命题与证明教案6

合集下载

《命题+定理与证明》教案

《命题+定理与证明》教案

《命题、定理与证明》教案第一章:命题的概念与分类1.1 命题的定义1.2 命题的分类1.2.1 真命题与假命题1.2.2 简单命题与复合命题1.2.3 陈述句与疑问句第二章:定理与证明2.1 定理的定义2.2 定理的性质2.3 证明的类型2.3.1 直接证明2.3.2 间接证明2.3.3 综合证明第三章:几何图形的性质与判定3.1 线段的性质3.2 直线的性质3.3 三角形的性质3.4 四边形的性质3.5 圆的性质第四章:三角形的判定与性质4.1 三角形的判定条件4.2 三角形的内角和定理4.3 三角形的边长关系4.4 三角形的判定与性质的综合应用第五章:平行线的判定与性质5.1 平行线的判定条件5.2 平行线的性质5.3 平行线的判定与性质的综合应用第六章:全等三角形的判定与性质6.1 全等三角形的定义6.2 全等三角形的判定条件6.3 全等三角形的性质6.4 全等三角形的判定与性质的综合应用第七章:相似三角形的判定与性质7.1 相似三角形的定义7.2 相似三角形的判定条件7.3 相似三角形的性质7.4 相似三角形的判定与性质的综合应用第八章:比例线段的性质与判定8.1 比例线段的定义8.2 比例线段的性质8.3 比例线段的判定条件8.4 比例线段的性质与判定的综合应用第九章:圆的性质与判定9.1 圆的定义与性质9.2 圆的判定条件9.3 圆的性质与判定的综合应用9.4 圆周角定理9.5 圆的内接四边形的性质第十章:数学归纳法与不等式的证明10.1 数学归纳法的定义与步骤10.2 数学归纳法的应用实例10.3 不等式的证明方法10.3.1 直接证明法10.3.2 综合法10.3.3 反证法10.4 不等式的证明与数学归纳法的综合应用重点和难点解析重点一:命题的分类与性质学生容易混淆真命题与假命题,以及简单命题与复合命题的区别。

