人数为36,请问此次调查结果是否满意;并指出第五组满意人数的百分比;〔3〕从第二组和第四组对生产和居住环境满意的职工中分别抽取3人和2人作义务宣传员,在这5人中随机抽取2人介绍经验,求第二组和第四组恰好各有1人被抽中介绍经验的概率.26.为提高居民的节水意识,向阳小区开展了“建设节水型社区,保障用水平安〞为主题的节水宣传活动,小莹同学积极参与小区的宣传活动,并对小区300户家庭用水情况进行了抽样调查,他在300户家庭中,随机调查了50户家庭5月份的用水量情况,结果如下列图.〔1〕试估计该小区5月份用水量不高于12t的户数占小区总户数的百分比;〔2〕把图中每组用水量的值用该组的中间值〔如0~6的中间值为3〕来替代,估计该小区5月份的用水量.27.为了估计鱼塘中成品鱼〔个体质量在0.5kg及以上,下同〕的总质量,先从鱼塘中捕捞50条成品鱼,称得它们的质量如表:质量/kg 0.5 0.6 0.7 1.0 1.6数量/条 1 8 15 18 5 1 2然后做上记号再放回水库中,过几天又捕捞了100条成品鱼,发现其中2条带有记号.〔1〕请根据表中数据补全如图的直方图〔各组中数据包括左端点不包括右端点〕.〔2〕根据图中数据分组,估计从鱼塘中随机捕一条成品鱼,其质量落在哪一组的可能性最大?〔3〕根据图中数据分组,估计鱼塘里质量中等的成品鱼,其质量落在哪一组内?〔4〕请你用适当的方法估计鱼塘中成品鱼的总质量〔精确到1kg〕.28.某花店方案下个月每天购进80只玫瑰花进行销售,假设下个月按30天计算,每售出1只玫瑰花获利润5元,未售出的玫瑰花每只亏损3元.以x〔0<x≤80〕表示下个月内每天售出的只数,y〔单位:元〕表示下个月每天销售玫瑰花的利润.根据历史资料,得到同期下个月内场销售量的频率分布直方图〔每个组距包含左边的数,但不包含右边的数〕如下列图:〔1〕求y关于x的函数关系式;〔2〕根据频率分布直方图,计算下个月内销售利润少于320元的天数;〔3〕根据历史资料,在70≤x<80这个组内的销售情况如下表:销售量/只70 72 74 75 77 79天数 1 2 3 4 3 2计算该组内平均每天销售玫瑰花的只数.29.某校举行“汉字听写〞比赛,每位学生听写汉字39个.比赛结束后随机抽查局部学生的听写结果,以下是根据抽查结果绘制的图1统计图的一局部.组别听写正确的个数x 组中值A 0≤x<8 4B 8≤x<16 12C 16≤x<24 20D 24≤x<32 28E 32≤x<40 36根据以上信息解决以下问题:〔1〕本次共随机抽查了名学生,并补全图2条形统计图;〔2〕假设把每组听写正确的个数用这组数据的组中值代替,刚被抽查学生听写正确的个数的平均数是多少?〔3〕该校共有3000名学生,如果听写正确的个数少于24个定为不合格,请你估计这所本次比赛听写不合格的学生人数.30.九〔1〕班同学为了解2021年某小区家庭月均用水情况,随机调查了该小区局部家庭,并将调查数据进行如下整理.请解答以下问题:月均用水量x〔t〕频数〔户〕频率0<x≤5 6 0.125<x≤10 0.2410<x≤15 16 0.3215<x≤20 10 0.2020<x≤25 425<x≤30 2 0.04〔1〕把上面的频数分布表和频数分布直方图补充完整;〔2〕求该小区用水量不超过15t的家庭占被调查家庭总数的百分比;〔3〕假设该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?。
直方图练习题
直方图练习题直方图是一种常用的统计图表,它用矩形条表示数据的频数或频率分布。
通过直方图,我们可以直观地了解数据的分布情况。
本文将通过几个练习题来帮助读者提高直方图的解读和绘制的能力。
练习题一:下面是某班级学生的考试成绩分布情况,请根据这些数据绘制出直方图。
分数区间频数60-70 470-80 880-90 1290-100 6解答:为了绘制直方图,我们需要将横轴分为不同的分数区间,并且每个区间的宽度一致。
然后,根据频数绘制相应高度的矩形。
首先,我们将横轴分为四个等宽的区间:60-70、70-80、80-90和90-100。
然后,根据频数绘制矩形。
分数区间60-70对应的频数为4,因此绘制4个高度相同的矩形;分数区间70-80对应的频数为8,绘制8个高度相同的矩形;分数区间80-90对应的频数为12,绘制12个高度相同的矩形;分数区间90-100对应的频数为6,绘制6个高度相同的矩形。
练习题二:某商店连续7天的销售额如下,请根据这些数据绘制出直方图。
星期一:4000元星期二:3000元星期三:5000元星期四:6000元星期五:2000元星期六:3500元星期日:4500元解答:为了绘制直方图,我们需要将横轴标记为七个星期几,并以相同的宽度绘制矩形。
首先,我们将横轴标记为星期一至星期日。
然后,根据销售额数据绘制相应高度的矩形。
星期一的销售额为4000元,绘制一个高度为4000的矩形;星期二的销售额为3000元,绘制一个高度为3000的矩形;星期三的销售额为5000元,绘制一个高度为5000的矩形;星期四的销售额为6000元,绘制一个高度为6000的矩形;星期五的销售额为2000元,绘制一个高度为2000的矩形;星期六的销售额为3500元,绘制一个高度为3500的矩形;星期日的销售额为4500元,绘制一个高度为4500的矩形。
练习题三:一份调查显示了某城市不同年龄段人群的就业率分布情况,请根据这些数据绘制出直方图。
频数练习题
一、单选题1. 一个数据集共有50个数据,其中数值为10的频数为:A. 5B. 10C. 15D. 202. 下列哪个选项不是频数的定义?A. 数据集中某个数值出现的次数B. 数据集中最大数值与最小数值之差C. 数据集中数值的分布情况D. 数据集中某个数值出现的频率3. 在一组数据中,数值为5的频数为8,数值为7的频数为3,那么这组数据的总频数为:A. 11B. 15C. 18D. 204. 下列哪个选项不是频数分布表的基本组成部分?A. 数值范围B. 频数C. 频率D. 数据总和5. 一个班级有30名学生,其中有10名男生,20名女生,那么男生的频数为:A. 10B. 20C. 30D. 50二、多选题1. 频数分布表的作用包括:A. 显示数据集中数值的分布情况B. 分析数据集中数值的集中趋势C. 计算数据集中数值的离散程度D. 判断数据集中数值的分布类型A. 离散型频数分布B. 连续型频数分布C. 累计频数分布D. 累计频率分布3. 下列哪些是计算频数的步骤?A. 确定数据集B. 确定数值范围C. 统计每个数值出现的次数D. 计算频率4. 频率与频数的关系包括:A. 频率是频数除以数据总数B. 频率表示数据集中某个数值出现的概率C. 频率是频数与数据总数的比值D. 频率与频数成正比A. 频数分布表B. 频率分布表C. 频数分布直方图D. 频率分布直方图三、判断题1. 频数是指数据集中某个数值出现的次数。
()2. 频率与频数是相同的概念。
()3. 频数分布表可以直观地展示数据集中数值的分布情况。
()4. 频率分布直方图可以用来展示数据集中数值的分布类型。
()5. 频数分布图可以用来比较不同数据集的分布情况。
()四、填空题1. 频数的计算公式为:频数 = _______。
2. 频率是频数与 _______ 的比值。
3. 频数分布直方图的横轴表示 _______,纵轴表示 _______。
4. 在频数分布表中,累计频数是指从最小数值到当前数值的_______。
2024学年八年级数学经典好题专项(频数分布表和频数分布直方图)练习(附答案)
2024学年八年级数学经典好题专项(频数分布表和频数分布直方图)练习一、选择题1、一组数据的最大值与最小值之差为80,若取组距为9,则分成的组数应是( ) A. 7 B. 8 C. 9 D. 102、一个容量为80的样本,最大值是141,最小值是50,取组距为10,则可以分 ( )A.10组 B.9组 C.8组 D.7组3、现有一组数据,最大值为93,最小值为22,现要把它分成6组,则下列组距中,合适的为 ( ) A. 9 B. 12 C. 15 D. 184、某棉纺厂为了了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x (单位:mm)的数据分布如下表,则棉花纤维长度的数据在8≤x <32这个范围的频率为( )棉花纤维长度x频数 0≤x <8 1 8≤x <16 2 16≤x <24 8 24≤x <32 6 32≤x <403A.0.8 B .0.7 C .0.4 D .0.25、小杰调查了本班同学的体重情况,画出频数直方图如图所示,下列结论中,错误的是( )A. 全班总人数为45人B. 体重在50~55 kg 的人数最多C. “45~50 kg ”这一组的频率比“60~65 kg ”这一组的大0.1D. 体重在60~65 kg 的人数占全班总人数的196、某一组数据中,已知最大值是84,最小值是52,若分成6组,且组距为整数,某组组中值为72.5,则这组数据可能是( )A. 51.5~57.5B. 69.5~75.5C. 68.5~76.5D. 70.5~74.57、为了了解本校八年级学生的体能情况,随机抽查了其中30名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的频数分布直方图. 若25次为及格,则及格人数占总人数的( )A. 56.7%B. 90%C. 16.7%D. 33.3%8、为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( )A.280 B.240 C.300 D.260二、填空题9、一个样本有20个数据:35,31,33,35,37,39,35,38,40,39,36,34,35,37,36,32,34,35,36,34.在列频数分布表时,如果取组距为3,那么应分成 组10、有30个数据,其中最大值为40,最小值为15,若取组距为4,则应该分成 组11、有一个含有50个数据的数据组,已知最小数据是15,最大数据是45,且各数据都是整数,则这50个数据分为8组时,组距是________;若第1组的下限为14.5,则其上限为________,最末一组的上限为________.12、阅读对学生的成长有着深远的影响,某中学为了解学生每周课余阅读的时间,在本校随机抽取若干名学生进行调查,并依据调査结果绘制了如下不完整的统计表.则表中的a=____.组别时间/时频数(人)频率A 0≤t≤0.560.15B 0.5≤t≤1 a 0.313、某中学抽取部分学生对“你最喜欢的球类运动”调查问卷,收集整理数据后列频数分布表(部分)如下:项目 乒乓球 羽毛球 篮球 足球频数 80 50百分比 40% 25% m则表格中m的值为14、某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示,则a= .组号 分组 频数一 6≤m<7 2二 7≤m<8 7三 8≤m<9 a四 9≤m≤10 215、一个容量为60的样本,样本中最大值是172,最小值是150,取组距为3,则该样本可以分为 组16、小丽抽样调查了学校40名同学的体重(均精确到1kg),绘制了如图频数分布直方图,那么在该样本中体重不小于55kg的频率是 .17、某地区中考现场考试内容有两项,50米跑为必考项目,另在立定跳远、坐位体前屈、实心球和一分钟跳绳中选一项测试.王老师对参加体育中考的九(1)班40名学生的一项选测科目作了统计,列出如图所示的统计表,则本班参加坐位体前屈的人数是 人.