竖直面的圆周运动临界问题和连接体问题共37页
竖直面的圆周运动临界问题和连接体问题

O
巩固练习
如图所示,质量为m的小球,用长为L的细 绳,悬于光滑斜面上的0点,小球在这个倾 角为θ 的光滑斜面上做圆周运动,若小球在 最高点和最低点的速率分别是vl和v2,则绳 在这两个位置时的张力大小分别是多大?
► 连接体的圆周运动问题分析
答案
备用习题
有一个竖直放置的内壁光滑圆环,其半 径为R,质量为m的小球沿它的内表面做圆周 运动,分析小球在最高点的速度应满足什么 条件?
V
A
mg
D
FN FN
FN
FN C
mg
mg
B
mg
绳子和內轨均是没有支撑的小球能过最高点的最小速度
巩固练习
绳系着装水的桶,在竖直平面内做圆周运动 ,水的质量m=0.5kg,绳长=40cm.求
A
V1 关系怎样?
v2
mg
F2
o F1
最低点: 最高点:
v1
mg
思考:过最高点的最小速度是多大 ?
(1)当F=0时,速度V为最小值
总结:
明确:向心力和向心加速度公式同样适合于变速圆周运动 ,但求质点在圆周上某点的向心力和向心加速度的大小,必 须用该点的瞬时速度值
拓展:物体沿竖直内轨的圆周运动
v2
表现为拉力,何时表现为支持力?
mg
拓展:物体沿竖直外轨运动 物体沿竖直细管的运动
v
均是有支撑的小球 能过最高点的最小速度v=0
物体沿竖直细管的运动
一内壁光滑的环形细圆管,位于竖直平面内,环的半 径为R(比细管的半径大得多).在圆管中有两个直径与 细管内径相同的小球(可视为质点).A球的质量为m1, B球的质量为m2.它们沿环形圆管顺时针运动,经过最 低点时的速度都为v0设A球运动到最低点时,B球恰好 运动到最高点,若要此时两球作用于圆管的合力为零 ,那么m1、m2、R与v0应满足的关系式是什么?
竖直平面内圆周运动临界问题超级经典全面

图所示为模拟过山车的实验装置,小球从左 侧的最高点释放后能够通过竖直圆轨道而到 达右侧.若竖直圆轨道的半径为R,要使小球 能顺利通过竖直圆轨道,则小球通过竖直圆 轨道的最高点时的角速度最小为( )
竖直平面内圆周运动临界问题超级经典 全面
杂技演员表演“水流星”,在长为1.6 m的细绳的一端,系一个与水的总质量为m=0.5 kg的盛水容器,以绳的另一端为圆心,在竖直平面内做圆周运动,如图所示,若“水流 星”通过最高点时的速率为4 m/s,则下列说法正确的是(g=10 m/s2) ( ) A.“水流星”通过最高点时,有水从容器中流出 B.“水流星”通过最高点时,绳的张力及容器底部受到的压力均为零 C.“水流星”通过最高点时,处于完全失重状态,不受力的作用 D.“水流星”通过最高点时,绳子的拉力大小为5 N
全面
例:如图所示,细杆的一端与一小球相连,可 绕过O的水平轴自由转动。现给小球一初速度 ,使它做圆周运动。图中a、b分别表示小球
轨道的最低点和最高点,则杆对球作用力可
能是 (A、B ) A、a处为拉力,b处为拉力
B、a处为拉力,b处为推力
C、a处为推力,b处为拉力
D、a处为推力,b处为推力
b
a
竖直平面内圆周运动临界问题超级经典 全面
竖直平面内圆周运动临界问题超级经典 全面
1、轻绳与轨道模型 : 能过最高点的临界条件:
小球在最高点时绳子的拉力(轨 道对球的压力)刚好等于0,小 球的重力充当圆周运动所需的向 心力。
m gmR 2 v临界 Rg
mg O 绳
mg O 轨道
竖直平面内圆周运动临界问题超级经典 全面
小结一:没有支撑的物体
实际上小球还不到最高点时就脱离了轨道。
竖直、水平面内圆周运动中的临界问题和周期性问题(有解答)

