一元二次两根与abc之间的关系

合集下载

一元二次方程根的判别式、根与系数关系

一元二次方程根的判别式、根与系数关系
△>0方程有两个不相等的实数根. △=0方程有两个相等的实数根. △<0方程没有实数根. △≥0方程有两个实数根.
上述命题的逆命题也正确
例1:不解方程判断下列方程根的情况 ① x²-4x-1=0 ②x²+5=2x ③ x²-mx+m²+1=0
例2:k取何值时,方程4 x²-(k+2)x+(k-1)=0 ①有一个根是-1。 ②有两个相等的实根
解:∵方程x²+2ax+1=0有两个不相等的实根 ∴Δ 1=4a²-4>0 既a²>1 方程②中a>1 ∴ 2a²-1>1≠0 既方程②为一元二次方程 Δ 2=4a²-4(2a-1)2=-4(4a-1)(a-1) ∵a²>1 ∴a²-1>0 ∴(4a²-1)>0 2=-4(4a²-1)(a²-1)<0 ∴方程②无实根
一元二次方程的根与系数关系
一元二次方程的根与系数关系(或称韦达定理)是初中数学内容中一个很重要的 知识点,在中考中占有重要的地位,纵观近年全国各地的中考试题,这个知 识点的考查可以解决以下几个问题:
一元二次方程的根与系数的关系 如果一元二次方程ax 2+bx+c=0(a≠0)的两个实数根是x 1,x 2,那么
点评:本题的解题关键是把a、b看作一元二次方程x 2-3x+1=0的 两根,利用根与系数关系得a+b=3,ab=1,再通过运用整体代换 的思想代入运算,问题可求.利用根与系数的关系求与根有关的代数 式的值,
五、利用给出条件,确定一个一元二次方程中某个字母系数的值
例3 已知关于x的方程x 2+px+q=0的两实数根和的平方比两实数根之积 大7,而两实数根差的平方比两实数根之积的3倍小5,求p、q值.
(x 1-x 2) 2=3 x 1·x 2-5 ……③ ∵(x 1-x 2) 2=(x 1+x 2) 2-4 x 1·x 2

第14讲一元二次方程根与系数的关系-尖子班

第14讲一元二次方程根与系数的关系-尖子班

一、一元二次方程根与系数的关系(韦达定理):若21,x x 是关于x 的一元二次方程)0(02≠=++a c bx ax 的两个根,则方程的两个根21,x x 和系数c b a ,,有如下关系:ac x x a b x x =⋅-=+2121,.【例1】先阅读,再填空解题:⑴方程x 2-x -12=0的根是:x 1=3-,x 2=4,则x 1+x 2=1,x 1·x 2=12-;⑵方程2x 2-7x +3=0的根是:x 1=12,x 2=3,则x 1+x 2=72,x 1·x 2=32;⑶方程x 2-3x +1=0的根是:x 1=,x 2=.则x 1+x 2=,x 1·x 2=;⑷根据以上⑴⑵⑶你能否猜出:如果关于x 的一元二次方程mx 2+nx +p =0(m ≠0且m 、n 、p 为常数)的两根为x 1、x 2,那么x 1+x 2、x 1·x 2与系数m 、n 、p 有什么关系?请写出来你的猜想并说明理由.⑸在⑶的条件下,求下列各式的值:①221221x x x x +;②221211x x +【例2】不解方程,求下列方程两根的积与和.⑴25100x x --=⑵22710x x ++=⑶23125x x -=+⑷()137x x x -=+一元二次方程根与系数的关系【例3】(1)设方程24730x x --=的两个根为1x 、2x ,不解方程求下列各式的值①12(3)(3)x x --;②211211x x x x +++;③12x x -(2)已知α、β是方程2520x x ++=的两根,求βααβ+的值.(3)设1x 、2x 是方程()222120x k x k -+++=的两个不同的实根,且()()12118x x ++=,则k 的值是__________.【例4】若方程210x px ++=的一个根为12-,则它的另一根等于__________,p 等于_________【例5】(1)已知关于x 的一元二次方程22(21)0x m x m +-+=有两个实数根1x 和2x .①求实数m 的取值范围;②当22120x x -=时,求m 的值.(2)已知一元二次方程2(1)230m x mx m +++-=有两个不相等的实数根,并且这两个根又不互为相反数.①求m 的取值范围;②当m 在取值范围内取最小偶数时,方程的两根为12,x x ,求2123(14)x x -的值.(3)关于x 的方程20x px q ++=的两根和为1s ,两根的平方和为2s ,两根的立方和为3s ,试求321s ps qs ++的值.(4)已知方程组22200x y x kx y k ⎧+-=⎨--=⎩①②(x 、y 为未知数)⑴求证:不论k 为何实数,方程组总有两个不同的实数解⑵设方程组的两个不同的实数解为11x x y y =⎧⎨=⎩和22x x y y =⎧⎨=⎩求证:221212()()x x y y -+-是一个常数【例6】已知关于x 的方程①2230x mx m -+=的两个实根是1x 、2x 且212()16x x -=。