组别 立定跳远 坐位体前屈 实心球 一分钟跳绳频率 0.4 0.35 0.1 0.1518、空气质量指数,简称AQI,如果AQI在0~50空气质量类别为优,在51~100空气质量类别为良,在101~150空气质量类别为轻度污染,按照某市最近一段时间的AQI画出的频数分布直方图如图所示.已知每天的AQI都是整数,那么空气质量类别为优和良的天数占总天数的百分比为 %.19、将100个数据分成①~⑧组,如表所示:编号 ① ② ③ ④ ⑤ ⑥ ⑦ ⑧频数 4 8 12 24 18 7 3那么第④组的频数为 .20、若小明统计了他家12月份打电话的通话时长,并列出频数分布表,则通话时长不超过10min的频率是 .通话时长 x/min 0<x≤5 5<x≤10 10<x≤15 x>15频数(通话次数)20 16 20 4三、解答题21、体育委员统计了全班同学60s跳绳的次数,并列出频数表如下:次数 60≤x<80 80≤x<100 100≤x<120 120≤x<140 140≤x<160 160≤x<180频数 2 4 21 13 8 4 (1)全班共有多少名学生?(2)组距是多少?组数是多少?(3)跳绳次数在120≤x<160范围内的学生有多少?22、每年的6月6日是全国爱眼日.某校为了做好全校2000名学生的眼睛保健工作,对学生的视力情况进行一次抽样调查.如图所示为利用所得的数据绘制的频数直方图(长方形的高表示该组人数).请你根据图中提供的信息,回答下列问题:(1)本次调查共抽测了____名学生.(2)在这个问题中,样本是指_____________________.(3)视力在4.85~5.15这一组内的频数是_______.(4)如果视力小于4.85均属视力不良,那么该校约有_________名学生的视力不良,应给予治疗、矫正.23、为了了解某地九年级学生参加消防知识竞赛成绩(均为整数),从中抽取了1%的同学的竞赛成绩,整理后绘制了如下的频数直方图,请结合图形解答下列问题:(1)这个问题中的总体是 ;(2)竞赛成绩在84.5~89.5分这一小组的频率是 ;(3)若竞赛成绩在90分以上(含90分)的同学可以获得奖励,则估计该地获得奖励的九年级学生约有________人.24、在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频数直方图如下图所示,已知从左至右各长方形的高的比为2∶3∶4∶6∶4∶1,第三组的频数为12.请解答下列问题:(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件,2件作品获奖,问:这两组哪一组获奖率较高?25、在开展“经典阅读”活动中,某校为了解全校学生利用课外时间阅读的情况,学校团委随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计图表.根据图表信息回答下列问题:(1)填空:a=____,b=____,m=____,n=____.(2)将频数直方图补充完整.(3)若该校有3000名学生,请根据上述调查结果,估计该校学生一周的课外阅读时间不足3 h的人数.26、为了让地震受灾的儿童得到救助,某社区组织“献爱心手拉手”捐款活动,对社区部分捐款户数进行调查和分组统计后,将数据整理成如图所示的统计表和统计图(图中信息不完整).已知A、B两组捐款户数的比为1:5.请结合以上信息解答下列问题.(1)a= ,本次调查样本的容量是 ;(2)补全“捐款户数分组统计表和捐款户数统计图1”;(3)若该社区共有1000户住户参与捐款,请根据以上信息估计,全社区捐款不少于300元的户数是 户.27、为了了解某次“小学生书法比赛”的成绩情况,随机抽取了30名学生的成绩进行统计,并将统计情况绘制成如图所示的频数直方图,已知成绩x(单位:分)均满足“50≤x<100”.根据图中信息回答下列问题:(1)图中a的值为____.(2)绘制扇形统计图时,成绩x在“70≤x<80”范围内所对应扇形的圆心角的度数为____.(3)此次比赛共有300名学生参加,若将“x≥80”的成绩记为“优秀”,则获得“优秀”的学生大约有____人.28、为庆祝中华人民共和国成立70周年,郑州市某校组织八年级学生进行“方阵表演”.为了整齐划一,需了解学生的身高,现随机抽取该校八年级学生进行抽样调查,根据所得数据绘制出如下统计图表根据图表提供的信息,回答下列问题:(1)这次抽样调查,一共抽取学生 人;(2)扇形统计图中,扇形E的圆心角度数是 ;(3)请补全频数分布直方图;(4)已知该校八年级共有学生400人,请估计身高在160≤x<170的学生约有多少人?参考答案一、选择题1、一组数据的最大值与最小值之差为80,若取组距为9,则分成的组数应是( C )A. 7B. 8C. 9D. 102、一个容量为80的样本,最大值是141,最小值是50,取组距为10,则可以分 ( A )A.10组 B.9组 C.8组 D.7组3、现有一组数据,最大值为93,最小值为22,现要把它分成6组,则下列组距中,合适的为 ( B )A. 9B. 12C. 15D. 184、某棉纺厂为了了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表,则棉花纤维长度的数据在8≤x<32这个范围的频率为(A)棉花纤维长度x 频数0≤x<8 18≤x<16 216≤x<24824≤x<32 632≤x<40 3A.0.8 B.0.7 C.0.4 D.0.25、小杰调查了本班同学的体重情况,画出频数直方图如图所示,下列结论中,错误的是(C )A. 全班总人数为45人B. 体重在50~55 kg 的人数最多C. “45~50 kg ”这一组的频率比“60~65 kg ”这一组的大0.1D. 体重在60~65 kg 的人数占全班总人数的19 【解】 8+10+14+8+5=45(人),故A 选项正确. 体重在50~55 kg 的人数有14人,最多,故B 选项正确. “45~50 kg ”这一组的频率是10÷45=29, “60~65 kg ”这一组的频率是5÷45=19, 29-19=19≠0.1,故C 选项错误.5÷45=19,故D 选项正确. 故选C.6、某一组数据中,已知最大值是84,最小值是52,若分成6组,且组距为整数,某组组中值为72.5,则这组数据可能是( B ) A. 51.5~57.5 B. 69.5~75.5 C. 68.5~76.5 D. 70.5~74.57、为了了解本校八年级学生的体能情况,随机抽查了其中30名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的频数分布直方图. 若25次为及格,则及格人数占总人数的( A )A. 56.7%B. 90%C. 16.7%D. 33.3%8、为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( )A.280 B.240 C.300 D.260【解答】解:由题可得,抽查的学生中参加社团活动时间在8~10小时之间的学生数为100﹣30﹣24﹣10﹣8=28(人),∴1000280(人),即该校五一期间参加社团活动时间在8~10小时之间的学生数大约是280人.故选:A.二、填空题9、一个样本有20个数据:35,31,33,35,37,39,35,38,40,39,36,34,35,37,36,32,34,35,36,34.在列频数分布表时,如果取组距为3,那么应分成 4 组10、有30个数据,其中最大值为40,最小值为15,若取组距为4,则应该分成 7 组11、有一个含有50个数据的数据组,已知最小数据是15,最大数据是45,且各数据都是整数,则这50个数据分为8组时,组距是________;若第1组的下限为14.5,则其上限为________,最末一组的上限为________.[解析] 45-15=30,3<30÷8<4,∴组距应为4.若第1组的下限为14.5,则其上限为14.5+4=18.5;最末一组的上限为14.5+4×8=14.5+32=46.5.[答案] 418.546.512、阅读对学生的成长有着深远的影响,某中学为了解学生每周课余阅读的时间,在本校随机抽取若干名学生进行调查,并依据调査结果绘制了如下不完整的统计表.则表中的a=____.组别时间/时频数(人)频率A 0≤t≤0.560.15B 0.5≤t≤1 a 0.3【解析】∵被调查的总人数为6÷0.15=40(人),∴B组的人数为40×0.3=12(人),即a=12.13、某中学抽取部分学生对“你最喜欢的球类运动”调查问卷,收集整理数据后列频数分布表(部分)如下:项目 乒乓球 羽毛球 篮球 足球频数 80 50百分比 40% 25% m则表格中m的值为 10%14、某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示,则a= 9 .组号 分组 频数一 6≤m<7 2二 7≤m<8 7三 8≤m<9 a四 9≤m≤10 215、一个容量为60的样本,样本中最大值是172,最小值是150,取组距为3,则该样本可以分为 8 组16、小丽抽样调查了学校40名同学的体重(均精确到1kg),绘制了如图频数分布直方图,那么在该样本中体重不小于55kg的频率是 .【解答】解:观察直方图可知:因为该样本中体重不小于55kg的频数为:9+5+2=16,所以该样本中体重不小于55kg的频率是0.4.故答案为:0.4.17、某地区中考现场考试内容有两项,50米跑为必考项目,另在立定跳远、坐位体前屈、实心球和一分钟跳绳中选一项测试.王老师对参加体育中考的九(1)班40名学生的一项选测科目作了统计,列出如图所示的统计表,则本班参加坐位体前屈的人数是 人.组别 立定跳远 坐位体前屈 实心球 一分钟跳绳频率 0.4 0.35 0.1 0.15【解答】解:∵频率,∴频数=频率×总数=0.35×40=14人.故答案为14.18、空气质量指数,简称AQI,如果AQI在0~50空气质量类别为优,在51~100空气质量类别为良,在101~150空气质量类别为轻度污染,按照某市最近一段时间的AQI画出的频数分布直方图如图所示.已知每天的AQI都是整数,那么空气质量类别为优和良的天数占总天数的百分比为 %.【解答】解:空气质量类别为优和良的天数占总天数的百分比为100%=80%, 故答案为:80.19、将100个数据分成①~⑧组,如表所示:编号 ① ② ③ ④ ⑤ ⑥ ⑦ ⑧频数 4 8 12 24 18 7 3那么第④组的频数为 24.【解答】解:由题意可得,第④组的频数为:100﹣4﹣8﹣12﹣24﹣18﹣7﹣3=24,故答案为:24.20、若小明统计了他家12月份打电话的通话时长,并列出频数分布表,则通话时长不超过10min的频率是 0.6 .通话时长 x/min 0<x≤5 5<x≤10 10<x≤15 x>15频数(通话次数)20 16 20 4三、解答题21、体育委员统计了全班同学60s跳绳的次数,并列出频数表如下:次数 60≤x<80 80≤x<100 100≤x<120 120≤x<140 140≤x<160 160≤x<180频数 2 4 21 13 8 4 (1)全班共有多少名学生?(2)组距是多少?组数是多少?(3)跳绳次数在120≤x<160范围内的学生有多少?解:(1)全班共有2+4+21+13+8+4=52(名)学生.(2)组距是80-60=20次,组数是6.