整式的除法1--单项式除以多项式

合集下载

初一数学整式的除法知识点例题

初一数学整式的除法知识点例题

初一数学整式的除法知识点例题1、单项式的除法法则单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

注意:首先确定结果的系数即系数相除,然后同底数幂相除,如果只在被除式里含有的字母,则连同它的指数作为商的一个因式2、多项式除以单项式的法则多项式除以单项式,先把这个多项式的每一项除以这个单项式,在把所的的商相加。

方法总结:①乘法与除法互为逆运算。

②被除式=除式×商式+余式整式的除法的例题一、选择题1.下列计算正确的是A.a6÷a2=a3B.a+a4=a5C.ab32=a2b6D.a-3b-a=-3b2.计算:-3b32÷b2的结果是A.-9b4B.6b4C.9b3D.9b43.“小马虎”在下面的计算中只做对一道题,你认为他做对的题目是A.ab2=ab2B.a32=a6C.a6÷a3=a2D.a3•a4=a124.下列计算结果为x3y4的式子是A.x3y4÷xyB.x2y3•xyC.x3y2•xy2D.-x3y3÷x3y25.已知a3b6÷a2b2=3,则a2b8的值等于A.6B.9C.12D.816.下列等式成立的是A.3a2+a÷a=3aB.2ax2+a2x÷4ax=2x+4aC.15a2-10a÷-5=3a+2D.a3+a2÷a=a2+a二、填空题7.计算:a2b3-a2b2÷ab2=_____.8.七年级二班教室后墙上的“学习园地”是一个长方形,它的面积为6a2-9ab+3a,其中一边长为3a,则这个“学习园地”的另一边长为_____.9.已知被除式为x3+3x2-1,商式是x,余式是-1,则除式是_____.10.计算:6x5y-3x2÷-3x2=_____.三、解答题11. 三峡一期工程结束后的当年发电量为5.5×109度,某市有10万户居民,若平均每户用电2.75×103度.那么三峡工程该年所发的电能供该市居民使用多少年?结果用科学记数法表示12.计算.130x4-20x3+10x÷10x232x3y3z+16x2y3z-8xyz÷8xyz36an+1-9an+1+3an-1÷3an-1.13.若xm÷x2n3÷x2m-n与2x3是同类项,且m+5n=13,求m2-25n的值.14.若n为正整数,且a2n=3,计算3a3n2÷27a4n的值.15.一颗人造地球卫星的速度是2.6×107m/h,一架飞机的速度是1.3×106m/h,人造地球卫星的速度飞机速度的几倍?整式的除法参考答案一、选择题1.答案:C解析:【解答】A、a6÷a2=a4,故本选项错误;B、a+a4=a5,不是同类项不能合并,故本选项错误;C、ab32=a2b6,故本选项正确;D、a-3b-a=a-3b+a=2a-3b,故本选项错误.故选C.【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;积的乘方,把每一个因式分别乘方,再把所得的幂相乘,对各选项计算后利用排除法求解.2.答案:D解析:【解答】-3b32÷b2=9b6÷b2=9b4.故选D.【分析】根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式,计算即可.3.答案:B解析:【解答】A、应为ab2=a2b2,故本选项错误;B、a32=a6,正确;C、应为a6÷a3=a3,故本选项错误;D、应为a3•a4=a7,故本选项错误.故选B.【分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;对各选项分析判断后利用排除法求解.4.答案:B解析:【解答】A、x3y4÷xy=x2y3,本选项不合题意;B、x2y3•xy=x3y4,本选项符合题意;C、x3y2•xy2=x4y4,本选项不合题意;D、-x3y3÷x3y2=-y,本选项不合题意,故选B【分析】利用单项式除单项式法则,以及单项式乘单项式法则计算得到结果,即可做出判断.5.答案:B解析:【解答】∵a3b6÷a2b2=3,即ab4=3,∴a2b8=ab4•ab4=32=9.故选B.【分析】单项式相除,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式,利用这个法则先算出ab4的值,再平方.6.答案:D解析:【解答】A、3a2+a÷a=3a+1,本选项错误;B、2ax2+a2x÷4ax=x+a,本选项错误;C、15a2-10a÷-5=-3a2+2a,本选项错误;D、a3+a2÷a=a2+a,本选项正确,故选D【分析】A、利用多项式除以单项式法则计算得到结果,即可做出判断;B、利用多项式除以单项式法则计算得到结果,即可做出判断;C、利用多项式除以单项式法则计算得到结果,即可做出判断;D、利用多项式除以单项式法则计算得到结果,即可做出判断.二、填空题7.答案:b-1解析:【解答】a2b3-a2b2÷ab2=a2b3÷a2b2-a2b2÷a2b2=b-1.【分析】本题是整式的除法,相除时可以根据系数与系数相除,相同的字母相除的原则进行,对于多项式除以单项式可以是将多项式中的每一个项分别除以单项式.8.答案:2a-3b+1解析:【解答】∵长方形面积是6a2-9ab+3a,一边长为3a,∴它的另一边长是:6a2-9ab+3a÷3a=2a-3b+1.故答案为:2a-3b+1.【分析】由长方形的面积求法可知由一边乘以另一边而得,则本题由面积除以边长可求得另一边.9.答案:x2+3x解析:【解答】[x3+3x2-1--1]÷x=x3+3x2÷x=x2+3x.【分析】有被除式,商及余数,被除式减去余数再除以商即可得到除式.10.答案:-2x3y+1解析:【解答】6x5y-3x2÷-3x2=6x5y÷-3x2+-3x2÷-3x2=-2x3y+1.【分析】利用多项式除以单项式的法则,先用多项式的每一项除以单项式,再把所得的商相加计算即可.三、解答题11.答案:2×10年解析:【解答】该市用电量为2.75×103×105=2.75×1085.5×109÷2.75×108=5.5÷2.75×109-8=2×10年.答:三峡工程该年所发的电能供该市居民使用2×10年.【分析】先求出该市总用电量,再用当年总发电量除以用电量;然后根据同底数幂相乘,底数不变指数相加和同底数幂相除,底数不变指数相减计算.12.答案:13x3-2x2+1;24x2y2+16xy2-1;3-3an+1+3an-1÷3an-1=-3a2+1.解析:【解答】130x4-20x3+10x÷10x=3x3-2x2+1;232x3y3z+16x2y3z-8xyz÷8xyz=4x2y2+16xy2-1;36an+1-9an+1+3an-1÷3an-1=-3an+1+3an-1÷3an-1=-3a2+1.【分析】1根据多项式除以单项式的法则计算即可;2根据多项式除以单项式的法则计算即可;3先合并括号内的同类项,再根据多项式除以单项式的法则计算即可.13.答案:39.解析:【解答】xm÷x2n3÷x2m-n=xm-2n3÷x2m-n=x3m-6n÷x2m-n=xm-5n因它与2x3为同类项,所以m-5n=3,又m+5n=13,∴m=8,n=1,所以m2-25n=82-25×12=39.【分析】根据同底数幂相除,底数不变指数相减,对xm÷x2n3÷x2m-n化简,由同类项的定义可得m-5n=2,结合m+5n=13,可得答案.14.答案:1解析:【解答】原式=9a6n÷27a4n= a2n,∵a2n=3,∴原式= ×3=1.【分析】先进行幂的乘方运算,然后进行单项式的除法,最后将a2n=3整体代入即可得出答案.15.答案:20.解析:【解答】根据题意得:2.6×107÷1.3×106=2×10=20,则人造地球卫星的速度飞机速度的20倍.感谢您的阅读,祝您生活愉快。

