初等几何研究第一章习题的答案(1)

合集下载

初等几何研究试题答案(李长明版)

初等几何研究试题答案(李长明版)

初等几何研究试题答案(I)、线段与角的相等1. O O、O Q相交于A B, O O的弦BC交O Q于E, O 02的弦BD交O0于F,求证:(1)若2 DBA2 CBA贝卩若DF二CE则 / DBA M CBA.证明:⑴连接AC AE AF、AD在O 0 中,由/ CBA W DBA得AC=AF在O O 中,由/ CBA W DBA得AE=AD由A C、B、E四点共圆得/仁/2由A D B、E四点共圆得/ 3二/4所以△ ACE^A AFD••• DF=CE(2) 由(1)得/ 仁/ 2, / 3=2 4v DF=CE• △ACE^A AFD••• AD=AE在O Q 中,由AD=AE^得/ DBA M CBA2. 在厶ABC中,AC=BC,Z ACB=90,D是AC上的一点,AE丄BD的延长线于E,又AE=1BD,2求证:BD平分/ ABC.证明:延长AE,BC交于点F7 AED "BCA =90 ADE "BDC•CBD =/CAF又7 ACF BCA = 90 AC 二BC•ACF 三BCD . AF = BD1 1又、:AE BD . AE AF2 2又ABEE _ BE■ BE平分ABF即BD平分.ABC3. 已知在凸五边形ABCDE中, / BAE=3 ,BC=CD=DE M/ BCD玄CDE=180-求证:/ BAC 2 CAD h DAE.证明:过点B 作BDL BC,交圆周于点D,连结CD ©D•••/ DBC=90, • CD 是直径,则/CAD=90证明:连接BD,得△ CBD 是等腰三角形且底角是/ CDB=[18(0-(180o — 2 - )] -2=.:丄 BDE=(180° — 2G )-O (=180O — 3«••• A B 、D E 共圆同理A C D E 共圆• h BAC h CAD h DAE4. 设H 为锐角△ ABC 的垂心,若AH 等于外接圆的半径由题,可得AH L BC, BH丄AC••• BD// AH, AD// BH二四边形ADBH是□••• AH=BD又;AH等于外接圆的半径(R)• BD=R M CD=2R•••在Rt △ BCD中,CD=2BD即/ BCD=30• / BDC=60又;/ BAC K BDC BAC M BDC=605. 在厶ABC中, / C=90,BE是/B的平分线,CD是斜边上的高,过BE CD之交点0且平行于AB的直线分别交AC BC于F、G,求证AF=CE.证明:如图;/ 1 = 2 3, / 仁/2. 2二/ 3, • GB = GO,;2 5=2 4=2 6, • CO =CE,;FG// AB,「. AF/CF二B$CG二G0CG,又;△ FCO^COG/. CO7CF=G/CG=A/CF,• CO=AF;CO=CE,\ AF=CE.6. 在厶ABC中,先作角A B的平分线,再从点C作上二角的平分线值平行线,并连结它们的交点 D E,若DE// BA,求证:△ ABC等腰.证:如图所示设AG ED的交点为Fv AD是/ A的平分线•••/仁/2T DE// AB 仁/ 3v CE// AD :丄 3二/ 5, / 4二/ 2•/仁/2二/3=Z 4=2 5则厶FAD ffi^ FCE是等腰三角形•A F=DF,EF=CF•A C=DE同理可证BC=DE•A C=BC• △ ABC是等腰三角形7. 三条中线把△ ABC分成6个三角形,若这六个三角形的内切圆中有4个相等.求证:△ ABC是正三角形.AB D C证明:•/△ AOF △ AOE △ COD △ COE △ BOF △ BOD面积都相等--S A OFE=S A OEC即: 11111 1BF X 叶一FOX 叶BO X r= CEX 叶一OE< 叶一OC X r 2 2 2 2 2 21 12 (BF+FO+BO X r= - (CE+OE+OC X r••• BF+FO+BO二CCE+OE+OC••• CE+OE+OC-OG-OI二CE+OE+OC-OL-OJ• 2DH+2BH=2FK+2CK• 2BF=2CE又F、E分别为AB AC之中点••• AB=AC同理:AB=BC故厶ABC是正三角形.8. 平行四边形被对角线分成四个三角形中,若有三个的内切圆相等证明:该四边形为菱形.C证明:又•••△ AOBA BOC、△ CODA DOA四个三角形的面积相等1 1OD DC OC r OB BC OC r2 2CD OC OD 二BC OB OCOD OC DC - OE - OG = OB OC BC - Ol - OG二2DF +2CF =2BH +2CH二2DC =2BC=DC =BC•四边形为菱形9. 凸四边形被对角线分成4个三角形,皆有相等的内切圆,求证:该四边形是菱形证明:连结O i 、O 2,分别作O i 、O 2到AC 的垂线,垂足分别为P 、M•••在厶ABC 中 ,BO 是。

初等数学研究(程晓亮、刘影)版课后习题答案教程文件

初等数学研究(程晓亮、刘影)版课后习题答案教程文件

初等数学研究(程晓亮、刘影)版课后习题答案 第一章 数1添加元素法和构造法,自然数扩充到整数可以看成是在自然数的基础上添加0到扩大的自然数集,再添加负数到整数集;实数扩充到复数可以看成是在实数的基础上构造虚数单位i 满足12-=i ,和有序实数对),(b a 一起组成一个复数bi a +. 2(略)3从数的起源至今,总共经历了五次扩充:为了保证在自然数集中除法的封闭性,像b ax =的方程有解,这样,正分数就应运而生了,这是数的概念的第一次扩展,数就扩展为正有理数集.公元六世纪,印度数学家开始用符号“0”表示零.这是数的概念的第二次扩充,自然数、零和正分数合在一起组成算术数集.为了表示具有相反意义的量,引入了负数.并且直到17世纪才对负数有一个完整的认识,这是数的概念的第三次扩充,此时,数的概念就扩展为有理数集.直到19世纪下半叶,才由皮亚诺、戴德金、维尔斯特拉斯等数学家的努力下构建了严格的实数理论.这是数的概念的第四次扩充,形成了实数集.虚数作为一种合乎逻辑的假设得以引进,并在进一步的发展中加以运用.这是数学概念的第五次扩充,引进虚数,形成复数集.4证明:设集合D C B A ,,,两两没有公共元素d c b a ,,,分别是非空有限集D C B A ,,,的基数,根据定义,若b a >,则存在非空有限集'A ,使得B A A ~'⊃;若d c ≥从而必存在非空有限集'C ,使得D C C ~'⊃,所以)(C A ⋃)(D B ⋃⊃所以集合C A ⋃的基数c a +大于集合D B ⋃的基数d b +,所以d b c a +>+.5(1)解:按照自然数序数理论加法定义, 1555555155155)25(2535''=++=++⋅=+⋅=+⋅=⋅=⋅ (2)解:按照自然数序数理论乘法定义87)6(])15[()15()25(2535'''''''''===+=+=+=+=+ 6证明:︒1当2=n 时,命题成立.(反证法)()()()()()()()01121,1111111,111101111111,,2,1,0111,,2,1,0)2(212122121212121212122221212122111112111212222121≥++-+⇒≥++-++≥+-+-≥++++∴≥⎪⎪⎭⎫ ⎝⎛-++⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛->-=-++-+-=+++++=>+=≥+++=+++=>≥=︒+++++++++++++++++k k k k k k k k k k k k k k k i k k k k k k i k k i a k a k k a k k a k k a ka a ka a a a a k a a a a a a a a a a a a a a a a a a k i a k n ka a a a a a k i a k k n ,即要证由归纳假设,得,且得,,且时,由当。

解析几何第一章习题及解答

解析几何第一章习题及解答

第一章 向量代数习题1.11. 试证向量加法的结合律,即对任意向量,,a b c 成立()().a b c a b c ++=++证明:作向量,,AB a BC b CD c ===(如下图),则 ()(),a b c AB BC CD AC CD AD ++=++=+=()(),a b c AB BC CD AB BD AD ++=++=+=故()().a b c a b c ++=++2. 设,,a b c 两两不共线,试证顺次将它们的终点与始点相连而成一个三角形的充要条件是0.a b c ++=证明:必要性,设,,a b c 的终点与始点相连而成一个三角形ABC ∆,则0.a b c AB BC CA AC CA AA ++=++=+== 充分性,作向量,,AB a BC b CD c ===,由于0,a b c AB BC CD AC CD AD =++=++=+=所以点A 与D 重合,即三向量,,a b c 的终点与始点相连构成一个三角形。

ABCabcABCDabca b +b c +3. 试证三角形的三中线可以构成一个三角形。

证明:设三角形ABC ∆三边,,AB BC CA 的中点分别是,,D E F (如下图),并且记,,a AB b BC c CA ===,则根据书中例 1.1.1,三条中线表示的向量分别是111(),(),(),222CD c b AE a c BF b a =-=-=- 所以,111()()()0,222CD AE BF c b a c b a ++=-+-+-=故由上题结论得三角形的三中线,,CD AE BF 可以构成一个三角形。

4. 用向量法证明梯形两腰中点连线平行于上、下底且等于它们长度和的一半。

证明:如下图,梯形ABCD 两腰,BC AD 中点分别为,E F ,记向量,AB a FA b ==,则,DF b =而向量DC 与AB 共线且同向,所以存在实数0,λ>使得.DC AB λ=现在,FB b a =+,FC b a λ=-+由于E 是BC 的中点,所以1111()()(1)(1).2222FE FB FC b a a b a AB λλλ=+=++-=+=+且 111(1)()().222FE AB AB AB AB DC λλ=+=+=+ 故梯形两腰中点连线平行于上、下底且等于它们长度和的一半。