(3)跳绳次数在120≤x<160范围内的学生有13+8=21(人).22、每年的6月6日是全国爱眼日.某校为了做好全校2000名学生的眼睛保健工作,对学生的视力情况进行一次抽样调查.如图所示为利用所得的数据绘制的频数直方图(长方形的高表示该组人数).请你根据图中提供的信息,回答下列问题:(1)本次调查共抽测了__160__名学生.(2)在这个问题中,样本是指__160名学生的视力情况__.(3)视力在4.85~5.15这一组内的频数是__40__.(4)如果视力小于4.85均属视力不良,那么该校约有__1250__名学生的视力不良,应给予治疗、矫正.23、为了了解某地九年级学生参加消防知识竞赛成绩(均为整数),从中抽取了1%的同学的竞赛成绩,整理后绘制了如下的频数直方图,请结合图形解答下列问题:(1)这个问题中的总体是 ;(2)竞赛成绩在84.5~89.5分这一小组的频率是 ;(3)若竞赛成绩在90分以上(含90分)的同学可以获得奖励,则估计该地获得奖励的九年级学生约有________人.解(1)某地九年级学生参加消防知识竞赛的成绩(2)=0.32.(3)该地九年级获得奖励的人数约是(13+7)÷1%=2000(人)24、在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频数直方图如下图所示,已知从左至右各长方形的高的比为2∶3∶4∶6∶4∶1,第三组的频数为12.请解答下列问题: (1)本次活动共有多少件作品参加评比? (2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件,2件作品获奖,问:这两组哪一组获奖率较高?【解】 (1)12÷42+3+4+6+4+1=60(件).(2)第四组上交的作品数量最多,有12×64=18(件).(3)第四组的获奖率为1018=59,第六组的获奖率为2÷⎝⎛⎭⎫12×14=23=69. ∵59<69,∴第六组获奖率较高.25、在开展“经典阅读”活动中,某校为了解全校学生利用课外时间阅读的情况,学校团委随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计图表.根据图表信息回答下列问题:(1)填空:a =____,b =____,m =____,n =____. (2)将频数直方图补充完整.(3)若该校有3000名学生,请根据上述调查结果,估计该校学生一周的课外阅读时间不足3 h 的人数.【解】 (1)∵b =18÷0.12=150,∴n =36÷150=0.24,∴m =1-0.12-0.3-0.24-0.14=0.2,∴a=0.2×150=30.(2)补全频数直方图如解图中斜纹所示.(3)3000×(0.12+0.2)=960.答:估计该校学生一周的课外阅读时间不足3 h的人数为960.26、为了让地震受灾的儿童得到救助,某社区组织“献爱心手拉手”捐款活动,对社区部分捐款户数进行调查和分组统计后,将数据整理成如图所示的统计表和统计图(图中信息不完整).已知A、B两组捐款户数的比为1:5.请结合以上信息解答下列问题.(1)a= ,本次调查样本的容量是 ;(2)补全“捐款户数分组统计表和捐款户数统计图1”;(3)若该社区共有1000户住户参与捐款,请根据以上信息估计,全社区捐款不少于300元的户数是 户.解:(1)B组捐款户数是10,则A组捐款户数为10×=2,样本容量为(2+10)÷(1﹣8%﹣40%﹣28%)=50.(2)统计表C、D、E 组的户数分别为20,14,4.组别 捐款额(x)元 户数A 1≤x<50 aB 100≤x<200 10C 200≤x<300 20D 300≤x<400 14E x≥400 4(3)估计全社区捐款不少于300元的户数是1000×(28%+8%)=360(户).27、为了了解某次“小学生书法比赛”的成绩情况,随机抽取了30名学生的成绩进行统计,并将统计情况绘制成如图所示的频数直方图,已知成绩x(单位:分)均满足“50≤x <100”.根据图中信息回答下列问题: (1)图中a 的值为____.(2)绘制扇形统计图时,成绩x 在“70≤x <80”范围内所对应扇形的圆心角的度数为____. (3)此次比赛共有300名学生参加,若将“x ≥80”的成绩记为“优秀”,则获得“优秀”的学生大约有____人.【解】 (1)a =30-(2+12+8+2)=6,故a =6.(2)成绩x 在“70≤x <80”范围内所对应扇形的圆心角的度数为360°×1230=144°. (3)获得“优秀”的学生大约有300×8+230=100(人).28、为庆祝中华人民共和国成立70周年,郑州市某校组织八年级学生进行“方阵表演”.为了整齐划一,需了解学生的身高,现随机抽取该校八年级学生进行抽样调查,根据所得数据绘制出如下统计图表根据图表提供的信息,回答下列问题: (1)这次抽样调查,一共抽取学生 人; (2)扇形统计图中,扇形E 的圆心角度数是 ;(3)请补全频数分布直方图;(4)已知该校八年级共有学生400人,请估计身高在160≤x<170的学生约有多少人?【解答】解:(1)这次抽样调查,一共抽取学生4÷10%=40(人);(2)扇形统计图中,扇形E的圆心角度数是36054°,故答案为:40;54°;(3)身高在160≤x<170的人数为:40×20%=8人,补全频数分布直方图如图所示;(4)400×45%=180(人),答:估计身高在160≤x<170的学生约有180人.。
7.4 频数分布表和频数分布直方图 分层练习 原卷版
7.4 频数分布表和频数分布直方图分层练习考查题型一从频数分布表、频数分布直方图中获取信息解决实际问题1.某面粉厂准备确定面粉包装袋的规格,市场调查员小李随机选择三家超市进行调查,收集三家超市一周的面粉销售情况,并整理数据、做出如图所示的统计图,则该面粉厂应选择面粉包装袋的规格为()A.2kg/包B.3kg/包C.4kg/包D.5kg/包2.“共享单车”为人们提供了一种经济便捷、绿色低碳的共享服务,成为城市交通出行的新方式,小文对他所在小区居民当月使用“共享单车”的次数进行了抽样调查,并绘制成了如图所示的频数分布直方图(每一组含前一个边界值,不含后一个边界值),则下列说法正确的是()A.小文一共抽样调查了20人B.样本中当月使用“共享单车”40~50次的人数最多C.样本中当月使用“共享单车”不足30次的人数有14人D.样本中当月使用次数不足30次的人数多于50~60次的人数3.体育委员统计了全班女生立定跳远的成绩,列出频数分布表如下:已知跳远距离1.8米以上为优秀,则该班女生获得优秀的频率为_ .4.为了参加全校各年级之间的广播体操比赛,七年级准备从63名同学中挑选身高相差不多的40名学生参加比赛.根据这63名学生身高x(cm)的频数分布直方图(每组数据含最小值,不含最大值),分析可得参加比赛的学生身高x的合理范围是_ .5.如图是八年级某班50名学生身高(精确到1cm)的频数分布直方图(每组包含最小值,不包含最大值),从左起第一、二、三、四个小长方形的高的比是1:3:5:1,则身高在170cm 及170cm以上的学生的人数为.考查题型二列频数分布表、绘制频数分布直方图1.对频数分布直方图的下列认识,不正确的是()A.每小组条形图的横宽等于这组的组距B.每小组条形图的纵高等于这组的频数C.每小组条形图的面积等于这组的频率D.所有小组条形图的个数等于数据分组整理的组数2.南京某校八年级体育课上,体育老师统计了全班同学60秒跳绳的次数,发现跳绳次数最多的同学是185个,跳绳次数最少的同学是140个,为了分析数据需要列频数分布表,规定组距为6,那么组数是()A.6B.7C.8D.93.为了解某校学生每周课外阅读时间的情况,随机抽取该校a名学生进行调查,获得的数据整理后绘制成统计表如下:表中4≤x<6组的频数b满足25≤b≤35.下面有四个推断:①表中a的值为100;②表中c的值可以为0.31;③这a名学生每周课外阅读时间的中位数一定不在6~8之间;④这a名学生每周课外阅读时间的平均数不会超过6.所有合理推断的序号是______________.4.2022年12月4日是我国第22个“法制宣传日”,我校举行了主题“学法,知法,懂法,守法”的普法知识竞赛.为了了解本次知识竞赛成绩的分布情况,从参赛学生中随机抽取了150名学生的初赛成绩进行统计,得到如下两幅不完整的统计图表.(1)表中a=___________,b=___________;(2)请补全频数分布直方图:(3)若80分以上为优秀,该校现有1200名学生,请你估计我校成绩优秀的学生有多少名?(4)结合以上信息,请你给该校关于普法方面提出一条合理化的建议.考查题型三综合频数分布直方图(频数分布表)与扇形统计图获取需要的信息1.“俭以养德”是中华民族的优秀传统,时代中学为了对全校学生零花钱的使用进行正确引导,随机抽取50名学生,对他们一周的零花钱数额进行了统计,并根据调查结果绘制了不完整的频数分布表和扇形统计图,如图所示:组别零花钱数额x/元频数一x≤10二10<x≤1512三15<x≤2015四20<x≤25a五x>255关于这次调查,下列说法正确的是()A.总体为50名学生一周的零花钱数额B.五组对应扇形的圆心角度数为36°C.在这次调查中,四组的频数为6D.若该校共有学生1500人,则估计该校零花钱数额不超过20元的人数约为1200人2.小周是一位运动达人,他通过佩戴智能手环来记录自己一个月(30天)的每日行走步数(单位:千步),并绘制成右面的统计图.根据统计图提供的信息,下列推断不合理...的是()A.每日行走步数为4~8千步的天数占这个月总天数的10%B.每日行走步数为8~12千步的扇形圆心角是108°C.小周这个月超过一半的天数每日行走步数不低于12000步D.小周这个月行走的总步数不超过324千步3.为了更好地开展全民健身,建设健康中国,某社区随机抽取了若干居民,对其健身情况进行抽样调查.将被调查的居民每天的健身时间t(min)分为5组,绘制如下的不完整的健身时间频数分布表和扇形统计图.根据上述信息,解答下列问题:(1)在扇形统计图中,C组对应的圆心角为直角,频数分布表中a的值是______;(2)在频数分布表中,m的值为______,在扇形统计图中,A组的圆心角为______;(3)在本次统计中,中位数落在______组;(4)若该社区共有3万人,利用本次抽样调查的结果,可估计该社区锻炼时间不少于45分钟的人数为______万人.4.菲尔兹奖是国际上有崇高声誉的一个数学奖项.晓刚统计了连续几年共20位菲尔兹奖得主的年龄,整理并绘制成如下统计图.根据以上图表,解答下列问题:(1)m=_____________,n=_____________,并补全频数分布直方图;(2)在扇形统计图中,获奖年龄在B组的人数约占获奖总人数的_____________%,C组的圆心角度数为_____________°;(3)根据统计图描述这些数学家获得菲尔兹奖时年龄的分布特征.1.唐同学去年暑假随爸爸去成都大熊猫繁殖基地看熊猫,发现整个基地的熊猫都未出熊猫内室,当天的温度有33度,他了解到熊猫的外出活动与室外温度有关,因此通过一年(以365天计算)的观察,对熊猫“花花”外出活动时的温度(以0℃至40℃为监测温度区间)进行了调查,并制作了如下图所示的频数分布表与直方图:请根据图表提供的信息,解答下列问题:(1)在频数分布表中,求出a=______,b=______;并补全频数直方图.(2)熊猫最喜欢外出活动时的温度区间为______;(3)成都的全年每个月的平均温度如下表:你认为哪个月看熊猫最合适,为什么?2.区政府想了解某镇的经济状况,用简单随机抽样的方法,在130户家庭中抽取20户调查过去一年的收入(单位:万元),结果如下:1.3,1.7,2.4,1.1,1.4,1.6,1.6,2.7,2.1,1.5,0.9,3.2,1.3,2.1,2.6,2.1,1.0,1.8,2.2,1.8(1)将上述数据进行分组整理,列出频数分布表,请补充;(2)根据频数分布表绘制频数分布直方图和扇形统计图,请补全;(3)求扇形统计图中百分比最大部分所对应的扇形的圆心角的度数;(4)如果把年收入低于1.3万元的视为“低收入家庭”,试估计该镇“低收入家庭”的户数.。