一元二次方程的根与系数关系及应用

一元二次方程的根与系数关系及应用

代数:一元二次方程根与系数的关系一、一元二次方程的根与系数关系:二、一元二次方程的根与系数关系的应用应用1,验根,不解方程求一元二次方程两根和与两根积,检验两个数是不是一元二次方程的两个根. 应用2,已知方程的一个根,求另一根及方程中未知参数. 应用3,不解方程,利用定理求出关于x 1,x 2的对称式的值..,11,,,11,,213231212132312221等等如x x x x x x x x x x x x ++++++ 应用4,已知方程的两根,求作这个一元二次方程. 应用5,已知两数的和与积,求这两个数. 应用6,求作一个新的一元二次方程,使它的两根与已知方程的两根有某些特殊关系. 应用7,已知方程两个根满足某种关系,确定方程中字母系数的值.应用8,解决其他问题,如讨论根的范围,根的符号及判定三角形的形状等.三、相关练习1.不解方程,求下列各方程两根之和,两根之积.x x 1.025.0.12-= x x 21231.22+= 22322.32=+x x )(4)(.42222222b a b a a b xx b a ≠-=-- 2.已知方程5x 2+kx-6=0的一个根是2,求它的另一个根及k 的值.已知方程7x 2+kx-5=0的一个根是3,求另一个根及k 的值.3.利用根与系数的关系,求一元二次方程2x 2+3x-1=0两个根的(1)平方和,(2)倒数和,(3)立方和,(4)x 1-x 2,(5)1221x x x x + 4.设x 1、x 2是方程3x 2-9x-7=0的两个根,不解方程,求下列各式的值.221122221221)2()1(x x x x x x x x ++ (3)(2x 1+5)(2x 2+5) (4)x 1-x 25.求作一个一元二次方程,使它的两个根是212,313- 6.已知两数和是8,积是-9,求这两个数.7.已知方程2x 2+4x-3=0,不解方程,求作一个一元二次方程,使它的一个根为已知方程两根差的平方,另一根为已知方程两根和的倒数.试求且和分别满足方程、已知实数,1,030311.822≠=-+=-+ab b b a ab a (一)选择题 1.如果方程03622=+-x x 的两个实数根分别为21,x x ,那么21x x ⋅的值是( )(A )3 (B )–3 (C )23-(D )32-2.若21,x x 是方程0532=-+x x 的两个根,则()()1121++x x 的值为( ) (A )–7 (B )1 (C )291+- (D )291--3.方程2x 2-ax +10=0的一个根为2,则a 的值为 ( ) (A) 25 (B )29- (C )49 (D )9 4.已知方程 2x 2+kx -2k +1=0 两实根的平方和为429 ,则k 的值是: (A) -11 (B) 3或-11 (C) 3 (D) 以上都不对5.若方程 x 2-kx +6=0 的两根分别比方程x 2+kx +6=0 的两根大5,则k 的值是:(A) 5 (B) -5 (C) 852 (D) 856.方程x 2-ax -2a=0的两根之和为4a -3,则两根之积为 ( )(A) 1 (B )-2 (C )2 (D )-1(二)填空题1.已知方程01932=+-m x x 的一个根是1,则它的另一个根是_____,m 的值为______。

第三讲 一元二次方程根的判别式与韦达定理(精讲)(解析版)

第三讲   一元二次方程根的判别式与韦达定理(精讲)(解析版)