需要重点讲解命题的分类,并通过实例帮助学生理解。

重点二:定理与证明的方法学生可能对证明的方法和类型不够熟悉,难以选择合适的证明方法。

《命题与证明》教案 (同课异构)2022年冀教版

《命题与证明》教案 (同课异构)2022年冀教版

命题与证明第1课时命题与证明(一)教学目标【知识与技能】1.理解真命题、假命题、公理、原命题、逆命题等概念.2.会判断一个命题的真假,能区分公理、定理和命题.3.理解证明的含义,体验证明的必要性和数学推理的严密性.【过程与方法】1.通过一些简单命题的证明,训练学生的逻辑推理能力.2.根据命题的证明需要,要求学生画出图形,写出、求证,训练学生将命题转化为数学语言的能力.【情感、态度与价值观】1.通过对命题真假的判断,培养学生科学严谨的学习态度和求真务实的作风.2.让学生积极参与数学活动,对数学定理、命题的由来产生好奇心和求知欲,让学生认识数学与人类生活的密切联系,提高学生学习数学的积极性.重点难点【重点】学习命题的概念和命题、公理、定理的区分.【难点】严密完整地写出推理过程.教学过程一、创设情境,导入新知教师多媒体出示:有一根比地球赤道长1m的铜线将地球赤道绕一圈,想一想,铜线与地球赤道之间的空隙有多大?能放进一颗枣吗?能放进一个苹果吗?学生交流讨论后答复.生甲:都放不进去.生乙:枣能放进,苹果放不进.生丙:都能放进.师:我们现在用这个式子来算,设赤道的长为C,那么铜线与地球赤道之间的间隙是-=≈0.26(m),可见,枣和苹果都能放进去.通过这个例子,你们受到了什么启发?生:有些东西想象的或感觉的不一定可靠,要具体分析.师:对,我们要做到有理有据.上一节研究三角形的性质时,我们通过折叠、剪拼、度量等方法得到三角形的内角和是180°,但对这种方法,有的同学提出这样的疑问:在剪拼时,发现三个内角难以拼成一个平角,只是接近180°的某个值;度量三个角,然后相加,不一定能准确地得到180°.这两种情况怎么解释呢?学生思考、交流、讨论.师:是这样的,研究几何图形时,从观察和实验得到的认识,有时会有误差,难以使人确信其结果一定正确.因此,就得在观察的根底上有理有据地说明理由,这就是说,要判断数学命题的真假,需要做必要的逻辑推理.二、共同探究,获取新知师:推理是一种思维活动,人们在思维活动中,常常要对事物的情况做出种种判断.教师多媒体出示:(1)长江是中国第一大河;(2)如果∠1和∠2是对顶角,那么它们相等;(3)2+3≠5;(4)如果一个整数的各位上的数字之和是3的倍数,那么这个数能被3整除.教师找一名学生答复,然后集体订正.师:在逻辑学中,但凡可以判断出真(即正确)、假(即错误)的语句叫做命题.上面的(1)、(2)、(4)都是正确的命题,我们称之为真命题;(3)是错误的命题,我们称之为假命题.如果一个语句没有对某一事件的正确与否作出任何判断,那么它就不是命题,比方感慨句、疑问句、祈使句等.教师多媒体出示:(1)请关上窗户;(2)你明天骑车来上学吗?(3)天真冷啊!(4)今天晚上不会下雨.(5)昨天我们去旅游了.师:请同学们判断一下哪些语句是命题?学生讨论后答复,然后集体订正.师:每个命题都由题设、结论两局部组成,题设是事项,结论是由事项推出的事项.命题常写成“如果……那么……〞的形式.有时我们为了简便,省略关联词“如果〞、“那么〞,如命题“如果两个角是对顶角,那么这两个角相等〞,可以写成“对顶角相等〞.以“如果……那么……〞为关联词的命题的一般形式是“如果p,那么q〞,或者说成“假设p,那么q〞,其中p是这个命题的条件(或假设),q是这个命题的结论(或题断).三、边讲边练教师多媒体出示:【例1】指出以下命题的条件与结论:(1)两条直线都平行于同一条直线,这两条直线平行;(2)如果∠A=∠B,那么∠A的补角与∠B的补角相等.生甲:(1)中“两条直线平行于同一条直线〞是条件,“两条直线平行〞是结论.生乙:“∠A=∠B〞是条件,“∠A的补角与∠B的补角相等〞是结论.四、层层推进,深入探究师:将命题“如果p,那么q〞中的条件与结论互换,便得到一个新命题“如果q,那么p〞,我们把这样的两个命题称为互逆命题,其中一个叫做原命题,另一个叫做原命题的逆命题.我们在前面学习了命题都可以判断真假,当一个命题是真命题时,它的逆命题也是真命题吗?学生交流讨论后发表意见.师:我们可以看这样一个例子,“如果∠1与∠2是对顶角,那么∠1=∠2”是真命题,它的逆命题是什么?生:它的逆命题是“如果∠1=∠2,那么∠1与∠2是对顶角〞.师:它是真命题还是假命题呢?生:假命题.师:你是怎么判断它是假命题的呢?学生交流讨论后答复.教师多媒体出示以以下列图.师:对.我们可以举一个例子,比方角平分线分成的两个角,∠1=∠2,但显然,这里∠1与∠2就不是对顶角.像这种符合命题条件,但不满足命题结论的例子,我们称之为反例.假设要说明一个命题是假命题,只要举出一个反例即可.五、练习新知,加深讨论师:请同学们看教材中本节例1后练习的第2题.教师找学生答复,然后集体订正得到:(1)假命题.反例:|-1|=|1|,但-1≠1.(2)假命题.反例:(-1)×(-1)>0,但-1是负数.(3)真命题.(4)假命题.假设两条不平行的直线与第三条直线相交,同位角不相等.师:我们来看第3题.教师找学生答复,然后集体订正得到:(1)真命题,(2)真命题,(3)真命题.师:在数学命题的研究中,为了确认某些命题是真还是假,需要对命题的正确性进行论证,在论证过程中,必须追本求源,真理不需要再作论证,其正确性是人们在长期实践中检验所得的真命题,作为判断其他命题真假的依据,这些作为原始根据的真命题称为公理.同学们想一下,我们学过哪些公理?生甲:经过两点有一条直线,并且只有一条直线.生乙:两点之间的所有连线中,线段最短.生丙:经过直线外一点,有且只有一条直线平行于这条直线,师:对,这些都是公理.有些命题,它们的正确性已经过推理得到证实,并被选定作为判断其他命题真假的依据,这样的真命题叫做定理.谁能举几个例子?生甲:对顶角相等.生乙:三角形的三个内角和等于180°.生丙:等角的补角相等.师:对.推理的过程叫做证明.下面,我们来证明一个七年级时用过的定理“内错角相等,两直线平行〞.教师多媒体出示:【例2】:如以下列图,直线c与直线a、b相交,且∠1=∠2.求证:a∥b.师:假设“同位角相等,两直线平行〞这个定理,怎么证明“内错角相等,两直线平行〞这个结论?学生交流讨论,教师巡视指导.学生口述,教师板书推理过程.证明:∵∠1=∠2,()又∵∠1=∠3,(对顶角相等)∴∠2=∠3.(等量代换)∴a∥b.(同位角相等,两直线平行)教师强调:证明中的每一步推理都要有根据,不能想当然.这些根据,可以是条件,也可以是定义、公理、已经学过的定理.【例3】:如图,∠AOB+∠BOC=180°,OE平分∠AOB,OF平分∠BOC.求证:OE⊥OF.证明:∵OE平分∠AOB,OF平分∠BOC()∴∠1=∠AOB,∠2=∠BOC.(角平分线的定义)又∵∠AOB+∠BOC=180°,()∴∠1+∠2=(∠AOB+∠BOC)=90°.(等式性质)∴OE⊥OF.(垂直的定义)六、课堂小结师:我们今天学习了什么内容?学生答复,教师补充完善.教学反思在这节课上,通过举反例判定一个命题是假命题,培养学生学会从反面思考问题的方法.通过强调正面的严密性,让学生理解证明的必要性和推理过程要步步有据.在教学方法上我主要采用“举一〞,让学生独立思考、自由交流、集思广益,从而到达“反三〞的目的.尽可能地调动更多学生主动参与、交流、沟通,通过自身思维碰撞构建新的认知结构,从而准确地判断命题的真假,对于假命题举出反例.对于命题的证明,要求学生能写出证明的一般步骤并能做到步步有据.第2课时命题与证明(二)教学目标【知识与技能】1.掌握三角形内角和定理及其三个推论.2.熟悉并掌握较简单命题的证明方法及其表述.3.探索并理解三角形的内角和定理.4.会灵活地运用三角形内角和定理的几个推论解决实际问题.【过程与方法】1.经历探索并证明三角形内角和定理的过程.2.让学生在思考与探索的过程中了解三角形内角和定理的几个推论.【情感、态度和价值观】1.通过三角形内角和定理的证明,让学生体会到数学的严谨性和推理的用途.2.通过让学生积极思考、踊跃发言,使他们养成良好的学习习惯.3.通过生动的教学活动,开展学生的合情推理能力和表达能力,提高学生学习和探索数学的兴趣.重点难点【重点】三角形内角和定理的证明,三角形内角和定理及其推理.【难点】三角形内角和定理的证明.教学过程一、创设情境,导入新知师:在前面我们学习了三角形的内角和定理,你还记得它的内容吗?学生答复.师:我们用什么方法证明过这个命题?生:用折叠、剪拼和度量的方法.师:很好!在上节课我们学习了定理的概念,大家还记得吗?生:记得.它们的正确性已经过推理得到证实,并被选定作为判定其他命题真假的依据,这样的真命题叫做定理.师:对.三角形的内角和定理是一个定理,它能够被证实,上节课我们还学习了简单命题的证明,现在我们来证明这个定理.二、共同探究,获取新知教师多媒体出示:【例1】证明三角形内角和定理:三角形的三个内角和等于180°.师:在证明命题时,要分清命题的条件和结论,如果问题与图形有关,首先,根据条件画出图形,并在图形上标出有关字母与符号;再结合图形,写出、求证.这个命题的条件和结论分别是什么?生:条件是一个三角形,结论是它的内角和等于180°.师:这个命题与图形有关吗?生:有关.师:那我们要画出什么图形?生:一个三角形.教师在黑板上画出一个三角形.师:题目中没有、求证,我们自己要写出来.就是条件,求证的就是要证的结论.应该怎么写?生::△ABC,如以下列图.求证:∠A+∠B+∠C=180°.教师板书.师:以前我们通过剪拼将三角形的三个内角拼成了一个平角,这不是证明,但它却给我们以启发,现在我们通过作图来实现这种转化,给出证明.教师边操作边讲解:在剪拼中我们可以把∠B剪下,放在这个位置,在证明中我们可以作出一个角与∠B相等,来代替这种操作.并且为了证明的需要,在原来图形上添画的线,这种线叫做辅助线.同学们看,应该怎样添画辅助线来帮助我们证明这个问题?生:延长BC到D,以点C为顶点、CD为一边作∠2=∠B.教师作图:师:对.如果再知道什么条件就能得到结论了?学生讨论后答复.生:因为∠1+∠2+∠ACB是一个平角,等于180°,如果∠A=∠1,那么就有∠A+∠B+∠C=∠1+∠2+∠ACB=180°,这样就证出了结论.师:对.现在我们看怎样证∠A=∠1?学生交流讨论.教师提示:∠A和∠1是什么角?生:内错角.师:怎么证两个内错角相等?生:两直线平行,内错角相等.师:在题中要证哪两条直线平行?怎么证它们平行?生:证明CE∥BA,因为∠2=∠B,由同位角相等,两直线平行,就可以证出CE∥BA了.师:很好!我们现在来把这个推导过程具体写一下.要注意,我们刚刚是分析,可以由结论推条件,但在书写过程中,要先写条件,再写结论,这个顺序要理清.学生口述,教师板书.师:现在大家想一想,如果一个三角形中一个角是90°,根据三角形内角和定理,另外两个角的和会是多少?生:90°.师:对.两个角的和是90°,我们可以称它们之间是什么关系?生:互余.师:对.由此我们得到三角形内角和定理的第一个推论.教师板书:推论1 直角三角形的两锐角互余.三、边讲边练师:三角形内角和定理的证明有多种方法,课本练习中给出了另外两种证法.大家能不能说出第一题的思路?生:过点A作DE∥BC后,由两直线平行,内错角相等来建立两个相等关系,再由平角的定义就可证出了.师:你们已经理清了思路,现在请大家将书上的证明过程补充完整.学生完成练习第1题.师:第二个练习的思路大家清楚吗?学生交流讨论后答复.生:过三角形一边上一点作两条平行线,然后根据平行线的性质使△ABC的三个内角与组成平角的三个角分别相等,再由平角的定义证明它们的和是180°.师:很好!请同学们把证明过程补充完整.学生补充练习第2题的证明,教师巡视指导,然后集体订正.四、层层推进,深化理解教师多媒体出示:师:在三角形内角和定理的证明中,我们曾经如图中所示那样把△ABC的一边BC延长至点D,得到∠ACD,像这样由三角形的一边与另一边的延长线组成的角,叫做三角形的外角.在上图中,△ABC的外角,也就是∠ACD与它不相邻的内角∠A、∠B有怎样的关系?你能给出证明吗?学生小组交流讨论后答复.生:∠ACD与∠ACB的和是180°,所以∠ACD=180°-∠ACB;根据三角形内角和定理,∠A+∠B+∠C=180°,∠A+∠B=180°-∠C.由等式的性质,得到∠ACD=∠A+∠B.师:很好!除了这个相等关系,还能得到什么大小关系?生:∠ACD>∠A,∠ACD>∠B.师:很好!在证明中主要应用了三角形内角和定理,我们把这两个结论称为这个定理的两个推论.教师板书:推论2 三角形的一个外角等于与它不相邻的两个内角的和.推论3 三角形的一个外角大于与它不相邻的任何一个内角.师:像这样,由公理、定理直接得出的真命题叫做推论.推论2可以用来计算角的大小,推论3可以用来比较两个角的大小.【例2】:如以下列图,∠1、∠2、∠3是△ABC的三个外角.求证:∠1+∠2+∠3=360°.师:这个问题实质上是三角形外角和定理,即三角形三个外角的和是360°.请大家想一下,怎么证明这个命题?学生交流讨论后答复,然后集体订正.证明:∵∠1=∠ABC+∠ACB,∠2=∠BAC+∠ACB,∠3=∠BAC+∠ABC,(三角形的一个外角等于与它不相邻的两个内角的和)∴∠1+∠2+∠3=2(∠ABC+∠ACB+∠BAC).(等式性质)∵∠ABC+∠ACB+∠BAC=180°,(三角形内角和定理)∴∠1+∠2+∠3=360°.五、课堂小结师:我们今天学习了哪些内容?你有什么收获?学生发言,教师点评.教学反思本节课我通过让学生自己思考设计证明思路,来培养学生积极思考的探索精神.在证明三角形内角和定理的第一种证法中,我带着他们回忆了以前证明此定理的操作方法,并说明这两种方法的思想是一致的.一方面可以让他们学会把实际问题用数学形式表示出来,另一方面培养了他们建立相关事物之间的联系的意识,促进知识的迁移.在证明三角形内角和定理的练习中,我让他们先理清思路,再做题,不但可以借鉴别人的思路,而且能做到整体把握,理清脉络.§27.3 过三点的圆一、课题§27.3 过三点的圆二、教学目标1.经历过一点、两点和不在同一直线上的三点作圆的过程.2.. 知道过不在同一条直线上的三个点画圆的方法3.了解三角形的外接圆和外心.三、教学重点和难点重点:经历过一点、两点和不在同一直线上的三点作圆的过程.难点:知道过不在同一条直线上的三个点画圆的方法.四、教学手段现代课堂教学手段五、教学方法学生自己探索六、教学过程设计〔一〕、新授A画圆,并考虑这样的圆有多少个?A、B画圆,并考虑这样的圆有多少个?A、B、C画圆,并考虑这样的圆有多少个?让学生以小组为单位,进行探索、思考、交流后,小组选派代表向全班学生展示本小组的探索成果,在展示后,接受其他学生的质疑.得出结论:过一点可以画无数个圆;过两点也可以画无数个圆;这些圆的圆心都在连结这两点的线段的垂直平分线上;经过不在同一直线上的三个点可以画一个圆,并且这样的圆只有一个.不在同一直线上的三个点确定一个圆.给出三角形外接圆的概念:经过三角形三个顶点可以作一个圆,这个圆叫作三角形的外接圆,外接圆的圆心叫做三角形的外心.例:画三角形的外接圆.让学生探索课本第15页习题1.一起探究八年级〔一〕班的学生为老区的小朋友捐款500元,准备为他们购置甲、乙两种图书共12套.甲种图书每套45元,乙种图书每套40元.这些钱最多能买甲种图书多少套?分析:带着学生完成课本第13页的表格,并完成2、3 问题,使学生清楚通过列表可以更好的分析题目,对于情景较为复杂的问题情景可采用这种分析方法解题.另外通过此题,使学生认识到:在应不等式解决实际问题时,当求出不等式的解集后,还要根据问题的实际意义确定问题的解.〔二〕、小结七、练习设计P15习题2、3八、教学后记后备练习:1.一个三角形的三边长分别是6cm8cm10cm,,,那么这个三角形的外接圆面积等于2cm.2. 如图,有A,B,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,那么超市应建在〔〕A.在AC,BC两边高线的交点处B.在AC,BC两边中线的交点处C.在AC,BC两边垂直平分线的交点处D.在∠A,∠B两内角平分线的交点处C。