七年级数学下册 1.7.2 整式的除法教案1 (新版)北师大版-(新版)北师大版初中七年级下册数学教

七年级数学下册 1.7.2 整式的除法教案1 (新版)北师大版-(新版)北师大版初中七年级下册数学教

课题:整式的除法教学目标:1.理解整式除法运算的算理,会进行简单的整式除法运算;2.掌握多项式除以单项式的运算法则,体会数学在生活中的广泛应用;3.经历探索整式除法运算法则的过程,发展有条理的思考及表达能力.教学重、难点:重点:多项式除以单项式的运算法则的探索及其应用.难点:探索多项式除以单项式的运算法则的过程.教法及学法指导:在教学过程中,注重体现教师的导向作用和学生的主体地位,本节是新课内容的学习,教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程中、在掌握知识同时、发展智力、受到教育.课前准备:制作课件教学过程:一、情境引入,复习回顾活动内容1:(多媒体出示图片)同学们,我这儿有一道题,看看你能不能利用现有的知识解决呢?X大爷家有一块长方形的田地,它的面积是6a2+2a,宽为2a,聪明的你能帮X大爷求出田地的长吗?处理方式:学生看图读题后回答并说明理由:长方形的面积=长×宽,从而得出已知面积和宽,则田地的长=(6a2+2a)÷(2a).教师板书:(6a2+2a)÷(2a)然后教师手指算式追问:这是何种类型的运算?我们以前学过吗?学生通过观察、思考,容易得出“多项式除以单项式”,教师顺势板书课题:(板书:整式的除法---多项式除以单项式)【设计意图】从学生熟悉的生活情景出发,找准新知识的起点,提出疑问,激发学生的学习兴趣和求知欲,不仅使学生快速的进入学习状态,同时又让学生觉得数学源于生活又应用于生活,使学生在不知不觉中感受学习数学的乐趣.活动内容2:多项式如何除以单项式是我们这节课要探索的内容,在探究它之前,让我们先来解决下面的问题.计算下列题目.(1)x 11÷x 6= ; (2) 12a 3b 2÷(3ab 2)= ;处理方式:让学生独立思考,教师巡视,帮助鼓励困难学生完成任务.学生完成后,找学生口头回答,(1)x 5(2) 4a 2 c ;并采取追问方式,学生口答理由,教师根据学生的回答利用多媒体出示理由依据.(1)x 11÷x6 =x11-6(同底数幂相除,底数不变,指数相减.) =x 5(2) 12a 3b 2c ÷(3ab 2)=(12÷3)( a 3÷a)(b 2÷ b 2)c (单项式除法法则)=4a 2 c【设计意图】:同底数幂的除法与单项式除法是学习多项式除以单项式的基础,只有熟练掌握同底数幂的除法与单项式除法,才能正确的进行多项式除以单项式的运算,为学习新知识打基础.二、探究新知,合作交流活动内容:多项式除以单项式的法则的探究问题1:你能计算下列各题吗?如果能,说说你的理由.(1)(ad +bd )÷d=(2)(a 2b +3ab )÷a=(3)(xy 3-2xy )÷(xy )=处理方式:让学生自己先试着做一做,教师巡视,寻找正确的答案准备展示交流.对于第(1)题学生容易得出结果.教师及时追问:“你是如何得到的?”:即由(a +b )·d = ad +bd 得到(ad +bd )÷d= a +b ; 方法 2. 类比有理数的除法法则进行计算: (ad +bd )÷d =(ad +bd ) ·d1=a +b.然后学生根据第(1)题的经验容易解决第(2)(3)题: 方法1. (2) ∵ (ab +3b )·a =a 2b +3ab ∴ (a 2b +3ab )÷a =ab +3b ; (3) ∵ (y 2-2)·xy =xy 3-2xy ∴ (xy 3-2xy )÷(xy )=y 2-2方法 2.(2)(a 2b +3ab )÷a =(a 2b +3ab )a1=ab +3b ; (3)(xy 3-2xy ) ÷(xy )=(xy 3-2xy ) ·xy1=y 2-2.学生回答时教师只把最后结果及时板书在黑板上.【设计意图】通过从学生已有的认知角度出发,让学生在不断的探索过程中得到不同程度的感悟,自己能够主动地去探究问题的实质,有成功的体验,要充分发散学生的思维,敢于质疑,培养良好的学习习惯.问题2:观察等式:(1)(ad +bd )÷d= a +b(2)(a 2b +3ab )÷a =ab +3b(3)(xy 3-2xy )÷(xy )=y 2-2你发现了什么?处理方式:1.学生观察思考并举手回答. 学生间互相补充能够解决.如果有困难,教师可适当点拨:被除式中的每一项与商中的每一项有什么对应关系?学生再观察思考,就得出规律.学生回答时,教师注意学生语言表达的规X 性.2.教师总结并出示多项式除以单项式法则:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.然后追问“用字母如何表示这个法则”学生思考回答并互相补充得出:(a +b+c )÷m = a ÷m + b ÷m + c ÷m【设计意图】通过让学生经历观察、计算、推理、想象等探索过程,获得数学活动的经验;发散学生思维,让学生尽可能用多种方法来说明自己计算的正确性,培养学生合情说理的能力;并在这个过程中,培养学生总结归纳知识的能力. 发展学生的逻辑推理能力.三、典例分析,应用新知活动内容1:运用多项式除以单项式法则解决问题(例题分析)例2:计算:(1)(6ab +8b )÷2b (2)(27a 3-15a 2+6a )÷3a(3)(9x 2y -6xy 2)÷(3xy )(4)(3x 2y-xy 2+21xy )÷(-21xy ) 处理方式:先给学生1分钟时间观察思考,要求学生说出解决的方法及依据,师生先合作完成第(1)题:学生口述,教师板书,并及时强调过程的规X 性,其余3题学生在练习本上独立完成,然后共同评价.最后教师追问:“ 结合本例题,你认为在计算时,把多项式除以单项式转化成哪个已学知识点?”学生通过观察计算过程,互相补充,共同解决教师的追问.学生回答时,教师及时利用多媒体出示:2.教师总结强调:(多媒体出示)在计算中为保证计算的正确性应该注意:(1)不要漏项,(2)注意符号,(3)注意运算顺序,(4)用互逆运算进行检查. 下附答案解:(1)(6ab +8b )÷(2b )=(6ab )÷(2b )+ (8b )÷(2b ) =3a +4(2)(27a 3-15a 2+6a )÷(3a )=(27a 3)÷(3a )+(-15a 2)÷(3a )+(6a )÷(3a )=9a 2-5a +2(3)(9x 2y -6xy 2)÷(3xy )=(9x 2y )÷(3xy )-(6xy 2)÷(3xy )=3x -2y(4)(3x 2y-xy 2+21xy )÷(-21xy ) =(3x 2y)÷(-21xy )-(xy 2)÷(-21xy )+(21xy )÷(-21xy )= -6x +2y -1 巩固训练:大家法则掌握的很好,我希望我们小组内的每一个成员都能做的更好,现在我们有几道小题检验大家的掌握情况,我希望大家能独立完成:1.想一想,下列计算正确吗?(1)(3x 2y -6xy )÷(-6xyx ( )(2)(5a 3b -10a 2b 2-15ab 3) ÷(-5ab )=a 2+2ab +3b 2 ( )(3)(2x 2y -4xy 2+6y 3) ÷( -21y )= -x 2+2xy -3y 2 ( ) 2. 计算(课本31页随堂练习)(1)(3xy +y )÷y (2)(ma +mb +mc ) ÷m(3)(6c 2d -c 3d 3) ÷(-2c 2d ) (4)(4x 2y +3xy 2) ÷(7xy )处理方式:学生独立思考,再开展小组交流,在练习本上计算,第1题由学生口答,并能说出题目错误的原因,其中常见的错误教师应在点评中给学生指出,避免以后出现类似的错误. 如易错点:1.(1)中丢项,被除式有二项,商式只有一项,丢了最后一项1;正确答案为:x +1;因此,计算不可丢项,分清“约掉”与“消掉”的区别:“约掉”对乘除而言,不减项;“消掉”对加减法而言,减项.1.(2)中是符号上错误,两数相除的符号是“同号得正,异号得负”,商式第一项的符号为“-” 正确答案为:-a 2+2ab +3b 2;1.(3)中是系数上的错误,当除数是分数时,除以一个数等于乘以这个数的倒数,因此,正确答案为: -4x 2+8xy -12y 2第2题由做的好的小组找4名学生演板,其他学生在练习本上完成.做完后小组之间开展互评,正误怎样?教师巡视,适时点拨.学生完成后及时点评,借助投影仪展示学生出现的问题进行矫正.第1题教师和学生共同矫正,第2题找同学纠正,并板演正确过程.对于第3、4题教师请男女两个同学比赛进行演板,师给与评价.解:(1)(3xy +y )÷y = 3xy ÷y + y ÷y =3x +1(2)(ma +mb +mc ) ÷m = ma ÷m +mb ÷m +mc ÷m = a +b +c(3)(6c 2d -c 3d 3)÷(-2c 2d ) = 6c 2d ÷(-2c 2d ) -c 3d 3÷(-2c 2d ) = -3+21cd 2 (4)(4x 2y +3xy 2) ÷(7xy ) = 4x 2y ÷(7xy )+3xy 2÷(7xy ) =74x +73y 【设计意图】:(1)通过学习例2和巩固训练第2题,主要巩固多项式除以单项式法则,提高学生的计算能力,进一步熟悉法则.(2)通过做巩固训练第1题判断并能说出题目错误的原因,让学生知道易错点,避免以后出现类似的错误, 强化本节课的重点,突破难点.四﹒学以致用,巩固提高活动内容:多项式除以单项式的法则的应用师:大家刚才的表现很好,我们刚才计算是很基础的,现在我们再看上课前那道题目,你会了吗?看哪个小组完成的最快、正确.1. X 大爷家有一块长方形的田地,它的面积是6a 2+2a ,宽为2a ,聪明的你能帮X 大爷求出田地的长吗?处理方式:小组交流后在练习本上写出过程,表现最好的小组展示过程,并说出理由.解: (6a 2+2a )÷(2a)=6a 2÷(2a)+2a ÷(2a)=3a+1所以长方形的长为(3a+1).巩固训练:1.小明在爬一小山时,第一阶段的平均速度为v ,所用时间为t 1;第二阶段的平均速度为21v ,所用时间为t 2.下山时,小明的平均速度保持为4 v .已知小明上山的路程和下山的路程是相同的,问小明下山用了多长时间?处理方式:学生读题,此题是行程问题,速度路程时间 ,根据公式,上山路程=下山路程= vt 1+21v t 2,然后求下山的时间=(vt 1+21v t 2)÷(4v )= vt 1 ÷( 4v )+ 21v t 2÷( 4v )=41t 1+81t 2= 8212t t +,最后由小组交流后在练习本上写出过程,表现最好的小组展示过程. 【设计意图】:通过完成两题,进一步巩固落实多项式除以单项式运算法则,只有熟练掌握同底数幂的除法与单项式除法,才能正确的进行多项式除以单项式的运算.同时,情景问题的处理,一方面解决学生上课初始的疑问,另一方面,利用多项式除以单项式解决生活中的应用问题,有助于提高学生分析问题、解决问题的能力.五﹒回顾反思,提炼升华这节课我们都学习了哪些内容?学生畅谈自己的收获!多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.2.多项式除以单项式的运算思路是什么?先将多项式除以单项式转化为单项式除以单项式;然后又转化为同底数幂相除.3.计算时需注意:(1)不要漏项,(2)注意符号,(3)注意运算顺序,(4)用互逆运算进行检查.【设计意图】:师生交流、归纳小结的目的是让学生表述自己的收获,使学生对本节课所学进行梳理,养成反思与总结的习惯,培养自我反馈,自主发展的意识,明确学习的方向.六﹒达标检测,反馈提高通过本节课的学习,同学们的收获真多!收获的质量如何呢?请完成达标检测题.(同时多媒体出示)A 组:1、填空:(1) (35a 3+28a 2+7a )÷(7a )= ;(2) 若kab a +23除以a 等于b a 43+,则k =.2、选择:〔(a 2)4+a 3a -(ab )2〕÷a = ( ) A .a 9+a 5-a 3b 2B .a 7+a 3-ab 2C .a 9+a 4-a 2b 2D .a 9+a 2-a 2b 23、计算:(1)(3x 3y -18x 2y 2+x 2y )÷(-6x 2y ); (2)〔(xy +2)(xy -2)-2x 2y 2+4〕÷(xy ). B 组:1.已知一个三角形的面积是(4a 3b -6a 2b 2+12ab 3),一边长为4ab ,求该边上的高.处理方式:在练习本上自主完成,教师认真巡查.对于必做题学生完成后教师出示答案,学生互换批改,指导学生校对,并统计学生答题情况,学生根据答案进行纠错.附答案:A 组:1.(1)5a 2+4a +1 (2)4 2.B B 组:1.2a 2-3ab+6b 2 【设计意图】:要求学生在5分钟内完成,规定时间和内容,可以了解学生对本节课所学习内容的掌握情况,及时发现个别学生存在的不足,以便督促学生及时纠正错误,端正学习态度,提高数学公式的应用能力.促进对学习及时进行反思,为教师全面了解学生的学习状况,改进教学,实施因材施教提供重要依据.七﹒布置作业,巩固提高A 组:课本31页 习题4知识技能1和本节助学内容.B 组:(选做题)已知一个多项式除以-2a ,小雪误当成了乘法计算,结果得到4a 3-12a 2,则正确的结果应该是多少?【设计意图】:落实本节课所学习的知识内容,提高学生的计算能力和利用数学知识解决问题的能力.结束语:数学与我们的生活有着密切的联系,希望同学们能留心身边的数学问题,做生活的有心人.这节课上,很多同学都展示了自己在数学方面的才华,我相信,明日的陈景润、华罗庚就会在我们班诞生,同学们努力吧!八﹒板书设计()()xy y x --+-2613211:3。