2023年初高中衔接素养提升专题讲义第三讲 一元二次方程根的判别式与韦达定理(精讲)(解析版)【知识点透析】1、一元二次根的判别式一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+=,把24b ac -叫做一元二次方程20 (0)ax bx c a ++=≠的根的判别式,表示为:24b ac∆=-(1) 当Δ=240b ac ->时,方程有两个不相等的实数根:x =(2) 当Δ=240b ac -=时,因此,方程有两个相等的实数根:1,22b x a=-(3) 当Δ=240b ac -<时,因此,方程没有实数根.【知识点精讲】【例1】已知关于x 的一元二次方程2320x x k -+=,根据下列条件,分别求出k 的范围:(1) 方程有两个不相等的实数根;(2) 方程有两个相等的实数根(3)方程有实数根;(4) 方程无实数根.【解析】:2(2)43412k k ∆=--⨯⨯=-(1) 141203k k ->⇒<;(2) 141203k k -=⇒=;(3) 141203k k -≥⇒≥;(4) 141203k k -<⇒<.【变式1】((2022秋·重庆开州·八年级统考期中)使得关于x 的不等式组6x ―a ≥―10―1+12x <―18x +32有且只有4个整数解,且关于x 的一元二次方程(a ―5)x 2+4x +1=0有实数根的所有整数a 的值之和为( )A .35B .30C .26D .21【答案】B【分析】先求出不等式组的解集,根据有且只有4个整数解可确定a 的取值范围,再通过根的判别式确定a 的取值范围,最后结合两个取值范围找出满足条件的整数相加即可.【详解】解:整理不等式组得:6x ―a ≥―10①―8+4x <―x +12②由①得:x ≥a ―106,由②得:x<4∵不等式组有且只有4个整数解,∴不等式组的4个整数解是:3,2,1,0,∴―1<a―106≤0,解得:4<a≤10,∵(a―5)x2+4x+1=0有实数根,∴Δ=b2―4ac=16―4×(a―5)×1=36―4a≥0,解得:a≤9,∵方程(a―5)x2+4x+1=0是一元二次方程,∴a≠5∴4<a≤9,且a≠5,满足条件的整数有:6、7、8、9;∴6+7+8+9=30,故选:B.【变式2】.已知关于x的一元二次方程:x2﹣(2k+1)x+4(k―12)=0.(1)求证:这个方程总有两个实数根;(2)若等腰△ABC的一边长a=4b、c恰好是这个方程的两个实数根,求△ABC 的周长.【解答】(1)证明:Δ=(2k+1)2﹣4×1×4(k―12)=4k2﹣12k+9=(2k﹣3)2,∵无论k取什么实数值,(2k﹣3)2≥0,∴△≥0,∴无论k取什么实数值,方程总有实数根;(2)解:∵x=2k+1±(2k―3)2,∴x1=2k﹣1,x2=2,∵b,c恰好是这个方程的两个实数根,设b=2k﹣1,c=2,当a 、b 为腰,则a =b =4,即2k ﹣1=4,解得k =52,此时三角形的周长=4+4+2=10;当b 、c 为腰时,b =c =2,此时b +c =a ,故此种情况不存在.综上所述,△ABC 的周长为10.【例2】已知实数x 、y 满足22210x y xy x y +-+-+=,试求x 、y 的值.【解析】:可以把所给方程看作为关于x 的方程,整理得:22(2)10x y x y y --+-+=由于x 是实数,所以上述方程有实数根,因此:222[(2)]4(1)300y y y y y ∆=----+=-≥⇒=,代入原方程得:22101x x x ++=⇒=-.综上知:1,0x y =-=【变式1】(2022秋·湖北武汉·八年级武汉市第一初级中学校考期末)已知a ,b ,c 满足a 2+6b =7,b 2―2c =―1,c 2―2a =―17,则a ―b +c 的值为( )A .―1B .5C .6D .―7【答案】B【分析】首先把a 2+6b =7,b 2―2c =―1,c 2―2a =―17,两边相加整理成a 2+6b +b 2―2c +c 2―2a +11=0,分解因式,利用非负数的性质得出a 、b 、c 的数值,代入求得答案即可.【详解】解:∵a 2+6b =7,b 2―2c =―1,c 2―2a =―17,∴a 2+6b +b 2―2c +c 2―2a =―,∴a 2+6b +b 2―2c +c 2―2a +11=0∴(a ―1)2+(b +3)2+(c ―1)2=0,∴a =1,b =―3,c =1,∴a ―b +c =1+3+1=5.故选:B .【变式2】((2022秋·江苏扬州·八年级统考期中)新定义,若关于x 的一元二次方程:m (x ―a )2+b =0与n (x ―a )2+b =0,称为“同类方程”.如2(x ―1)2+3=0与6(x ―1)2+3=0是“同类方程”.现有关于x 的一元二次方程:2(x ―1)2+1=0与(a +6)x 2―(b +8)x +6=0是“同类方程”.那么代数式ax 2+bx +2022能取的最大值是_________.【答案】2023【分析】根据“同类方程”的定义,可得出a ,b 的值,从而解得代数式的最大值.【详解】∵2(x ―1)2+1=0与(a +6)x 2―(b +8)x +6=0是“同类方程”,∴(a +6)x 2―(b +8)x +6=(a +6)(x ―1)2+1,∴(a +6)x 2―(b +8)x +6=(a +6)x 2―2(a +6)x +a +7,∴b +8=2(a +6)6=a +7 ,解得:a =―1b =2,∴a x 2+bx +2022=―x 2+2x +2022=―(x ―1)2+2023∴当x =1时,a x 2+bx +2022取得最大值为2023.故答案为:2023.2、一元二次方程的根与系数的关系一元二次方程20 (0)ax bx c a ++=≠的两个根为:x x ==所以:12b x x a+==-,12244ac c x x a a⋅====韦达定理:如果一元二次方程20 (0)ax bx c a ++=≠的两个根为12,x x ,那么:1212,b c x x x x a a+=-=【知识点精讲】【例3】若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值:(1) 2212x x +;(2) 1211x x +;(3) 12(5)(5)x x --;(4) 12||x x -.【解析】:由题意,根据根与系数的关系得:12122,2007x x x x +=-=-(1) 2222121212()2(2)2(2007)4018x x x x x x +=+-=---=(2) 121212112220072007x x x x x x +-+===-(3) 121212(5)(5)5()2520075(2)251972x x x x x x --=-++=---+=-(4) 12||x x -====常见的一些变形结论:利用根与系数的关系求值,要熟练掌握以下等式变形:222121212()2x x x x x x +=+-,12121211x x x x x x ++=,22121212()()4x x x x x x -=+-,12||x x -=2212121212()x x x x x x x x +=+,33312121212()3()x x x x x x x x +=+-+等等.