初等几何研究第二版朱德祥朱维宗答案

初等几何研究第二版朱德祥朱维宗答案

初等几何研究第二版朱德祥朱维宗答案期中考试题1. P18 T5四边形有一双对角互补,则必为圆内接四边形2. P26 T3 两圆O与O’相交于点P,M是OO’的中点,过P任做直线交两圆与A及A’,Q是AA’的中点。

证明MP=MQ。

3. P27 T10 在中,证明BC边的中垂线和角A的平分线相交在外接圆周上;他们的,ABC交点距B、C两点,距内切圆心,距角A的旁切圆心都等远 4. P30 例4 蝴蝶定理5. 证明勾股定理(毕达哥拉斯)6. P39 T11 证明欧拉线7. P41 例3 三角形中,大边上的平分角线较小P18 T5四边形有一双对角互补,则必为圆内接四边形首先证?A+?C=180如图所示,连接DO, BO. 设优角BOD为θ?圆周角等于所对的圆心角的一半??C=1/2?BOD,同理,?A=1/2θ??A+?C=1/2*360=180,即两角互补。

同理可证?ABC+?ADC=180.所以对角互补。

T6 证明:等腰三角形底边延长线上任意一点到两腰的距离之差等于一腰上的高。

S,S,S ,ABP,ACP,ABC111AB*PF--AC*PE=AC*CH AB=AC 222PF--PE=CH圆内接偶数边凸多边形相间诸角之和等于其余各角之和 Tp5226、从圆上一点到其内接四边形一双对边的距离之积,等于从该点到两条对角线的距离之积设圆内接四边形ABCD,P是其外接圆上任一点,过P分别作对角线AC,BD;边,BC,,DA的垂线,垂足依次为E,F;G,H,。

根据简单几何定理:三角形两边之积等于第三边上的高与外接圆直径之积R中 PA*PC=R*PE (1) ,PAC,PDB,PD*PB=R*PF (2),PAD PA*PD=R*PG (3)PB*PC=R*PH (4) ,PBC(1)*(2)=(3)*(4)=所以得证P27 T9 在三角形ABC中,分别以AB和AC为一边向外做等边三角形ABD和ACE,求证CD=BEAE=AC,AB=AD, ?,DAB,,EAC ?,DAC,,EAB ?,AEB,,ACD ?CD,BEP31 4.四边形ABCD中,设AD=BC。

最新《初等数学研究习题解答》说课讲解

最新《初等数学研究习题解答》说课讲解
解:部件的体积
因为误差不能超过5mm3,它是10mm3的半个单位,所以体积的精确度应该是十位(单位mm3),即V应该有5个有效数字,从而测量时,底面半径、高都要有6个有效数字
而底面半径、高本身的整数部分是两位整数,所以要达到6个有效数字,测量精确度必须达到 ( 的半个单位),常数 应取近似值为3.14159。
对于
用 除方程两边得:
令 ,则 ,
于是得:
分解因式得:
所以有

所以原方程的根为 , ,
7.用 除方程两边得:
令 ,则 ,
于是得: ,显然 是一个根,所以可以分解为

所以原方程的根为:
8.由于 是原方程的根,所以原方程可以分解为
对于
用 除方程两边得:
配方得:
所以 ,即 ,
所以原方程的根为:

9.用 除方程两边得:
4.已知函数 ,先将此函数分别沿x轴向左右两边拉伸为原来的两倍,再分别向左、向上平移3个单位,求所得函数的解析式。
解:函数的变化过程如下:
4.3初等周期函数的周期
习题4.3
1.求下列各组实数的最小公倍数:
(1) (2)
解:(1) , ,所以 的最小公倍数为 。
(2) ,而 ,所以 的最小公倍数为
2.讨论函数 的周期性。
其次:对于 ,由于 ,
那么若 ,于是 ;
若 ,于是 ,
所以总有

反过来: ,那么 或者
于是有 或者 ,即 ,所以

所以
6.在基数理论定义的乘法下,证明 。
证明:设 ,则 , 是任意有限集,并且 。
作集合: ,显然
作对应 ,而这个对应是从 到 的一一对应,所以 与 对等,从而有: ,即 。

(0775)《中学几何研究》作业一答案(1)

(0775)《中学几何研究》作业一答案(1)

(0775)《中学几何研究》作业一答案一、填空题:1.对于一个公理化系统,其公理的选择应符合三个条件,即相容性、独立性和完备性。

2.黎曼几何的平行公理为过平面上直线外一点,没有直线与已知直线相平行。

3.希尔伯特在其巨著《几何基础》中,建立了完备化的公理系统,其五组基本公理 是关联公理、顺序公理、合同公理、平行公理及连续公理。

4.已知ABC ∆的外接圆半径为R ,三边长分别为,,a b c ,则ABC S ∆=4abc R 。

5.复数(cos sin )z r i θθ=+,该复数的指数形式为i z re θ=。

6.将ABC ∆顺时针绕点O 旋转30得A B C '''∆,该变换可记为(0,30)R ABC A B C -'''∆−−−−→∆。

7.设A '、B '、C '是ABC ∆的边BC 、CA 、AB 所在直线上的点,则A '、B '、C '共线的充要条件是1AC BA CB C B A C B A'''⋅⋅='''。

8.轨迹命题证明的两面性包括完备性和纯粹性。

9.人们常说的尺规作图不可能的三个古典问题是倍立方问题、三等分任意角问题、化圆为方问题。

二、在△ABC 内任取一点P ,直线AP 、BP 、CP 分别交BC 、CA 、AB 于D 、E 、F. 求证:1AF BD CE BF CD AE⋅⋅=第二题图证明:CPA CPB S AF BF S ∆∆=,APB APC S BD CD S ∆∆=,BPC BPA S CE AE S ∆∆= ∴1PCA PBC PAB PCB PAC PABS S S AF BD CE BF CD AE S S S ∆∆∆∆∆∆⋅⋅=⋅⋅=。

三、作图题(只写作法):用尺规求作三角形ABC ,已知,,a b c h m m 。

初等几何研究习题解集123

初等几何研究习题解集123

初等几何研究习题解集
习题一(12页)
2.利用外角定理证明:
2.证明:同一直线两条直线不可能相交。

证:设a l ⊥,b l ⊥,1290∠=∠=︒若a b C =,对ABC 而言,由外角定理可知12∠<∠,这与12∠=∠相矛盾。

,a b 不能相交。

证毕.
4.证明:圆外切四边形一双对边之和等于另一双对边之和叙述并证明逆定理。

证:设四边形ABCD 外切于o 切点为E,F,G,H
AB+CD=AE+EB+CG+GD
=AH+BF+FC+HD =(AH+HD)+(BF+FC)=AD+BC。

证毕.
逆定理:若四边形一双对边之和等于另一双对边之和,则此四边形必有内切圆; 证:设四边形ABCD 中:AB+CD=BC+AD 我们总可以作圆O 切四边形ABCD 的三边AB,AD,DC,于
E,H,G :
若o 与BC 边不相切,过C 作o 的切线CF(F 为切点).交AB 与N 在四边形ANCD 中,由原定理有,AN+CD= +AD 由已知AB+CD=BC+AD 两式相减AB-AN= BC- BN A,B,N 在同一直线上 ∴BN=BC-NC
这与ABN 中BN>BC-NC 相矛盾,因此N 与B 必重合. 即BC 切o 于F 证毕. 21
l B A C b a
B A
N
A
习题二(18页)
1.证明:两院相交点不能在连心线同一侧;
证:若o与I的交点AB在连心线的同一侧,由于两圆关于轴I对称,那么点A关于I对称点N也是I与o德交点,这样相交圆有三个交点,其交点不能在连心线的同一
侧. 证毕.。

初等几何研究第一章习题的答案(5)

初等几何研究第一章习题的答案(5)

五、关于平行与垂直五、关于平行与垂直 1、I 是△是△ABC ABC 的内心的内心,AI ,AI ,AI、、BI 和CI 的延长线分别交△的延长线分别交△ABC ABC 的外接圆于的外接圆于D 、E 和F.F.求证求证求证:EF :EF :EF⊥⊥AD.AD. 证明证明::已知I 是△是△ABC ABC 的内心的内心, ,∴AD AD、、BE 和CF 是∠是∠BAC BAC BAC、∠、∠、∠ABC ABC 和∠和∠ACB ACB 的角平分线的角平分线 ∴⌒∴⌒BD=BD=BD=⌒⌒CD CD,⌒,⌒,⌒BF=BF=BF=⌒⌒AF AF,⌒,⌒,⌒AE=AE=AE=⌒⌒CE CE ∴⌒∴⌒∴⌒BD+BD+BD+⌒⌒BF+BF+⌒⌒AE=AE=⌒⌒CD+⌒AF+AF+⌒⌒CE CE ∴⌒∴⌒∴⌒DF+DF+DF+⌒⌒AE=AE=⌒⌒DE+DE+⌒⌒AF∴∠∴∠AIF=AIF=AIF=∠∠AIE=AIE=∠∠DIF=DIF=∠∠DIE DIE ∴∴EF EF⊥⊥AD2. A 、B 、C 、D 是圆周上“相继的”四点,P 、Q 、R 、S 分别是弧AB 、BC 、CD 、DA 的中点,求证:PR ⊥QS. 证明:∵P 、Q 、R 、S 分别是AB 、BC 、CD 、DA 的中点的中点 ∴⌒∴⌒AP=AP=AP=⌒⌒PB ,⌒BQ=BQ=⌒⌒QC ,⌒CR=CR=⌒⌒RD ,⌒DS=DS=⌒⌒SA SA ∴⌒∴⌒AP+AP+AP+⌒⌒QC+⌒CR+CR+⌒⌒SA=SA=⌒⌒PB+PB+⌒⌒BQ+BQ+⌒⌒RD+RD+⌒⌒DS DS又∵⌒又∵⌒PQ+PQ+PQ+⌒⌒RS=RS=⌒⌒PB+PB+⌒⌒BQ+BQ+⌒⌒RD+RD+⌒⌒DS , DS , ⌒⌒SP+SP+⌒⌒RQ=RQ=⌒⌒AP+AP+⌒⌒QC+QC+⌒⌒CR+CR+⌒⌒SA SA ∴⌒∴⌒PQ+PQ+PQ+⌒⌒RS=RS=⌒⌒SP+SP+⌒⌒RQ RQ ∴SQ SQ⊥⊥PR PR3、凸四边形ABCD 的每条对角线皆平分它的面积,求证求证:ABCD :ABCD 是平行四边形。