频率分布直方图练习题
频率分布直方图练习题1、根据《中华人民共和国道路交通安全法》,酒后驾车的血液酒精浓度在20~80mg/100mL(不含80)组距之间,而醉酒驾车的血液酒精浓度在80mg/100mL(含0.080)以上。
在某地区一周内,共查处500名酒后驾车和醉酒驾车的司机。
通过对这些司机血液中酒精含量的检测,得到了频率分布直方图。
根据直方图,可估算醉酒驾车的司机人数约为70人。
2、对100名学生进行随机抽样,测得他们的身高(单位cm)。
将身高分为区间[155,160),[160,165),[165,170),[170,175),[175,180),[180,185),并得到样本身高的频率分布直方图。
根据直方图,可以得到身高在170cm以上的学生人数为30人。
将身高在[170,175),[175,180),[180,185)三个区间内的学生分别记为A、B、C三组,从这三组中分层抽样选取6人,则从A、B、C三组中分别抽取的人数为2、2、2人。
3、某部门为了确定对某路段进行限速60km/h是否合理,对通过该路段的500辆汽车的车速进行检测,并将所得数据按照组距[40,50),[50,60),[60,70),[70,80]分组,得到频率分布直方图。
根据直方图,可以得出这500辆汽车中车速低于限速的汽车有90辆。
4、某校从参加高三年级期末考试的学生中抽出60名学生,并统计了他们的历史成绩(成绩均为整数且满分为100分)。
将不低于50分的成绩分为五段,得到部分频率分布直方图。
根据直方图,历史成绩在[70,80)的学生人数为16人。
5、给定XXX青年歌手大奖赛上某位选手得分的茎叶图,去掉一个最高分和一个最低分后,所剩数据的方差为25.4.6、从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图。
根据直方图,可得到a=141.若要从身高在[120,130),[130,140),[140,150)三组内的学生中,用分层抽样的方法选取18人参加活动,则应从每组中分别选取6人。
八年级数学下册5数据的频数分布检测试题
第五章数据的频数分布一、选择题(本大题共10小题)1。
某校对名女生的身高进行了测量,身高在(单位:)这一小组的频率为,则该组的人数为()A.150 B。
300 C。
600 D.9002。
已知一个样本的数据个数是,在样本的频率直方图中各个小长方形的高的比依次为,则第二小组的频数为()A。
4 B。
12 C。
9 D.83.某校为了了解学生在校午餐所需的时间,随机抽取了名学生在校午餐所需的时间,获得如下的数据(单位:min):10,12,15,10,16,18,19,18,20,28,22,25,20,18,18,20,15,16,21,16.若将这些数据以4 min为组距进行分组,则组数是()A。
4 B.5 C.6 D.74。
下列说法中错误的是( )A.一个对象在实际中出现的次数越多,频数就越大B.一个总次数一定的实验中频数越大,频率就越大C.实验的总次数一定时,频数与频率成正比D。
频数和频率反应每个对象出现的频繁程度的效果是一样的5.在对某地区的一次人口抽样统计分析中,各年龄段(年龄为整数)的人数如下表所示:年龄段0~910~1920~2930~3940~4950~5960~6970~7980~89人数9 11 17 18 17 12 8 6 2 根据此表回答下列问题,样本中年龄在60岁以上(含60岁)的频率是( );A。
0。
16 B。
0.2 C.0.4 D.0。
126。
一组数据共50个,分为6组,第一组的频数为5,第二组的频数为7,第三组的频数为8,第四组的频数为10,第五组的频率是0.2,则第六组的频数是( )A。
10 B。
0。
2 C。
40 D.87.某校对初中学生开展的四项课外活动进行了一次抽样调查(每人只参加其中的一项活动),调查结果如图所示,根据图形所提供的样本数据,可得学生参加科技活动的频率是( )A。
0。
15 B。
0。
2 C.0。
25 D.0。
38.在频数分布直方图中,共有11个小长方形,若中间一个小长方形的频数等于其他10个小长方形的频数的和的14,且共有160个数据,则中间一组数据的频数是( )A。
数据的频数分布练习题
数据的频数分布练习题一、精心选一选(每题3分,共30分)1.样本频数分布反映了()A.样本数据的多少 B.样本数据的平均水平C.样本数据的离散程序 D.样本数据在各个小范围内数量的多少2.有一句地方民谣“早穿皮袄午穿纱”,说明此地气温的特点的特征数是()A.平均数 B.中位数 C.极差 D.众数3.在数据10,20,40,30,80,90,50,40,40,50中,极差是()A.40 B.70 C.80 D.904.某中学数学教研组有25名教师,将他们的年龄分成3组,在28~35岁组内有8名教师,其中这个小组的频率是()A.0.38 B.0.32 C.3.12 D.0.125.一组数据的最大值与最小值之差为80,若取组距为10,则组数一般是()A.7 B.8 C.9 D.106.在英文词组was a sunny in park中,字母n出现的频率是()A.0.2 B.0.3 C.0.13 D.0.227.在样本12,8,14,6,10,13,15,9,11,16,8,12,14,9,13,5,8,11,7,10中,频率是0.3的组的范围是()A.4.5~7.5 B.7.5~10.5 C.10.5~13.5 D.13.5~16.58.一组数据共40个,分成6组,第1~4组的频数分别是10,5,7,6,第5组的频率是()A.0.15 B.0.20 C.0.25 D.0.309.将100个数据分成8组(如下表),第6组的频数是()A.12 B.13 C.14 D.1510.某校九(1)班50名学生学业考试成绩的频数分布直方图如图所示,•则总分在600分以上的学生人数为()A.20 B.30 C.35 D.45九(1)班学生中考成绩的频数分布直方图二、细心填一填(每题3分,共30分)11.在对100个数据进行整理分析的频数分布表中,各组的频数之和等于______,各组的频率之和等于_______.12.某日的最高气温是15℃,气温的极差为10℃,则该日的最低气温是_______.13.某校八年级(1)班共有55位同学,2月份出生的人数的频率是0.2,则该班2•月份生日的同学有________人.14.在数据6,9,11,8,7,11,12,10,9,10,12,10,9,8,13,15,10,11,12,13中,出现次数最多的数据是_______.15.荷兰著名数学家卢道夫早在1596•年就推算出了具有15•位小数的 值为3.141592653589793.在这个数中,数字3出现的频率是_______.16.下表是某校八年级(8)班共50位同学身高情况的频数分布表,•则表中的组距是_______,估计极差至多是______.17.在第16题中,频率是0.28的这一小组的组中值是______.18.在第16题中,该班50名学生的平均身高是_______cm(精确到0.01).19.将数据分成4组,画出频数分布直方图,各小长方形的高的比是1:3:4:2,若第2 组的频数是15,则此样本的样本容量是_______.20.如图是八(5)班演讲选拨赛得分情况的频数分布折线图,•则分布在折线图右端的虚设组的范围是________.三、耐心做一做(本题共有5小题,共40分)21.(6分)为了解某初中学生的体能情况,•抽取若干名学生在单位时间内进行引体向上测试,将所得数据整理后,画出频数分布直方图(如图),•图中从左到右依次为第1,2,3,4,5组.(1)求抽取了多少名学生参加测试.(2)处于哪个次数段的学生数最多(答出是第几组即可)?(3)若次数在5次(含5次)以上为达标,求这次测试的达标率.22.(8分)当今,青少年视力水平的下降已引起全社会的关注,为了解某校八年级的800名学生的视力情况,从中抽取一部分学生进行统计分析.(1)补全频数分布表:(2)估算该校八年级800名学生的平均视力.(3)对该校八年级青少年视力情况作出评价.Array23.(8分)右图示为若干名学生每分钟脉搏跳动次数的频数分布折线.(1)求学生的总人数;(2)分布在两端虚设的两组的组中值分别是多少?(3)估计样本的中位数.24.(8分)为了解某城镇中学学做家务的时间,一综合实践活动小组对该班50•名学生进行了调查,根据调查所得的数据制成如右图的频数分布直方图.(1)补全该图,并写出相应的频数;(2)求第1组的频率;(3)求该班学生每周做家务时间的平均数;(4)你的做家务时间在哪一组内?请用一句话谈谈你的感受.25.(10分)某校为了解八年级学生参加课外体育活动的情况,随机抽取了30名学生,对他们一周内平均每天参加课外体育活动的时间进行了调查,统计结果如下(•单位:分):28,50,40,40,40,53,38,40,34,40,27,21,35,32,40,40,30,52,35,62,36,15,51,40,38,19,40,40,32,43.(1)求这组数据的极差;(2)按组距10分将数据分组,确定每组的组中值,列出频数分布表;(3)在同一图中画出频数分布直方图和频数分布折线图.。
(典型题)湘教版八年级下册数学第5章 数据的频数分布含答案