韦达定理体现了整体思想.【例4】.已知关于x 的方程220x mx m -+=.(1)若2m =-,方程两根分别为1x ,2x ,求12x x -和3312x x +的值;(2)若方程有一正数,有一负数根,求实数m 的取值范围.【答案】.(14- (2)m <0【解析】(1)由22121212=()4x x x x x x -+-,33212121212()[()3]x x x x x x x x +=++-,借助韦达定理求解.(2)借助韦达定理表示方程有一正数,有一负数根的等价条件,进而求解.【详解】(1)当2m =-时,2222x x +-=即:210x x +-=1212140,1,1x x x x ∆=+>+=-=-因此:2212121212=()45x x x x x x x x -+-=∴-=3322212121212121212()[]()[()3]4x x x x x x x x x x x x x x +=++-=++-=-(2)220x mx m -+=212128,,22m m m m x x x x ∆=-+==21280002m m m m x x ⎧∆=->⎪∴<⎨=<⎪⎩【变式1】已知两不等实数a ,b 满足222a a =-,222b b =-,求22b a a b +的值.【解析】:b a ,是一元二次方程0222=-+x x 的不等实根则有2,2-=-=+ab b a原式=5)(]3))[(()())(()(22222233-=-++=+-+=+ab ab b a b a ab b ab a b a ab b a 【变式2】(2022秋·浙江杭州·八年级杭州外国语学校校考期末)设m 是不小于﹣1的实数,使得关于x 的方程x 2+2(m ﹣2)x +m 2﹣3m +3=0有两个实数根x 1,x 2.(1)若x 21+x 22=2,求m 的值;(2)令T =mx 11―x 1+mx 21―x 2,求T 的取值范围.【答案】(1)1 (2)0<T ≤4且T ≠2【分析】首先根据方程有两个实数根及m 是不小于-1的实数,确定m 的取值范围,根据根与系数的关系,用含m 的代数式表示出两根的和、两根的积.(1)变形x 12+x 22为(x 1+x 2)2-2x 1x 2,代入用含m 表示的两根的和、两根的积得方程,解方程根据m 的取值范围得到m 的值;(2)化简T ,用含m 的式子表示出T ,根据m 的取值范围,得到T 的取值范围.(1)∵关于x 的方程x 2+2(m -2)x +m 2-3m +3=0有两个实数根,∴Δ=4(m -2)2-4(m 2-3m +3)≥0,解得m ≤1,∵m 是不小于-1的实数,∴-1≤m ≤1,∵方程x 2+2(m -2)x +m 2-3m +3=0x 1,x 2,∴x 1+x 2=-2(m -2)=4-2m ,x 1•x 2=m 2-3m +3.∵x 12+x 22=2,∴(x 1+x 2)2-2x 1x 2=2,∴4(m -2)2-2(m 2-3m +3)=2,整理得m 2-5m +4=0,解得m 1=1,m 2=4(舍去),∴m 的值为1;(2)T =mx 11―x 1+mx 21―x 2,=mx 1(1―x 2)+mx 2(1―x 1)(1―x 1)(1―x 2)=m [(x 1+x 2)―2x 1x 2]1―(x 1+x 2)+x 1x 2=m (4―2m ―2m 2+6m ―6)1―4+2m +m 2―3m +3=―2m(m ―1)2m 2―m=―2m(m ―1)2m (m ―1)=2-2m .∵当x =1时,方程为1+2(m ﹣2)+m 2﹣3m +3=0,解得m =1或m =0.∴当m =1或m =0时,T 没有意义.∴―1≤m <1且m ≠0∴0<2-2m ≤4且T ≠2.即0<T ≤4且T ≠2.【变式3】.已知12x x ,是一元二次方程24410kx kx k -++=的两个实数根.(1)是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值,若不存在,请说明理由;(2)若k 是整数,求使12212x x x x +-的值为整数的所有k 的值.【答案】(1)不存在k ;理由见解析;(2)235k =---,,.【详解】(1)假设存在实数k ,使()()12123222x x x x --=-成立.∵一元二次方程24410kx kx k -++=的两个实数根∴()()24004441160k k k k k k ≠⎧⎪⇒<⎨∆=--⋅+=-≥⎪⎩,又1x ,2x 是一元二次方程24410kx kx k -++=的两个实数根∴1212114x x k x x k +=⎧⎪+⎨=⎪⎩∴()()()()222121212121212222529x x x x x x x x x x x x --=+-=+-939425k k k +=-=-⇒=,但0k < .∴不存在实数k ,使()()12123222x x x x --=-成立.(2)∵()22212121221121244224411x x x x x x k x x x x x x k k +++-=-=-=-=-++∴要使其值是整数,只需1k +能整除4,∴11k +=±,2±,4±,注意到0k <,要使12212x x x x +-的值为整数的实数k 的整数值为-2,-3,-5.所以k 的值为235k =---,,【变式4】(2022秋·四川凉山·八年级校考阶段练习)设一元二次方程x 2―2022x +1=0的两根分别为a ,b ,根据一元二次方程根与系数的关系可知:ab =1,记S 1=11+a +11+b ,S 2=11+a2+11+b2,S3=11+a3+11+b3,⋯,S100=11+a100+11+b100,那么S1+S2+S3+⋯+S100=______.【答案】100【分析】根据ab=1得到b=1a ,b2=1a2,b3=1a3,…b100=1a100,代入计算即可.【详解】∵一元二次方程x2―2022x+1=0的两根分别为a,b,∴ab=1,∴b=1a ,b2=1a2,b3=1a3,…b100=1a100,∴S1=11+a+11+1a=11+a+a1+a=1+a1+a=1,S2=11+a2+11+1a2=11+a2+a21+a2=1+a21+a2=1,S100=11+a100+11+1a100=11+a100+a1001+a100=1+a1001+a100=1,∴S1+S2+S3+⋯+S100=1+1+1+…+1100=100,故答案为:100.。