人教版八年级数学上册第14章14.1.4整式的乘法整式的除法(教案)

人教版八年级数学上册第14章14.1.4整式的乘法整式的除法(教案)
其次,整式的除法运算中,学生对于多项式除以多项式的步骤掌握不够熟练,有的同学在操作过程中会漏掉一些细节。我想在以后的复习课上,可以设计一些针对性的练习,让学生多加练习,以便更好地掌握这个难点。
此外,课堂上的实践活动和小组讨论环节,我发现学生们参与度很高,但也有一些小组在讨论过程中偏离了主题。为了提高讨论效率,我需要在接下来的课程中加强对学生讨论方向的引导,确保每个小组都能围绕主题展开有效的讨论。
-整式的除法法则,包括多项式除以单项式和多项式除以多项式的步骤。
-乘除混合运算的顺序和法则,以及如何简化表达式。
举例:重点讲解如何将一个多项式(如\(3x^2 + 5x - 2\))除以一个单项式(如\(x\)),以及如何将一个多项式(如\(4x^3 - 2x^2 + 3x\))除以另一个多项式(如\(2x - 1\))。
4.培养学生合作交流、积极参与的学习态度,增强数学建模与数学应用意识。
5.使学生能够运用整式的乘除法则,解决实际生活中的问题,提高数学素养。
三、教学难点与重点
1.教学重点
-单项式乘以单项式的运算法则,特别是符号的处理。
-单项式乘以多项式、多项式乘以多项式的运算法则,尤其是分配律的应用。
-整式的乘法在实际问题中的应用,如面积和体积的计算。
同学们,今天我们将要学习的是《整式的乘法与除法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算面积或体积的情况?”(如计算长方形面积或圆柱体积)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索整式乘除的奥秘。
(二)新课讲授(用时10分钟)
人教版八年级数学上册第14章14.1.4整式的乘法整式的除法(教案)

七年级数学整式的除法

七年级数学整式的除法

关键知识点总结
除法运算步骤 将被除式与除式按降幂排列。
用被除式的第一项除以除式的第一项,得到商式的第一项。
关键知识点总结
将商式的第一项与除式相乘, 得到积式。
用被除式减去积式,得到差式 。
将差式作为新的被除式,重复 以上步骤,直到差式为0或次 数低于除式。
关键知识点总结
注意事项 在除法运算中,要保证每一步的运算都是准确的。
整式的除法与因式分解有着密切的联系。在 整式的除法中,如果被除式可以分解为两个 因式的乘积,那么可以通过因式分解的方法 简化运算过程。同时,因式分解也可以看作 是整式的除法的一种特殊情况,即被除式为 0的情况。因此,掌握因式分解的方法对于
理解和应用整式的除法具有重要意义。
THANK YOU
感谢聆听
练习题与答案
$a$ 的指数部分
$a^4 div a^2 = a^{(4-2)} = a^2$
$b$ 的指数部分
$b^3 div b = b^{(3-1)} = b^2$
练习题与答案
02
01
03
$c$ 保持不变 因此,$(15a^4b^3c) div (5a^2b) = 3a^2b^2c$ 练习题2:计算 $(18x^5y^6z^3) div (9x^3y^3z)$
整式除法可用于解决经济问题中的利 润率、折扣率、税率等问题。
工程问题
在工程问题中,利用整式除法可以计 算工作效率、工作时间、工作总量等 问题。
05
整式除法运算技巧与注意事项
简化计算过程技巧
01
02
03
利用乘法分配律
将除法转化为乘法,简化 计算过程。
提取公因式
在整式除法中,可以提取 被除数和除数的公因式, 使计算更简便。