初等几何研究第一章习题地问题详解(3)

初等几何研究第一章习题地问题详解(3)

三、关于比例相似形⒈从 ABCD 的各顶向不过该顶的对角线引垂线,垂足为E 、F 、G 、H,求证: (ⅰ)EFGH 是 ; (ⅱ) EFGH ∽ ABCD. 证明:(1)∵AE ⊥BD DH ⊥AC ∴A 、D 、E 、H 四点共圆(视角相等)∴∠OEH=∠OAD同理 ∠OGF=∠OCB 又∵AD ∥BC ∴∠OAD=∠OCB ∴∠OEH=∠OGF ∴EH ∥GF 同理 EF ∥GH ∴四边形EFGH 为平行四边形(ⅱ)∵△OEH ∽△OAD ∴.OD OHOA OE =∴BDFH AC EG =EFGH 与 ABCD 对角线夹角相等且对角线又成比例 ∴ EFGH ∽ ABCD3.已知:AD 是△ABC 的中线,过C 的一直线分别交AD 、AB 与E 、F 。

求证:AE ·BF=2AF ·ED 证明:延长CF 至点H ,使得CE=EH 连结BH ∵点D 是BC 上的中点 ∴DE 是△CBH 的中位线即DE ∥BH 且DE= 21BH ∵DE ∥BH ∴∠CED=∠CHB=∠AEF ∠AFE=∠BFH∴△AFE ∽△BFH∴BFAFBH AE =,且BH=2ED ∴AE ·BF=2AF ·ED DACBEFGG H4.直线l 与□ABCD 的边AB 、AD 和对角线AC 依次相交于E 、F 和G 。

求证:AGACAF AD AEAB =+ 证明:连结BF 、BE 、CF 和CE , ∵SS SS AEFACF AEFABF AEAB ==SS SS AEFACE AEFADE AFAD==∴AGACAG GC AG AFADAE AB SS SSS SAEFCEFAEFAEFACEACF=+=+=+=+5. AB 证明:作CD 的延长线到点H ,使得AH 垂直CH 作点C 的延长线,使得CP 垂直ABABCP AD AC DH CH CP AD AC AB BP AP DH CH BP DH AP CH CPB AHD CBP DAC APH CBAD CPB AHD DH CH CP AD DH CH DH CH AD DH CH AD CH DH AD CH AH AC ⋅+=+⋅+==+=+==∆≅∆∴∠=∠=∠==∠=∠+⋅+=-++=-+=+-=+=222222222222222 )( 90)( ))(( )( )( 故有又6.AD 是Rt △ABC 斜边上的高,作DE ⊥AB 于E,DF ⊥AC 于F.求证:AD 3=BC •BE •CF证明:∵ AD 2=BD •DC, BD 2=BE •BA, CD 2=CF •CA,B∴ AD 4=BE •CF •AB •AC=BE •CF •BC •AD 约去AD,得AD 3=BC •BE •CF7.在△ABC 中,∠A=60°,∠B=80°。

初等数学研究第一章到第十三章全部答案

初等数学研究第一章到第十三章全部答案

习题一1、数系扩展的原则是什么?有哪两种扩展方式?(P9——P10) 答:设数系A 扩展后得到新数系为B ,则数系扩展原则为:(1)B A ⊂(2)A 的元素间所定义的一些运算或几本性质,在B 中被重新定义。

而且对于A 的元素来说,重新定义的运算和关系与A 中原来的意义完全一致。

(3)在A 中不是总能实施的某种运算,在B 中总能施行。

(4)在同构的意义下,B 应当是A 的满足上述三原则的最小扩展,而且有A 唯一确定。

数系扩展的方式有两种:(1)添加元素法。

(2)构造法。

2、对自然数证明乘法单调性:设,,,a b c N ∈则(1),;a b ac bc ==若则(2),;a b ac bc <<若则(3),a b ac bc >>若则;证明:(1)设命题能成立的所有C 组成集合M 。

a b,a a 1,b b 1,P13(1),(1)a 111,a ac a c ac a bc b c bc b b Mc M c bc==⋅=⋅=+=+=+=+''∴⋅=⋅∴∈∈= (规定)假设即ac ,ac a c .bc a ba bcbc bc M ==∴+=+∴=''∴∈' 又 由归纳公理知,,N M =所以命题对任意自然数成立。

(2),,.a b b a k k N <=+∈若则有 (P17定义9)由(1)有()bc a k c =+a c kc =+ac bc ∴< (P17.定义9)或:,,.a b b a k k N <=+∈若则有 bc ()a k c ac kc =+=+ ()ac ac kc a k c bc ∴<+=+=.ac bc ∴=(3),,.a b a b k k N >=+∈若则有a ().cb kc bc kc =+<+ac bc ∴>3、对自然数证明乘法消去律:,,,a b c N ∈设则(1),;ac bc a b ==若则(2)ac bc a b <<若,则;(3)ac bc a b >>若,则。

初等几何研究第一章习题的答案(1)

初等几何研究第一章习题的答案(1)