水平面内圆周运动中的临界问题一、圆周运动问题的解题步骤:1确定研究对象2、画出运动轨迹、找出圆心、求半径3、分析研究对象的受力情况,画受力图4、确定向心力的来源5、由牛顿第二定律F n ma n 2 小V 2 / 2 \ 2m m r m(——)rr T二、临界问题常见类型:1按力的种类分类:(1 )、与弹力有关的临界问题:接触面间的弹力:从有到无,或从无到有绳子的拉力:从无到有,从有到最大,或从有到无(2)、与摩擦力有关的弹力问题:从静到动,从动到静,临界状态下静摩擦力达到最大静摩擦2、按轨道所在平面分类:(1 )、竖直面内的圆周运动(2)、水平面内的圆周运动三、竖直面内的圆周运动的临界问题1、单向约束之绳、外轨道约束下的竖直面内圆周运动临界问题:特点:绳对小球,轨道对小球只能产生指向圆心的弹力①临界条件:绳子或轨道对小球没有力的作用:mg=mv2/R宀v临界=.Rg (可理解为恰好转过或恰好转不过的速度)即此时小球所受重力全部提供向心力②能过最高点的条件:v> Rg,当v> . Rg时,绳对球产生拉力,轨道对球产生压力.③不能过最高点的条件:v v V临界(实际上球还没到最高点时就脱离了轨道做斜抛运动)例1、绳子系着装有水的木桶,在竖直面内做圆周运动,水的质量m=0.5kg,绳子长度为求:(g 取10m/s2)A、最高点水不留出的最小速度?B、设水在最高点速度为V=3m/s,求水对桶底的压力?答案:(1)、、6m/s (2)2.5N列方程求解l=60cm ,变式1、如图所示,一质量为m的小球,用长为L细绳系住,使其在竖直面内作圆周运动.(1)若过小球恰好能通过最高点,则小球在最高点和最低点的速度分别是多少?小球的受力情况分别如何?(2)若小球在最低点受到绳子的拉力为10mg,则小球在最高点的速度及受到绳子的拉力是多少?2、单向约束之内轨道约束下(拱桥模型)的竖直面内圆周运动的临界问题:汽车过拱形桥时会有限速,是因为当汽车通过半圆弧顶部时的速度V gr时,汽车对弧顶的压力FN=O,此时汽车将脱离桥面做平抛运动, 因为桥面不能对汽车产生拉力.例2、半径为R的光滑半圆球固定在水平面上,顶部有一小物体,如图所示。
竖直面内圆周运动的临界问题分析

ʏ赵世渭 吕志华当物体从一种特性变化为另一种特性时,发生质的飞跃的转折状态,叫临界状态㊂出现临界状态时,即可理解为 恰好出现 ,也可理解为 恰好不出现 ㊂竖直面内圆周运动的临界问题主要包括绳(环)约束模型㊁杆(管)约束模型和拱桥模型等,下面举例说明㊂一㊁绳(环)约束模型绳(环)约束模型的特点是绳(环)对物体只能产生指向圆心的弹力作用㊂图11.临界条件:在最高点绳(环)对物体恰好没有弹力作用㊂此时重力提供向心力,即m g =m v 2m i nr,解得v m i n =g r (可理解为恰好通过或恰好不通过最高点的速度)㊂2.能够通过最高点的条件:物体在最高点的速度v ȡg r ,绳(环)产生弹力作用㊂3.不能通过最高点的条件:物体在最高点的速度v <g r (实际上物体还没运动到最高点就已经脱离圆周做斜抛运动)㊂ 图2例1 如图2所示,长度均为L 的两根轻绳,一端共同系住质量为m 的小球,另一端分别固定在等高的A ㊁B 两点,A ㊁B 两点间的距离也为L ,重力加速度大小为g ㊂现使小球在竖直面内以A B 连线为轴做圆周运动,当小球在最高点的速率为v 时,两根绳的拉力恰好均为零,则小球在最高点的速率为2v 时,两根绳的拉力大小均为( )㊂A .3m g B .23m gC .3m gD .433m g当两根绳的拉力恰好均为零时,重力提供向心力;当小球在最高点的速率为2v 时,重力和两根绳拉力的合力提供向心力㊂根据等边三角形的几何关系可得,小球做圆周运动的半径r =32L ㊂当小球在最高点的速率为v 时,根据牛顿第二定律得m g =m v2r㊂当小球在最高点的速率为2v 时,设两根绳的拉力大小均为F ,根据牛顿第二定律得m g +2F c o s30ʎ=m(2v )2r㊂联立以上各式解得F =3m g ㊂答案:A解决本题的关键是清楚小球运动到最高点时的临界状态,抓住小球做圆周运动所需向心力的来源,结合牛顿第二定律列式求解㊂二㊁杆(管)约束模型物体在轻杆作用下的运动,或在管道中运动时,随着速度的变化,轻杆或管道对物体的作用力可以是支持力,也可以是压力,还可能为零㊂图31.