《命题+定理与证明》教案

《命题+定理与证明》教案

《命题、定理与证明》教案第一章:命题的概念与分类1.1 命题的定义引入命题的概念,让学生理解命题是由题设和结论组成的陈述句。

举例说明命题的正确性和错误性。

1.2 命题的分类分类介绍简单命题和复合命题,包括并列命题、蕴含命题和条件命题。

引导学生理解命题的逻辑关系,如且、或、非等。

第二章:定理与证明2.1 定理的定义与特点解释定理的概念,强调定理是经过证明的命题。

引导学生了解定理的重要性和应用价值。

2.2 证明的方法与要求介绍直接证明、反证法、归纳法等常见的证明方法。

强调证明的逻辑严密性和步骤完整性。

第三章:几何定理与证明3.1 几何定理的分类分类介绍几何定理,如三角形的性质定理、四边形的性质定理等。

强调几何定理在几何学中的基础性作用。

3.2 几何证明的基本步骤与技巧引导学生掌握几何证明的基本步骤,包括命题的引入、证明的假设、证明的逻辑推理和结论的得出。

介绍几何证明中常用的技巧,如相似三角形的性质、平行线的性质等。

第四章:代数定理与证明4.1 代数定理的分类分类介绍代数定理,如多项式的性质定理、方程的解的定理等。

强调代数定理在代数学中的基础性作用。

4.2 代数证明的基本步骤与技巧引导学生掌握代数证明的基本步骤,包括命题的引入、证明的假设、证明的逻辑推理和结论的得出。

介绍代数证明中常用的技巧,如因式分解、恒等式的性质等。

第五章:命题、定理与证明的应用5.1 命题、定理与证明在数学中的应用通过实际问题引入命题、定理与证明的应用,让学生理解其在数学问题解决中的重要性。

引导学生运用命题、定理与证明的方法解决实际问题。

5.2 命题、定理与证明在其他学科中的应用引导学生思考命题、定理与证明在其他学科中的应用,如物理学、化学等。

鼓励学生探索命题、定理与证明在生活中的应用。

第六章:逻辑推理与命题、定理6.1 逻辑推理的基本概念引入逻辑推理的概念,让学生理解逻辑推理是推理的一种,是思维的基本形式。

解释演绎推理、归纳推理和类比推理等逻辑推理的基本类型。

《命题与证明》教案

《命题与证明》教案

《命题与证明》教案学习目标1、我会区分命题的条件和结论.2、培养我观察问题和分析问题的能力.3、我通过探究交流,体验成功的乐趣.学习重点我对命题的概念有正确的理解,会找出命题的条件(题设)和结论.学习难点我对命题概念的理解.自主学习一、知识回顾对名称和术语的含义加以描述,作出明确的规定,这就是给出它们的____________.例如:(1)“具有中华人民共和国国籍的人,叫做中华人民共和国公民”是“中华人民共和国公民”的_________.(2)“两点之间线段的长度,叫做这两点之间的距离”是________________的定义.(3)_________________________________________是“无理数”的定义.(4)_________________________________________是“多边形”的定义.(5)等腰三角形的定义是_________________________________________.二、合作探究1、小组内互相讨论并完成下列问题.命题是_________________________________________反之,_________________________________________就不是命题.你能举出一些命题吗?(至少写出两个)2、回答下列问题.两直线平行,同位角相等.也可以写成:如果____________,那么____________.题设(条件)____________,结论____________.命题可看做由____________和____________两部分组成. ____________是已知事项,____________是由已知事项推出的事项.3、指出下列命题的条件和结论,并改写成“如果…那么…”的形式:(1)三条边对应成比例的两个三角形相似;条件是:____________结论是:____________改写成:____________(2)两角对应相等的两个三角形相似;条件是:____________结论是:____________改写成:____________三、回答下列问题.真命题_________________________________________.假命题_________________________________________.反例_________________________________________.四、小结.这节课你学会了什么?。

《命题+定理与证明》教案

《命题+定理与证明》教案

《命题、定理与证明》教案一、教学目标:1. 理解命题的概念,能够判断一个句子是否是命题。

2. 掌握定理的定义,了解定理的重要性和应用。

3. 学会如何阅读和理解证明,能够运用证明的方法解决问题。

二、教学内容:1. 命题的概念和分类。

2. 定理的定义和特点。

3. 证明的方法和技巧。

三、教学重点与难点:1. 重点:命题的概念,定理的定义,证明的方法。

2. 难点:证明的构思和推理过程。

四、教学方法:1. 采用问题驱动法,引导学生主动探索和发现。

2. 通过案例分析和讨论,培养学生的逻辑思维和推理能力。

3. 利用多媒体辅助教学,提供丰富的学习资源。

五、教学准备:1. 教材或教学资源:《命题、定理与证明》相关章节。

2. 多媒体设备:投影仪、电脑等。

3. 教学工具:黑板、粉笔、PPT等。

教案示例:一、导入(5分钟)1. 引入命题的概念,让学生思考日常生活中遇到的命题。

2. 引导学生判断一个句子是否是命题。

二、命题的分类(10分钟)1. 讲解命题的分类,包括陈述句、疑问句、命令句等。

2. 举例说明不同类型的命题。

三、定理的定义(10分钟)1. 引入定理的概念,解释定理的定义和特点。

2. 给出几个经典的数学定理,如勾股定理、Pythagorean theorem等。

四、证明的方法(15分钟)1. 介绍直接证明、反证法、归纳法等常见的证明方法。

2. 通过示例讲解每种证明方法的步骤和应用。

五、课堂练习(10分钟)1. 给出一些练习题,让学生运用所学的知识进行证明。

2. 引导学生分组讨论,互相交流解题思路。

六、总结与反思(5分钟)1. 回顾本节课所学的内容,让学生总结命题、定理和证明的概念和方法。

2. 鼓励学生提出问题,解答学生的疑惑。

教学反思:本节课通过问题驱动法和案例分析,引导学生理解和掌握命题、定理和证明的概念和方法。

在教学过程中,注意关注学生的学习情况,及时给予指导和帮助。

通过课堂练习和讨论,培养学生的逻辑思维和推理能力。

命题定理与证明教案

命题定理与证明教案

命题定理与证明教案教案标题:命题定理与证明教学目标:1. 了解命题定理的概念和基本特征;2. 学会使用命题定理进行证明;3. 培养学生的逻辑思维和证明能力。

教学内容:1. 命题和命题的基本运算;2. 命题定理的概念和分类;3. 命题定理的证明方法。

教学步骤:引入(5分钟):通过提出一个简单的问题或情境,引起学生对命题和证明的兴趣。

例如,通过一个实际生活中的例子,引导学生思考如何证明某个命题的真实性。

概念讲解(15分钟):1. 介绍命题的概念和基本运算,包括命题的合取、析取、否定和条件等;2. 解释命题定理的概念,即由已知命题推导出的新命题;3. 分类介绍命题定理,如数学中的几何定理、代数定理等。

案例分析(20分钟):选择一个简单的命题定理案例,引导学生分析命题的结构和证明方法。

例如,选择一个几何定理,让学生通过观察图形、分析已知条件和推理过程,得出结论并进行证明。

练习与讨论(15分钟):给学生提供一些命题定理的练习题,让他们运用所学的证明方法进行推理和证明。

在讨论过程中,引导学生思考证明过程中可能出现的问题和解决方法。

拓展应用(15分钟):引导学生思考命题定理在实际问题中的应用,例如在几何中的应用、数学推理中的应用等。

鼓励学生提出自己的问题,并尝试用命题定理进行证明。

总结与反思(5分钟):总结本节课所学的内容,强调命题定理在数学学科中的重要性。

鼓励学生思考如何运用所学的证明方法解决其他问题。

教学资源:1. 教材:命题逻辑相关章节的教材;2. 案例材料:选择一个简单的命题定理案例,供学生分析和证明;3. 练习题:准备一些命题定理的练习题,供学生巩固所学知识。

评估方式:1. 课堂练习:通过学生在课堂上完成的练习题,评估他们对命题定理和证明方法的掌握情况;2. 讨论参与度:评估学生在讨论过程中的积极性和思考能力;3. 个人作业:布置一道综合性的命题定理证明题作为作业,评估学生的综合运用能力。

教学延伸:1. 鼓励学生深入研究一些经典的命题定理,了解其证明方法和应用领域;2. 引导学生进行更复杂的命题定理证明,培养他们的逻辑思维和问题解决能力;3. 鼓励学生参加数学竞赛等活动,提升他们的命题定理证明水平。

初中命题与证明教案

初中命题与证明教案

教案:初中命题与证明教学目标:1. 理解命题的概念,能够区分题设和结论。

2. 学会写出完整的证明过程,掌握证明的基本步骤。

3. 能够运用逻辑推理解决实际问题。

教学重点:1. 命题的概念和结构。

2. 证明的基本步骤和方法。

教学难点:1. 理解命题的逻辑关系。

2. 运用证明解决实际问题。

教学准备:1. PPT课件。

2. 教学案例和练习题。

教学过程:一、导入(5分钟)1. 引入话题:我们日常生活中经常听到“真理”和“谬误”这两个词,那么它们与数学有什么关系呢?2. 学生思考,教师引导得出数学中的命题。