初等⼏何研究第⼀章习题的答案(1)初等⼏何研究试题答案⼀、线段与⾓的相等 P4911. ⊙O 1、⊙O 2相交于A 、B,⊙O 1的弦BC 交⊙O 2于E,⊙O2的弦BD 交⊙O 1于F, 求证: (1)若∠DBA=∠CBA,则DF=CE; (2)若DF=CE,则∠DBA=∠CBA. 证明:(1)连接AC 、AE 、AF 、AD在⊙O 1中,由∠CBA=∠DBA 得AC=AF 在⊙O 2中,由∠CBA=∠DBA 得AE=AD 由A 、C 、B 、E 四点共圆得∠1=∠2 由A 、D 、B 、E 四点共圆得∠3=∠4 所以△ACE ≌△AF ∴DF=CE(2)由(1)得∠1=∠2,∠3=∠4 ∵DF=CE ∴△ACE ≌△AFD ∴AD=AE在⊙O 2中,由AD=AE 可得∠DBA=∠CBA2.在△ABC 中,AC=BC,∠ACB=90O ,D 是AC 上的⼀点,AE ⊥BD 的延长线于E,⼜AE=12BD,求证:BD 平分∠ABC. 证明:延长AE,BC 交于点FAED BCA 90 ADE BDC CBD CAFACF BCA 90 AC BC ACF BCD AF BD 11AE BD AE AF22ABEE BE BE ABF BD ABC∠=∠=?∠=∠∴∠=∠∠=∠=?=∴∴==∴=⊥∴∠∠⼜⼜⼜平分即平分3.已知在凸五边形ABCDE 中,∠BAE=3α,BC=CD=DE,且∠BCD=∠CDE=180o-2α, 求证:∠BAC=∠CAD=∠DAE.证明:连接BD,得ΔCBD 是等腰三⾓形且底⾓是∠CDB=[180o-(180o-2α)]÷2=α.∴∠BDE=(180°-2α)-α=180o-3α∴A 、B 、D 、E 共圆同理A 、C 、D 、E 共圆∴∠BAC=∠CAD=∠DAE4.设H 为锐⾓△ABC 的垂⼼,若AH 等于外接圆的半径.求证:∠BAC=60o 证明:过点B 作BD ⊥BC,交圆周于点D,连结CD 、AD ∵∠DBC=90o, ∴CD 是直径,则∠CAD=90o 由题,可得AH ⊥BC, BH ⊥AC ∴BD ∥AH, AD ∥BH ∴四边形ADBH 是□∴AH=BD ⼜∵AH 等于外接圆的半径(R) ∴BD=R,⽽CD=2R ∴在Rt △BCD 中,CD=2BD,即∠BCD=30o ∴∠BDC=60o ⼜∵∠BAC=∠BDC∴∠BAC=∠BDC=60o5. 在△ABC 中,∠C=90o ,BE 是∠B 的平分线,CD 是斜边上的⾼,过BE 、CD 之交点0且平⾏于AB 的直线分别交AC 、BC 于F 、G,求证AF=CE. 证明:如图∵∠1=∠3,∠1=∠2. ∴∠2=∠3, ∴GB = GO, ∵∠5=∠4=∠6,∴CO =CE, ∵ FG ∥AB, ∴AF /CF=BG /CG=GO /CG, ⼜∵△FCO ∽△COG,∴CO /CF=GO /CG=AF /CF, ∴CO=AF, ∵CO=CE, ∴AF=CE.6. 在△ABC 中,先作⾓A 、B 的平分线,再从点C 作上⼆⾓的平分线值平⾏线,并连结它们的交点D 、E,若DE ∥BA,求证:△ABC 等腰.证明:如图所⽰设AC 、ED 的交点为F ∵AD 是∠A 的平分线∴∠1=∠2 ∵DE ∥AB ∴∠1=∠3 ∵CE ∥AD ∴∠3=∠5, ∠4=∠2 ∴∠1=∠2=∠3=∠4=∠5则△FAD 和△FCE 是等腰三⾓形∴AF=DF,EF=CF ∴AC=DE 同理可证 BC=DE ∴AC=BC ∴△ABC 是等腰三⾓形7. 三条中线把△ABC 分成6个三⾓形,若这六个三⾓形的内切圆中有4个相等. 求证:△ABC 是正三⾓形.证明:∵△AOF 、△AOE 、△COD 、△COE 、△BOF 、△BOD ⾯积都相等∴S △OFB =S △OEC 即:21BF ×r+21FO ×r+21BO ×r=21CE ×r+21OE ×r+21OC ×r 21 (BF+FO+BO)×r=21 (CE+OE+OC)×r ∴r rOF E AHIG LK JBF+FO+BO=CCE+OE+OC∴CE+OE+OC-OG-OI=CE+OE+OC-OL-OJ ∴2DH+2BH=2FK+2CK ∴2BF=2CE ⼜F 、E 分别为AB 、AC 之中点∴AB=AC 同理:AB=BC 故△ABC 是正三⾓形.8. 平⾏四边形被对⾓线分成四个三⾓形中,若有三个的内切圆相等证明:该四边形为菱形.证明:⼜∵△AO B 、△BOC 、△COD 、△DOA 四个三⾓形的⾯积相等()()1122OD DC OC r OB BC OC r ∴++?=++?CD OC OD BC OB OC∴++=++OD OC DC OE OG OB OC BC OI OG++--=++--2222DF CF BH CH ?+=+22DC BCDC BC== ∴四边形为菱形9. 凸四边形被对⾓线分成4个三⾓形,皆有相等的内切圆,求证:该四边形是菱形 . 证明:连结O 1 、O 2,分别作O 1 、O 2到AC 的垂线,垂⾜分别为P 、M∵在△ABC 中,BO 是☉O 1 、☉O 2的公切线∴BO ⊥O 1 O 2⼜∵☉O 1 、☉O 2半径相同,且都与AC 相切∴O 1 O 2‖AC ∴BO ⊥AC BD ⊥AC ∵两个相等的内切圆☉O 1 、☉O 3在对顶三⾓形△AOB 与△COD 中∴周长C △AOB =C △COD ∴AO+BO+AB=CO+DO+CD ⼜∵OP=OQ=OM=ON ∴(AO+BO+AB)-(OP+OQ)= (CO+DO+CD)-(OM+ON) ∴2AB=2CD ∴AB=CD 同理AD=BC∴四边形ABCD 是平⾏四边形⼜∵AC ⊥BD ∴四边形ABCD 是菱形10. 在锐⾓△ABC 中,BD,CE 是两⾼,并⾃B 作BF ⊥DE 于F,⾃C 作CG ⊥DE 于G ,证明:EF=DG .证明:设O,M 分别是BC,FG 的中点, 所以OM ∥BF,因为BF ⊥FG , 所以OM ⊥FG ,ABDCEFIHGO ABDCP NO 1O 2O O 3O 4 M Q MGFEDA⼜因为∠BEC=∠BDC=90所以BCDE四点在以BC为直径的圆上, 因为OM⊥DE, 所以OM平分ED, 所以FM-EM=MG-MD 即EF=DG.11. △ABC中,M是BC的中点,I是内⼼,BC与内切圆相切与K.求证:直线IM平分线段AK.证明:作出∠A的旁切圆O,设它与BC边和AB,BC的延长线分别切于D,E,F,连接AD交内接圆于L,则因内接圆和旁切圆以A为中点成位似,则:IL⊥BC,即K,I,L共线于是原题借中位线可如下转化MI平分AK, ∴M平分DK ∴BD=KC 后者利⽤圆I与圆O两条外公切线相等∴EG=FH ∴BD+BK=CD+CK 则反推过去,得到IM平分线段AK.12.在△ABC中,M是BC的中点,I是内⼼,A H⊥BC于H,AH交MI于E,求证:AE 与内切圆半径相等.证明:如图所⽰作△ABC的内切圆,∴切点分别交于BC于点K、AB于点F、AC于点G,连接KL与AC∴KL是直径, ⼜∵M为BC的中点,I为内⼼,则A L∥MI⼜∵A H⊥BC ∴A H∥LK ⼜∵点E点I分别都在AH、LK上∴A E∥LI ∴四边形AEIL为平⾏四边形∴A E=LI 命题得证.13. 在矩形ABCD中,M是AD的中点,N是BC的中点,在CD的延长线取P 点,记Q为PM与AC的交点,求证:∠QNM=∠MNP 证明:利⽤矩形的中⼼设O是矩形ABCD的中⼼,则O也是MN的中点, 延长QN交OC的延长线于R,如图,则O ⼜是PR的中点,故NC平分∠PNR.,⽽NM⊥NG. ∴NM平分∠PNQ14. 给定以O为顶点的⾓,以及与此⾓两边相切于A、B的圆周,过A作OB的平⾏线交圆于C,连结OC交圆于E,直线AE交OB于K,求证:OK=KB.证明:如图所⽰,过C作圆的切线交OB延长线于D.∵OD,OA,CD都是圆的切线,且A C∥CD∴四边形ACDO是等腰梯形,∠DOA=∠D∵∠BOC=∠ACO,∠ACO=∠OAKIOMLKHGFEDCBAELKM HGFIB CA∴∠BOC=∠OAK ∵∠DOA=∠D ∴△AOK ~△ODC ∵21=OD CD ∴21=AO KO∵OA=OB ∴OB=OA=2KO,即OK=KB15. 在等腰直⾓?ABC 的两直⾓边CA,CB 上取点D 、E 使CD=CE,从C 、D 引AE 得垂线,并延长它们分别交AB 于K 、L,求证:KL=KB. 证明:延长AC ⾄E'使CE'=CE,再连BE'交AE 的延长线于H. ∵?ABC 是等腰直⾓三⾓形∴AC=BC ,∠ACB=∠BCE'=90° ⼜∵CE=CE' ∴?BCE'≌?ACE ∴∠CAE=∠CBE'∵∠AEC=∠BEH ∴?BHE ∽?ACE ∴∠BHE=∠ACB=90° ∵DL ∥CK ∥E'B 及DC=CE' ∴KL=LB.16. 点M 在四边形ABCD 内,使得ABMD 为平⾏四边形,试证:若∠CBM= ∠CDM,则∠ACD=∠BCM.证明:作AN ∥BC 且AN=BC,连接DN 、NC∵ABMD 为平⾏四边形,AN ∥BC 且AN=BC∴ABCN 、DMCN 为平⾏四边形,AD=BM ∴DN=CM 、AN=BC ∴△ADN ≌△BMC ∴∠1=∠3,∠2=∠4,∠6=∠7∵∠1=∠2 ∴∠3=∠4 ∴A 、C 、N 、D 共圆(视⾓相等)∴∠5=∠7(同弧AD )∴∠5=∠6即∠ACD=∠BCM17. 已知∠ABC=∠ACD=60°,且∠ADB=90°-21∠BDC,求证:△ABC 是等腰的证明:延长CD 使得BD =DE,并连结AE ∵∠ADB =90°-21∠BDC ∴2∠ADB +∠BDC =180° ⼜∠BDC +∠ADB +∠ADE =180° ∴∠ADB =∠ADE ⼜∵BD =DE,AD =AD ∴△ADB ≌△ADE ∴∠ABD =∠AED =60°,AB =AE ⼜∵∠ACD =60°∴△ACE 为正三⾓形∴AC =AE ∴AB =AC ∴△ABC 为等腰三⾓形18.⊙O1、⊙O2半径皆为r,⊙O1平⾏四边形`过的⼆顶A、B,⊙O2过顶点B、C,M是⊙O1、⊙O2的另⼀交点,求证△AMD 的外接圆半径也是r.证明:设O为MB的终点连接CO并延长⊙O1于E 则由对称知O为CE的中点∵O平分MB O平分CE∴MEBC是平⾏四边形∴ME∥BC∥AD∴MEAD亦是平⾏四边形∴△MAE≌△AMD∴△AMD的外接圆半径也为r19. 在凸五边形ABCDE中,有∠ABC=∠ADE,∠AEC=∠ADB,求证:∠BAC=∠DAE.证明:连接BD,CE,设它们相交于F,如图,∵∠AEC=∠ADB. ∴A,E,D,F四点共圆.∴∠DAE=∠DFE. ⼜∠ABC=∠ADE=∠AFE.∴A,B,C,F四点共圆∴∠BAC=∠BFC.⼜∠DFE=∠BFC. ∴∠BAC=∠DAE.20.在锐⾓△ABC中,过各顶点作其外接圆的切线,A、C处的两切线分别交B处的切线于M、N,设BD是△ABC的⾼(D为垂⾜),求证:BD平分∠MDN.证明:如上图,m、n分别表⽰过M、N的切线长,再⾃M作MM’⊥AC于M’, 作NN’⊥AC于N’,则有∵∠N=∠B=∠NCN’∴△MAM’∽△NCN’∴AM’/’CN’=AM/CN=m/n⼜∵MM’∥BD∥NN’∴M’D/DN’=MB/BN=m/n由等⽐性质知m/n=(M’D-AM’)/(DN’-CN’)=AD/DC∴△ADM∽△CDN ∴DM/DN=m/n即DM/m=DN/n∴BD平分∠MDN21.已知:AD、BE、CF是△ABC的三条⾼.求证:DA、EB、FC是△DEF的三条⾓平分线.证明:连结DF、FE、DE ∵C F⊥AB AD⊥BC ∴B、D、H、F共圆∴∠1=∠3 ∵AD⊥BC BE⊥AC ∴B、D、E、A共圆∴∠2=∠3 ∴∠2=∠1 ∴AD平分∠EDF 同理,CF平分∠2 1OEMDB O OCADCB EAFEFD BE 平分∠FED即证:DA 、EB 、FC 是△DEF 的三条⾓平分线22.已知AD 是△ABC 的⾼,P 是AD 上任意⼀点,连结BP-CP,延长交AC 、AB 于E 、F,证DA 平分∠EDF. 证明:过E 、F 两点分别作EH 、FG ,使EH ⊥BC,FG ⊥BC,且交CF 、BE 于I 、J∵EH ⊥BC,AD ⊥BC,FG ⊥BC ∴EH ∥AD ∥FG ∴EI EH =AP AD =FJ FG ∴FJ EI FG EH = ⼜∵GDHDPJ EP = ∴△EIP ∽△JFP ∴PJEPFJ EI =∴△EHD ∽FGD∴∠DFJ =∠DEI ∴∠FDB=∠EDC 即∠ADF=∠AD 即DA 平分∠EDF23.圆内三条弦PP 1、QQ 1、RR 1、两两相交,PP 1与QQ 1交于B,QQ 1与RR 1交于C,RR 1与PP 1交于A,已知:AP=BQ=CR,AR 1=BP 1=CQ 1,求证:ABC 是正三⾓形.解:设AP=BQ=CR=m,AR 1=BP 1=CQ 1, 则由相交弦定理得{m(c+n)=n(b+m) m(a+n)=n(c+m) m(b+n)=n(a+m) 即ma=ncmb=na mc=n 三式相加得m=n 所以a=b=c 即△ABC 是正三⾓形24.H 为?ABC 的垂⼼,D 、E 、F 分别为BC 、CA 、 AB 的中点,⼀个以H 为⼼的圆交DE 于P 、Q, 交EF 于R 、S,交FD 于T 、V . 求证:CP=CQ=AR=AS=BT=BU 证明:连结AS 、AR 、RH由相交弦定理知:AH ·HA`=BH ·HB`=CH ·HC`AS 2=AR 2=AK 2+KR 2设O H 的半径为r, 在?KR 中,KR 2=r 2-HK 2∴AS 2=r 2+(AK+KH )·(AK-HK )=r 2+AH ·(AK-HK) 在?ABC 中,F 、E 为AB 、AC 的中点,且AA ⊥`BC∴AK=KA` ∴AS 2=AR 2=r 2+AH ·HA` 同BC HDEFR S T QK C`A `B `理:BT 2=BU 2=r 2+BH ·HB` CP 2=CQ 2=r 2+CH ·HC`25、在锐⾓三⾓形ABC 中,AD 、BE 、CF 是各边上的⾼,P 、Q 分别在线段DF 、EF 上,且∠PAQ 与∠DAC 同向相等.求证:AP 平分∠FPQ证明:作出△APQ 的外接圆,延长PF 交圆于R,分别连结 RA 、RQ 由图可知,AQPR 内接于圆∴∠PRQ=∠PAQ=∠DAC=21∠DFE 由外⾓定理得,∠PRQ+∠FQR=∠DFE ∴FC ∥RQ ∴AF ⊥RQ FR=FQ ∴AF 垂直平分RQ∴∠ARQ=∠AQR ⼜AQPR 内接于圆∴∠APQ=∠ARQ∠APR=∠AQR ∴∠APQ=∠APR ∴AP 平分∠FPQ00090)2()1(,45,30,15.26=∠==∠=∠=∠=∠=∠=∠??BAC ABAC CQP BRP CPQ BPR ARQ AQR PQR C B A PQR 求证:之外,且在、、是任意三⾓形,RF D E A B C P Q27.已知:凹四边形ABCD 中,?=∠=∠=∠45D B A .求证:AC=BD. 证明: 如图,延长DC 交AB 于点E,延长BC 交AD 于点F.∵?=∠=∠45D A ,DE AE =∴且?=∠90AED ⼜?=∠45B ?=∠∴45ECBDBAC DEB S AEC S EBEC =∴∴=∴。