人教版初中八年级数学上册《整式的除法》精品教案

人教版初中八年级数学上册《整式的除法》精品教案

第3课时整式的除法1.掌握同底数幂的除法法则与运用.(重点)2.掌握单项式除以单项式和多项式除以单项式的运算法则.(重点)3.熟练地进行整式除法的计算.(难点)一、情境导入1.教师提问:同底数幂的乘法法则是什么?2.多媒体展示问题:一种液体每升含有1012个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了实验,发现1滴杀菌剂可以杀死109个此种细菌.要将1升液体中的有害细菌全部杀死,需要这种杀菌剂多少滴?学生认真分析后完成计算:需要滴数:1012÷109.3.教师讲解:以前我们只学过同底数幂的乘法的计算方法,那么像这种同底数幂的除法该怎样计算呢?二、合作探究探究点一:同底数幂的除法【类型一】直接用同底数幂的除法进行运算计算:(1)(-xy)13÷(-xy)8;(2)(x-2y)3÷(2y-x)2;(3)(a2+1)6÷(a2+1)4÷(a2+1)2.解析:利用同底数幂的除法法则即可进行计算,其中(1)应把(-xy)看作一个整体;(2)把(x -2y)看作一个整体,2y-x=-(x-2y);(3)注意(a2+1)0=1.解:(1)(-xy)13÷(-xy)8=(-xy)13-8=(-xy)5=-x5y5;(2)(x-2y)3÷(2y-x)2=(x-2y)3÷(x-2y)2=x-2y;(3)(a2+1)6÷(a2+1)4÷(a2+1)2=(a2+1)6-4-2=(a2+1)0=1.方法总结:计算同底数幂的除法时,先判断底数是否相同或变形为相同,再根据法则计算. 【类型二】 逆用同底数幂的除法进行计算已知a m =4,a n =2,a =3,求am -n -1的值. 解析:先逆用同底数幂的除法,对am -n -1进行变形,再代入数值进行计算. 解:∵a m =4,a n =2,a =3,∴a m -n -1=a m ÷a n ÷a =4÷2÷3=23. 方法总结:解此题的关键是逆用同底数幂的除法得出am -n -1=a m ÷a n÷a .【类型三】 已知整式除法的恒等式,求字母的值 若a (x m y 4)3÷(3x 2y n )2=4x 2y 2,求a 、m 、n 的值.解析:利用积的乘方的计算法则以及整式的除法运算得出即可.解:∵a (x m y 4)3÷(3x 2y n )2=4x 2y 2,∴ax 3m y 12÷9x 4y 2n =4x 2y 2,∴a ÷9=4,3m -4=2,12-2n =2,解得a =36,m =2,n =5.方法总结:熟练掌握积的乘方的计算法则以及整式的除法运算是解题关键.【类型四】 整式除法的实际应用一颗人造地球卫星的速度为2.88×107m/h ,一架喷气式飞机的速度为1.8×106m/h ,这颗人造地球卫星的速度是这架喷气式飞机的速度的多少倍?解析:求人造地球卫星的速度是这架喷气式飞机的速度的多少倍,用人造地球卫星的速度除以喷气式飞机的速度,列出式子:(2.88×107)÷(1.8×106),再利用同底数幂的除法计算.解:(2.88×107)÷(1.8×106)=(2.88÷1.8)×(107÷106)=1.6×10=16.则这颗人造地球卫星的速度是这架喷气式飞机的速度的16倍.方法总结:用科学记数法表示的数的运算可以利用单项式的相关运算法则计算.探究点二:零指数幂若(x -6)0=1成立,则x 的取值范围是( )A .x ≥6B .x ≤6C .x ≠6D .x =6解析:∵(x -6)0=1成立,∴x -6≠0,解得x ≠6.故选C.方法总结:本题考查的是0指数幂,非0数的0次幂等于1,注意0指数幂的底数不能为0.探究点三:单项式除以单项式计算.(1)(2a 2b 2c )4z ÷(-2ab 2c 2)2;(2)(3x 3y 3z )4÷(3x 3y 2z )2÷(12x 2y 6z ). 解析:先算乘方,再根据单项式除单项式的法则进行计算即可.解:(1)(2a 2b 2c )4z ÷(-2ab 2c 2)2=16a 8b 8c 4z ÷4a 2b 4c 4=4a 6b 4z ;(2)(3x 3y 3z )4÷(3x 3y 2z )2÷(12x 2y 6z )=81x 12y 12z 4÷9x 6y 4z 2÷12x 2y 6z =18x 4y 2z . 方法总结:掌握整式的除法的运算法则是解题的关键,有乘方的先算乘方,再算乘除.探究点四:多项式除以单项式【类型一】 直接利用多项式除以单项式进行计算计算:(72x 3y 4-36x 2y 3+9xy 2)÷(-9xy 2).解析:根据多项式除单项式,先用多项式的每一项分别除以这个单项式,然后再把所得的商相加.解:原式=72x 3y 4÷(-9xy 2)+(-36x 2y 3)÷(-9xy 2)+9xy 2÷(-9xy 2)=-8x 2y 2+4xy -1. 方法总结:多项式除以单项式,先把多项式的每一项都分别除以这个单项式,然后再把所得的商相加.【类型二】 被除式、商式和除式的关系已知一个多项式除以2x 2,所得的商是2x 2+1,余式是3x -2,请求出这个多项式.解析:根据被除式、除式、商式、余式之间的关系解答.解:根据题意得:2x 2(2x 2+1)+3x -2=4x 4+2x 2+3x -2,则这个多项式为4x 4+2x 2+3x -2. 方法总结:“被除式=商×除式+余式”是解题的关键.【类型三】 化简求值先化简,后求值:[2x (x 2y -xy 2)+xy (xy -x 2)]÷x 2y ,其中x =2015,y =2014.解析:利用去括号法则先去括号,再合并同类项,然后根据除法法则进行化简,最后把x 与y 的值代入计算,即可求出答案.解:[2x (x 2y -xy 2)+xy (xy -x 2)]÷x 2y =[2x 3y -2x 2y 2+x 2y 2-x 3y ]÷x 2y =x -y ,把x =2015,y =2014代入上式得:原式=x -y =2015-2014=1.方法总结:熟练掌握去括号,合并同类项,整式的除法的法则.三、板书设计同底数幂的除法1.同底数幂的除法法则:a m÷a n=a m-n(m,n为正整数,m>n,a≠0).2.同底数幂的除法法则逆用:a m-n=a m÷a n(m,n为正整数,m>n,a≠0).从计算具体的同底数幂的除法,逐步归纳出同底数幂除法的一般性质.讲课时要多举几个具体的例子,让学生计算出结果.最后,让学生自己归纳出同底数幂的除法法则.性质归纳出后,应注意:(1)要强调底数a不等于零,若a为零,则除数为零,除法就没有意义了;(2)本节不讲零指数与负指数的概念,所以性质中必须规定指数m、n都是正整数,并且,要让学生运用时予以注意.---------------------学习小技巧---------------小学生制定学习计划的好处小学生想要成绩特别的突出学习计划还是不能少的。

整式的除法说课稿

整式的除法说课稿

《整式除法1》说课稿永康中学吴平我的说课内容是北师大版七年级数学下册第一章第7节整式除法部分的内容,下面我就教材、教法与学法指导、教学设计和教学反思等几个方面来向大家介绍一下我对本节课的理解与设计。

一、说教材1、教材的地位与作用整式的除法包括单项式除以单项式和多项式除以单项式,是在学生学习了整式的加减、同底数幂的除法、整式的乘法基础上,对整式的除法运算进行探索和研究的一个重要课题,是学生完整、全面掌握整式运算的必备环节。

不论是在知识的衔接上,还是在学习方法与能力的迁移上,本节课的教学都起重要的奠基作用。

2、教学目标【知识目标】①理解和掌握单项式的除法法则;②会运用法则正确、熟练地进行整式除法的运算;【能力目标】①经历探索整式除法运算法则的过程,增强学生的学习体验;②通过法则的总结,培养和发展学生有条理的思考及表达能力;【情感目标】①激发学生的求知欲,培养学生积极思考的学习习惯;②关注学生的学习体验和认知程度,让学生感知并享受自己的成功,增强学习兴趣和自信心。

3、教学重、难点①重点:单项式的除法法则。

②难点:单项式的除法法则的熟练运用。

(在计算过程中,既要对系数进行计算,又要对相同字母进行指数计算,同时对只在一个单项式中出现的幂加以注意。

这对于刚接触整式除法的初一学生来讲,难免会出现计算错误或漏算等照看不全的情况。

)二、说教法设计数学教学是数学活动的教学,是师生交流、互动、共同发展的过程。

学生是学习的主体,教师是学生学习的组织者、引导者和合作者。

本节课的教学,我选择师生互动式的教学方式,从学生的学习经验和已有的知识背景、思维方式出发,向他们提供充实的数学活动,通过自主探索、观察类比、合作交流、总结概括等教学活动,使学生获得深刻的体验和经验,深化学生的认知程度,真正理解和掌握单项式除以单项式的运算法则,逐步提高熟练程度,夯实基础知识,提高运算能力。

针对本节课的内容特点和初一学生的思维特征,本节课的总体教法设计思路为:1、注重引导,激发思维,加深体验;2、师生共同概括总结,形成认知;3、加强针对性练习,巩固和强化认知;三、说教学设计:本节课设计了八个教学环节::复习回顾、情境引入、探究新知、对比学习、例题讲解、课堂练习、知识小结、布置作业.1、复习回顾同底数幂的除法是学习整式除法的理论基础,只有熟练掌握同底数幂的除法,才能更好的进行整式除法的学习.此外,复习单项式乘以单项式法则,是为了对比学习单项式除以单项式法则,比较其相似与不同,并能将前后知识融为一体,使之形成一定的知识体系.2、情境引入本题在介绍生活常识的同时,提出一个极具趣味性的问题,学生可能通过以前学习的知识得到答案,但并不能利用新知识解决问题,从而激发学生强烈的求知欲和好奇心,引入新课的学习.从中也使学生进一步体会,数学来源于生活并作用于生活.3、探究新知通过让学生经历观察、计算、推理、想象等探索过程,获得数学活动的经验;发散学生思维,让学生尽可能用多种方法来说明自己计算的正确性,培养学生合情说理的能力;并在这个过程中,培养学生总结归纳知识的能力.4、对比学习:通过对比学习的方式比较单项式乘以单项式法则与单项式除以单项法则,观察其相似与不同,便于学生更好地掌握整式除法运算,并将本章的前后知识有机的联系起来,使之形成一个完整的知识框架。

12.4 整式的除法(第1课时)-2023-2024学年八年级数学上册同步精品课堂(华东师大版)

12.4 整式的除法(第1课时)-2023-2024学年八年级数学上册同步精品课堂(华东师大版)
数学(华东师大版)
八年级 上册
第12章 整式的乘除
12.4 整式的除法
第1课时 单项式除以单项式
学习目标
1.理解和掌握单项式除以单项式的运算法则,运用运算法则熟练、
准确地进行计算;
2.通过总结法则,培养概括能力;训练综合解题能力和计算能力.
温故知新
1.用字母表示幂的运算性质:
(1)a a a
8.8×105
讲授新课
知识点一 单项式除以单项式
试 一 试
计算:
12a5c2÷3a2
把12a5c2和3a2分别看成是一个整体,相当于
(12a5c2)÷(3a2)
(4a3c2) ×3a2=12a5c2
12a5c2÷3a2=4a3c2
怎样计பைடு நூலகம்出来
的呢?
讲授新课
知识要点
单项式除以单项式的法则
单项式相除, 把系数、同底数幂分别相除作为商的因式;对于只在被除
=(24÷3)a2-1b3-1
=3a;
=8ab2;
(3)-21a2b3c÷3ab
=(-21÷3)a2-1b3-1c
= -7ab2c.
讲授新课
例2 若a(xmy4)3÷(3x2yn)2=4x2y2,求a、m、n的值.
解:∵a(xmy4)3÷(3x2yn)2=4x2y2,
∴ax3my12÷9x4y2n=4x2y2,
2
1
2
2
4 ÷ 2 = 8,则D选项正确,
2
故选:D.