一元二次方程根的判别式及根与系数关系的应用

一元二次方程根的判别式及根与系数关系的应用

2023年9月下半月㊀学习指导㊀㊀㊀㊀一元二次方程根的判别式及根与系数关系的应用◉云南省曲靖市马龙区第三中学㊀刘㊀陈㊀㊀摘要:结合五则典例,探讨一元二次方程根的判别式及根与系数的关系在判断三角形的形状㊁求代数式的值㊁构造倍根方程㊁求代数式的最值㊁求参数的值等方面的运用,帮助学生积累数学活动经验,发展学生核心素养.关键词:一元二次方程;判别式;数学活动经验;核心素养㊀㊀一元二次方程根的判别式及根与系数的关系,可用来判断三角形的形状,求代数式的值,构造倍根方程,求代数式的最值,求参数的值等,这些应用一方面体现了根的判别式及根与系数关系的价值,另一方面也使学生体会到了不同数学知识之间的联系,有利于加深学生对这一部分数学知识的理解与掌握.1判断三角形的形状当一元二次方程的系数或它的两个根是三角形的边长时,一元二次方程和三角形之间就有了联系,利用一元二次方程根的情况可以判断三角形的形状[1].例1㊀已知әA B C的三边长分别为a,b,c,方程(a+c)x2+2b x+(a-c)=0是关于x的一元二次方程.(1)当x=-1时,你能确定әA B C的形状吗?为什么?(2)当方程有两个相等的实根时,你能确定әA B C的形状吗为什么?解析:(1)由题意,把x=-1代入方程,得a+c-2b+a-c=0,整理得a=b.因为a,b,c分别为әA B C 三边的长,所以әA B C为等腰三角形.(2)由题意,Δ=(2b)2-4(a+c)(a-c)=0,整得得b2+c2=a2.因为a,b,c分别为әA B C三边的长,所以由勾股定理的逆定理,得әA B C为直角三角形.评注:当三角形的三边为一元二次方程的系数时,三角形的形状与一元二次方程根的情况也有了联系,本题设置的两个问题对此做了很好的诠释.2求代数式的值当m,n是一元二次方程a x2+b x+c=0的两个根时,根据韦达定理,得m+n=-ba,m n=c a.根据方程根的定义,得a m2+b m+c=0,a n2+b n+c=0;反之,aʂ0时,当m,n满足等式a m2+b m+c=0,a n2+b n+c=0时,则m,n是一元二次方程a x2+b x+c=0的两个根.例2㊀问题情境:小明在学习中遇到了这样一道题 已知字母a,b满足a2-2a-1=0,b2-2b-1=0,且aʂb,试求1a+1b的值.小明的解答为:因为字母a,b满足的两个方程形式一致,所以a,b可以看作方程x2-2x-1=0的两根,根据根与系数的关系,得a+b=2,a b=-1,所以1a+1b=a+b a b=2-1=-2.根据小明的解答过程,请解决下列问题:(1)已知不互为倒数的两个字母a,b分别满足2a2+11a+12=0,12b2+11b+2=0,求b a的值.(2)已知x1,x2是方程(m-1)x2+2m x+2=0的两个根,且满足x2x1+x1x2+x1+x2=2.若a,b,c是әA B C的三边长,且c=23,m2+a2m-8a=0.m2+b2m-8b=0.试求m的值以及әA B C的面积.解析:(1)将12b2+11b+2=0两边都除以b2,得2(1b)2+11ˑ1b+12=0.又因为2a2+11a+12=0,所以a与1b为方程2x2+11x+12=0的两根,根据根与系数,得a1b=6.故ba=16.(2)因为x1,x2是方程(m-1)x2+2m x+2=0的两个根,所以x1+x2=-2m m-1,x1x2=2m-1,16Copyright©博看网. All Rights Reserved.学习指导2023年9月下半月㊀㊀㊀m ʂ1.由x 2x 1+x 1x 2+x 1+x 2=2,整理得m 2-3m +2=0,解得m 1=2,m 2=1(舍去).因此可得a 2-4a +2=0,b 2-4b +2=0,则a ,b 为方程x 2-4x +2=0的两根,于是a +b =4,a b =2,所以a 2+b 2=(a +b )2-2a b =12=c 2,根据勾股定理的逆定理,得әA B C 为直角三角形,故S әA B C =12a b =1.