湘教版八年级下册数学第5章数据的频数分布含答案一、单选题(共15题,共计45分)1、为了解在校学生参加课外兴趣小组活动情况,随机调查了40名学生,结果书法、绘画、舞蹈及其他的频数分别为8、11、12、9,则参加书法兴趣小组的频率是()A.0.1B.0.15C.0.2D.0.32、在频数分布表中,各组的频率之和等于()A.1B.2C.3D.43、已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是10,5,7,6,第五组的频率是0.2,所以第六组的频率是()A.0.1B.0.2C.0.3D.0.44、频率不可能取到的数为().A.0B.0.5C.1D.1.55、一组数据共50个,分为6组,第1—4组的频数分别是5,7,8,10,第5组的频率是0.20,则第6组的频数是()A.10B.11C.12D.156、学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是()A.0.3B.0.25C.0.15D.0.17、某校测量了初三班学生的身高(精确到),按为一段进行分组,得到如下频数分布直方图,则下列说法正确的是()A.该班人数最多的身高段的学生数为人B.该班身高低于的学生数为人C.该班身高最高段的学生数为人D.该班身高最高段的学生数为人8、如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A.2~4小时B.4~6小时C.6~8小时D.8~10小时9、一组数据共40个,分为6组,第1到第4组的频数分别为10,5,7,6,第5组的频率为0.1,则第6组的频数为( )A.4B.10C.6D.810、小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/分钟0<x≤55<x≤1010<x≤1515<x≤20频数(通话次数)20 16 9 5则通话时间不超过15分钟的频率是()A.0.1B.0.4C.0.5D.0.911、对一组数据进行适当整理,下列结论正确的是()A.众数所在的一组频数最大B.若极差等于24,取组距为4时,数据应分为6组C.绘频数分布直方图时,高与频数成正比D.各组的频数之和等于112、对八年级200名学生的体重进行统计,在频率分布表中,40kg—45kg这一组的频率是0.4,那么八年级学生体重在40kg—45kg的人数是()A.8人B.80人C.4人D.40人13、如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是()A.该班总人数为50B.步行人数为30C.乘车人数是骑车人数的2.5倍D.骑车人数占20%14、为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是()A.0.1B.0.2C.0.3D.0.415、下表是校女子排球队员的年龄分布,则校女子排球队的平均年龄为()年龄/岁13 14 15频数 1 4 5二、填空题(共10题,共计30分)16、一个样本有100个数据,最大的是351,最小的是75,组距为25,可分为________ 组.17、在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为________ .18、已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是10,5,7,6,第五组的频率是0.2,则第六组的频率是________.19、现将某校七年一班女生按照身高共分成三组,下表是这个班级女生的身高分组情况统计表,则在统计表中的值是________.第一组第二组第三组每个小组女生人数9 8每个小组女生人数占15%班级女生人数的百分比20、某中学学生会为研究该校学生的课余活动情况,采取抽样的方法,从阅读、运动、娱乐、其它等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图(如图1,图2),请你根据图中提供的信息解答下列问题:(1)在这次研究中,一共调查了学生________ 名.(2)“其它”在扇形图中所占的圆心角是________ 度.(3)在图2中补全频数分布直方图.(4)根据此次被调查的结果,________ (填“可以”或“不可以”)估计这个学校所在的区的学生的兴趣爱好情况,理由是:________21、某校九年级班名学生的血型统计如下表:血型型型型型</td>频率则该班学生型血的有________名22、在对某班的一次数学测验成绩进行的,统计分析中,各分数段的人数如图所示(分数取正整数,满分100分),该班有________名学生;69.5~79.5这一组的频数________.频率是________23、某学校食堂为了了解服务质量,随机调查了来食堂就餐的200名学生,调查的结果如图所示,根据图中给出的信息,这200名学生中对该食堂的服务质量表示很满意的有________人.24、某口袋中装有红色、黄色、蓝色三种颜色的小球(小球出颜色外完全相同)共60个.通过多次摸球实验后,发现摸到红球、黄球的频率分别是30%和45%,由此估计口袋中蓝球的数目约为________个.25、将50个数据分成3组,其中第一组和第三组的频率之和为0.7,则第二小组的频数是________.三、解答题(共6题,共计25分)26、为了让更多的失学儿童重返校园,某社区组织“献爱心手拉手”捐款活动,对社区部分捐款户数进行调查和分组统计后,将数据整理成如图所示的统计表和统计图(图中信息不完整).已知A、B两组捐款户数的比为1:5.组别捐款额(x)户数元A 1≤x<50 aB 50≤x<100 10C 100≤x<150D 150≤x<200E x≥200请结合以上信息解答下列问题.(1)a等于多少?本次调查样本的容量是多少?(2)补全“捐款户数分组统计表和捐款户数统计图1”;(3)若该社区有1500户住户,请根据以上信息估计,全社区捐款不少于150元的户数是多少?27、某课题组为了解全市九年级学生对数学知识的掌握情况,在一次数学检测中,从全市24000名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表:分数段频数频率x<60 20 0.1060≤x<70 28 0.1470≤x<80 54 0.2780≤x<90 a 0.2090≤x<100 24 0.12100≤x<110 18 b110≤x<120 16 0.08请根据以上图表提供的信息,解答下列问题:(1)表中a和b所表示的数分别为多少;(2)请在图中,补全频数分布直方图;(3)如果把成绩在90分以上(含90分)定为优秀,那么该市24000名九年级考生数学成绩为优秀的学生约有多少名?28、为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:组别成绩x分频数(人数)第1组25≤x<30 4第2组30≤x<35 8第3组35≤x<40 16第4组40≤x<45 a第5组45≤x<50 10请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.29、一组数据有30个数,把它们分成四组,其中第一组,第二组的频数分别为7,9,第三组的频率为0.1,则第四组的频数是多少?30、为迎接中国共产党建党90周年,某校举办“红歌伴我成长”歌咏比赛活动,参赛同学的成绩分别绘制成频数分布表和频数分布直方图(均不完整)如下:分数段频数频率80≤x<85 9 0.1585≤x<90 m 0.4590≤x<95 ■■95≤x<100 6 n(1)求m,n的值分别是多少;(2)请在图中补全频数分布直方图;(3)比赛成绩的中位数落在哪个分数段?参考答案一、单选题(共15题,共计45分)1、C2、A3、A4、D5、A6、A7、D8、B9、D10、D11、C12、B13、B14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共6题,共计25分)28、30、。
八年级数学下册《第五章 数据的频数分布》练习题与答案(湘教版)
八年级数学下册《第五章数据的频数分布》练习题与答案(湘教版)一、选择题1.已知数据:10,8,6,10,8,13,11,10,12,7,9,8,12,9,11,12,9,10,11,10,那么频数为4的一组是( )A.5.5~7.5B.7.5~9.5C.9.5~11.5D.11.5~13.52.在一次体育测试中,10名女生完成仰卧起坐的个数如下:38,52,47,46,50,50,61,72,45,48.则这10名女生仰卧起坐个数不少于50个的频率为( )A.0.3B.0.4C.0.5D.0.63.四大名著知识竞赛成绩结果统计如下表:成绩在91﹣100分的为优胜者,则优胜者的频率是( )分数段(分) 61﹣70 71﹣80 81﹣90 91﹣100人数(人) 2 8 6 44.A校女生占全校总人数的40%,B校女生占全校总人数的55%,则女生人数( )A.A校多于B校B.A校与B校一样多C.A校少于B校D.不能确定5.统计得到的一组数据有80个,其中最大值为141,最小值为50,取组距为10,可以分成()A.10组B.9组C.8组D.7组6.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/min 0<x≤5 5<x≤10 10<x≤15 15<x≤20频数(通话次数) 20 16 9 5A.0.2B.0.4C.0.5D.0.97.某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106](即96≤净重≤106),样本数据分组为[96,98)(即96≤净重<98)以下类似,[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是 ( ).A.90B.75C. 60D.458.某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如表所示,则棉花纤维长度的数据在8≤x<32这个范围的百分比为( )A.80%B.70%C.40%D.20%9.为绘制一组数据的频数分布直方图,首先要算出这组数据的变动范围,即是指数据的( )A.最大值B.最小值C.个数D.最大值与最小值的差10.为了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图所示的频数分布直方图(每小组的时间值包含最小值,不包含最大值).根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分比约等于( )A.50%B.55%C.60%D.65%11.在统计中频率分布的主要作用是()A.可以反映一组数据的波动大小B.可以反映一组数据的平均水平C.可以反映一组数据的分布情况D.可以看出一组数据的最大值和最小值12.对一组数据进行适当整理,下列结论正确的是( )A.众数所在的一组频数最大B.若极差等于24,取组距为4时,数据应分为6组C.绘频数分布直方图时,小长方形的高与频数成正比D.各组的频数之和等于1二、填空题13.已知在一个样本中,50个数据分别落在5个组内,第一、二、三、五组数据的个数分别为2,8,15,5,则第四组的频率是________.14.某校对初中学生开展的四项课外活动进行了一次抽样调查(每人只参加其中的一项活动),调查结果如图所示.根据图示所提供的样本数据,可得学生参加体育活动的频率是_______15.某校500名学生参加生命安全知识测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如表所示(其中每个分数段可包括最小值,不包括最大值),结合表1的信息,可测得测试分数在80~90分数段的学生有名.16.为迎接学校艺术节,七年级某班进行班级歌词征集活动,作品上交时间为星期一至星期五.班委会把同学们上交的作品件数按每天一组分组统计,绘制了频数分布直方图如下.已知从左至右各长方形的高的比为2∶3∶4∶6∶1,第二组的频数为9,则全班上交的作品有______件.17.对某校同龄的70名学生的身高进行测量,得到一组数据,其中最大值是175 cm,最小值是149 cm,对这组数据进行整理时,可得到其极差(最大值与最小值的差)为__________,如果确定它的组距为3 cm,那么组数为__________.18.为迎接学校艺术节,七年级某班进行班级歌词征集活动,作品上交时间为星期一至星期五.班委会把同学们上交作品件数按每天一组分组统计,绘制了频数分布直方图如下.已知从左至右各长方形的高的比为2:3:4:6:1,第二组的频数为9,则全班上交的作品有件.三、解答题19.有30张牌,牌面朝下,每次抽出一张记下花色再放回,洗牌后再抽,抽到红桃、黑桃、梅花、方块的频率依次为20%、32%、45%、3%,试估计四种花色的牌各有多少张?20.