× 8 = 42 2 ,所以
当堂检测
8.若x2m+nyn÷()2 = 5 ,则m,n的值分别为( )
A.3,2
B.2,2

整式的运算法则

整式的运算法则

整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。

整式的乘法:),(都是正整数n m a a a n m n m +=•),(都是正整数)(n m a a m n n m =)()(都是正整数n b a ab n n n = 22))((b a b a b a -=-+ 2222)(b ab a b a ++=+ 2222)(b ab a b a +-=-整式的除法:)0,,(≠=÷-a n m a a a n m n m 都是正整数【注意】(1)单项式乘单项式的结果仍然是单项式。

(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数 相同。

(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要 注意单项式的符号。

(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。

(5)公式中的字母可以表示数,也可以表示单项式或多项式。

(6)),0(1);0(10为正整数p a a a a a p p ≠=≠=-(7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多项式是不能这么计算的。

一、选择(每题2分,共24分) 1.下列计算正确的是( ).A .2x 2·3x 3=6x 3B .2x 2+3x 3=5x 5C .(-3x 2)·(-3x 2)=9x 5D .54x n ·25x m =12x m+n2.一个多项式加上3y 2-2y -5得到多项式5y 3-4y -6,则原来的多项式为( ). A .5y 3+3y 2+2y -1 B .5y 3-3y 2-2y -6 C .5y 3+3y 2-2y -1 D .5y 3-3y 2-2y -1 3.下列运算正确的是( ).A .a 2·a 3=a 5B .(a 2)3=a 5C .a 6÷a 2=a 3D .a 6-a 2=a 4 4.下列运算中正确的是( ).A.12a+13a=15a B.3a2+2a3=5a5C.3x2y+4yx2=7 D.-mn+mn=0二、填空(每题2分,共28分)6.-xy2的系数是______,次数是_______.8.x_______=x n+1;(m+n)(______)=n2-m2;(a2)3·(a3)2=______.9.月球距离地球约为3.84×105千米,一架飞机速度为8×102千米/时, 若坐飞机飞行这么远的距离需_________.10.a2+b2+________=(a+b)2a2+b2+_______=(a-b)2(a-b)2+______=(a+b)211.若x2-3x+a是完全平方式,则a=_______.12.多项式5x2-7x-3是____次_______项式.三、计算(每题3分,共24分)13.(2x2y-3xy2)-(6x2y-3xy2)14.(-32ax4y3)÷(-65ax2y2)·8a2y17.(x-2)(x+2)-(x+1)(x-3)18.(1-3y)(1+3y)(1+9y2)19.(ab+1)2-(ab-1)2四、运用乘法公式简便计算(每题2分,共4分)20.(998)221.197×203五、先化简,再求值(每题4分,共8分)22.(x+4)(x-2)(x-4),其中x=-1.23.[(xy+2)(xy-2)-2x2y2+4],其中x=10,y=-1 25.六、解答题(每题4分,共12分)24.已知2x+5y=3,求4x·32y的值.25.已知a2+2a+b2-4b+5=0,求a,b的值.幂的运算一、同底数幂的乘法(重点)1.运算法则:同底数幂相乘,底数不变,指数相加。

北师大版七年级数学下册第一单元《整式的除法(2)》课件

北师大版七年级数学下册第一单元《整式的除法(2)》课件
解:另一边长为
4a2 6ab 2a 2a
4a2 2a 6ab 2a 2a 2a 2a 3b 1
则周长为 2(2a - 3b+1+2a)=8a - 6b+2
综合训练
1.计算: - 2a2b3 2 3ab2 3 2 a2b3
3
2.先化简,再求值:
[(xy+2)(xy-2)-2(x2y2-2)]÷xy,其中x=1,y=-2. 解:原式=[(xy)2-22-2x2y2+4]÷xy =(x2y2-4-2x2y2+4)÷xy =(-x2y2)÷xy=-xy. 当x=1,y=-2时,原式=-1×(-2)=2.
探索新知
多项式除以单项式的法则 多项式除以单项式,先用这个多项式的 每一项 分 别除以这个 单项式 ,再把所得的商 相加 .
符号语言: (am+bm+cm)÷m=a+b+c
(vt1+
1 2
v
t2)÷4v
=
1 4
t1
1 8
t2
典例精析
例1 计算:
(1)(6ab+8b)÷2b; (2)(27a3-15a2+6a)÷3a;
2
原式的值与y的值没有关系,
所以小颖的说法有道理.
反馈练习
解:原式 28a3 7a 14a2 7a 7a 7a 4a2 2a 1
原式 36 x4 y3 6 x2 y 24x3 y2 6 x2 y 3x2 y2 6 x2 y
6 x2 y2 4xy 1 y
2
1
-2 -1
2
解:原式=(x2-2xy+y2+x2-y2)÷x=(2x2-2xy)÷x=2x-2y 1

人教版数学八年级上册15.3.2《整式的除法》教案

人教版数学八年级上册15.3.2《整式的除法》教案

人教版数学八年级上册15.3.2《整式的除法》教案一. 教材分析《整式的除法》是人教版数学八年级上册第15章第三节的一部分,主要内容包括单项式除以单项式、多项式除以单项式以及多项式除以多项式的运算方法。

这一节内容在数学学习中占据重要地位,是学生进一步学习函数、不等式等数学知识的基础。

通过本节内容的学习,学生能够掌握整式除法的基本运算方法,提高运算能力,并为后续学习打下基础。

二. 学情分析学生在学习本节内容前,已经掌握了整式的加减、乘法等基本运算,具备一定的数学基础。

但学生在进行整式除法运算时,容易出错,对除法运算的理解不够深入。

因此,在教学过程中,需要关注学生的学习困难,通过具体例子引导学生理解整式除法的运算规律,提高学生的运算能力。

三. 教学目标1.知识与技能目标:使学生掌握整式除法的基本运算方法,能够熟练地进行整式除法运算。

2.过程与方法目标:通过自主探究、合作交流,培养学生解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心,使学生感受到数学学习的成就感。

四. 教学重难点1.重点:整式除法的基本运算方法。

2.难点:理解整式除法的运算规律,能够灵活运用整式除法解决实际问题。

五. 教学方法采用“引导探究法”和“合作交流法”,教师引导学生通过观察、分析、归纳等方法,发现整式除法的运算规律,培养学生的问题解决能力。

同时,鼓励学生进行合作交流,分享学习心得,提高学生的沟通能力。

六. 教学准备1.教师准备:教师需熟练掌握整式除法的运算方法,了解学生的学习情况,准备相关教学素材。

2.学生准备:学生需预习整式除法相关内容,了解基本概念,准备参与课堂讨论。

七. 教学过程1.导入(5分钟)教师通过一个简单的例子,引导学生回顾整式的加减、乘法运算,为新课的学习做好铺垫。

2.呈现(10分钟)教师展示整式除法的例子,引导学生观察、分析,发现整式除法的运算规律。

学生通过自主探究,总结整式除法的基本方法。

初中数学竞赛1.3 整式的除法(含答案)

初中数学竞赛1.3 整式的除法(含答案)