初等几何研究第一章习题的答案(6)

初等几何研究第一章习题的答案(6)

六、关于共线点与共点线1、 证明四边形两双对边中点连线的交点与两对角线之中点共线 证明:连接EF.FG.GH.HE.HJ.OJ.OI(如图) ∵E.H 分别是AB.AD 的中点,F,G 分别是BC.CD 的中点 ∴EH =12BD FG=12BD ∵EH ∥FG∴四边形EFGH 是平行四边形 ∴ OH=OF∵H.J 分别是AD.AC 的中点,F.I 分别是BG.BD 的中点∴HJ=12CD IF=12CD ∴HJ ∥IF ∴∠JHO=∠FIO∵∠JHO=∠FIO , HJ=FI,HO=FO ∴△JHO ≅△IFO ∴∠HOJ=∠FOI ∴I.O.J 三点共线∴四边形两双对边中点连线的交点,与两对角线之中点共线2. 已知:E ,F 分别在正方形ABCD 的两边BC,CD 上,是∠EAF=45°,但AC 不是∠EAF 的角 平分线,自E,F 作AC 的垂线,垂足分别是P,Q 求证:△BPQ 的外心与B ,C 共线 证明:∵FQ ⊥AC ∴∠ABE=∠AQF 又∵∠EAF=45°∴∠BAE=∠QAF ∴△ABE ∽△AQF 可得 AQ AB AFAE同理可得,△AEP ∽△AFD 即ADAP=AFAE∴AQ AB =AB AP利用切割线定理之逆定理,因△BPQ 的外心在BC 上, 等价于AB,APQ 是切,割线 ∴△BPQ 的外心在BC3.在Rt △AB 为斜边,CH 为斜边上 的高,以AC 为半径作☉A ,过B 作☉A 的任一割线交☉A 于D 、E ,交 CH 于F(D 在B 、F 之间),又作∠ABG=∠ABD ,G 在☉A 上,G 与D 在AB 异侧。

求证:(1)A 、H 、D 共圆。

(2)E 、H 、G 共线。

(3)FD 、FE 、BD 、BE 四线段成比例 证明:如图所示:连结AE 、AD (1)∵BC 2=BH ·BA(摄影定理)BC 2=BD ·BE(割线定理) ∴BD ·BE=BH ·BA ∴A 、H 、D 、E 四点共圆(2)∵∠ABD=∠ABG ∴∠GBH=∠DBH(对称性) 又∵A 、H 、D 、E 四点共圆∴∠FEA=∠DHB(对角等于内对角)∠AHE=∠EDA (同弧所对的角) 又∵AE=AD ∴∠AEF=∠ADF∴∠AEF=∠DHB=∠GHB=∠ADE=∠AHE ∴∠GHB=∠AHE (对顶角) ∴E 、H 、G 三点共线(3)∵∠ABD=∠ABG ∴由对称知:HB 平分∠DHG(∠GHB=∠DHB) 又∵ CH 垂直AB E 、H 、G 三点共线 ∴HC 平分∠DHE ∴HC 、HB 是∠DHE 的内外角平分线∴FE DF =HE HD =BE BD4..设P 是正方形ABCD 内的一点,使PA:PB:PC=1:2:3,将BP 绕B 点朝 着BC 旋转90BP 至Q. 求证:A 、P 、 Q 共线.证明:连接 CQ ,∵PA:PB:PC= 1:2:3 设AP=1 则 BP=2 CP=3∵BP 绕B 点朝着BC 旋转90° ∴∠PBQ=90°BP=BQ=2 ①∠BPQ=∠BQP=45° ∴PQ =√BP 2+BQ 2=2√2ADC FBE PQ又∵四边形ABCD 是正方形 ∴AB=BC ② ∴∠ABC=∠PBQ= 90°即∠ABP+∠PBC=∠CBQ +∠PBC=90° ∴∠ABP=∠CBQ ③ ∴△ABP ≌△CBQ(由①②③可得到) ∴PA=QC=1又∵PQ 2+QC 2=(2√2)2+12=32=PC 2 ∴∠PQC=90°, ∠BQC=∠PQC+∠BQP=90+45°=135°又∵∠APB=180°-45°=135° ∴∠BQC=∠APB=135° 即A 、P 、Q 共线(∠APB 、∠BQP 是邻补角)5. 在∆ABC 中,D,E,F 分别在AB.BC.CA 上,使得DE=BE,EF=CE.求证:∆ADF 的外心O 在∠DEF 的角平分线上。