二、概念讲解(15分钟)1. 讲解命题的概念:命题是陈述性语句,它由题设和结论两部分组成。

2. 举例说明:如“如果一个数是正数,那么它的平方也是正数”。

3. 学生跟随老师一起分析命题的结构。

三、证明的基本步骤(20分钟)1. 讲解证明的概念:证明是用逻辑推理的方法来确定一个命题的真假。

2. 讲解证明的基本步骤:a. 明确题设和结论。

b. 写出已知条件和要证明的结论。

c. 给出证明过程。

d. 得出最终结论。

3. 举例演示一个简单的证明过程。

四、练习与讨论(15分钟)1. 学生分组练习,尝试自己证明给出的命题。

2. 教师选取几组学生的证明过程,进行讨论和评价。

五、应用拓展(10分钟)1. 教师给出一个实际问题,要求学生运用逻辑推理解决。

2. 学生思考并解答问题,教师进行指导和评价。

六、总结与反思(5分钟)1. 学生回顾本节课所学的内容,总结命题和证明的关系。

2. 教师强调命题和证明在数学中的重要性。

教学评价:1. 课堂讲解的清晰度和连贯性。

2. 学生练习和讨论的积极性和参与度。

3. 学生对实际问题的解决能力和逻辑推理能力。

教学反思:本节课通过讲解命题的概念和结构,以及证明的基本步骤,使学生掌握了命题与证明的基本知识。

在练习和讨论环节,学生能够主动参与,通过逻辑推理解决实际问题。

但在教学过程中,仍需注意以下几点:1. 加强对学生逻辑思维能力的培养,提高他们的证明能力。

命题定理与证明教案

命题定理与证明教案

命题定理与证明教案命题定理与证明教案一、教学目标1.了解命题定理的概念;2.掌握常见的命题定理;3.掌握命题证明的基本方法;4.培养学生的逻辑思维和推理能力。

二、教学重难点1.命题定理的概念和基本性质;2.命题证明的基本方法。

三、教学过程1.引入通过一个简单的例子引入命题定理的概念和证明方法。

假设有一个命题:“对于任意两个正整数a和b,如果a和b都是偶数,则它们的和也是偶数。

”请同学们讨论这个命题的真假以及如何证明它。

2.概念讲解命题定理的概念:命题定理是对于某个命题的推理,通过逻辑演绎规则和已知条件,推出某个命题的结论。

常见的命题定理:1)条件定理:如果一个命题中含有一个条件,那么可以通过假设这个条件为真,然后推导出其他结论。

2)直接证明法:通过运用已有的数学理论和定理来证明命题的真假。

3)间接证明法:假设命题的否定是真的,然后通过逻辑推理推出矛盾,从而证明命题的真实性。

4)数学归纳法:通过证明当命题对某个数成立时,也对其紧随其后的数成立,从而推导出命题对所有自然数成立。

3.案例分析通过几个经典的数学命题定理,引导学生理解命题的证明方法。

1)费马大定理:对于任何大于2的整数n,不存在正整数x、y和z使得xⁿ + yⁿ = zⁿ成立。

2)勾股定理:直角三角形的斜边的平方等于两腰长的平方和。

3)平均值不等式:对于任意n个正数,它们的算数平均数大于等于它们的几何平均数。

4.讲解方法通过具体的例子,教学命题的证明方法。

1)条件定理的证明方法:假设条件为真,然后推导出命题的结论。

2)直接证明法的证明方法:根据已经存在的数学理论和定理,逐步推导出命题的结论。

3)间接证明法的证明方法:假设命题的否定是真的,然后通过逻辑推理推导出矛盾,从而证明命题的真实性。

4)数学归纳法的证明方法:证明命题对某个数成立,然后证明当命题对某个数成立时,也对其紧随其后的数成立。

5.课堂练习设立一些练习题,让学生灵活运用所学的命题证明方法进行练习。

命题定理与证明教案完整版

命题定理与证明教案完整版

命题定理与证明教案集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]《命题、定理与证明》教案教学目标知识与技能:1、了解命题、定义的含义;对命题的概念有正确的理解;会区分命题的条件和结论;知道判断一个命题是假命题的方法;2、了解命题、公理、定理的含义;理解证明的必要性.过程与方法:1、结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识;2、结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识.情感、态度与价值观:初步感受公理化方法对数学发展和人类文明的价值.重点找出命题的条件(题设)和结论;知道什么是公理,什么是定理.难点命题概念的理解;理解证明的必要性.教学过程【一】一、复习引入教师:我们已经学过一些图形的特性,如“三角形的内角和等于180度”,“等腰三角形两底角相等”等.根据我们已学过的图形特性,试判断下列句子是否正确.DC B A1、如果两个角是对顶角,那么这两个角相等;2、两直线平行,同位角相等;3、同旁内角相等,两直线平行;4、平行四边形的对角线相等;5、直角都相等.二、探究新知(一)命题、真命题与假命题学生回答后,教师给出答案:根据已有的知识可以判断出句子1、2、5是正确的,句子3、4是错误的.像这样可以判断出它是正确的还是错误的句子叫做命题,正确的命题称为真命题,错误的命题称为假命题.教师:在数学中,许多命题是由题设(或已知条件)、结论两部分组成的.题设是已知事项;结论是由已知事项推出的事项,这样的命题常可写成“如果.......,那么.......”的形式.用“如果”开始的部分就是题设,而用“那么”开始的部分就是结论.例如,在命题1中,“两个角是对顶角”是题设,“这两个角相等”就是结论.有的命题的题设与结论不十分明显,可以将它写成“如果.........,那么...........”的形式,就可以分清它的题设和结论了.例如,命题5可写成“如果两个角是直角,那么这两个角相等.”(二)实例讲解1、教师提出问题1(例1):把命题“三个角都相等的三角形是等边三角形”改写成“如果.......,那么.......”的形式,并分别指出命题的题设和结论.学生回答后,教师总结:这个命题可以写成“如果一个三角形的三个角都相等,那么这个三角形是等边三角形”.这个命题的题设是“一个三角形的三个角都相等”,结论是“这个三角形是等边三角形”.2、教师提出问题2:把下列命题写成“如果.....,那么......”的形式,并说出它们的条件和结论,再判断它是真命题,还是假命题.(1)对顶角相等;(2)如果a>b,b>c,那么a=c;(3)菱形的四条边都相等;(4)全等三角形的面积相等.学生小组交流后回答,学生回答后,教师给出答案.(1)条件:如果两个角是对顶角;结论:那么这两个角相等,这是真命题.(2)条件:如果a>b,b>c;结论:那么a=c;这是假命题.(3)条件:如果一个四边形是菱形;结论:那么这个四边形的四条边相等.这是真命题.(4)条件:如果两个三角形全等;结论:那么它们的面积相等,这是真命题.(三)假命题的证明教师讲解:要判断一个命题是真命题,可以用逻辑推理的方法加以论证;而要判断一个命题是假命题,只要举出一个例子,说明该命题不成立,即只要举出一个符合该命题题设而不符合该命题结论的例子就可以了,在数学中,这种方法称为“举反例”.例如,要证明命题“一个锐角与一个钝角的和等于一个平角”是假命题,只要举出一个反例:60度角是锐角,100度角是钝角,但它们的和不是180度即可.三、随堂练习课本P55练习第1、2题.四、总结1、什么叫命题什么叫真命题什么叫假命题2、命题都可以写成“如果.....,那么.......”的形式.3、要判断一个命题是假命题,只要举出一个反例就行了.【二】一、复习引入教师讲解:前一节课我们讲过,要证明一个命题是假命题,只要举出一个反例就行了.这节课,我们将探究怎样证明一个命题是真命题.二、探究新知(一)公理教师讲解:数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理.我们已经知道下列命题是真命题:一条直线截两条平行直线所得的同位角相等;两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;全等三角形的对应边、对应角相等.在本书中我们将这些真命题均作为公理.(二)定理教师引导学生通过举反例来说明下面两题中归纳出的结论是错误的.从而说明证明的重要性.1、教师讲解:请大家看下面的例子:当n=1时,(n2-5n+5)2=1;当n=2时,(n2-5n+5)2=1;当n=3时,(n2-5n+5)2=1.我们能不能就此下这样的结论:对于任意的正整数(n2-5n+5)2的值都是1呢?实际上我们的猜测是错误的,因为当n=5时,(n2-5n+5)2=25.2、教师再提出一个问题让学生回答:如果a=b,那么a2=b2.由此我们猜想:当a>b时,a2>b2.这个命题是真命题吗?[答案:不正确,因为3>-5,但32<(-5)2]教师总结:在前面的学习过程中,我们用观察、验证、归纳、类比等方法,发现了很多几何图形的性质.但由前面两题我们又知道,这些方法得到的结论有时不具有一般性.也就是说,由这些方法得到的命题可能是真命题,也可能是假命题.教师讲解:数学中有些命题可以从公理出发用逻辑推理的方法证明它们是正确的,并且可以进一步作为推断其他命题真假的依据,这样的真命题叫做定理.(三)例题与证明例如,有了“三角形的内角和等于180°”这条定理后,我们还可以证明刻画直角三角形的两个锐角之间的数量关系的命题:直角三角形的两个锐角互余.教师板书证明过程.教师讲解:此命题可以用来作为判断其他命题真假的依据,因此我们把它也作为定理.定理的作用不仅在于它揭示了客观事物的本质属性,而且可以作为进一步确认其他命题真假的依据.三、随堂练习课本P58练习第1、2题.四、课时总结1、在长期实践中总结出来为真命题的命题叫做公理.2、用逻辑推理的方法证明它们是正确的命题叫做定理。

命题与证明教案

命题与证明教案

命题与证明教案教案标题:命题与证明教学目标:1. 理解命题的定义和特征;2. 理解证明的概念和重要性;3. 学会运用逻辑推理和证明方法解决问题;4. 培养学生的逻辑思维和分析能力。