所以m 的值为2,әA B C 的面积为1.评注:本题第(2)小题以m 作为联系的纽带,根据第一个方程中根与系数的关系求出m 的值,然后代入关于a ,b 的方程中消去m ,从而显现出a ,b 的本质,再与勾股定理的逆定理结合,使问题转化为几何问题[2].3求代数式的最值利用一元二次方程根与系数的关系可以求与两根有关的代数式的值,也可以求代数式的最值.当一元二次方程有实数根时,根的判别式大于或等于0,可以据此求得字母的取值范围,当所求代数式化为含有该字母的代数式时,就可以求得它的最值.例3㊀一元二次方程根与系数的关系反映了一元二次方程两根之和㊁两根之积与系数之间的数量关系,相应的命题被称为韦达定理,根据韦达定理解决下面问题:(1)已知m ,n 是一元二次方程2x 2-3x +1=0的两个根,试计算m +n 与m n 的值;(2)如果实数m ,n (m ʂn )分别满足方程m 2-m -1=0,n 2-n -1=0,求代数式1m +1n的值;(3)设方程2x 2+4x +m =0的两个根分别是x 1,x 2,你能求出x 21+x 22的最小值吗?解析:(1)由韦达定理,得m +n =32,m n =12.(2)因为实数m ,n 满足m 2-m -1=0,n 2-n -1=0且m ʂn ,所以m ,n 可看作方程x 2-x -1=0的两根.根据韦达定理,得m +n =1,m n =-1.故1m +1n =m +nm n =-1.(3)因为x 1,x 2是方程2x 2+4x +m =0的两个根,所以Δ=42-4ˑ2ˑm ȡ0,即m ɤ2.根据题意,可得x 1+x 2=-2,x 1x 2=m 2,则x 21+x 22=(x 1+x 2)2-2x 1x 2=4-m .由m ɤ2,得4-m ȡ2,所以x 21+x 22的最小值为2.评注:当a ȡb (b 为常数)时,a 有最小值,且最小值为b ;当a ɤb (b 为常数)时,a 有最大值,且最大值为b .4探讨代数式的值能否为定值对于与一元二次方程的根有关的代数式的值能否为定值这类问题,应先假设这个代数式的值能为定值,从而建立方程求得字母的值,然后检验这个值能否满足原方程有实根,使原方程有实根的值就是符合题意的值.例4㊀已知关于x 的方程k x 2+(1-k )x -1=0.(1)若该方程有两个不等实根,求k 的取值范围.(2)设x 1,x 2是方程k x 2+(1-k )x -1=0的两个根,记S =x 2x 1+x 1x 2+x 1+x 2,试问S 的值能为4吗?若能,求出此时k 的值,并说明理由.解:(1)根据一元二次方程的定义和判别式的意义,得k ʂ0且Δ=(1-k )2-4k ˑ(-1)>0,整理,得(1+k )2>0,解得k ʂ0且k ʂ-1.(2)根据题意,得x 1+x 2=-1-k k ,x 1x 2=-1k.假设S =x 21+x 22x 1x 2+x 1+x 2=(x 1+x 2)2-2x 1x 2x 1x 2+x 1+x 2=4,可得(x 1+x 2)2-6x 1x 2+x 1x 2(x 1+x 2)=0,即(1-k )2k2-6(-1k )+(-1k ) (-1-kk )=0,整理得k 2+3k +2=0,解得k 1=-1,k 2=-2.因为k ʂ0且k ʂ-1,所以当k =-2时,S 的值能为4.评注:一元二次方程根与系数的关系是在方程有实根的情况下进行讨论的,所以利用根与系数关系得到的字母的值,一定要看这个值是否在方程有实根时求得的字母取值范围之内.只有在这个取值范围之内的值才是符合题意的值.积累数学活动经验是数学教学的目标之一.以上四种类型有关根的判别式及根与系数关系的应用,有利于学生明白二者之间的依存关系,以及如何利用这两个工具解答相关问题,也有利于学生积累解题经验,促进学生核心素养的发展.参考文献:[1]黄细把.一元二次方程 联姻 三角形[J ].今日中学生,2015(Z 6):25G26.[2]朱亚邦.勾股定理(逆定理)应用的几种场景[J ].中学生数理化(八年级数学)(配合人教社教材),2017(3):16G17.Z 26Copyright ©博看网. All Rights Reserved.。