临界条件:物体在最高点的速度v =0㊂2.物体运动到最高点:当m g =mv2r,即v =g r 时,轻杆或管道对物体的作用力F =0;当v >g r 时,轻杆或管道对物体产生向下的拉力;当v <g r 时,轻杆或管道对物体产生向上的弹力㊂例2 如图4所示,一轻杆一端A 固定质量为m 的小球,以另一端O 为圆心,使小球在竖直面内做半径为R 的圆周运动,重力33物理部分㊃知识结构与拓展高一使用 2021年3月图4加速度为g ㊂下列说法中正确的是( )㊂A .小球过最高点时,轻杆受到的弹力可以等于零B .小球过最高点的最小速度是g RC .小球过最高点时,轻杆对小球的作用力一定随速度的增大而增大D .小球过最高点时,轻杆对小球的作用力一定随速度的增大而减小小球过最高点时,当m g =mv2R,即v =g R 时,轻杆对小球的作用力F =0,根据牛顿第三定律可知,轻杆受到的弹力为零,选项A 正确㊂因为轻杆能够支撑小球,所以小球过最高点的速度最小可以为零,选项B 错误㊂当小球在最高点的速度v <g R 时,轻杆对小球产生向上的弹力,根据牛顿第二定律得m g -F =m v 2R ,变形得F =m g -m v2R,因此当v 增大时,F 减小,选项C 错误㊂当小球在最高点的速度v >g R 时,轻杆对小球产生向下的拉力,根据牛顿第二定律得m g +F =m v2R,变形得F =mv2R-m g ,因此当v 增大时,F 增大,选项D 错误㊂答案:A轻绳模型与轻杆模型的临界条件不同,对于轻绳模型来说物体能通过最高点的临界速度是v 临=gR ,对轻杆模型来说物体过最高点的临界速度是v 临=0㊂三㊁拱桥模型图5当汽车通过拱形桥顶部的速度v =g R 时,根据m g -N =mv2R可知,汽车对弧顶的压力N =0,汽车将脱离桥面做平抛运动,因此汽车过拱形桥时需限速,即v ɤg R ㊂例3如图6所示,半径为R 的光滑半 图6圆球固定在水平面上,顶部有一可视为质点的物体,现给它一个水平初速度v 0=g R ,则该物体将( )㊂A .沿球面下滑至M 点B .先沿球面下滑至某点N ,然后离开球面做斜下抛运动C .立即离开球面做平抛运动,且水平射程为2R D .立即离开球面做平抛运动,且水平射程为2R假设物体在最高点受重力和球面的支持力N 作用做圆周运动,根据牛顿第二定律得m g -N =mv 2R,解得N =0,即物体只受重力作用,因此物体将立即离开球面做平抛运动㊂根据平抛运动规律可得,物体做平抛运动的时间t =2Rg,水平位移x =v 0t =2R ,因此物体做平抛运动的轨迹曲率半径大于半圆球的半径,物体不可能中途落在球面上㊂答案:C解决本题的关键是利用牛顿第二定律分析出物体在最高点时受到的球面对它的支持力为零,进而判断出物体仅受重力作用,且初速度方向水平,物体离开球面做平抛运动,然后利用平抛运动规律求物体的水平射程㊂拓展:倾斜面内圆周运动的临界问题㊂在斜面上做圆周运动的物体,可能由静摩擦力提供向心力,也可能由轻绳或轻杆的作用力提供向心力㊂ 图7例4 如图7所示,一块足够大的光滑平板放置在水平面上,绕水平固定轴MN 可以调节其与水平面间的夹角㊂平板上一根长度l =0.8m 的轻质细绳的一43 物理部分㊃知识结构与拓展 高一使用 2021年3月端系住一质量m=0.2k g的小球,另一端固定在平板上的O点㊂当平板的倾角固定为α时,将小球拉至最高点,然后给小球一沿着平板并与细绳垂直的初速度v0=2m/s㊂(取g=10m/s2)(1)若小球能保持在板面内做圆周运动,倾角α的值应在什么范围内?