教学重点:1. 命题的理解和分类;2. 证明方法的学习和应用。

教学准备:1. 教师准备:白板、黑板笔、教学课件、教材、习题集;2. 学生准备:笔、纸、教材。

教学过程:一、导入(5分钟)1. 引入命题的概念,通过举例子让学生了解命题的定义和特征;2. 引导学生思考为什么命题在数学中具有重要性。

二、知识讲解(15分钟)1. 讲解命题的分类,如简单命题、复合命题、条件命题等;2. 介绍命题的逻辑连接词,如与、或、非等;3. 讲解证明的概念和重要性,强调证明在数学中的应用价值。

三、案例分析与讨论(20分钟)1. 给出一些简单的命题,引导学生分析其真值表,并判断其真假;2. 给出一些复合命题,引导学生运用逻辑连接词进行推理;3. 给出一些条件命题,引导学生分析其充分条件和必要条件。

四、证明方法的学习(20分钟)1. 介绍数学证明的基本方法,如直接证明、间接证明、数学归纳法等;2. 讲解每种证明方法的步骤和注意事项;3. 给出一些具体的数学问题,引导学生运用不同的证明方法解决问题。

五、练习与巩固(15分钟)1. 分发练习题,让学生独立完成;2. 针对练习题进行讲解和讨论,解答学生的疑惑;3. 强调练习的重要性,鼓励学生多做练习题以提高证明能力。

六、总结与拓展(10分钟)1. 总结本节课所学内容,强调命题和证明在数学中的重要性;2. 提出一些拓展问题,激发学生思考和探索的兴趣;3. 鼓励学生自主学习和研究相关领域的知识。

教学反思:本节课通过引入命题和证明的概念,结合具体案例和问题进行分析和讨论,培养学生的逻辑思维和证明能力。

同时,通过练习题的设计和讲解,巩固学生的学习成果。

在教学过程中,教师应注重激发学生的学习兴趣和主动性,引导他们积极思考和解决问题。

人教版七年级数学下册第五章5.3.2《命题、定理、证明》教案

人教版七年级数学下册第五章5.3.2《命题、定理、证明》教案
-理解并运用定理证明过程中,如何从已知条件出发,逐步推理到结论。
-在实际问题中识别和应用所学的命题、定理和证明方法。
举例:针对命题真假判断的难点,设计一些具有迷惑性的命题,让学生分析讨论,如“如果一个角的补角是直角,那么这个角是锐角”这一命题的真假。对于证明方法,通过具体例题展示反证法的步骤,解释反设的意义,并指导学生如何寻找矛盾点。在应用难点方面,给出一些综合性的问题,如“证明一个四边形是平行四边形”,引导学生结合所学定理和证明方法,逐步解决问题。
3.重点难点解析:在讲授过程中,我会特别强调命题的判断和定理的证明这两个重点。对于难点部分,如反证法,我会通过举例和步骤分解来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与命题、定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如通过折叠纸片来验证平行线的性质。
此外,课堂上的实践活动和小组讨论环节,学生们表现得非常积极,这说明他们对于参与到课堂活动中有着很高的热情。但在这一过程中,我也注意到有些学生过于依赖同伴,自己思考得不够深入。因此,我需要在活动中更好地引导他们独立思考,培养他们自主解决问题的能力。
还有一个值得注意的问题是,在新课讲授过程中,我是否把重点和难点讲解得足够清晰。从学生的反馈来看,有些地方还需要我进一步讲解和强调。在今后的教学中,我会更加关注学生的接受程度,及时调整教学方法和节奏,确保他们能够更好地掌握核心知识。
3.成果分享:每个小组将选择一名代表来分享他都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了命题的基本概念、定理的重要性以及证明的方法。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在解决数学问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

部编人教版七年级下册数学《命题、定理、证明》教案

部编人教版七年级下册数学《命题、定理、证明》教案

5.3.2 命题、定理、证明一、教学目标1.了解“证明”的必要性和推理过程中要步步有据.2.了解综合法证明的格式和步骤.3.通过一些简单命题的证明,初步训练学生的逻辑推理能力.4.通过证明步骤中由命题画出图形,写出已知、求证的过程,继续训练学生由几何语句正确画出几何图形的能力.5.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法.二、学法引导1.教师教法:尝试指导,引导发现与讨论相结合.2.学生学法:在教师的指导下,积极思维,主动发现.三、重点·难点及解决办法(-)重点证明的步骤和格式是本节重点.(二)难点理解命题,分清其题设和结论,正确对照命题画出图形,写出已知、求证.(三)解决办法通过学生分组讨论,教师归纳得出证明的步骤和格式,再以练习加以巩固,解决重点、难点及疑点.四、课时安排l课时五、教具学具准备投影仪、三角板、自制胶片.六、师生互动活动设计1.通过引例创设情境,点题,引入新课.2.通过情境教学,学生分组讨论,归纳总结及练习巩固等手段完成新授.3.通过提问的形式完成小结.七、教学步骤(-)明确目标使学生严密推理过程,掌握推理格式,提高推理能力。

(二)整体感知以情境设计,引出课题,引导讨论,例题示范讲解新知,以练习巩固新知.(三)教学过程创设情境,引出课题师:上节课我们学习了定理与证明,了解了这两个概念.并以证明“两直线平行,内错角相等”来说明什么是证明.我们再看这一命题的证明(投影出示).例1 已知:如图1,,是截线,求证:.证明:∵(已知),∴(两直线平行,同位角相等).∵(对项角相等),∴(等量代换).这节课我们分析这一命题的证明过程,学习命题证明的步骤和格式.[板书]2.9 定理与证明探究新知1.命题证明步骤学生活动:由学生分组讨论以上命题的证明过程,按自己的理解说出证明一个命题都需要哪几步.【教法说明】根据上一节“两直线平行,内错角相等”这一命题的证明过程让学生讨论、分析、归纳命题证明的一般步骤,一是可以加深对命题证明的理解,二是培养学生归纳总结能力。