1.3 整式的除法◆赛点归纳整式的除法包括单项式除以单项式,多项式除以单项式,多项式除以多项式.多项式恒等定理:(1)多项式f(x)=g(x),•需且只需这两个多项式的同类项的系数相等;(2)若f(x)=g(x),则对于任意一个值a,都有f(a)=g(a).余数定理:多项式f(x)除以x-a所得的余数等于f(a).特别地,当f(x)•能被x-a整除时,有f(a)=0.◆解题指导例1设a、b为整数,观察下列命题:①若3a+5b为偶数,则7a-9b也为偶数;②若a2+b2能被3整除,则a和b也能被3整除;③若a+b是质数,则a-b不是质数;④若a3-b3是4的倍数,则a-b也是4的倍数.其中正确的命题有().A.0个B.1个C.2个D.3个以上【思路探究】对于①看7a-9b与3a+5b的和或差是不是偶数.对于②根据整数n的平方数的特征去判断.对于③、④若不能直接推导是否成立,也可举出反例证明不成立.例2 若2x3-kx2+3被2x+1除后余2,则k的值为().A.k=5 B.k=-5 C.k=3 D.k=-3【思路探究】要求k的值,须找到关于k的方程.由2x3-kx2+3被2x+1除后余2,可知2x3-kx2+1能被2x+1整除,由此就可得关于k的一次方程.例3计算:(3x6-2x5-5x4+7x3-19x2+12x)÷(x4-2x2+x-5).【思路探究】被除式是一个6次六项式,除式是一个4次四项式,直接计算比较复杂,应列竖式计算.例4若多项式x4-x3+ax2+bx+c能被(x-1)3整除,求a、b、c的值.【思路探究】由条件知x4-x3+ax2+bx+c能被x3-3x2+3x-1整除,列竖式可知x4-x3+ax2+bx+c的商式和余式.根据一个多项式被另一个多项式整除,余式恒为零可求a、•b、c的值.【拓展题】设x1,x2,…,x7都是整数,并且x1+4x2+9x3+16x4+25x5+36x6+49x7=1,①4x1+9x2+16x3+25x4+35x5+49x6+64x7=12,②9x1+16x2+25x3+36x4+49x5+64x6+81x7=123,③求16x1+25x2+36x3+49x4+64x5+81x6+100x7的值.◆探索研讨整式除法的综合运用大多与多项式除以多项式相关.多项式除法运算实际上是它们的系数运算.在进行多项式乘除法恒等变形时,它们对应项系数是相等的,由此列方程可求解待定系数.请结合本节的例题,总结自己的发现.◆能力训练1.下列四个数中,对于任一个正整数k,哪个数一定不是完全平方数().A.16k B.16k+8 C.4k+1 D.32k+42.要使3x3+mx2+nx+42能被x2-5x+6整除,则m、n应取的值是().A.m=8,n=17 B.m=-8,n=17C.m=8,n=-17 D.m=-8,n=-173.(2001,武汉市竞赛)如果x3+ax2+bx+8有两个因式x+1和x+2,则a+b=().A.7 B.8 C.15 D.214.对任意有理数x,若x3+ax2+bx+c都能被x2-bx+x整除,则a-b+c的值是().A.1 B.0 C.-1 D.-25.满足方程x3+6x2+5x=27y3+9y2+9y+1的正整数对(x,y)有().A.0对B.1对C.3对D.无穷多对6.(2003,四川省竞赛)若(3x+1)4=ax4+bx3+cx2+dx+e,则a-b+c-d+e=________.7.(2004,北京市竞赛)用正整数a去除63,91,129所得的3个余数的和是25,则a 的值为________.8.已知多项式3x3+ax2+bx+1能被x2+1整除,且商式是3x+1,那么(-a)b的值是_____.9.若多项式x4+mx3+nx-16含有因式(x-1)和(x-2),则mn=________.10.多项式x135+x125-x115+x5+1除以多项式x3-x所得的余式是_______.11.计算:(1)(6x5-7x4y+x3y2+20x2y3-22xy4+8y5)÷(2x2-3xy+y2);(2)(41m-m3+15m4-70-m2)÷(3m2-2m+7).12.已知a、b、c为有理数,且多项式x3+ax2+bx+c能够被x2+3x-4整除.(1)求4a+c的值;(2)求2a-2b-c的值;(3)若a、b、c为整数,且c≥a>1,试确定a、b、c的大小.13.(2000,“五羊杯”,初二)已知x6+4x5+2x4-6x3-3x2+2x+1=[f(x)] 2,其中f(x)是x的多项式,求这个多项式.14.已知一个矩形的长、宽分别为正整数a、b,其面积的数值等于它的周长数值的2倍,求a+b的值.15.(2004,北京市竞赛)能将任意8个连续的正整数分为两组,使得每组4•个数的平方和相等吗?如果能,请给出一种分组法,并加以验证;如果不能,请说明理由.答案:解题指导例1 C [提示:命题①成立.因为(7a-9b)-(3a+5b)=2(2a-7b)是偶数;命题②也成立.因为整数n的平方被3除余数只能为0或1,3整除a2+b2,表明a2、b2被3除的余数都是0,所以a和b都能被3整除;命题③不成立.如5+2=7和5-2=3都是质数;命题④也不成立.例如a=2,b=0.]例2 C [提示:∵2x3-kx2+3被2x+1除后余2,∴2x3-kx2+1能被2x+1整除.令2x+1=0,得x=-12.代入2x3-kx2+1=0,得2×(-12)3-k(-12)2+1=0,即-14-14k+1=0,解得k=3.]例3(3x6-2x5-5x4+7x3-19x2+12x)÷(x4-2x2+x-5)=3x2-2x+1……x+5.例4 x4-x3+ax2+bx+c=(x3-3x2+3x-1)(x+2)+(a+3)x2+(b-5)x+(c+2).由余式恒等于0,得a+3=0,b-5=0,c+2=0.∴a=-3,b=5,c=-2.【拓展题】设四个连续自然数的平方为:n2、(n+1)2、(n+2)2、(n+3)2,则(n+3)2=a(n+2)2+b(n+1)2+cn2.整理得n2+6n+9=(a+b+c)n2+(4a+2b)n+4a+b.∴a+b+c=1,4a+2b=6,4a+b=9.解得a=3,b=-3,c=1,∴16x1+25x2+36x3+49x4+64x5+81x6+100x7=③×3-②×3+①=123×3-12×3+1=334.能力训练1.B [提示:16k+8=8(2k+1).因2k+1是奇数,8•乘以一个奇数一定不是完全平方数.] 2.D [提示:∵3x3+mx2+nx+42=(x2-5x+6)(3x+7)+(m+8)x2+(n+17)x.∴80,8,170,17.m mn n+==-⎧⎧⎨⎨+==-⎩⎩解得.]3.D [提示:∵(x+1)(x+2)=x2+3x+2,∴x3+ax2+bx+8=(x2+3x+2)(x+4)+(a-7)x2+(b-14)x.∴70,7,140,14.a ab b-==⎧⎧∴⎨⎨-==⎩⎩∴a+b=21.]4.A [提示:∵x3+ax2+bx+c=(x2-bx+c)(x+1)+(a+b-1)x2+(2b-c)x,∴10,(1)20.(2)a bb c+-=⎧⎨-=⎩(1)-(2),得a-b+c=1.]5.A [提示:原方程可变形为x(x+1)(x+5)=3(9y3+3y2+3y)+1.①如果有正整数x、y使①成立,那么由于x,x+1,x+5=(x+2)+3这3个数除以3所得余数互不相同,所以其中必有一个被3整除,即①的左边被3整除,而①的右边不被3整除,这就产生矛盾.所以原方程没有正整数解.]6.16 [提示:令x=-1,得a-b+c-d+e=16.]7.43 [提示:由题意,有63=a×k1+r1,91=a×k2+r2,129=a×k3+r3.(0≤r1、r2、r3<a)相加得63+91+129=a(k1+k2+k3)+(r1+r2+r3)=a(k1+k2+k3)+25.故258被a整除.由于258=2×3×43,a大于余数,且3个余数的得25,所以a>8.•又a不超过63、91、129中的最小者63,故258的因数中符合要求的只有a=43.]8.-1 [提示:∵(x2+1)(3x+1)=3x3+x2+3x+1,∴3x3+ax2+bx+1=3x3+x2+3x+1.∴a=1,b=3,即(-a)b=(-1)3=-1.]9.-100 [提示:∵(x-1)(x-2)=x2-3x+2,x4+mx3+nx-16=(x2-3x+2)[x2+(m+3)x-8]+(3m+15)x2+(n-2m-30)x,∴3150,5,2300,20.m mn m n+==-⎧⎧⎨⎨--==⎩⎩解得∴mn=-100.]10.2x+1 [提示:设x135+x125-x115+x5+1=(x3-x)f(x)+ax2+bx+c,其中f(x)为商式.取x=0,得c=1;取x=1,得a+b+c=3.取x=-1,得a-b+c=-1.解得a=0,b=2,c=1.故所求余式为2x+1.]11.(1)商式为3x3+x2y+12xy2+34133,44y余式为xy4-94y5.(2)商式为5m2+3m-10,余式为0.12.(1)∵(x-1)(x+4)=x2+3x-4,令x-1=0,得x=1;令x+4=0,得x=-4.当x=1时,得1+a+b+c=0;①当x=-4时,得-64+16a-4b+c=0.②②-①,得15a-5b=65,即3a-b=13.③①+③,得4a+c=12.(2)③-①,得2a-2b-c=14.(3)∵c≥a>1,4a+c=12,a、b、c为整数,∴a≥2,c≥2,则a=2,c=4,又a+b+c=-1,∴b=-7.13.设f(x)=±(x3+Ax2+Bx+1)或±(x3+Ax2+Bx-1).先设f(x)=x3+Ax2+Bx+1,则[f(x)] 2=x6+2Ax5+(A2+2B)x4+(2AB+2)x3+(2A+B2)x2+2Bx+1,故2A=4,A2+2B=2,2AB+2=-6,2A+B2=-3,2B=2,无解.再设f(x)=x3+Ax2+Bx-1,则[f(x)] 2=x6+2Ax5+(A2+2B)x4+(2AB-2)x3+(B2-2A)x2-2Bx+1,故2A=4,A2+2B=2,2AB-2=-6,B2-2A=-3,-2B=2.解得A=2,B=-1.故所求的多项式为±(x3+2x2-x-1).14.由题意得ab=2(2a+2b).∴ab-4a=4b,∴a=416444bb b=+--.∵a、b均为正整数,且a>b.∴(b-4)一定是16的正约数.当(b-4)分别取1、2、4、8、16时,代入上式,得b-4=1时,b=5,a=20;b-4=2时,b=6,a=12;b-4=4时,b=8,a=8(舍去);b-4=8时,b=12,a=6(舍去);b-4=16时,b=20,a=5(舍去).∴只有a=20,b=5或a=12,b=6符合题意,把a+b=25或18.15.能设任意8个连续的正整数为a,a+1,a+2,a+3,a+4,a+5,a+6,a+7.将其分为如下两组:{a+1,a+2,a+4,a+7},{a,a+3,a+5,a+6}即满足要求.验证如下:先将任意8个连续的正整数按如下分为等和的两组,满足a+(a+1)+(a+6)+(a+7)=(a+2)+(a+3)+(a+4)+(a+5)则[(a)+(a+1)]·[(a+6)+(a+7)]·1=[(a+2)+(a+3)]·1+[(a+4)+(a+5)]·1 即[(a)+(a+1)][(a+1)-(a)]+[(a+6)+(a+7)][(a+7)-(a+6)]=[(a+2)+(a+3)][(a+3)-(a+2)]+[(a+4)+(a+5)]·[(a+5)-(a+4)].故(a+1)2-a2+(a+7)2-(a+6)2=(a+3)2-(a+2)2+(a+5)2-(a+4)2.也就是(a+1)2+(a+2)2+(a+4)2+(a+7)2=a2+(a+3)2+(a+5)2+(a+6)2.于是,分任意8个连续的正整数为如下两组:{a+1,a+2,a+4,a+7},{a,a+3,a+5,a+6}.则满足(a+1)2+(a+2)2+(a+4)2+(a+7)2=a2+(a+3)2+(a+5)2+(a+6)2.。