(2)若细绳所能承受的最大拉力F= 8N,则当平板的倾角α最大时,小球经过最高点的速度最多多大小球在运动过程中,受重力㊁细绳拉力和斜面支持力作用㊂小球运动到最高点时,由细绳的拉力和小球的重力沿斜面分力的合力提供向心力㊂(1)小球恰好能过最高点的临界条件是细绳的拉力F=0,设此时平板的倾角为α0,根据牛顿第二定律得m g s i nα0=m v20l,解得α0=30ʎ,即小球能保持在板面内做圆周运动,平板的倾角α的值应满足0<αɤ30ʎ㊂(2)设小球经过最高点时的最大速度为v m a x,由(1)得平板的最大倾角α0=30ʎ,根据牛顿第二定律得F+m g s i nα0=m v2m a x l,解得v m a x=6m/s㊂与分析竖直面内圆周运动问题类似,分析斜面上的圆周运动问题也是先分析物体在最高点的受力情况,再根据牛顿第二定律列式求解㊂注意:在进行受力分析时,一般需要先将立体图转化为平面图,这是解斜面上圆周运动临界问题的难点㊂图81.如图8所示,一根轻绳系着装有水的小桶,在竖直面内绕O点做圆周运动,小桶的质量M=1k g,水的质量m=0.5k g,绳长L=0.6m,取g=10m/s2㊂求:(1)要使水桶运动到最高点时水不流出,最小速率多大(2)如果水桶运动到最高点时的速率v=3m/s,那么水桶对轻绳的拉力多大?(3)如果水桶运动到最低点时的速率v=3m/s2,那么水对桶底的压力多大?图92.如图9所示,将内壁光滑的导管弯成半径为R的圆周轨道竖直放置,其质量为2m,质量为m的小球在管内滚动㊂当小球运动到最高点时,导管刚好要离开地面,此时小球的速度多大?图103.如图10所示,质量为m的小物体(可视为质点)随水平传送带运动,A为终端皮带轮㊂已知皮带轮半径为r,传送带与皮带轮间不会打滑,当小物体可被水平抛出时()㊂A.传送带的最小速度为g rB.传送带的最小速度为g rC.皮带轮每秒的转数最少是12πg rD .皮带轮每秒的转数最少是12πg r图114.如图11所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴2.5m处有一小物体与圆盘始终保持相对静止㊂小物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面间的夹角为30ʎ,取g=10m/s2㊂求ω的最大值㊂参考答案:1.(1)v m i n=6m/s;(2)T=7.5N;(3)N'=12.5N㊂2.v=3g R㊂3.A C4.ωm a x=1r a d/s㊂作者单位:山东省青州第一中学(责任编辑张巧)53物理部分㊃知识结构与拓展高一使用2021年3月。
竖直面内圆周运动的临界问题分析(讲解+练习)

竖直面内圆周运动的临界问题分析竖直面内圆周运动特点:1、运动特点:速率时刻在改变,物体在最高点处的速率最小,在最低点处的速率最大。
---变速率圆周运动2、受力特点: 实质:沿半径方向的合力提供向心力,产生向心加速度,即牛顿第二定律在曲线运动中的运用。
F n 合=ma n = mv 2/r=mr 2ω1)过最低点:所需的向心力是向上,而重力向下,据:F -mg = mv 2/r 得:F >mg 所以弹力(拉力、支持力)必然向上且大于重力。
2)过最高点:所需的向心力是向下,而重力也向下,所以弹力的方向就不能确定了,要分三种情况进行讨论临界问题。