初等几何研究参考答案

初等几何研究参考答案

初等几何研究参考答案初等几何是数学中的一门基础学科,它研究的是平面和空间中的点、线、面以及它们之间的关系。

在学习初等几何的过程中,我们经常会遇到各种问题和难题,而参考答案则是我们解决问题的重要工具之一。

本文将探讨初等几何研究中的参考答案,并探讨其在学习过程中的作用和意义。

初等几何的参考答案是指针对具体问题给出的解答或解决方法。

它可以帮助我们验证自己的解答是否正确,也可以作为我们学习的参考和借鉴。

在学习初等几何的过程中,我们经常会遇到一些难题,有时候我们可能会陷入困境,不知道如何下手。

这时,参考答案就可以给我们提供一个思路和解题的方法,帮助我们更好地理解和掌握知识。

参考答案不仅仅是解答问题的工具,它还能够帮助我们培养一些重要的数学思维和解决问题的能力。

在初等几何中,我们需要运用一些基本的几何知识和定理来解决问题,而参考答案则可以帮助我们理清思路,找到解决问题的关键点。

通过参考答案的学习和借鉴,我们可以提高我们的分析和推理能力,培养我们的逻辑思维和数学思维。

然而,我们在使用参考答案的时候也需要注意一些问题。

首先,我们不能完全依赖于参考答案,而应该注重自己的思考和独立解题能力。

参考答案只是给出了一种解答方法,我们需要通过自己的思考来理解和掌握这个方法,并且能够灵活运用到其他类似的问题中。

其次,我们需要对参考答案进行深入的分析和思考,而不仅仅是简单地照搬答案。

通过自己的思考和分析,我们可以更好地理解问题的本质和解题的思路,从而提高我们的数学能力。

在学习初等几何的过程中,我们还可以通过参考答案来进行自我评估和提高。

通过对参考答案的对比和分析,我们可以找出自己解题中存在的问题和不足之处,从而加以改进和提高。

同时,我们还可以通过参考答案来扩展和拓宽我们的数学知识,了解一些更深入的定理和推论。

这样,我们就可以在初等几何的学习中不断进步,提高自己的数学水平。

总之,初等几何的参考答案在我们的学习中起着重要的作用。

它不仅可以帮助我们解决问题,还可以培养我们的数学思维和解决问题的能力。

初等数学研究 第1章答案

初等数学研究 第1章答案

习题二答案1添加元素法和构造法,自然数扩充到整数可以看成是在自然数的基础上添加0到扩大的自然数集,再添加负数到整数集;实数扩充到复数可以看成是在实数的基础上构造虚数单位i 满足12-=i ,和有序实数对),(b a 一起组成一个复数bi a +.2(略)3从数的起源至今,总共经历了五次扩充:为了保证在自然数集中除法的封闭性,像b ax =的方程有解,这样,正分数就应运而生了,这是数的概念的第一次扩展,数就扩展为正有理数集.公元六世纪,印度数学家开始用符号“0”表示零.这是数的概念的第二次扩充,自然数、零和正分数合在一起组成算术数集.为了表示具有相反意义的量,引入了负数.并且直到17世纪才对负数有一个完整的认识,这是数的概念的第三次扩充,此时,数的概念就扩展为有理数集.直到19世纪下半叶,才由皮亚诺、戴德金、维尔斯特拉斯等数学家的努力下构建了严格的实数理论.这是数的概念的第四次扩充,形成了实数集.虚数作为一种合乎逻辑的假设得以引进,并在进一步的发展中加以运用.这是数学概念的第五次扩充,引进虚数,形成复数集.4证明:设集合D C B A ,,,两两没有公共元素d c b a ,,,分别是非空有限集D C B A ,,,的基数,根据定义,若b a >,则存在非空有限集'A ,使得B A A ~'⊃;若d c ≥从而必存在非空有限集'C ,使得D C C ~'⊃,所以)(C A ⋃)(D B ⋃⊃所以集合C A ⋃的基数c a +大于集合D B ⋃的基数d b +,所以d b c a +>+.5(1)解:按照自然数序数理论加法定义,1555555155155)25(2535''=++=++⋅=+⋅=+⋅=⋅=⋅(2)解:按照自然数序数理论乘法定义87)6(])15[()15()25(2535'''''''''===+=+=+=+=+6证明:︒1当2=n 时,命题成立.(反证法)()()()()()()()01121,1111111,111101111111,,2,1,0111,,2,1,0)2(212122121212121212122221212122111112111212222121≥++-+⇒≥++-++≥+-+-≥++++∴≥⎪⎪⎭⎫ ⎝⎛-++⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛->-=-++-+-=+++++=>+=≥+++=+++=>≥=︒+++++++++++++++++k k k k k k k k k k k k k k k i k k k k k k i k k i a k a k k a k k a k k a k a a k a a a a a k a a a a a a a a a a a a a a a a a a k i a k n ka a a a a a k i a k k n ,即要证由归纳假设,得,且得,,且时,由当。

初等几何研究作业参考答案

初等几何研究作业参考答案

《初等几何研究》作业参考答案一.填空题1.①射线(或半直线),②。

2. ①两,②度量公理(或阿基米德公理)和康托儿公理。

3.①前4组公理(或绝对几何),②平行公理。

4.①平移,②旋转,③轴对称. 5.1=⋅⋅ZBAZYA CY XC BX 。

6.①交轨法,②三角奠基法,③代数法,④变换法。

7.①反身性、②对称性、③传递性、④可加性. 8.外角. 9.答案不惟一.10.①演绎,②综合,③直接,④反证,⑤同一; 11.1=⋅⋅ZBAZYA CY XC BX .(答-1也对) 12. ①过两点可作一条直线(或其部分),②已知圆心和半径可作一圆(或其部分). 13.①不共线的三点A 、B 、C 及(AB)、(BC)、(CA)构成的点的集合。

14.连续. 15.答案不惟一. 16.①不过,②圆.17.1=⋅⋅ZB AZYA CY XC BX (或-1).18.①写出已知与求作,②分析,③作法,④证明,⑤讨论. 19.①相容,②独立,③完备.20.合同变换、相似变换、射影变换、反演变换等21.对任意直线a 及其外一点A ,在a 和A 决定的平面上,至少有两条过A 与a 不相交的直线. 22.①代数,②解析,③三角,④面积,⑤复数,⑥向量. 23.相等。

24.所求的量可用已知量的有理式或只含平方根的无理式表出. 二.问答题1.对于公理系统∑,若有一组具体事物M ,其性质是已知的,在规定∑中每一个基本概念指M 中某一具体事物后,可验证∑中每个公理在M 中都成立,则称M 为公理系统∑的一个模型;2.①若AB ≡B A '',则d(AB)=d(B A '');②当C BA ˆ时,有d(AB)+d(BC)=d(AC).3.命题“三角形的内角和不大于两个直角” 与欧氏平行公理不等价。

4.结合,介于,合同;结合——即有公共点,介于——即在…之间,合同——相等或完全相等. 5.长度、角度、相等、全等、运动、移置、叠合、重合等.6.由第五公设引出了该公理独立性的问题,对该问题的研究导致了非欧几何等结果的产生. 7.通常用“在……上”、“属于”、“通过”等语句来表述。

初等几何研究习题答案

初等几何研究习题答案

初等几何研究习题答案初等几何研究习题答案几何学是数学的一个重要分支,它研究的是形状、大小、相对位置以及它们之间的关系。

初等几何是几何学的基础,是我们学习数学的第一步。

在初等几何的学习过程中,习题是不可或缺的一部分。

通过解答习题,我们可以巩固所学的知识,提高解决问题的能力。

在这篇文章中,我将为大家提供一些初等几何习题的答案,并探讨一些解题思路。

1. 题目:已知直角三角形ABC,其中∠C=90°,AC=5cm,BC=12cm。

求AB的长度。

解答:根据勾股定理,直角三角形的两个直角边的平方和等于斜边的平方。

设AB=x cm,则根据勾股定理得到方程:5^2 + x^2 = 12^2。

解这个方程可以得到x的值,进而求得AB的长度。

2. 题目:已知平行四边形ABCD,其中AB=5cm,BC=8cm,∠A=60°。

求对角线AC的长度。

解答:平行四边形的对角线相等,所以AC=BD。

根据余弦定理,可以得到方程:AC^2 = AB^2 + BC^2 - 2 * AB * BC * cos∠A。

将已知的数值代入方程,解得AC的长度。

3. 题目:已知等腰梯形ABCD,其中AB∥CD,AB=7cm,CD=12cm,AD=BC=5cm。

求高的长度。

解答:等腰梯形的高是两个底边之间的垂直距离。

根据勾股定理,可以得到方程:AD^2 = AB^2 - h^2。

将已知的数值代入方程,解得高的长度。

4. 题目:已知正方形ABCD,其中AB=8cm。

点E是BC边上的一个点,且BE=3cm。

连接AE,求∠AEB的度数。

解答:正方形的对角线相等,所以AC=BD。

根据正方形的性质,可以得知∠AEB = ∠AED + ∠DEB。

由于AE=AD,所以∠AED=∠ADE。

根据三角形的内角和定理,可以得到∠AED+∠ADE+∠DEB=180°。

将已知的数值代入方程,解得∠AEB的度数。

通过以上几道习题的解答,我们可以看到初等几何的解题思路大致有两种:一种是利用几何定理和公式进行计算,另一种是利用图形的性质和特点进行推理。

初等数学研究习题解答

初等数学研究习题解答

《初等数学研究》习题解答第一章 数系1.1 集合论初步·自然数的基数理论习题1.11.证明集合0{|}x x >与实数集对等。

证明:取对应关系为ln y x =,这个函数构成0(,)+∞与(,)-∞+∞的一一对应,所以集合0{|}x x >与实数集对等。

2.证明()()()A B C A B A C = 证明:()x AB C x A ∀∈⇒∈或x B C ∈,x A ⇒∈或(x B ∈且x C ∈),那么有x A ∈或x B ∈同时还有x A ∈或x C ∈,即x A B ∈同时还有x A C ∈,所以()()()()()x A B A C A B C A B A C ∈⇒⊆反过来:()()x AB AC x A B ∀∈⇒∈且x A C ∈,对于前者有x A ∈或者x B ∈;对于后者有x A ∈或者x C ∈,综合起来考虑,x B ∈与x C ∈前后都有,所以应是“x B ∈且x C ∈”即“x B C ∈”,再结合x A ∈的地位“或者x A ∈”以及前后关系有“x A ∈或x BC ∈”即()x A B C ∈,所以()()()()x AB C A B C A B A C ∈⇒⊇所以()()()A B C A B A C =。

3.已知集合A 有10个元素,,B C 都是A 的子集,B 有5个元素,C 有4个元素,B C有2个元素,那么()BA C -有几个元素?解:集合()BA C -如图1所示:由于452(),(),()r C r B r B C ===,所以32(),()r B C r C B -=-=, 从而1028(())r B A C -=-=, 即()BA C -有8个元素4.写出集合{,,,}a b c d 的全部非空真子集。