某校八年级共有150名男生,从中随机抽取30名男生在“阳光体育活动”启动日进行“引体向上”测试,下表是测试成绩记录(单位:个):3 2 1 2 3 3 5 2 2 42 4 2 5 234 4 1 33 2 5 14 2 3 1 2 4一目了然知道整个测试情况,请你选择一种合适的统计表或统计图整理表示上述数据;(2)观察分析(1)中的统计表或统计图,请你写出两条从中获得的信息:(3)规定八年级男生“引体向上”4个及以上为合格.若学校准备对“引体向上”不合格的男生提出锻炼建议,试估计要对八年级多少名男生提出这项建议?21.在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m,规定:当m≥10时为A级,当5≤m<10时为B级,当0≤m<5时为C级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:11 10 6 15 9 16 13 12 0 82 8 10 17 6 13 7 5 7 312 10 7 11 3 6 8 14 15 12(1)求样本数据中为A级的频率;(2)试估计1000个18~35岁的青年人中“日均发微博条数”为A级的人数.22.某学校为了增强学生的安全意识,举行了一次安全知识竞赛,全校800名学生参加了这次竞赛,为了了解本次竞赛成绩情况,从中随机抽取了部分学生的成绩进行统计(满分100分,而且成绩均为整数).绘制了不完整的统计图表请你根据图表中提供的信息解答以下问题:(1)求表中的a、n的值,并将图中补充完整;(2)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?23.为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:课外阅读时间(单位:小时) 频数(人数)频率0<t≤2 2 0.042<t≤4 3 0.064<t≤6 15 0.306<t≤8 a 0.50t>8 5 b请根据图表信息回答下列问题:(1)频数分布表中的a=,b=;(2)将频数分布直方图补充完整;(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人?24.为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x<100,将其按分数段分为五组,绘制出以下不完整表格:组别成绩x(分) 频数(人数) 频率一50≤x<60 2 0.04二60≤x<70 10 0.2三70≤x<80 14 b四80≤x<90 a 0.32五90≤x<100 8 0.16请根据表格提供的信息,解答以下问题:(1)本次决赛共有名学生参加;(2)直接写出表中a=,b=;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为.25.某兴趣小组对部分中小学生去年暑假看电视的时间进行了抽样调查,根据调查的数据绘制了频数、频率分布表和频数分布直方图(小时数取整数).0.5~20.5 20.5~40.5 40.5~60.5 60.5~80.5 80.5以上合计看电视时间(小时)频数20 30 15 10 100频率0.2 0.25 0.1 1(1)此次调查的样本容量是多少?(2)补全频数、频率分布表和频数分布直方图;(3)请估计1200名中小学生大约有多少学生暑假期间看电视的时间会低于60小时.参考答案1.D2.C.3.C4.D5.A.6.C7.A8.A9.D10.C11.A12.C13.答案为:0.4.14.答案为:0.3.15.答案为:150.16.答案为:4817.答案为:26 cm 918.答案为:48.19.解:根据分析,可以估计其中有红桃约为6张,黑桃约为10张,梅花约为14张,方块约为1张.抽到红桃的频数=30×0.20=6张;方块的频数=30×0.03≈1张;黑桃的频数=30×0.32≈10张;梅花的频数=30×0.45=13张.20.解:(1)选择条形统计图测试成绩(个) 测试成绩人数1 42 103 74 6 53(2)获得的信息如:成绩为五个的有3人,占10%;成绩为2个的人数最多. (3)(4+10+7)÷30×150=105(名).21.解:(1)m ≥10的人数有15人,则频率=12;(2)1000×12=500(人)即1000个18~35岁的青年人中“日均发微博条数”为A 级的人数为500人. 22.解:(1)抽取的总数a=4÷0.08=50,m=0.24,n=50×0.32=16;(2)该校安全意识不强的学生约有800×(0.08+0.16)=192(人). 答:该校安全意识不强的学生约有192人. 23.解:(1)根据题意得:2÷0.04=50(人)则a =50﹣(2+3+15+5)=25;b =5÷50=0.10;故答案为:25;0.10; (2)阅读时间为6<t ≤8的学生有25人,补全条形统计图,如图所示:(3)根据题意得:2000×0.10=200(人)则该校2000名学生中评为“阅读之星”的有200人.24.解:(1)由表格可得,本次决赛的学生数为:10÷0.2=50,故答案为:50;(2)a=50×0.32=16,b=14÷50=0.28,故答案为:16,0.28;(3)补全的频数分布直方图如右图所示(4)由表格可得,决赛成绩不低于80分为优秀率为:(0.32+0.16)×100%=48% 故答案为:48%.25.解:(1)由频率分布表可知,此次调查的样本容量是100;(2)如图:看电视时间(小时) 0.5~20.5 20.5~40.540.5~60.560.5~80.580.5以上合计频数20 25 30 15 10 100 频率0.2 0.25 0.3 0.15 0.1 1(3)1200×(0.2+0.25+0.3)=1200×34=900即1200名中小学生大约有900学生暑假期间看电视的时间会低于60小时.。
频数(率)分布表-北京习题集-教师版
频数(率)分布表(北京习题集)(教师版)一.选择题(共1小题)1.(2017春•顺义区期末)某校从初二年级抽出40名女生的身高数据,分组整理出如下频数分布表:表中a ,b ,c 分别是( ) A .6,12,0.30B .6,10,0.25C .8,12,0.30D .6,12,0.24二.填空题(共8小题)2.(2019秋•海淀区校级月考)小宇调查了初一年级三个班学生的身高,并进行了统计,列出如频数分布表:若要从每个班级中选取10名身高在160cm 和170cm 之间同学参加学校的广播操展示,不考虑其他因素的影响,则 (填“1班”,“2班”或“3班” )的可供挑选的空间最大.150155x < 155160x < 160165x < 165170x < 170175x < 1 8 12 14 5 10 15 10 3 23.(2019春•通州区期末)北京市通州区2019年4月份的每日最高气温如下表所示:(单位:C)︒根据以上信息,将下面的频数分布表补充完整:x<1418x<91822x<102226x<26304.(2017春•西城区期末)费尔兹奖是国际上享有崇高荣誉的一个数学奖项,在国际数学家大会上颁给有卓越贡献的年龄不超过四十岁的年轻数学家,美籍华人丘成桐1982年获费尔兹奖,下面的数据是截至2014年56名费尔兹奖得主获奖时的年龄:2939353339283335313137323836 3139323837342934383235363329 32353637393840383739383433403636 374031383840403735403937根据以上信息将下面的频数分布表补充完整:分组划记频数x<2530x<正正正153035x<3540x<正一40455.(2016春•顺义区期末)“阅读让自己内心强大,勇敢面对抉择与挑战.”每年的4月23日被联合国教科文组织确定为“世界读书日”.某校倡导学生读书,表格是该校八年级学生本学期内阅读课外书籍情况统计表,请你根据统计表中提供的信息,求出表中a的值是,b的值是.图书种类频数频率科普常识210b名人传记2040.34中外名著a0.25其他360.066.(2010秋•海淀区期中)小强调查“每人每天的用水量”这一问题时,收集到80个数据,最大数据是70升,最小数据是42升,若取组距为4,则应分为组绘制频数分布表.7.(2010春•朝阳区期末)一个样本含有20个数据:35,31,33,35,37,39,35,38,40,39,36,34,35,37,36,32,34,35,36,34.如果组距为2,那么应分成组,32.5~34.5这组的频数为.8.(2010春•北京校级期末)为了进一步了解八年级学生的身体素质情况,体育老师对八年级(1)班50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出频数分布表,如下所示,则表中的a=.x<80100x<100120x<120140x<140160x<1601809.(2006秋•昌平区期末)在对某班30位同学的一次数学测验成绩进行统计时,频率分布表中80.590.5-这一组的频率是0.20,那么这个班成绩在80.590.5-分数段的人数是人.三.解答题(共6小题)10.(2019•延庆区一模)某校九年级共有400名学生,男女生人数大致相同,调查小组为调查学生的体质健康水平,开展了一次调查研究,将下面的过程补全.收集数据:调查小组选取40名学生的体质健康测试成绩作为样本,数据如下:7783 80 64 86 90 75 92 83 81 85 86 88 62 6586 97 96 82 73 86 84 89 86 92 73 57 77 87 8291 81 86 71 53 72 90 76 68 78整理、描述数据:2018年九年级部分学生学生的体质健康测试成绩统计表x<7075x<x<6570x<6065x<5560505511224x<95100x<x<90957580x<8590x<80855a b52分析数据:(1)写出表中的a、b的值;(2)分析上面的统计图、表,你认为学生的体重健康测试成绩是2017年还是2018年的好?说明你的理由.(至少写出两条).(3)体育老师根据2018年的统计数据,安排80分以下的学生进行体育锻炼,那么全年级大约有多少人参加?11.(2018春•海淀区校级期末)为了让地震受灾的儿童得到救助,某社区组织“献爱心手拉手”捐款活动,对社区部分捐款户数进行调查和分组统计后,将数据整理成如图所示的统计表和统计图(图中信息不完整).已知A、B两组捐款户数的比为1:5.组别捐款额()x元户数x<aA1100x<10B100200x<C200300x<D300400xE400请结合以上信息解答下列问题.(1)a=,本次调查样本的容量是;(2)补全“捐款户数分组统计表和捐款户数统计图1”;(3)若该社区共有1000户住户参与捐款,请根据以上信息估计,全社区捐款不少于300元的户数是户.12.(2018•怀柔区二模)读书必须要讲究方法,只有按照一定的方法去阅读,才能取得事半功倍的效果.常用的阅读方法有:A.圈点批注法;B.摘记法;C.反思法;D.撰写读后感法;E.其他方法.我区某中学张老师为了解本校学生使用不同阅读方法读书的情况,随机抽取部分本校中学生进行了调查,通过数据的收集、整理绘制成以下不完整的统计表,请根据图表中的信息解答下列问题:中学生阅读方法情况统计表(1)请你补全表格中的a,b,c数据:a=,b=,c=;(2)若该校共有中学生960名,估计该校使用“反思法”读书的学生有人;(3)小明从以上抽样调查所得结果估计全区6000名中学生中有1200人采用“撰写读后感法”读书,你同意小明的观点吗?