一元二次方程两根和_概述说明以及解释

一元二次方程两根和_概述说明以及解释

一元二次方程两根和概述说明以及解释1. 引言1.1 概述一元二次方程在数学中扮演着重要的角色,它是高中阶段数学课程的重点内容之一。

通过解一元二次方程,我们可以找到方程的根,即方程等式两侧相等的值。

而本文将聚焦于探讨一元二次方程两根和这一特定概念。

1.2 文章结构本文共分为五个部分:引言、正文、解释两根和的计算方法、应用举例分析与证明以及结论。

在引言中,我们将简要介绍文章的概述、结构以及目的;正文部分将详细阐述一元二次方程、根的概念以及两根和的重要性;接下来,我们会解释计算两根和的方法,并讨论特殊情况;随后,我们会通过实际生活中的应用场景分析和数学上的证明方法应用举例解析来展示该理论的实际意义和有效性;最后,在结论部分,我们将总结文章主要内容并提出未来研究方向建议。

1.3 目的本文旨在揭示一元二次方程中两根和这一概念对于数学理论和实际应用领域的重要性。

通过本文的探讨,读者可以更好地理解一元二次方程的基本概念和特点,并学会如何计算两根和以及探寻其在各个领域中的应用价值。

同时,本文还旨在为未来研究提供参考和指导,鼓励更多深入探索与发现。

2. 正文:2.1 一元二次方程介绍:一元二次方程是形如ax^2 + bx + c = 0 的方程,其中a, b 和c 是实数且a ≠0。

它是数学中重要的代数方程之一,常被用于描述各种现象和问题。

2.2 一元二次方程的根的概念:一元二次方程的根指的是满足该方程的变量值。

对于一元二次方程ax^2 + bx + c = 0,如果存在实数解,则称其为实根;如果存在复数解,则称其为复根。

通过求解一元二次方程的根,我们可以获得关于变量x 的特定值来满足等式。

2.3 两根和的重要性:"两根和"指的是一元二次方程的两个实根之和。

计算两根和有助于研究方程性质、解析曲线、确定函数最值等问题。

在应用中,例如物理学中的运动学问题或经济学中的成本与收益分析等领域,计算两根和也具有重要意义。

一元二次方程

一元二次方程

由①得:k<-1,由②得且k≥-1 :k<-1,由 得且k≥- k≥
6、如果关于x的一元二次方程 如果关于x 4x+2=0有两个不相等的 kx2-4x+2=0有两个不相等的 实数根,那么k 实数根,那么k的取值范围 是
K<2且k≠0