图1CBA{,}{},{},{},{,},{,},{,},{,},{,},{,},{,,},{,,},{,,},{,,}a b c d a b a c a d b c b d c d a b c a b d a c d b c d5.证明,按基数理论定义的乘法对加法的分配律成立。

初等数学研究答案第一章到第六章

初等数学研究答案第一章到第六章

大学数学之初等数学研究,李长明,周焕山版,高等教育出版社 习题一1答:原则:(1)A ⊂B(2)A 的元素间所定义的一些运算或基本关系,在B 中被重新定义。

而且对于A 的元素来说,重新定义的运算和关系与A 中原来的意义完全一致。

(3)在A 中不是总能施行的某种运算,在B 中总能施行。

(4) 在同构的意义下,B 应当是A 满足上述三原则的最小扩展,而且由A 唯一确定。

方式:(1)添加元素法;(2)构造法2证明:(1)设命题能成立的所有c 组成集合M 。

a=b ,M 11b 1a ∈∴⋅=⋅∴,假设bc ac M c =∈,即,则M c c b b bc a ac c a ∈'∴'=+=+=',由归纳公理知M=N ,所以命题对任意自然数c 成立。

(2)若a <b ,则bc kc ac bc,k)c (a )1(b k a N k =+=+=+∈∃即,,由,使得 则ac<bc 。

(3)若a>b ,则ac m c bc ac,m )c (b )1(a m b N m =+=+=+∈∃即,,由,使得 则ac>bc 。

3证明:(1)用反证法:若b a b,a b a <>≠或者,则由三分性知。

当a >b 时,由乘法单调性知ac >bc. 当a <b 时,由乘法单调性知ac<bc.这与ac=bc 矛盾。

则a=b 。

(2)用反证法:若b a b,a b a =>或者,则由三分性知不小于。

当a >b 时,由乘法单调性知ac >bc. 当a=b 时,由乘法单调性知ac=bc.这与ac<bc 矛盾。

则a <b 。

(3)用反证法:若b a b,a b a =<或者,则由三分性知不大于。

当a<b 时,由乘法单调性知ac<bc. 当a=b 时,由乘法单调性知ac=bc.这与ac>bc 矛盾。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初等几何研究试题答案一、线段与角的相等 P4911. ⊙O 1、⊙O 2相交于A 、B,⊙O 1的弦BC 交⊙O 2于E,⊙O2的弦BD 交⊙O 1于F, 求证: (1)若∠DBA=∠CBA,则DF=CE; (2) 若DF=CE,则∠DBA=∠CBA. 证明:(1)连接AC 、AE 、AF 、AD在⊙O 1中,由∠CBA=∠DBA 得AC=AF 在⊙O 2中,由∠CBA=∠DBA 得AE=AD 由A 、C 、B 、E 四点共圆得∠1=∠2 由A 、D 、B 、E 四点共圆得∠3=∠4 所以△ACE ≌△AF ∴DF=CE(2)由(1)得∠1=∠2,∠3=∠4 ∵DF=CE ∴△ACE ≌△AFD ∴AD=AE在⊙O 2中,由AD=AE 可得∠DBA=∠CBA2.在△ABC 中,AC=BC,∠ACB=90O ,D 是AC 上的一点,AE ⊥BD 的延长线于E,又AE=12BD,求证:BD 平分∠ABC. 证明:延长AE,BC 交于点FAED BCA 90 ADE BDC CBD CAFACF BCA 90 AC BC ACF BCD AF BD11AE BD AE AF22ABEE BE BE ABF BD ABC∠=∠=︒∠=∠∴∠=∠∠=∠=︒=∴∆≅∆∴==∴=⊥∴∠∠Q Q Q Q 又又又平分即平分3.已知在凸五边形ABCDE 中,∠BAE=3α,BC=CD=DE,且∠BCD=∠CDE=180º-2α, 求证:∠BAC=∠CAD=∠DAE.证明:连接BD,得ΔCBD 是等腰三角形且底角是∠CDB=[180º-(180º-2α)]÷2=α.∴∠BDE=(180°-2α)-α=180º-3α ∴A 、B 、D 、E 共圆同理A 、C 、D 、E 共圆 ∴∠BAC=∠CAD=∠DAE 4.设H 为锐角△ABC 的垂心,若AH 等于外接圆的半径.求证:∠BAC=60º 证明:过点B 作BD ⊥BC,交圆周于点D,连结CD 、AD ∵∠DBC=90º, ∴CD 是直径,则∠CAD=90º 由题,可得AH ⊥BC, BH ⊥AC∴BD ∥AH, AD ∥BH ∴四边形ADBH 是□ ∴AH=BD 又∵AH 等于外接圆的半径(R) ∴BD=R,而CD=2R ∴在Rt △BCD 中,CD=2BD,即∠BCD=30º ∴∠BDC=60º 又∵∠BAC=∠BDC ∴∠BAC=∠BDC=60º5. 在△ABC 中,∠C=90o ,BE 是∠B 的平分线,CD 是斜边上的高,过BE 、CD 之交点0且平行于AB 的直线分别交AC 、BC 于F 、G,求证AF=CE. 证明:如图∵∠1=∠3,∠1=∠2. ∴∠2=∠3, ∴GB = GO, ∵ ∠5=∠4=∠6,∴CO =CE, ∵ FG ∥AB, ∴AF /CF=BG /CG=GO /CG, 又∵△FCO ∽△COG,∴CO /CF=GO /CG=AF /CF, ∴CO=AF, ∵CO=CE, ∴AF=CE.6. 在△ABC 中,先作角A 、B 的平分线,再从点C 作上二角的平分线值平行线,并连结它们的交点D 、E,若DE ∥BA,求证:△ABC 等腰.证明:如图所示 设AC 、ED 的交点为F ∵AD 是∠A 的平分线∴∠1=∠2 ∵DE ∥AB ∴∠1=∠3 ∵CE ∥AD ∴∠3=∠5, ∠4=∠2 ∴∠1=∠2=∠3=∠4=∠5则△FAD 和△FCE 是等腰三角形 ∴AF=DF,EF=CF ∴同理可证 BC=DE ∴AC=BC ∴△ABC 是等腰三角形7. 三条中线把△ABC 分成6个三角形,若这六个三角形的切圆中有4个相等. 求证:△ABC 是正三角形.证明:∵△AOF 、△AOE 、△COD 、△COE 、△BOF 、△BOD 面积都相等∴S △OFB =S △OEC 即:21BF ×r+21FO ×r+21BO ×r=21CE ×r+21OE ×r+21OC ×r 21 (BF+FO+BO)×r=21 (CE+OE+OC)×r ∴BF+FO+BO=CCE+OE+OC∴CE+OE+OC-OG-OI=CE+OE+OC-OL-OJ ∴2DH+2BH=2FK+2CK ∴2BF=2CE 又F 、E 分别为AB 、AC 之中点 ∴AB=AC 同理:AB=BC 故△ABC 是正三角形.8. 平行四边形被对角线分成四个三角形中,若有三个的切圆相等DBC证明:该四边形为菱形.证明:又∵△AO B 、△BOC 、△COD 、△DOA 四个三角形的面积相等()()1122OD DC OC r OB BC OC r ∴++⨯=++⨯OD OC DC OE OG OB OC BC OI OG ++--=++--∴四边形为菱形9. 凸四边形被对角线分成4个三角形,皆有相等的切圆,求证:该四边形是菱形 .证明:连结O 1 、O 2,分别作O 1 、O 2到AC 的垂线,垂足分别为P 、M∵在△ABC 中,BO 是☉O 1 、☉O 2的公切线 ∴BO ⊥O 1 O 2又∵☉O 1 、☉O 2半径相同,且都与AC 相切 ∴O 1 O 2‖AC ∴BO ⊥AC BD ⊥AC ∵两个相等的切圆☉O 1 、☉O 3在对顶三角形△AOB 与△COD 中 ∴周长C △AOB =C △COD ∴AO+BO+AB=CO+DO+CD 又∵OP=OQ=OM=ON ∴(AO+BO+AB)-(OP+OQ)=(CO+DO+CD)-(OM+ON) ∴2AB=2CD ∴AB=CD 同理AD=BC∴四边形ABCD 是平行四边形又∵AC ⊥BD ∴四边形ABCD 是菱形10. 在锐角△ABC 中,BD,CE 是两高,并自B 作BF ⊥DE 于F,自C 作CG ⊥DE 于G ,证明:EF=DG .证明:设O,M 分别是BC,FG 的中点, 所以OM ∥BF,因为BF ⊥FG , 所以OM ⊥FG ,又因为∠BEC=∠BDC=︒90 所以BCDE 四点在以BC 为直径的圆上, 因为OM ⊥DE,所以OM 平分ED, 所以FM-EM=MG-MD 即EF=DG .11. △ABC 中,M 是BC 的中点,I 是心,BC 与切圆相切与K. 求证:直线IM 平分线段AK.证明:作出∠A 的旁切圆O,设它与BC 边和AB,BC连接AD 交接圆于L,则因接圆和旁切圆以A 为中点成位似,BDCIL ⊥BC,即K,I,L 共线 于是原题借中位线可如下转化MI 平分AK, ∴M 平分DK ∴BD=KC 后者利用圆I 与圆O 两条外公切线相等 ∴EG=FH ∴BD+BK=CD+CK 则反推过去,得到IM 平分线段AK.12.