请说明你的理由.13.(2017•怀柔区一模)调查作业:了解某家超市不同品牌饮料的销售情况.为调查不同品牌饮料的市场销售情况,小东和小芸两位同学对一家超市进行了调查,二人在某天对照50名顾客购买饮料的品牌进行了记录.小东的作法是:如果一个顾客购买某一品牌的饮料,就将这一饮料的品牌名字记录一次.表1是记录的初始数据.表1记录之后,小东对上述收集的数据进行了整理,绘制了表2:表2可口可乐 15 统一冰茶 11 百事可乐 9 露露 9 汇源果汁 6 合计50表3 饮料名称 画记 频数 可口可乐 正正正 15 统一冰茶 正正一 11 百事可乐 正 9 露露 正9 汇源果汁 正一 6 合计50小芸的作法是:先设计一个统计表,再进行数据的收集与整理,她的方法是如果一个顾客购买某一品牌的饮料,就将这一饮料的品牌在相应的表格中画记一笔“正”字,上面表3是小芸设计的表格及调查时画记和填写的数据. 根据以上材料回答问题:本次调查如果让你去做,在收集整理数据时,你会选择他们中的哪种方法?请你说明理由或者介绍一种新的方法. 14.(2016春•大兴区期末)某年级进行“成语大会”模拟测试,并对测试成绩(x 分)进行了分组整理,各分数段成绩如表所示: 分数段 90x8090x <7080x <6070x <60x <人数 2464494518填空:(1)这个年级共有名学生;(2)成绩在分数段的人数最多,占全年级总人数的比值是 ; (3)成绩在60分以上为及格,这次测试全年级的及格率是 .15.(2016•延庆县一模)阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为“世界读书日”.某校倡导学生读书,下面的表格是学生阅读课外书籍情况统计表,图1是该校初中三个年级学生人数分布的扇形统计图,其中八年级学生人数为204人,请你根据图表中提供的信息,解答下列问题:图书种类频数频率科普常识840b名人传记8160.34中外名著a0.25其他1440.06(1)求该校八年级学生的人数占全校学生总人数的百分比;(2)求表中a,b的值;(3)求该校学生平均每人读多少本课外书?频数(率)分布表(北京习题集)(教师版)参考答案与试题解析一.选择题(共1小题)1.(2017春•顺义区期末)某校从初二年级抽出40名女生的身高数据,分组整理出如下频数分布表:表中a,b,c分别是()A.6,12,0.30B.6,10,0.25C.8,12,0.30D.6,12,0.24【分析】由“频率=频数÷总数”及“频数之和等于总数”可得答案.【解答】解:调查的总人数为40,则400.156b=-+++=,a=⨯=,40(26146)12c∴=÷=,12400.3故选:A.【点评】本题考查频率分布直方表的运用,以及数据的分析、处理的能力,注意结合题意,认真分析,查找数据时务必准确.二.填空题(共8小题)2.(2019秋•海淀区校级月考)小宇调查了初一年级三个班学生的身高,并进行了统计,列出如频数分布表:若要从每个班级中选取10名身高在160cm和170cm之间同学参加学校的广播操展示,不考虑其他因素的影响,则1班(填“1班”,“2班”或“3班”)的可供挑选的空间最大.x<170175x<150155x<165170x<160165x<1551601812145101510323班510108740【分析】根据各个班身高在160cm和170cm之间同学的人数,进行判断即可.【解答】解:身高在160cm和170cm之间同学人数:一班26人,二班13人,三班18人,因此可挑选空间最大的是一班,故答案为:1班.【点评】考查频数分布表的表示方法,从表格中获取数据和数据之间的关系是正确判断的前提.︒3.(2019春•通州区期末)北京市通州区2019年4月份的每日最高气温如下表所示:(单位:C) 151919262319191517172022232426252724171522252820192016202424根据以上信息,将下面的频数分布表补充完整:气温分组划记频数x<1418x<91822x<102226x<2630【分析】由原数据统计可得.【解答】解:补充如下表:【点评】本题主要考查频数(率)分布表,熟练掌握数据的统计方法是解题的关键.4.(2017春•西城区期末)费尔兹奖是国际上享有崇高荣誉的一个数学奖项,在国际数学家大会上颁给有卓越贡献的年龄不超过四十岁的年轻数学家,美籍华人丘成桐1982年获费尔兹奖,下面的数据是截至2014年56名费尔兹奖得主获奖时的年龄:2939353339283335313137323836 3139323837342934383235363329 32353637393840383739383433403636 374031383840403735403937根据以上信息将下面的频数分布表补充完整:分组划记频数x<2530x<正正正153035x<3540x<正一4045【分析】由原数据统计可得.【解答】解:分组划记频数x<42530x<正正正153035x<正正正正正正一313540x<正一64045【点评】本题主要考查频数(率)分布表,熟练掌握数据的统计方法是解题的关键.5.(2016春•顺义区期末)“阅读让自己内心强大,勇敢面对抉择与挑战.”每年的4月23日被联合国教科文组织确定为“世界读书日”.某校倡导学生读书,表格是该校八年级学生本学期内阅读课外书籍情况统计表,请你根据统计表中提供的信息,求出表中a的值是150,b的值是.图书种类频数频率科普常识210b名人传记2040.34中外名著a0.25其他360.06【分析】首先计算出总数,然后利用总数减去各组的頻数可得a的值,然后再利用1减去各组的频率可得b的值.【解答】解:360.06600÷=,60021020436150a=---=,10.340.250.060.35b=---=.故答案为:150,0.35.【点评】此题主要考查了频数分布表,关键是掌握频率=频数总数,各组频率之和为1.6.(2010秋•海淀区期中)小强调查“每人每天的用水量”这一问题时,收集到80个数据,最大数据是70升,最小数据是42升,若取组距为4,则应分为8组绘制频数分布表.【分析】根据分组数的确定方法:组距=(最大值-最小值)÷组数计算.【解答】解:应分(7042)47-÷=,第一组的下限应低于最小变量值,最后一组的上限应高于最大变量值,∴应分8组.故本题答案为:8.【点评】本题考查组距,分组数的确定方法:组距=(最大值-最小值)÷组数.第一组的下限应低于最小变量值,最后一组的上限应高于最大变量值.7.(2010春•朝阳区期末)一个样本含有20个数据:35,31,33,35,37,39,35,38,40,39,36,34,35,37,36,32,34,35,36,34.如果组距为2,那么应分成5组,32.5~34.5这组的频数为.【分析】由样本数据得,最大为40,最小为31,所以40314.52-=,而组数为整数,运用进一法可知应分5组;然后找出32.5到34.5这组有多少个数据即为频数.【解答】解:由40314.52-=得,应分5组在32.5到34.5之前的数据为33,34,34,34,所以频数为4.【点评】本题涉及频率分布表的知识,难度一般.8.(2010春•北京校级期末)为了进一步了解八年级学生的身体素质情况,体育老师对八年级(1)班50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出频数分布表,如下所示,则表中的a=12.80100x<100120x<120140x<140160x<160180x<【分析】根据各组的频数的和是总数50,可以得到用50减去其它各组的频数即可求解.【解答】解:506818612----=故答案是:12.【点评】本题考查了频率分布表,关键是理解各组频数的和就是样本容量.9.(2006秋•昌平区期末)在对某班30位同学的一次数学测验成绩进行统计时,频率分布表中80.590.5-这一组的频率是0.20,那么这个班成绩在80.590.5-分数段的人数是6人.【分析】根据频率=频数数据总和计算成绩在80.590.5-分数段的人数.【解答】解:根据题意可得:共30人,80.590.5-这一组的频率是0.20,其频数是300.26⨯=.故本题答案为:6.【点评】此题考查频率的计算:频率=频数数据总和.三.解答题(共6小题)10.(2019•延庆区一模)某校九年级共有400名学生,男女生人数大致相同,调查小组为调查学生的体质健康水平,开展了一次调查研究,将下面的过程补全.收集数据:调查小组选取40名学生的体质健康测试成绩作为样本,数据如下:7783 80 64 86 90 75 92 83 81 85 86 88 62 6586 97 96 82 73 86 84 89 86 92 73 57 77 87 8291 81 86 71 53 72 90 76 68 78整理、描述数据:2018年九年级部分学生学生的体质健康测试成绩统计表5055x<5560x<6065x<6570x<7075x<112247580x<8085x<8590x<9095x<95100x<5a b52分析数据:(1)写出表中的a、b的值;(2)分析上面的统计图、表,你认为学生的体重健康测试成绩是2017年还是2018年的好?说明你的理由.(至少写出两条).(3)体育老师根据2018年的统计数据,安排80分以下的学生进行体育锻炼,那么全年级大约有多少人参加?【分析】(1)整理、描述数据:根据所给数据计数即可得;(2)分析数据、得出结论:将2017、2018两年的数据比较即可得(合理即可),(3)用总人数乘以2018年80分以下的同学数占被调查人数的比例可得.【解答】解:(1)调查40人中体质健康测试成绩在8085x <之间的有8人,8590x <之间的有10人, 故答案为:8a =,10b =,(2)去年的体质健康测试成绩比今年好,理由:去年较今年低分更少,高分更多,平均分更大. (3)11224540015040+++++⨯=(人),答:全年级约有150名同学参加此项目.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.11.(2018春•海淀区校级期末)为了让地震受灾的儿童得到救助,某社区组织“献爱心手拉手”捐款活动,对社区部分捐款户数进行调查和分组统计后,将数据整理成如图所示的统计表和统计图(图中信息不完整).已知A 、B 两组捐款户数的比为1:5. 组别捐款额()x 元户数A 1100x < aB100200x < 10 C200300x < D 300400x < E400x请结合以上信息解答下列问题.(1)a = 2 ,本次调查样本的容量是 ; (2)补全“捐款户数分组统计表和捐款户数统计图1”;(3)若该社区共有1000户住户参与捐款,请根据以上信息估计,全社区捐款不少于300元的户数是 户.【分析】(1)根据B组有10户,A、B两组捐款户数的比为1:5即可求得a的值,然后根据A和B的总人数以及所占的比例即可求得样本容量;(2)根据百分比的意义以及直方图即可求得C、D、E组的户数,从而补全统计图;(3)利用总户数乘以对应的百分比即可.【解答】解:(1)B组捐款户数是10,则A组捐款户数为11025⨯=,样本容量为(210)(18%40%28%)50+÷---=,故答案为:2、50;(2)统计表C、D、E组的户数分别为20,14,4.