八年级数学上册13.2命题与证明教案(新版)沪科版

八年级数学上册13.2命题与证明教案(新版)沪科版

13.2 命题与证明第1课时命题1.了解命题的含义.2.对命题的概念有正确的理解.3.会区分命题的条件和结论.重点找出命题的条件(题设)和结论.难点命题概念的理解.一、创设情境,导入新课教师:我们已经学过一些图形的特性,如“三角形的内角和等于180度”,“等腰三角形两底角相等”等.根据我们已学过的图形特性,试判断下列句子是否正确.1.如果两个角是对顶角,那么这两个角相等;2.两直线平行,同位角相等;3.同旁内角相等,两直线平行;4.直角都相等.二、合作交流,探究新知学生回答后,教师给出答案:根据已有的知识可以判断出句子1、2、4是正确的,句子3是错误的.像这样对某一事件作出正确或不正确判断的语句叫做命题.上面判断性语句1、2、4都是正确的命题,称为真命题,3是错误的命题,称为假命题.教师:在数学中,许多命题是由题设(或已知条件)、结论两部分组成的.题设是已知事项,结论是由已知事项推出的事项,这样的命题常可写成“如果,,那么,,”的形式.用“如果”开始的部分就是题设,而用“那么”开始的部分就是结论.例如,在命题1中,“两个角是对顶角”是题设,“这两个角相等”就是结论.有的命题的题设与结论不十分明显,可以将它写成“如果,,那么,,”的形式,就可以分清它的题设和结论了.例如,命题4可写成“如果两个角是直角,那么这两个角相等.”应用迁移、巩固提高1.教师提出问题1:把命题“三个角都相等的三角形是等边三角形”改写成“如果,,那么,,”的形式,并分别指出命题的题设和结论.学生回答后,教师总结:这个命题可以写成“如果一个三角形的三个角都相等,那么这个三角形是等边三角形”.这个命题的题设是“一个三角形的三个角都相等”,结论是“这个三角形是等边三角形”.2.教师提出问题2:把下列命题写成“如果,,那么,,”的形式,并说出它们的条件和结论.(1)对顶角相等;(2)如果a>b,b>c, 那么a>c.学生小组交流后回答,学生回答后,教师给出答案.(1)条件:如果两个角是对顶角;结论:那么这两个角相等.(2)条件:如果a>b,b>c;结论:那么a>c.对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,我们把这样的两个命题称为互逆命题,其中一个叫原命题,另一个命题叫逆命题.说出上题的逆命题,并讨论.三、运用新知,深化理解例1 写出下列命题的题设和结论:(1)如果a2=b2,那么a=b;(2)对顶角相等;(3)三角形内角和等于180°.分析:第(1)题中有“如果”“那么”,条件结论明显,第(2)(3)题可先改写成“如果,,那么,,”的形式,再找出题设和结论.解:(1)题设是“a2=b2”,结论是“a=b”;(2)改写:如果两个角是对顶角,那么这两个角相等.题设:“两个角是对顶角”,结论:“这两个角相等”;(3)改写:如果三个角是一个三角形的三个内角,那么这三个角的和等于180°.题设:“三个角是一个三角形的三个内角”,结论:“三个角的和等于180°”.【归纳总结】通常情况下命题都可以写成“如果,,那么,,”的形式,当条件结论不是很明显的时候,把所给命题改写成“如果,,那么,,”的形式可以帮助我们找出题设和结论,在改写时,要做到语句通顺,措辞准确.例2 写出下列命题的逆命题,并判断逆命题的真假.(1)如果∠α与∠β是邻补角,那么∠α+∠β=180°;(2)如果△ABC是直角三角形,那么△ABC的内角中一定有两个锐角.分析:(1)交换原命题中“如果”和“那么”后面的部分即可得到原命题的逆命题,然后根据邻补角的定义判断命题的真假;(2)交换原命题中“如果”和“那么”后面的部分即可得到原命题的逆命题,然后根据三角形的角的关系判断命题的真假.解:(1)逆命题为:如果∠α+∠β=180°,那么∠α与∠β是邻补角,此逆命题为假命题;(2)逆命题为:如果一个三角形中有两个锐角,那么这个三角形是直角三角形,此逆命题为假命题.【归纳总结】将命题的条件与结论互换,得到新命题,我们把这样的两个命题称为互逆命题,其中一个叫原命题,另一个叫做原命题的逆命题.当一个命题是真命题时,它的逆命题不一定是真命题,所举的例子,如果符合命题条件,但不满足命题的结论,称之为反例;要说明一个命题是假命题,只要举出一个反例即可.四、课堂练习,巩固提高1.教材P77练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知命题命题的概念:对某一事件作出正确或者不正确判断的语句(或式子)叫做命题;命题的结构:由题设和结论两部分组成,常写成“如果,,那么,,”的形式;命题的分类:真命题和假命题(要说明一个命题是假命题,只要举出一个反例即可);逆命题:原命题为“如果p,那么q”,逆命题则为“如果q,那么p”.六、布置作业1.请同学们完成《探究在线·高效课堂》“课时作业”内容.2.教材P84习题13.2第1~3题.第2课时证明(一)1.理解和掌握定理的概念,了解证明(演绎推理)的概念.2.了解证明的基本步骤和书写格式,能运用已学过的几何知识证明一些简单的几何问题.重点证明的含义和表述格式.难点按规定格式表述证明的过程.一、创设情境,导入新课教师借助多媒体设备向学生演示,比较线段AB和线段CD的长度.通过简单的观察,并尝试用数学的方法加以验证,体会验证的必要性和重要性.二、合作交流,探究新知证明的引入(1)命题“等腰直角三角形的斜边是直角边的2倍”是真命题吗?请说明理由.分析:根据需要画出图形,用几何语言描述题中的已知条件和要说明的结论.教师对具体的说理过程予以详细的板书.小结归纳得出证明的含义,让学生体会证明的初步格式.(2)通过教材例3,例4的教学理解证明的含义,体会证明的格式和要求.【归纳总结】证明几何命题的表述格式:①按题意画出图形;②分清命题的条件和结论,结合图形,在“已知”中写出条件,在“求证”中写出结论;③在“证明”中写出推理过程.三、运用新知,深化理解例1 如图,下列推理中正确的有( )①因为∠1=∠2,所以b∥c(同位角相等,两直线平行);②因为∠3=∠4,所以a∥c(内错角相等,两直线平行);③因为∠4+∠5=180°,所以b∥c(同旁内角互补,两直线平行).A.0个B.1个C.2个D.3个分析:结合图形,根据平行线的判定方法逐一进行判断.①因为∠1、∠2不是同位角,所以不能证明b∥c,故错误;②因为∠3=∠4,所以a∥c(内错角相等,两直线平行),正确;③因为∠4+∠5=180°,所以b∥c(同旁内角互补,两直线平行),正确.故正确的是②③,共2个.故选 C.【归纳总结】本题主要考查了平行线的判定.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.例2 完成下面的证明过程:已知:如图,∠D=110°,∠EFD=70°,∠1=∠2.求证:∠3=∠B.证明:∵∠D=110°,∠EFD=70°(已知),∴∠D+∠EFD=180°,∴AD∥______(同旁内角互补,两直线平行).又∵∠1=∠2(已知),∴______∥BC(内错角相等,两直线平行),∴EF∥______,∴∠3=∠B(两直线平行,同位角相等).分析:求出∠D+∠EFD=180°,根据平行线的判定推出AD∥EF,AD∥BC,即可推出答案.∵∠D=110°,∠EFD=70°,∴∠D+∠EFD=180°,∴AD∥EF.又∵∠1=∠2,∴AD ∥BC,∴EF∥BC.故答案为:EF,AD,BC.【归纳总结】本题考查了平行线的性质和判定的应用,平行线的性质有:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补.反过来就是平行线的判定.四、课堂练习,巩固提高1.教材P78~79练习及P80练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知(1)证明的含义.(2)真命题证明的步骤和格式.(3)思考、探索:假命题的判断如何说理、证明?六、布置作业1.请同学们完成《探究在线·高效课堂》“课时作业”内容.2.教材P84~85习题13.2第5~8题.第3课时证明(二)1.通过对三角形内角和定理的探究,进一步了解证明的基本过程.2.能将几何命题的文字语言用图形语言和符号语言表示出来.重点根据具体的证明过程,填写推理的理由.难点将文字语言表述的证明题改写成用图形语言和符号语言表述的证明题.一、创设情境,导入新课在前面的学习中,我们已经知道三角形的内角和等于180°,你还记得这个结论的探索过程吗?(1.度量法; 2.折叠法; 3.剪拼法.)但观察和实验得到的结论并不一定可靠,这样就需要进行几何证明.二、合作交流,探究新知1.三角形内角和定理的证明(1)理解题意,分清题目的条件和结论;(2)请同学们分别用图形语言和符号语言表述命题.已知:△ABC,求证:∠A+∠B+∠C=180°.证法一:(请学生参照剪贴的方法去证明)证法二:(引导学生仿照证法一添加辅助线转化成平角去证明)除此之外还有哪些证法呢?引导学生积极思考.2.总结证明命题的一般步骤:(1)理解题意:分清命题的条件(已知),结论(求证);(2)根据条件画出图形并在图形上标出字母;(3)结合图形和命题写出已知和求证;(4)分析因果关系,探索证明思路;(5)依据思路,运用数学符号和数学语言条理清晰地写出证明过程;(6)检查表述过程是否正确,完善.3.小试牛刀尝试写出下列问题的已知、求证并画图:(1)求证:直角三角形的两个锐角互余.(2)求证:对顶角相等.4.证明:直角三角形的两个锐角互余.(请学生画图口答即可.)推论1:直角三角形两锐角互余.由公理、定理直接得出的真命题叫做推论.推论2:有两个角互余的三角形是直角三角形.三、运用新知,深化理解例1 如图,在△ABC内任意取一点P,过点P画三条直线分别平行于△ABC的三条边.(1)∠1、∠2、∠3分别和△ABC的哪一个角相等?请说明理由;(2)利用(1)说明三角形三个内角的和等于180°.分析:(1)利用平行线的性质即可证得;(2)根据对顶角相等,以及∠HPE+∠2+∠3=180°和(1)的结论即可证得.解:(1)∠1=∠A,∠2=∠B,∠3=∠C.理由如下:∵HI∥AC,∴∠1=∠CEP,又∵DE∥AB,∴∠CEP=∠A,∴∠1=∠A.同理,∠2=∠B,∠3=∠C;(2)如图,∵∠HPE=∠1,∠HPE+∠2+∠3=180°,∴∠1+∠2+∠3=180°,∵∠1=∠A,∠2=∠B,∠3=∠C,∴∠A+∠B+∠C=180°.【归纳总结】本题考查了平行线的性质,正确观察图形,熟练掌握平行线的性质和对顶角相等是解答本题的关键.例2 如图所示,AB∥CD,∠BAC和∠DCA的平分线相交于H点,那么△AHC是直角三角形吗?为什么?分析:要判断△AHC的形状,首先观察它的三个内角,其中∠1与∠2与已知条件角平分线有关,而两条角平分线分别平分∠BAC和∠DCA,这两个角是同旁内角,于是联想到已知条件中的AB∥CD.解:△AHC是直角三角形.理由如下:因为AB∥CD,所以∠BAC+∠DCA=180°.又因为AH,CH分别平分∠BAC和∠DCA,所以∠1=12∠BAC,∠2=12DCA,所以∠1+∠2=12(∠BAC+∠DCA),所以∠1+∠2=90°,所以△AHC为直角三角形.【归纳总结】判定一个三角形是否为直角三角形,既可以通过这个三角形有一个角是直角来判定(直角三角形的定义),也可以通过有两个角度数之和为90°来判定.四、课堂练习,巩固提高1.教材P81~82练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知三角形内角和定理的证明及推论1、2三角形内角和定理:三角形的内角和等于180°.证明定理的一般步骤①找出命题的题设和结论,画出图形;②题设部分是已知部分,结论部分是要证明的部分;③利用已知条件,依据定义、基本事实、已证定理,并按照逻辑规则,推导出结论.推论1:直角三角形的两锐角互余.推论2:有两个角互余的三角形是直角三角形.六、布置作业请同学们完成《探究在线·高效课堂》“课时作业”内容.第4课时三角形的外角1.了解三角形的外角.2.知道三角形的一个外角等于与它不相邻的两个内角的和,一个外角大于与它不相邻的任何一个内角.3.学会运用简单的说理来计算三角形的相关的角.重点三角形外角的性质.难点运用三角形外角性质进行有关计算时能准确地推理.一、创设情境,导入新课什么是三角形的内角?它是由什么组成的?三角形的内角和定理的内容是什么?教师提出问题,学生举手回答问题.【教学说明】为本节课进一步学习与三角形有关的角作准备.二、合作交流,探究新知探究问题1:如图,把△ABC的一边BC延长到D,得∠ACD,它不是三角形的内角,那它是三角形的什么角?练习:如图,∠ADB,∠BPC,∠BDC,∠DPC分别是哪个三角形的外角?问题2:观察问题1图,∠ACD与∠ACB是什么关系,由此你能得到什么结论?教师利用投影出示图形,并提出问题.教师指出像这样的角叫做三角形的外角,它是由三角形的一边和另一边的延长线组成的.然后教师利用投影出示练习,安排学生举手回答,并按照外角的定义一一指明这些角分别由哪些边组成.完成以后,教师提出问题2,并让学生进行讨论.然后师生共同归纳总结,得出结论:1.三角形的一个外角等于与它不相邻的两个内角的和.2.三角形的一个外角大于与它不相邻的任何一个内角.归纳总结的过程就是让学生说理证明的过程,教师要让学生说一说,练一练.【教学说明】教师指明外角的定义以后,马上进行练习,便于巩固学生对概念的理解.结合图形,培养学生的图形变换能力.通过学生的归纳,总结,证明,让学生自己去发现结论,让学生体验主动探究的成功与快乐.通过观察、讨论等一系列活动,再让学生进行证明,由于准备进行得比较充分,学生能够较顺利地说出证明的过程.培养学生的推理论证能力.三、运用新知,深化理解教师出示教材例5,先让学生进行分析,教师可以适当加以引导学生,将三角形的外角转化为三角形的内角.然后师生共同写出规范的解答过程.思考:还有没有其他的方法可以证明?【教学说明】先让学生分析,培养学生的分析图形能力,然后师生共同解决,规范学生的解答过程.继续提出新的问题,培养学生的发散思维和创新能力.例1 已知:如图为一五角星,求证:∠A+∠B+∠C+∠D+∠E=180°.分析:根据三角形外角性质得出∠EFG=∠B+∠D,∠EGF=∠A+∠C,根据三角形内角和定理得出∠E+∠EGF+∠EFG=180°,代入即可得证.证明:∵∠EFG,∠EGF分别是△BDF,△ACG的外角,∴∠EFG=∠B+∠D,∠EGF=∠A +∠C.又∵在△EFG中,∠E+∠EGF+∠EFG=180°,∴∠A+∠B+∠C+∠D+∠E=180°.【归纳总结】解决此类问题的关键是根据图形的特点,利用三角形外角的性质将分散的角集中到某个三角形中,利用三角形内角和进行解决.例2 如图,求证:(1)∠BDC>∠A;(2)∠BDC=∠B+∠C+∠A.如果点D在线段BC的另一侧,结论会怎样?分析:通过学生的探索活动,使学生进一步了解辅助线的作法及重要性,理解掌握三角形的内角和定理及推论.证法一:(1)连接AD,并延长AD,如图,则∠1是△ABD的一个外角,∠2是△ACD的一个外角.∴∠1>∠3.∠2>∠4(三角形的一个外角大于任何一个和它不相邻的内角).∴∠1+∠2>∠3+∠4(不等式的性质).即:∠BDC>∠BAC.(2)由(1)作图知∠1=∠3+∠B,∠2=∠4+∠C(三角形的一个外角等于和它不相邻的两个内角的和).∴∠1+∠2=∠3+∠4+∠B+∠C(等式的性质),即:∠BDC=∠B+∠C+∠BAC.证法二:(1)延长BD交AC于E(或延长CD交AB于E),如图.则∠BDC是△CDE的一个外角.∴∠BDC>∠DEC(三角形的一个外角大于任何一个和它不相邻的内角).∵∠DEC是△ABE的一个外角(已作),∴∠DEC>∠A(三角形的一个外角大于任何一个和它不相邻的内角),∴∠BDC>∠A(不等式的性质).(2)由(1)作图知∠BDC=∠C+∠DEC(三角形的一个外角等于和它不相邻的两个内角的和),∵∠DEC是△ABE的一个外角,∴∠DEC=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和).∴∠BDC=∠B+∠C+∠A(等量代换).【教学说明】让学生接触各种类型的几何证明题,提高逻辑推理能力,培养学生的证明思路,特别是不等关系的证明题,因为学生接触较少,因此更需要加强练习.注意事项:学生对于几何图形中的不等关系的证明比较陌生,因此有必要在证明过程中,引导学生作辅助线找到一个过渡角.四、课堂练习,巩固提高1.教材P83练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知教师引导学生谈谈对三角形外角的认识.主要从定义和性质两个方面.六、布置作业1.请同学们完成《探究在线·高效课堂》“课时作业”内容.2.教材P85习题13.2第9题.。