讨论: 的意义:例题1:(07理科综合)如图所示,质量为m 的小物块位于半径为R 的半球物体顶端,若给小物体水平速度 ,则物块( )A 、立即做平抛运动, BC 、落地速度大小为 ;D 、落地速度方向与地成450。
若给小物体水平速度 ;则小物块对半球物体顶端的压力 。
例题2:杂技演员表演的“水流星”,是一根细长绳的一端系着一个盛了水的容器,以绳的另一端不圆心,使容器在竖直平面内做半径为R 的圆周运动,N 为圆周最低点,M 为圆周最低点,若“水流星”通过最低点的速度为 ,则下列说法正确的是( ) 。
gR v =gR v 2=gR v 2=gR v 5=2gR v =A、“水流星”过最高点速度为0;B 、“水流星”过最高点时,有水从容器中流出;C、“水流星”过最高点时,水对容器底没有压力;D、“水流星”过最高点时,绳对容器有向下的拉力。
速度大小v可以取任意值。
但可以进一步讨论:①当v=时,②当时,③当v= 时,④当时,例题3:(04年理综)轻杆的一端有一个小球,另一端有光滑的固定轴O,现给球一初速度,使和杆一起绕O轴在竖直面内转动,不计空气阻力,用F表示球到达最高点时杆对小球的作用力,则()。
A、一定是拉力;B、一定是推力;C、一定等于0;D、可能是拉力可能是推力等于0总结:竖直平面内圆周运动的临界问题:由于物体在竖直平面内做圆周运动的依托物(绳、轻杆、轨道、管道等)不同,所以物体在通过最高点时临界条件不同.例题4:在空间中存在竖直向上的电场,小球带正电,讨论;(1)当E q<mg时:小球过最高点的临界速度?(2)当E q=mg时:小球过最高点的临界速度?课后练习:1、质量是1×103kg的汽车驶过一座拱桥,已知桥顶点桥面的圆弧半径是90m,g=10m/s2。
竖直平面内的圆周运动临界问题超级全面公开课获奖课件

(
A、)B
A、a处为拉力,b处为拉力
B、a处为拉力,b处为推力
C、a处为推力,b处为拉力
D、a处为推力,b处为推力
b
a
第13页
例:长度为L=0.5m轻质细杆OA,A端有一质
量为m=3.0kg小球,如图5所示,小球以O点
为圆心在竖直平面内做圆周运动,通过最高
点时小球速率是2.0m/s,g取10m/s2,则此
( BCD )
A.小球对圆环压力大小等于mg B.小球向心力等于重力 C.小球线速度大小等于 Rg D.小球向心加速度大小等于g
第6页
例:用长为l细绳,拴着质量为m小球,在竖直 平面内做圆周运动,则如下说法中对旳是 () A.小球在最高点所受向心力一定是重力 B.小球在最高点绳拉力也许为零 C.小球在最低点绳子拉力一定不小于重力 D.若小球恰好能在竖直平面内做圆周运动,则 它在最高点速率为零
使小球在竖直面内做半径为R圆周运
O
动,如下说法对旳是:
BC
A、小球过最高点时起码速度为 ;Rg
B、小球过最高点时,杆所受弹力可以等于零;
C、小球过最高点时,杆对球作用力可以与球所受 重力方向 相反,此时重 力 一定不小于杆对球作用力;
D、小球过最高点时,杆对球作用力一定与小球所 受重力方向相反。
第33页
第21页
图所示为模拟过山车试验装置,小球从左侧 最高点释放后可以通过竖直圆轨道而抵达右 侧.若竖直圆轨道半径为R,要使小球能顺利 通过竖直圆轨道,则小球通过竖直圆轨道最 高点时角速度最小为( )
第22页
杂技演员演出“水流星”,在长为1.6 m细绳一端,系一种与水总质量为m=0.5 kg盛
水容器,以绳另一端为圆心,在竖直平面内做圆周运动,如图所示,若“水流星”通过
圆周运动中的临界问题