整式的除法(第1课时)(课件)七年级数学下册(北师大版)

整式的除法(第1课时)(课件)七年级数学下册(北师大版)
式子,再与等式右边的式子进行比较求解.
3 n 2
3 n 2
12 9
解:因为 (-3 x y ) ( x y ) ( 27 x y ) ( x y )
2
2
4
3 3
=18x12-ny7,
所以18x12-ny7=mx8y7.因此m=18,12-n=8.
所以n=4,所以n-m=4-18=-14.
(2) (8m2n2) ÷(2m2n) ;
(3) (a4b2c)÷(3a2b) .
可以用类似于
分数约分的方法
来计算.
探究新知
解:(1) (x5y)÷x2
5
= 2

∙∙∙∙∙
=

= x·x·x·y
=x3y
把除法式子写成分数形式
把幂写成乘积形式
约分
探究新知
被除式
除式
(x5y) ÷ x2
探究新知
例3:月球距离地球大约 3.84×105千米, 一架飞机的速度约为
8×102 千米/时. 如果乘坐此飞机飞行这么远的距离, 大约需要多
少时间 ?
解:3.84×105 ÷( 8×102 )
= 0.48×103
=480(小时) =20(天) .
答:如果乘坐此飞机飞行这么远的距离, 大约需要20天时间.
5
(2) 10a 4 b 3 c 2 5a 3 bc
(3) (2 x y ) ( 7 xy ) 14 x y
2
3
2
4
3
(4) (2a b)4 (2a b)2
分析:(1)(2)直接运用单项式除法的运算法则;
(3)要注意运算顺序:先乘方,再乘除;
(4)鼓励学生悟出:将(2a+b)视为一个整体来进行

专题14.1.4整式的除法(教案)-八年级上学期数学教材(人教版)

专题14.1.4整式的除法(教案)-八年级上学期数学教材(人教版)
在实践活动环节,我鼓励学生们分组讨论并解决实际问题。这个过程中,我观察到学生们积极参与,互相交流想法,这有助于他们更好地将理论知识应用到实际情境中。然而,我也注意到,在小组讨论中,有些学生较为内向,参与度不高。为了提高他们的参与度,我计划在未来的课程中更加注重个体差异,鼓励每个学生都能发表自己的观点。
在学生小组讨论环节,我尝试作为一个引导者,提出开放性的问题来启发学生的思考。我发现这种方法很有效,学生们能够从不同角度思考问题,并提出创造性的解决方案。但同时,我也意识到需要更多的时间来让学生们充分讨论和分享,以便他们能够更深入地理解整式除法的应用。
此外,我也在思考如何在课堂上更好地处理教学难点。在今天的课程中,长除法的步骤和余数的处理是学生们普遍感到困难的地方。为了克服这个难点,我计划在下一节课中使用更多的可视化工具和实物操作,让学生们能够直观地看到每一步的操作,从而加深理解。
最后,我认识到教学反思的重要性。通过今天的课堂实践,我了解到需要不断调整教学方法和策略,以满足不同学生的学习需求。我将在未来的教学中,更加注重课堂互动,提高学生的参与度,并及时收集学生的反馈,以便更好地调整教学进度和内容。
针对以上难点与重点,教师应通过以下方法帮助学生理解:
-使用具体例题,逐步演示整式除法的步骤,强调每一项的处理方法。
-利用图示和动画,帮助学生形象理解长除法的每一步操作。
-通过变式练习,让学生在不同类型的题目中应用整式除法,加强余数处理的能力。
-创设真实情境,引导学生将实际问题转化为整式除法问题,提高建模能力。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解整式除法的基本概念。整式除法是指将一个多项式除以另一个多项式的运算。它是代数运算中的基础,可以帮助我们解决许多实际问题。

《整式的乘除——整式的除法》数学教学PPT课件(5篇)

《整式的乘除——整式的除法》数学教学PPT课件(5篇)
C. a2 b2 a b a b D. a2 b2 a b a b
(2)在① (6ab 5a) a 6b 5 ,② (8x2 y 4xy2 ) (4xy) 2x y, ③ (15x2 yz 10xy2 ) 5xy 3x 2 y , ④ (3x2 y 3xy2 x) x 3xy 3y2 中,不正确的个数有( C ). A.1个 B.2个 C.3个 D.4个
2a b2
4a2 4ab b2
例2.计算:
28 x4 y2 7 x3 y (28 7) x43 y21
4xy
典型例题
5a5b3c 15a4b =[( 5) 15] a54 b31c 1 ab2c
3
典型例题
例3.若a(xmy4)3÷(3x2yn)2=4x2y2,求a、m、n的值. 解:∵a(xmy4)3÷(3x2yn)2=4x2y2,∴ax3my12÷9x4y2n=4x2y2, ∴a÷9=4,3m-4=2,12-2n=2, 解得a=36,m=2,n=5.
第一章 整式的乘除
整式的除法
第1课时
学习目标
1.会进行简单的单项式除以单项式的运算(结果是整式); 2.经历探索单项式除以单项式法则的过程,理解单项式除 以单项式的算理; 3.在探索中体会类比方法的作用,发展有条理的思考与表 达能力和运算能力.
复习回顾
1.单项式与单项式相乘法则: 一般地,单项式与单项式相乘,把它们的系数、同底数幂分别相乘, 对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因 式.
(1)2 ÷(-3xy)= 2 xy2 ; 3
错误 2 xy2 3
(2)10 ÷2 x2 y = 5xy2 ;
错误 5xy2 z
(3)4 ÷ 1 xy2 =2x; 2

《整式的除法》整式的运算

《整式的除法》整式的运算
整式除法与其他数学知识的综合 应用
与方程式的解法的综合应用
代数方程的解法
利用整可以找到方程的根 。
方程的根的性质
通过整式除法,可以进一步研究方程的根的性质,例如根的乘积、根的加法、根的减法等。
与因式分解的综合应用
因式分解与整除
整式除法中的整除与因式分解有着密切 的联系,通过整除可以将一个多项式分 解为若干个一次因式的乘积。
逆用公式
在解决复杂的整式除法问 题时,可以逆用一些基本 公式,简化计算过程。
借助工具
使用一些数学工具,如因 式分解、三角函数等,来 解决复杂的整式除法问题 。
如何进行一题多解的整式除法练习
尝试不同的解法
01
对于同一道整式除法题目,尝试使用不同的解法来解决,开拓
思路。
总结各种解法的优缺点
02
在尝试不同的解法之后,总结各种解法的优缺点,找出最优解
整式除法的应用举例
多项式除以单项式
将一个多项式除以一个单项式,得到商和余数。
多项式除以多项式
将一个多项式除以另一个多项式,得到商和余数。
整式的约分
通过约分简化整式的计算。
整式的通分
通过通分将不同的分母变为相同的分母,便于计算。
03
整式除法的计算技巧
提公因式法
总结词
提公因式法是一种通过提取多项式中的公因式来简化计算的 方法。
分组分解法
总结词
分组分解法是一种通过分组来分解多项式的方法。
详细描述
分组分解法基于多项式的结构特点,将多项式分成若干组,然后分别对每组进行因式分解。在整式除法中,分组 分解法可以用于分解被除式和除式,从而得到商和余数。使用分组分解法需要熟练掌握因式分解的方法和技巧, 以及对多项式结构的识别能力。

解析《整式的加减》知识点

解析《整式的加减》知识点

解析《整式的加减》知识点一、代数式与有理式1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或字母也是代数式。

2、整式和分式统称为有理式。

3、含有加、减、乘、除、乘方运算的代数式叫做有理式。

二、整式和分式1、没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

2、有除法运算并且除式中含有字母的有理式叫做分式。

三、单项式与多项式1、没有加减运算的整式叫做单项式。

(数字与字母的积---包括单独的一个数或字母)2、几个单项式的和,叫做多项式。

其中每个单项式叫做多项式的项,不含字母的项叫做常数项。

说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。

②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。

划分代数式类别时,是从外形来看。

单项式1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中所有字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或―1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包括它前面的符号。