命题 定理与证明教案

命题 定理与证明教案

命题定理与证明教案教案标题:命题、定理与证明教学目标:1. 理解命题、定理及其证明的概念和意义;2. 掌握常见的命题和定理,并能够正确运用它们;3. 培养学生的逻辑思维和证明能力;4. 培养学生的合作学习和批判性思维。

教学内容:1. 命题的定义和特点;2. 定理的定义和特点;3. 证明的基本方法和步骤;4. 常见的数学命题和定理。

教学步骤:一、导入(5分钟)1. 引入命题的概念,通过简单的例子让学生理解命题的定义和特点。

二、讲解命题和定理(15分钟)1. 介绍定理的概念和特点,并与命题进行比较,强调定理的重要性和应用价值。

2. 通过实际生活中的例子,引导学生理解定理的意义和作用。

三、讲解证明的基本方法和步骤(15分钟)1. 介绍证明的基本方法,如直接证明、间接证明、反证法等,并解释其应用场景。

2. 分步骤讲解证明的基本步骤,如假设、推理、总结等。

四、引导学生进行命题和定理的证明(20分钟)1. 给出一个简单的命题或定理,引导学生进行证明,鼓励学生积极参与讨论和思考。

2. 引导学生运用已学的证明方法和步骤,逐步完成证明过程。

五、总结与拓展(5分钟)1. 总结本节课所学的内容,强调命题、定理和证明的重要性。

2. 提出一些拓展问题,激发学生的思维和求解问题的能力。

教学辅助手段:1. 教学投影仪和幻灯片,用于展示相关概念和例子;2. 板书,用于记录学生的思路和解题过程。

教学评估:1. 课堂参与度评估:观察学生的积极性和主动性;2. 个人作业评估:布置相关命题和定理的证明作业,评估学生的独立思考和解题能力;3. 小组合作评估:组织学生进行小组合作,解决复杂的命题和定理证明问题,评估学生的团队合作和批判性思维能力。

教学建议:1. 鼓励学生多思考、多讨论,培养他们的逻辑思维能力;2. 引导学生运用已学的证明方法和步骤进行证明,提醒他们注意证明的逻辑严谨性;3. 鼓励学生多参与合作学习,培养他们的团队合作和批判性思维能力;4. 提供更多的练习题和拓展问题,帮助学生巩固所学知识和拓展思维能力。

八年级数学下册 第四章《命题与证明》教案 浙教版【精品教案】

八年级数学下册 第四章《命题与证明》教案 浙教版【精品教案】

第四章证明与命题一、教学目标:1、了解定义、命题、定理的含义,会区分命题的条件(题设)和结论。

2、会在简单情况下判断一个命题的真假。

理解反例的作用,知道利用反例可证明一个命题是错误的。

3、了解证明的含义,理解证明的必要性,体会证明的过程要步步有据。

4、会根据一些基本事实证明简单命题。

5、通过实例,体会反证法的含义。

了解反证法的基本步骤。

6、初步会综合运用命题、证明以及相关知识解决简单的实际问题。

二、本章知识结构框架图:三、教学过程:(一)知识回顾1、一般地,对某一件事情作出正确或不正确的判断的句子叫做命题。

命题分为真命题与假命题。

2、说明一个命题是假命题,通常只用找出一个反例,但要说明一个命题是真命题,就必须用推理的方法,而不能光凭一个例子。

(二)说一说1.指出下列句子,哪些是命题,哪些不是命题?(1)有两个角和夹边对应相等的三角形是全等的三角形;(2)有两条边对应相等的两个三角形全等;(3)作∠A的平分线;(4)若a=b 则 a 2= b 2(5) 同位角相等吗? 2.说出一个已学过定理: 说出一个已学过公理:3、下列把命题改写成“如果……,那么……”的形式。

并判断下列命题的真假.(1)不相等的角不可能是对顶角.(2)垂直于同一条直线的两直线平行;(3)两个无理数的乘积一定是无理数. (三)练一练1. 用反例证明下列命题是假命题:(1) 若x(5-x)=0,则x=0;(2) 等腰三角形一边上的中线就是这条边上的高; (3) 相等的角是内错角;(4)若x ≠2,则分式 有意义.(四)例题分析 例1求证:全等三角形对应角的平分线相等.证明命题的一般步骤:(1)根据题意,画出图形;(2)用符号语言写出“已知”和“求证”;(3)分析证明思路;42 x x(4) 写出证明过程;例2已知:如图,△ABC中,∠C=2∠B,∠BAD=∠DAC.求证:AB=AC+CD还有其他方法吗?AAEB DC BD C(第三题) (第二题)例3已知:如图D,E分别是BC,AB上的一点,BC、BD的长度之比为3:1, △ECD的面积是△ABC的面积的一半.求证: BE=3AE例4、已知:如图,直线AB,CD,EF在同一平面内,且AB ∥ EF,CD ∥ EF,求证:AB ∥ CD。

命题与证明教案

命题与证明教案

命题与证明教案【篇一:《命题与证明》教案】《命题与证明》教案教学目标1、了解互逆命题.会写出一个命题的逆命题.了解定理、逆定理和互逆定理.2、体会证明的必要性.3、能运用基本事实和相关定理进行简单的证明.教学过程一、复习命题的有关概念.二、探索新知1、观察与思考(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.(2)两条直线被第三条直线所截,如果这两条直线平行,那么同位角相等. 思考:(1)找出命题(1)(2)中的条件和结论.(2)在这两个命题中,其中一个命题的条件和结论,与另一个命题的条件和结论有怎样的关系?(3)请再举例说明两个具有这种关系的命题.像这样,一个命题的条件和结论分别为另一个命题的结论和条件的两个命题,称为互逆命题.在两个互逆的命题中,如果我们将其中一个命题称为原命题,那么另一个命题就是这个原命题的逆命题.做一做请写出下列命题的逆命题,并指出原命题和逆命题的真假性:(1)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.(2)如果两个角是对顶角,那么这两个角相等.(3)如果一个数能被3整除,那么这个数也能被6整除.(4)已知两数a,b.如果a+b>0,那么a-b>0.2、证明的概念根据已学过的基本事实、定义、性质和定理等,进行有理有据的推理.这种推理的过程叫做证明.3、例题学习证明:平行于同一条直线的两条直线平行.像这样用文字叙述的命题的证明,应当按下列步骤进行:第一步,依据题意画图,将文字语言转换为符号(图形)语言.第二步,根据图形写出已知、求证.第三步,根据基本事实、已有定理等进行证明.如果一个定理的逆命题是真命题,那么这个逆命题也可以称为原定理的逆定理.一个定理和它的逆定理是互逆定理.课堂小结这节课你有什么收获?【篇二:命题与证明教案】命题与证明教案(九年级上册)第二章命题与证明主要内容:定义与命题、公理与定理以及证明。