在△ABC 中,M 是BC 的中点,I 是心,A H ⊥BC 于H,AH 交MI 于E,求证:AE与切圆半径相等. 证明:如图所示 作△ABC 的切圆,∴切点分别交于BC 于点K 、AB 于点F 、AC 于点G ,连接KL 与AC ∴ KL 是直径, 又∵M 为BC 的中点,I 为心,则A L ∥MI 又∵A H ⊥BC ∴A H ∥LK 又∵点E 点I 分别都在AH 、LK 上 ∴A E ∥LI ∴四边形AEIL 为平行四边形 ∴A E =LI 命题得证.13. 在矩形ABCD 中,M 是AD 的中点,N 是BC 的中点,在CD 的延长线取P 点,记Q 为PM 与AC 的交点,求证:∠QNM =∠MNP证明:利用矩形的中心 设O 是矩形ABCD 的中心,则O 也是MN 的中点, 延长QN 交OC 的延长线于R,如图,则O 又是PR 的中点,故NC 平分∠PNR.,而NM ⊥NG . ∴NM 平分∠PNQ14. 给定以O 为顶点的角,以及与此角两边相切于A 、B 的圆周,过A 作OB 的平行线交圆于C,连结OC 交圆于E,直线AE 交OB 于K,求证:OK=KB.证明:如图所示,过C 作圆的切线交OB 延长线于D. ∵OD,OA,CD 都是圆的切线,且A C ∥CD∴四边形ACDO 是等腰梯形,∠DOA=∠D ∵∠BOC=∠ACO,∠ACO=∠OAK∴∠BOC=∠OAK ∵∠DOA=∠D ∴△AOK ~△ODC ∵21=OD CD ∴21=AO KO ∵OA=OB ∴OB=OA=2KO,即OK=KB15. 在等腰直角∆ABC 的两直角边CA,CB 上取点D 、E 使CD=CE,从C 、D 引AE 得垂线,并延长它们分别交AB 于K 、L,求证:KL=KB. 证明:延长AC 至E'使CE'=CE,再连BE'交AE 的延长线于H. ∵∆ABC 是等腰直角三角形 ∴AC=BC ,∠ACB=∠BCE'=90°E LK M HG FIB C又∵CE=CE' ∴∆BCE'≌∆ACE ∴∠CAE=∠CBE'∵∠AEC=∠BEH ∴∆BHE ∽∆ACE ∴∠BHE=∠ACB=90° ∵DL ∥CK ∥E'B 及DC=CE' ∴KL=LB.16. 点M 在四边形ABCD,使得ABMD 为平行四边形,试证:若∠CBM= ∠CDM,则∠ACD=∠BCM.证明:作AN ∥BC 且AN=BC,连接DN 、NC∵ABMD 为平行四边形,AN ∥BC 且AN=BC∴ABCN 、DMCN 为平行四边形,AD=BM ∴DN=CM 、AN=BC ∴△ADN ≌△BMC ∴∠1=∠3,∠2=∠4,∠6=∠7∵∠1=∠2 ∴∠3=∠4 ∴A 、C 、N 、D 共圆(视角相等) ∴∠5=∠7(同弧AD ) ∴∠5=∠6即∠ACD=∠BCM17. 已知∠ABC=∠ACD=60°,且∠ADB=90°-21∠BDC,求证:△ABC 是等腰的证明:延长CD 使得BD =DE,并连结AE ∵∠ADB =90°-21∠BDC ∴2∠ADB +∠BDC =180° 又∠BDC +∠ADB +∠ADE =180° ∴∠ADB =∠ADE 又∵BD =DE,AD =AD ∴△ADB ≌△ADE ∴∠ABD =∠AED =60°,AB =AE 又∵∠ACD =60°∴△ACE 为正三角形 ∴AC =AE ∴AB =AC ∴△ABC 为等腰三角形18.⊙O 1、⊙O 2半径皆为r,⊙O 1平行四边形`过的二顶A 、B,⊙O 2过顶点B 、C,M是⊙O 1、⊙O 2的另一交点,求证△AMD证明:设O 为MB 的终点 连接CO 并延长⊙O 1于E则由对称知O 为CE 的中点 ∵O 平分MB O ∴MEBC 是平行四边形 ∴ME ∥BC ∥AD∴MEAD 亦是平行四边形 ∴△MAE ≌△∴△AMD 的外接圆半径也为r19. 在凸五边形ABCDE 中,有∠ABC =∠ADE ,∠AEC =∠ADB,求证:∠BAC =∠DAE.证明:连接BD,CE,设它们相交于F,如图,∵∠AEC=∠ADB. ∴A,E,D,F 四点共圆. ∴∠DAE=∠DFE. 又∠ABC=∠ADE=∠AFE. ∴A,B,C,F 四点共圆 ∴∠BAC=∠BFC. 又∠DFE=∠BFC. ∴∠BAC=∠DAE.20. 在锐角△ABC 中,过各顶点作其外接圆的切线,A 、C 处的两切线分别交B 处的切线于M 、N,设BD 是△ABC 的高(D 为垂足),求证:BD 平分∠MDN.证明:如上图,m 、n 分别表示过M 、N 的切线长,再自M 作MM ’⊥AC 于M ’, 作NN ’⊥AC 于N ’,则有 ∵∠N =∠B =∠NCN ’ ∴△MAM ’∽△NCN ’ ∴AM ’/’CN ’=AM/CN=m/n 又∵MM ’∥BD ∥NN ’ ∴M ’D/DN ’=MB/BN=m/n 由等比性质知m/n=(M ’D -AM ’)/(DN ’-CN ’)=AD/DC ∴△ADM ∽△CDN ∴DM/DN=m/n 即DM/m=DN/n ∴BD 平分∠MDN21.已知:AD 、BE 、CF 是△ABC 的三条高.求证:DA 、EB 、FC 是△DEF 的三条角平分线.证明:连结DF 、FE 、DE ∵C F ⊥AB AD ⊥BC ∴B 、D 、H 、F 共圆∴∠1=∠3 ∵AD ⊥BC BE ⊥AC ∴B 、D 、E 、A 共圆 ∴∠2=∠3 ∴∠2=∠1 ∴AD 平分∠EDF 同理,CF 平分∠EFD BE 平分∠FED即证:DA 、EB 、FC 是△DEF 的三条角平分线22.已知AD 是△ABC 的高,P 是AD 上任意一点,连结BP-CP,延长交AC 、AB 于E 、F,证DA 平分∠EDF. 证明:过E 、F 两点分别作EH 、FG ,使EH ⊥BC,FG ⊥BC,且交CF 、BE 于I 、J∵EH ⊥BC,AD ⊥BC,FG ⊥BC ∴EH ∥AD ∥FG ∴EI EH =AP AD =FJ FG ∴FJ EI FG EH = 又∵GDHDPJ EP =∴△EIP ∽△JFP ∴PJEPFJ EI = ∴△EHD ∽FGD∴∠DFJ =∠DEI ∴∠FDB=∠EDC 即∠ADF=∠AD 即DA 平分∠EDF23.圆三条弦PP 1、QQ 1、RR 1、两两相交,PP 1与QQ 1交于B,QQ 1与RR 1交于C,RR 1与PP 1交于A,已知:AP=BQ=CR,AR 1=BP 1=CQ 1,求证:ABC 是正三角形.解:设AP=BQ=CR=m,AR 1=BP 1=CQ 1, 则由相交弦定理得{m(c+n)=n(b+m) m(a+n)=n(c+m) m(b+n)=n(a+m) 即ma=nc mb=na mc=n 三式相加得m=n 所以a=b=c 即△ABC 是正三角形24.H 为∆ABC 的垂心,D 、E 、F 分别为BC 、CA 、 AB 的中点,一个以H 为心的圆交DE 于P 、Q, 交EF 于R 、S,交FD 于T 、V . 求证:CP=CQ=AR=AS=BT=BU 证明:连结AS 、AR 、RH由相交弦定理知:AH ·HA`=BH ·HB`=CH ·HC` AS 2=AR 2=AK 2+KR 2设O H 的半径为r, 在∆KR 中,KR 2=r 2-HK 2∴AS 2=r 2+(AK+KH )·(AK-HK )=r 2+AH ·(AK-HK) 在∆ABC 中,F 、E 为AB 、AC 的中点,且AA ⊥`BC∴AK=KA` ∴AS 2=AR 2=r 2+AH ·HA` 同理:BT 2=BU 2=r 2+BH ·HB` CP 2=CQ 2=r 2+CH ·HC`25、在锐角三角形ABC 中,AD 、BE 、CF 是各边上的高,P 、Q 分别在线段DF 、EF 上,且∠PAQ 与∠DAC 同向相等.求证:AP 平分∠FPQ证明:作出△APQ 的外接圆,延长PF 交圆于R,分别连结 RA 、RQ 由图可知,AQPR 接于圆 ∴∠PRQ=∠PAQ=∠DAC=21∠DFE 由外角定理得,∠PRQ+∠FQR=∠DFE ∴FC ∥RQ ∴AF ⊥RQ FR=FQ ∴AF 垂直平分RQ ∴∠ARQ=∠AQR 又AQPR 接于圆 ∴∠APQ=∠ARQ ∠APR=∠AQR ∴∠APQ=∠APR ∴AP 平分∠FPQ00090)2()1(,45,30,15.26=∠==∠=∠=∠=∠=∠=∠∆∆BAC ABAC CQP BRP CPQ BPR ARQ AQR PQR C B A PQR 求证:之外,且在、、是任意三角形, BC HDEFR S T QK C`A `B ` RFD EABCPQ27.已知:凹四边形ABCD 中,︒=∠=∠=∠45D B A .求证:AC=BD. 证明: 如图,延长DC 交AB 于点E,延长BC 交AD 于点F.∵︒=∠=∠45D A ,DE AE =∴且︒=∠90AED 又︒=∠45B ︒=∠∴45ECBDBAC DEB S AEC S EBEC =∴∆≅∆∴=∴。

相关文档
最新文档