组别捐款额()x元户数A1100x<aB100200x<10C200300x<20D300400x<14E400x4;(3)估计全社区捐款不少于300元的户数是1000(28%8%)360⨯+=(户),故答案为:360.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.12.(2018•怀柔区二模)读书必须要讲究方法,只有按照一定的方法去阅读,才能取得事半功倍的效果.常用的阅读方法有:A .圈点批注法;B .摘记法;C .反思法;D .撰写读后感法;E .其他方法.我区某中学张老师为了解本校学生使用不同阅读方法读书的情况,随机抽取部分本校中学生进行了调查,通过数据的收集、整理绘制成以下不完整的统计表,请根据图表中的信息解答下列问题: 中学生阅读方法情况统计表(1)请你补全表格中的a ,b ,c 数据:a = 32 ,b = ,c = ; (2)若该校共有中学生960名,估计该校使用“反思法”读书的学生有 人;(3)小明从以上抽样调查所得结果估计全区6000名中学生中有1200人采用“撰写读后感法”读书,你同意小明的观点吗?请说明你的理由.【分析】(1)先根据“摘记法”的频数及其频率求得总人数,再根据频数、频率与总数间的关系可得a 、b 、c 的值; (2)总人数乘以样本中“反思法”学生所占比例可得; (3)根据抽样调查的样本需要具有代表性解答可得. 【解答】解:(1)被调查的学生人数为200.2580÷=,800.432a ∴=⨯=,80(3220164)8b =-+++=,8800.1c =÷=,故答案为:32、8、0.1;(2)估计该校使用“反思法”读书的学生有9600.196⨯=人, 故答案为:96;(3)不同意.张老师取的样本全是本校学生,不能反映出全区学生使用不同阅读方法的情况,样本不具有普遍性.【点评】此题主要考查了频数分布直方图以及利用样本估计总体,正确将条形统计图和表格中数据相联系是解题关键.13.(2017•怀柔区一模)调查作业:了解某家超市不同品牌饮料的销售情况.为调查不同品牌饮料的市场销售情况,小东和小芸两位同学对一家超市进行了调查,二人在某天对照50名顾客购买饮料的品牌进行了记录.小东的作法是:如果一个顾客购买某一品牌的饮料,就将这一饮料的品牌名字记录一次.表1是记录的初始数据.表1统一冰茶可口可乐统一冰茶汇源果汁露露露露统一冰茶可口可乐露露可口可乐统一冰茶可口可乐可口可乐百事可乐统一冰茶可口可乐百事可乐统一冰茶可口可乐百事可乐百事可乐露露露露百事可乐露露可口可乐统一冰茶统一冰茶汇源果汁汇源果汁汇源果汁统一冰茶可口可乐可口可乐可口可乐可口可乐百事可乐露露汇源果汁百事可乐露露可口可乐百事可乐可口可乐露露可口可乐统一冰茶百事可乐汇源果汁统一冰茶记录之后,小东对上述收集的数据进行了整理,绘制了表2:表2饮料名称频数可口可乐15统一冰茶11百事可乐9露露9汇源果汁6合计50表3饮料名称画记频数可口可乐正正正15统一冰茶正正一11百事可乐正9露露 正 9 汇源果汁 正一 6 合计50小芸的作法是:先设计一个统计表,再进行数据的收集与整理,她的方法是如果一个顾客购买某一品牌的饮料,就将这一饮料的品牌在相应的表格中画记一笔“正”字,上面表3是小芸设计的表格及调查时画记和填写的数据. 根据以上材料回答问题:本次调查如果让你去做,在收集整理数据时,你会选择他们中的哪种方法?请你说明理由或者介绍一种新的方法. 【分析】根据三个表格的特点得出即可.【解答】解:选择小芸的作法,理由是这样简单,方便,直观,容易理解题意, 还可以采取条形图.【点评】本题考查了频数分布表,能连接表格、条形图、扇形图、折线图的特点是解此题的关键.14.(2016春•大兴区期末)某年级进行“成语大会”模拟测试,并对测试成绩(x 分)进行了分组整理,各分数段成绩如表所示: 分数段 90x8090x <7080x <6070x <60x <人数 2464494518填空:(1)这个年级共有名学生;(2)成绩在分数段的人数最多,占全年级总人数的比值是825; (3)成绩在60分以上为及格,这次测试全年级的及格率是 . 【分析】(1)求出各组人数的和即可求得年级总人数; (2)根据统计表即可确定人数最多的一组,然后求得比值; (3)根据及格率的定义即可直接求解.【解答】解:(1)年级总人数是2464494518200++++=(人); (2)成绩在8090x <段的人数最多,所占的比值是:64820025=. 故答案是:825; (3)次测试全年级的及格率是:20018100%91%200-⨯=. 故答案是:91%.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.用到的知识点为:总体数目=部分数目÷相应百分比.频率=所求情况数与总情况数之比.15.(2016•延庆县一模)阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为“世界读书日”.某校倡导学生读书,下面的表格是学生阅读课外书籍情况统计表,图1是该校初中三个年级学生人数分布的扇形统计图,其中八年级学生人数为204人,请你根据图表中提供的信息,解答下列问题:图书种类频数频率科普常识840b名人传记8160.34中外名著a0.25其他1440.06(1)求该校八年级学生的人数占全校学生总人数的百分比;(2)求表中a,b的值;(3)求该校学生平均每人读多少本课外书?【分析】(1)根据扇形统计图得出该校八年级学生的人数占全校学生总人数的百分比即可;(2)根据(1)中数据得出1440.062400÷=,即可得出课外书籍总数以及a,b的值;(3)利用扇形统计图得出全校人数,进而求出该校学生平均每人读课外书的数量即可.【解答】解:(1)128%38%34%--=.∴该校八年级学生的人数占全校学生总人数的百分比为34%.(2)1440.062400÷=,∴=⨯=,84024000.35b=÷=.a24000.25600(3)八年级学生人数为204人,占全校学生总人数的百分比为34%,÷=.∴全校学生总人数为20434%600÷=.∴该校学生平均每人读课外书:24006004答:该校学生平均每人读4本课外书.【点评】此题主要考查了频数分布直方图以及频率分布直方图和扇形统计图等知识,利用已知得出全校学生的总数是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据的频数分布练习题
一、精心选一选(每题3分,共30分)
1.样本频数分布反映了()
A.样本数据的多少 B.样本数据的平均水平
C.样本数据的离散程序 D.样本数据在各个小范围内数量的多少
2.有一句地方民谣“早穿皮袄午穿纱”,说明此地气温的特点的特征数是()
A.平均数 B.中位数 C.极差 D.众数
3.在数据10,20,40,30,80,90,50,40,40,50中,极差是()
A.40 B.70 C.80 D.90
4.某中学数学教研组有25名教师,将他们的年龄分成3组,在28~35岁组内有8名教师,其中这个小组的频率是()
A.0.38 B.0.32 C.3.12 D.0.12
5.一组数据的最大值与最小值之差为80,若取组距为10,则组数一般是()
A.7 B.8 C.9 D.10
6.在英文词组was a sunny in park中,字母n出现的频率是()
A.0.2 B.0.3 C.0.13 D.0.22
7.在样本12,8,14,6,10,13,15,9,11,16,8,12,14,9,13,5,8,11,7,10中,频率是0.3的组的范围是()
A.4.5~7.5 B.7.5~10.5 C.10.5~13.5 D.13.5~16.5
8.一组数据共40个,分成6组,第1~4组的频数分别是10,5,7,6,第5组的频率是()A.0.15 B.0.20 C.0.25 D.0.30
9.将100个数据分成8组(如下表),第6组的频数是()
A.12 B.13 C.14 D.15
10.某校九(1)班50名学生学业考试成绩的频数分布直方图如图所示,•则总分在600分以上的学生人数为()
A.20 B.30 C.35 D.45
九(1)班学生中考成绩的频数分布直方图
二、细心填一填(每题3分,共30分)
11.在对100个数据进行整理分析的频数分布表中,各组的频数之和等于______,各组的频率之和等于_______.
12.某日的最高气温是15℃,气温的极差为10℃,则该日的最低气温是_______.
13.某校八年级(1)班共有55位同学,2月份出生的人数的频率是0.2,则该班2•月份生日的同学有________人.
14.在数据6,9,11,8,7,11,12,10,9,10,12,10,9,8,13,15,10,11,12,13中,出现次数最多的数据是_______.
15.荷兰著名数学家卢道夫早在1596•年就推算出了具有15•位小数的 值为
3.141592653589793.在这个数中,数字3出现的频率是_______.
16.下表是某校八年级(8)班共50位同学身高情况的频数分布表,•则表中的组距是_______,估计极差至多是______.
17.在第16题中,频率是0.28的这一小组的组中值是______.
18.在第16题中,该班50名学生的平均身高是_______cm(精确到0.01).
19.将数据分成4组,画出频数分布直方图,各小长方形的高的比是1:3:4:2,若第2 组的频数是15,则此样本的样本容量是_______.
20.如图是八(5)班演讲选拨赛得分情况的频数分布折线图,•则分布在折线图右端的虚设组的范围是________.
三、耐心做一做(本题共有5小题,共40分)
21.(6分)为了解某初中学生的体能情况,•抽取若干名学生在单位时间内进行引体向上测试,将所得数据整理后,画出频数分布直方图(如图),•图中从左到右依次为第1,2,3,4,5组.
(1)求抽取了多少名学生参加测试.
(2)处于哪个次数段的学生数最多(答出是第几组即可)?
(3)若次数在5次(含5次)以上为达标,求这次测试的达标率.
22.(8分)当今,青少年视力水平的下降已引起全社会的关注,为了解某校八年级的800名学生的视力情况,从中抽取一部分学生进行统计分析.
(1)补全频数分布表:
(2)估算该校八年级800名学生的平均视力.
(3)对该校八年级青少年视力情况作出评价.Array
23.(8分)右图示为若干名学生每分钟脉搏跳动次数的频数分布折线.
(1)求学生的总人数;
(2)分布在两端虚设的两组的组中值分别是多少?
(3)估计样本的中位数.
24.(8分)为了解某城镇中学学做家务的时间,一综合实践活动小组对该班50•名学生进行了调查,根据调查所得的数据制成如右图的频数分布直方图.
(1)补全该图,并写出相应的频数;
(2)求第1组的频率;
(3)求该班学生每周做家务时间的平均数;
(4)你的做家务时间在哪一组内?请用一句话谈谈你的感受.
25.(10分)某校为了解八年级学生参加课外体育活动的情况,随机抽取了30名学生,对他们一周内平均每天参加课外体育活动的时间进行了调查,统计结果如下(•单位:分):
28,50,40,40,40,53,38,40,34,40,27,21,35,32,40,
40,30,52,35,62,36,15,51,40,38,19,40,40,32,43.
(1)求这组数据的极差;
(2)按组距10分将数据分组,确定每组的组中值,列出频数分布表;
(3)在同一图中画出频数分布直方图和频数分布折线图.。