本章是学生用逻辑推理的方法对命题进行研究的开始,是今后学习证明的基础。

命题 定理 证明教案

命题 定理 证明教案

命题定理证明教案标题:命题定理证明教案教案目标:1. 理解命题、定理和证明的概念及其在数学中的重要性。

2. 学会运用逻辑思维和数学推理方法,独立完成命题的证明过程。

3. 培养学生的数学思维能力、逻辑思维能力和问题解决能力。

教学准备:1. 教师准备:教材、教具、黑板、彩色粉笔、多媒体设备等。

2. 学生准备:课本、笔记本、铅笔、尺子等。

教学过程:一、导入(5分钟)1. 教师通过提问引导学生思考:你们对命题、定理和证明有什么了解?它们在数学中的作用是什么?2. 学生回答并教师进行点评和补充说明。

二、概念讲解(10分钟)1. 教师向学生介绍命题的概念:命题是陈述性的句子,其真假可以被判断。

2. 教师向学生介绍定理的概念:定理是经过证明后被接受的命题,它在数学中具有重要的意义。

3. 教师向学生介绍证明的概念:证明是通过逻辑推理和数学方法,以严密的推理过程来验证命题的真实性。

三、案例分析(15分钟)1. 教师给出一个具体的数学命题,并与学生一起分析该命题的证明过程。

2. 教师引导学生思考如何从已知条件出发,运用已学的数学知识和推理方法,逐步推导出结论。

3. 学生积极参与,提出自己的思考和解决方案。

四、小组讨论(10分钟)1. 学生分成小组,每个小组选取一个命题进行讨论和证明。

2. 小组成员共同合作,提出自己的证明思路和方法,进行讨论和交流。

3. 教师巡回指导,解答学生的问题,引导学生进行有效的讨论。

五、展示与总结(10分钟)1. 各小组派代表上台,展示他们的证明过程和结果。

2. 教师对每个小组的证明进行点评和总结,指出优点和不足之处。

3. 教师对整个教学内容进行总结,强调命题、定理和证明在数学中的重要性和应用。

六、作业布置(5分钟)1. 要求学生根据课堂学习的内容,选择一个自己感兴趣的命题进行证明。

2. 布置作业后,教师对学生的提问进行答疑,解决学生的困惑。

教学反思:通过本节课的教学,学生对命题、定理和证明的概念有了更深入的理解,能够运用逻辑思维和数学推理方法进行证明。

命题与证明全章教案

命题与证明全章教案

命题与证明全章教案一、教学目标1. 理解命题的概念,能够正确判断一个句子是否为命题。

2. 掌握四种命题的转化方法。

3. 学会使用反证法、直接证明法、归纳证明法等证明方法。

4. 能够分析问题,选择合适的证明方法解决问题。

二、教学内容1. 命题的概念与分类2. 命题的否定与转化3. 证明的方法与步骤4. 反证法5. 直接证明法6. 归纳证明法7. 综合应用三、教学重点与难点1. 重点:命题的概念、分类、转化,证明的方法与步骤。

2. 难点:反证法、直接证明法、归纳证明法的应用。

四、教学方法1. 采用问题驱动法,引导学生主动探究命题与证明的相关概念和方法。

2. 利用案例分析,让学生通过具体问题学会选择合适的证明方法。

3. 采用小组合作学习,培养学生的团队协作能力和口头表达能力。

4. 利用课后练习,巩固所学知识,提高解题能力。

五、教学安排1. 第一课时:命题的概念与分类2. 第二课时:命题的否定与转化3. 第三课时:证明的方法与步骤4. 第四课时:反证法5. 第五课时:直接证明法6. 第六课时:归纳证明法7. 第七课时:综合应用8. 第八课时:课堂总结与拓展六、教学策略与手段1. 利用多媒体课件,直观展示命题与证明的过程,提高学生的理解力。

2. 通过数学软件或几何画板,动态演示命题的转化过程,帮助学生加深记忆。

3. 设计具有启发性的例题,引导学生主动思考,培养解决问题的能力。

4. 创设问题情境,让学生在实践中掌握证明方法。

七、课后作业与评估1. 布置适量的课后练习题,巩固所学知识。

3. 定期进行课堂小测,了解学生对命题与证明的掌握情况。

4. 结合学生的课堂表现、作业完成情况和课后练习成绩,全面评估学生的学习效果。

八、教学反思与调整1. 在教学过程中,关注学生的学习反馈,及时调整教学方法和节奏。

2. 针对学生的薄弱环节,加强针对性训练。

3. 不断丰富教学资源,提高教学质量。

4. 鼓励学生积极参与课堂讨论,提高课堂互动效果。

命题与证明全章教案

命题与证明全章教案

一、教学目标1. 让学生理解命题的概念,能够区分题设和结论;2. 培养学生掌握证明的方法和技巧,提高推理能力;3. 引导学生运用数学语言表达问题,培养逻辑思维能力;4. 通过对具体例子的探究,让学生感受数学的严谨性和美感。

二、教学内容1. 命题的概念和分类;2. 证明的方法和技巧;3. 常用的证明方法:直接证明、反证法、归纳法、证明的等价变换;4. 命题的真假判断;5. 应用举例。

三、教学重点与难点1. 重点:命题的概念,证明的方法和技巧,命题的真假判断;2. 难点:证明方法的灵活运用,对复杂命题的判断。

四、教学过程1. 导入:通过生活中的实例,引导学生理解命题的概念,区分题设和结论;2. 新课讲解:讲解命题的分类,证明的方法和技巧,常用的证明方法,命题的真假判断;3. 练习与讨论:让学生通过练习,巩固所学知识,并在讨论中互相交流思路,提高解题能力;4. 应用举例:选取合适的例子,让学生运用所学知识解决问题,感受数学的实用性;五、课后作业1. 理解并掌握命题的概念,能够区分题设和结论;2. 熟练运用证明的方法和技巧,解决相关问题;3. 能够判断命题的真假,并对复杂命题进行判断;六、教学评价1. 通过课堂讲解、练习和讨论,评价学生对命题概念的理解程度;2. 通过课后作业和课堂练习,评价学生对证明方法和技巧的掌握情况;3. 通过解答复杂命题的任务,评价学生的逻辑思维和推理能力;4. 学生之间的互动和合作,评价学生的沟通能力和团队协作精神。

七、教学策略1. 采用问题驱动的教学方法,引导学生主动探究和发现知识;2. 通过实例分析和练习,让学生在实践中掌握证明的方法和技巧;3. 采用分组讨论和合作学习的方式,提高学生的沟通能力和团队协作精神;4. 注重个体差异,给予学生个性化的指导和关爱,帮助他们在数学学习中取得进步。

八、教学资源1. 教科书和辅导资料,提供丰富的学习内容和方法;2. 网络资源,为学生提供更多的学习案例和实践机会;3. 教学课件和多媒体演示,帮助学生直观地理解命题和证明的概念;4. 练习题库,为学生提供充足的练习机会,巩固所学知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
假命题的证明是利用反例来说明.反例必须是具备命题的条件,却不具备命题的结论,从而说明命题错误.
说明一个命题是真命题,就必须用推理的方法,而不能光凭一个例子.
二、复习练习:
(一)判断下列命题的真假.
1.有一个角是45°的直角三角形是等腰直角三角形.2.素数不可能是偶数.3黄皮肤和黑皮肤的人都是中国人.
4.有两个外角(不同顶点)是钝角的三角形是锐角三角形.
5.若y(1-y)=0,则y=0.
(二)证明命题的一般步骤:
(1)根据题意,画出图形
(2)结合图形,用符号语言写出“已知”和“求证”
(3)依据思路,运用数学符号和数学语言条理清晰地写出证明过程;
(三)证明题:
1、证明:等腰三角形两底角的平分线相等。
命题与证明教案6
20年月日第周星期总第课时
课题
第二章 命题与证明复习
教学目标
对本章知识进行整理巩固
教学重点
理解各概念
教学难点
熟练掌握证明的书写格式、规范要求
教学用具
执教者
教学内容
共案
个案
一、知识回顾
1.一般的,判断一件事情的句子叫做命题,
命题分为真命题与假命题。
2.说明一个命题是假命题,通常只用找出一个反例,但要说明一个命题是真命题,就必须用推理的方法,而不能光凭一个例子。
已知:如图,在△ABC中,AB=AC,BD,CE是△ABC的角平分线。
求证:BD=CE.
2、等腰三角形的底角为15°,腰长为2a,求腰上的高。
3、如图,已知AD是△ABDA
和△ACD的公共边.求证:
∠BDC=∠BAC+∠B+∠CB D C
三、小组合作交流
这节课你有何收获,能与大家分享、交流你的感受吗?
四、作业布置
课后练习
板书设计
教学反思
复习
一、知识回顾
二、复习练习:
三、小组合作交流
四、作业布置
相关文档
最新文档