10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是1或―1时,通常省略数字“1”。

12、单项式的次数仅与字母有关,与单项式的系数无关。

多项式1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

整式1、单项式和多项式统称为整式。

2、单项式或多项式都是整式。

3、整式不一定是单项式。

4、整式不一定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

整式的运算知识点

整式的运算知识点

整式的运算知识点在数学的学习中,整式的运算是一个重要的基础内容。

它就像是搭建数学大厦的基石,对于后续更复杂的数学知识的学习起着关键的作用。

下面,让我们一起来深入了解整式运算的相关知识点。

首先,我们要明白什么是整式。

整式是单项式和多项式的统称。

单项式是指由数字和字母的积组成的代数式,单独的一个数或一个字母也叫做单项式。

比如,3x、5、a 等等。

多项式则是由几个单项式相加组成的代数式。

例如,2x + 3y、a^2 2ab + b^2 。

整式的加减运算,其实就是合并同类项。

同类项是指所含字母相同,并且相同字母的指数也相同的项。

比如 3x 和 5x 就是同类项,合并同类项时,我们只需要将同类项的系数相加,字母和字母的指数不变。

例如,3x + 5x = 8x 。

整式的乘法运算包括单项式乘以单项式、单项式乘以多项式、多项式乘以多项式。

单项式乘以单项式,就是把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

比如 2x 3y = 6xy 。

单项式乘以多项式,用单项式去乘多项式的每一项,再把所得的积相加。

例如,2x(3x + 4) = 2x 3x + 2x 4 = 6x^2 + 8x 。

多项式乘以多项式,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。

例如,(x + 2)(x 3) = x x 3x + 2x 6 = x^2 x 6 。

整式的除法运算主要是单项式除以单项式和多项式除以单项式。

单项式除以单项式,把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。

比如 6xy ÷ 2x = 3y 。

多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

在整式的运算中,还有一个重要的概念——幂的运算。

同底数幂相乘,底数不变,指数相加。

即 a^m a^n = a^(m + n) 。

人教版八年级数学上册整式的除法

人教版八年级数学上册整式的除法
4、【规律方法】①在有乘方、乘除综合运算中,先乘方 然后从左到右按顺序相乘除.②当除式的系数是负数时, 一定要加上括号.③最后商式能应用多项式的乘法展开的, 应该乘开.
➢例题讲解
例3: (6ab-8b)÷(2b) 解:原式=6ab ÷2b-8b ÷ 2b =3a-4.
例4: [(2x+y)2-y(y+4x)-8x]÷2x 解:原式=(4x2+4xy+y2-y2-4xy - 8x) ÷2x =(4x2 - 8x) ÷2x =2x-4.
针对训练
计算:(1)(6x3y4z-4x2y3z+2xy3)÷2xy3; (2)(72x3y4-36x2y3+9xy2)÷(-9xy2).
解法1: 12a3b2x3 ÷ 3ab2相当于求( 由(1)可知括号里应填4a2x3.
) ﹒3ab2=12a3b2x3.
解法2:原式=4a2x3 ·3ab2 ÷ 3ab2=4a2x3. 理解:上面的商式4a2x3的系数4=12 ÷3;a的指数2=3-1,b 的指数0=2-2,而b0=1,x的指数3=3-0.
关键:
应用法则是把多项式除以单项式转化为单项式除以单项式.
人教版八年级数学上册整式的除法
人教版八年级数学上册整式的除法
试一试
单/多项式÷单项式
运算结果(注意符号变化)
10ab3 5ab
- 8a 2b3 6ab2
21x 2 y 4 3x 2 y 3
12a3 6a2 3a 3a
人教版八年级数学上册整式的除法
➢例题讲解
人教版八年级数学上册整式的除法
人教版八年级数学上册整式的除法
练一练
(1)28x4y2÷7x3y (2)-5a5 b3c ÷15a4b

《整式的除法》教学反思

《整式的除法》教学反思

《整式的除法》教学反思《整式的除法》教学反思1整式的除法只要求单项式除以单项式、多项式除以单项式,并且结果都是整式。

重点是单项式除以单项式,而多除以单项式则通过转化为单项式除以单项式来计算。

1、单项式除以单项式法则:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

注意(1)数字系数:相除(2)相同字母:同底数幂相除(3)只在被除式里出现的幂:不变2、多项式除以单项式法则:先把这个多项式的每一项除以这个单项式,再把所得的商相加。

即:(a+b+c)÷m=a÷m+b÷m+c÷m(m≠0)3、尽量让学生到黑板上板演,从中找到他们在解题过程中暴露的问题,及时得到纠正。

本节综合性较强,内容看似简单,其实学生存在的问题很多。

《整式的除法》教学反思2教学不应仅仅传授课本上的知识内容,而应该在传授知识内容的同时,注意对学生综合能力的培养。

在本节课中,教师并没有直接将运算法则告诉学生,而是由学生利用已有知识探究得到。

在探究过程中,学生的数学思想得到了进一步的拓展,学生的综合能力得到了进一步的提高。

当然一节课的提高并不显著,但只要坚持这种方式方法,最终会有一个美好的结果。

在教学中,有意识、有计划的设计教学活动,引导学生体会单项式乘法与单项式除法之间的联系与区别,感受数学的整体性,不断丰富学生的解题策略,提高解决问题的能力。

在课堂教学中应当把更多时间交给学生。

本节课中计算法则的探究,例题的讲解,习题的完成,知识的总结尽可能的全部由学生完成,教师所起的作用是点拨,评价和指导。

这样做,可以更好的体现以学生为中心的教学思想,能更好的提高学生的综合能力。

《整式的除法》教学反思3这个学期,我就《整式的除法》上了一节公开课,教材选自人教版八年级上§15.3的教学内容。

完成教学后,结合多次的实施情况和老师们的研讨,我萌发了一点思考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2) a2n÷an = an
(3) (−c)4 ÷(−c)2 = c2
合作学习:
月球是距离地球最近的天体,它与地球的平均距
离约为 3.8108 米。如果宇宙飞船以 1.12104
米/秒的速度飞行,到达月球大约需要多少时间?
( 3.8108) ( 1.12104 ) 3.8 108 3.8 108
=5ac
(3)4(a+b)7
÷
1 2
(a+b)3
=8(a+b)4
(4)(-3ab2c)3÷(-3ab2c)2 =-3ab2c
1、辨一辨: (1)(12a3b3c)÷(6ab2)=2ab (2)(p5q4)÷(2p3q)=2p2q3 2、练一练:计算与填空 ①(10ab3)÷(5b2)= ②3a2÷(6a6)·(-2a4)= ③( )·3ab2=-9ab5 ④(-12a3bc)÷( )=4a2b
整式的除法 —单项式除以单项式
回顾 & 思考☞
1、用字母表示幂的运算性质:
(1) am an=amn ; (2) (am )n= amn ; (3) (ab)n=anbn ;
(4) am an= amn .; (5) a0= 1 ;(a ≠ 0)
2、快速抢答:
(1) a20÷a10 = a10
?做完了吗
答: 如果乘坐此飞机飞行这么远 的距离, 大约需要20天时间.
说能出你这节课的收b3 ) 3ab2 9ab5 (2) ( 3m3n ) (mn) 3m2 (3) (12a3bc) ( 3ac ) 4a2b
单项式相除
1、系数相除; 2、同底数幂相除; 3、只在被除式里的幂不变。
(1)-12a5b3c÷(-4a2b) =3a3b2c
(2)(-5a2b)2÷5a3b2
单项式相除,把系数、同底数幂分别相除,作为商的因
式,对于只在被除式里含有的字母,则连同它的指数作
为商的一个因式。
例1:计算:
(1) a7 x4 y3 ( 4 ax4 y2 ) 3
(2) 2a2b (3b2c) (4ab3 )
练一练:计算
(1) (10ab3 ) (5b2 )
(2) 3a3 (6a6 ) (2a4 )
(1) –12a5b3c÷(–4a2b)= 3a3b2c
(2)(–5a2b)2÷5a3b2 = 5a
(3)4(a+b)7 ÷
1 2
(a+b)3
=
8(a+b)4
(4)(–3ab2c)3÷(–3ab2c)2 = –3ab2c
拓展延伸
1. 若 3x a ,3y b ,求 32xy 的值。
2. 已知 (ax3my12)÷(3x3y2n)=4x6y8 ,求a ,m ,n
1.12 104 1.12 104 3.39104
合作学习:
(1) (3a8 ) (2a4 )
3a 8 2a4
3 a4 2
(2)
(6a3b4 ) (3a2b)
6a 3b4 3a2b
2ab3
(3)
(14a3b2 x) (4ab2 )
14a3b2 x 4ab2
7 a2x 2
的值。
例2:月球距离地球大约 3.84×105千米, 一架飞机的速 度约为 8×102 千米/时. 如果乘坐此飞机飞行这么远的距离 , 大约需要多少时间 ?
解:3.84×105 ÷( 8×102 ) ?这样列式的依据 t s v
= 0.48×103 ?单位是什么
=480(小时) ?如何得到的
=20(天) .
相关文档
最新文档