圆周运动中的临界问题1、在竖直平面内作圆周运动的临界问题(1)如图4-2-2和图4-2-3所示,没有物体支撑的小球,在竖直平面内做圆周运动过最高点的情况:图4-2-2 图4-2-3①临界条件:绳子或轨道对小球没有力的作用:mg =m Rv 2v 临界=Rg ;②能过最高点的条件:v ≥Rg ,当v >Rg 时,绳对球产生拉力,轨道对球产生压力; ③不能过最高点的条件:v <v 临界(实际上球还没到最高点时就脱离了轨道). (2)如图4-2-4的球过最高点时,轻质杆对球产生的弹力情况: ①当v =0时,F N =mg (F N 为支持力); ②当0<v <Rg 时,F N 随v 增大而减小,且mg >F N >0,F N 为支持力; ③当v =Rg 时,F N =0; ④当v >Rg 时,F N 为拉力,F N 随v 的增大而增大.图4-2-4图4-2-5若是图4-2-5的小球在轨道的最高点时,如果v ≥Rg ,此时将脱离轨道做平抛运动,因为轨道对小球不能产生拉力.例1 长L =0.5m ,质量可以忽略的的杆,其下端固定于O点,上端连接着一个质量m =2kg 的小球A ,A 绕O 点做圆周运动(同图5),在A 通过最高点,试讨论在下列两种情况下杆的受力:①当A 的速率v 1=1m /s 时 ②当A 的速率v 2=4m /s 时a 图 4例2 如图4所示,在倾角θ=30°的光滑斜面上,有一长l =0.4m 的细绳,一端固定在O 点,另一端拴一质量为m =0.2 kg 的小球,使之在斜面上作圆周运动,求:(1)小球通过最高点A 时最小速度;(2)如细绳受到9.8N 的拉力就会断裂,求小球通过最低点B 时的最大速度.2、在水平面内作圆周运动的临界问题在水平面上做圆周运动的物体,当角速度ω变化时,物体有远离或向着圆心运动的(半径有变化)趋势。
这时,要根据物体的受力情况,判断物体受某个力是否存在以及这个力存在时方向朝哪(特别是一些接触力,如静摩擦力、绳的拉力等)。
我的整理:竖直平面内圆周运动的临界问题

竖直平面内圆周运动及临界问题供需关系何种运动画出大致轨迹r v mF 2=r v mF 2< rv mF 2>二、在竖直平面内作圆周运动的临界问题由于物体在竖直平面内做圆周运动的依托物(绳、轻杆、轨道、管道等)不同,所以物体在通过最高点时临界条件不同.1、无物体支持的小球圆周运动临界问题(绳或轨道圆周运动问题) (1)过最高点的临界条件: (2)能过最高点的条件: (3)不能过最高点的条件:2、有物体支持的小球圆周运动的临界条件(杆或管道类的问题) (1)当v = 时,F N =0;(2)当v > 时,F N 为 力,且随v 的增大而增大; (3)当v < 时,F N 为 力,且随v 的增大而减小。
(4)过最高点的临界条件:三、例题:例1:如图所示,一质量为m 的小球,用长为L 细绳系住,使其在竖直面内作圆周运动。
若小球恰好能通过最高点,则①小球在最高点的速度为多少?②小球应在最低点获得多大速度?练习1:如图所示,一质量为m 的小球,套在半径为R 光滑轨道上,使其在竖直面内作圆周运动。
若小球恰好能通过最高点,则小球在最高点的速度为。
(小球的受力情况如何?)例2:长L =0.5m ,质量可以忽略的的杆,其下端固定于O 点,上端连接着一个质量m =2kg 的小球A ,小球绕O 点做圆周运动(不计摩擦),当经过最高点时,试分别讨论在下列两种情况下杆的受力情况(g 取10 m/s 2):(1)当A 的速率v 1=4m /s 时;(2)当A 的速率v 2=1m /s 时。
例3、质量是1×103kg 的汽车驶过一座拱桥,已知桥顶点桥面的圆弧半径是90m ,g=10m/s2。
求:(1 )汽车以15 m/s 的速度驶过桥顶时,汽车对桥面的压力; (2) 汽车以多大的速度驶过桥顶时,汽车对桥面的压力为零?AL Om练习2:(1)如图所示,一质量为m的小球,用长为L轻杆固定住,使其在竖直面内作圆周运动。