7、K取何值时,方程 取何值时, (k-2)x2-2(k-1)x+k+1=0 (k2(k(1)有两个不相等的实数根? (1)有两个不相等的实数根? 有两个不相等的实数根 (2)有两个相等的实数根? (2)有两个相等的实数根? 有两个相等的实数根 (3)没有实数根? (3)没有实数根? 没有实数根
一元二次方程
根的判别式及根与系数的关系
一元二次方程的四种解法帮助 我们能解出方程的根, 我们能解出方程的根,但有时我们 不需要知道方程具体的根,而只需要 知道方程的根的情况, 知道方程的根的情况,这时我们该 怎么办呢? 怎么办呢? 思考
一元二次方程ax 一元二次方程ax² + bx + c = 0 ax
(3) 当b² - 4ac < 0时,方程无实数根 时 方程无实数根.
(一)、根的判别式 )、根的判别式
ax²+bx+ 0(a≠ 对于一元二次方程 ax +bx+c=0(a≠0) 根的判别式: b²- 根的判别式:Δ= b -4ac Δ> 0 Δ= 0 Δ< 0 方程有两个不相等的实数根. 方程有两个不相等的实数根. 方程有两个相等的实数根. 方程有两个相等的实数根. 方程没有实数根. 方程没有实数根.

b x1 + x2 = − a源自c x1 • x2 = a
注意隐含条件:方程有两个实数根! 注意隐含条件:方程有两个实数根!

一元二次方程根与系数关系(知识讲解)九年级数学上册基础知识讲与练

一元二次方程根与系数关系(知识讲解)九年级数学上册基础知识讲与练

专题2.14 一元二次方程根与系数关系(知识讲解)【学习目标】掌握一元二次方程的根与系数的关系以及在各类问题中的运用. 【要点梳理】一元二次方程的根与系数的关系 1.一元二次方程的根与系数的关系如果一元二次方程的两个实数根是, 那么,. 注意它的使用条件为a ≠0, Δ≥0.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.2. 一元二次方程的根与系数的关系的应用⎧⎪⎪⎪→→⎨⎪⎪⎪⎩知识框图:1、求代数式的值2、求待定系数一元二次方程求根公式根与系数关系应用3、构造方程4、解特殊的二元二次方程组5、二次三项式的因式分解【典型例题】类型一、由根与系数关系直接求值1.已知x 1,x 2是一元二次方程x 2-3x -1=0的两根,不解方程求下列各式的值:(1)2211+x x (2)1211+x x 【答案】(1)11;(2) -3. 【分析】由一元二次方程的根与系数的关系可得12123,1x x x x +=⋅=-;(1)将所求式子变形为(x 1+x 2)2-2x 1x 2 ,然后整体代入上面两个式子计算即可; (2)将所求式子变形为1212x x x x +⋅,然后整体代入上面两个式子计算即可.解:∵x 1,x 2是一元二次方程x 2-3x -1=0的两根,∵12123,1x x x x +=⋅=-,(1)2211+x x = (x 1+x 2)2-2x 1x 2 =32-2×(-1)=11;)0(02≠=++a c bx ax 21x x ,a b x x -=+21ac x x =21(2)12121211331x x x x x x ++===-⋅-. 【点拨】本题考查了一元二次方程的根与系数的关系,属于基本题目,熟练掌握一元二次方程的两根之和与两根之积与系数的关系是解题关键.举一反三:【变式1】利用根与系数的关系,求下列方程的两根之和、两根之积: (1)2760x x ++=; (2)22320x x --=.【答案】(1)12127,6x x x x +=-=;(2)12123,12x x x x +==-【分析】直接运用一元二次方程根与系数的关系求解即可. 解:(1)这里1,7,6a b c ===.22Δ474164924250b ac =-=-⨯⨯=-=>,∵方程有两个实数根. 设方程的两个实数根是12,x x , 那么12127,6x x x x +=-=. (2)这里2,3,2a b c ==-=-.22Δ4(3)42(2)916250b ac =-=--⨯⨯-=+=>,∵方程有两个实数根.设方程的两个实数根是12,x x ,那么12123,12x x x x +==-.【点拨】本题考查了一元二次方程根与系数的关系,熟知1212,b cx x x x a a+=-=是解题的关键.【变式2】 甲、乙两人同解一个二次项系数为1的一元二次方程,甲抄错了常数项,解得两根分别为3和2,乙抄错了一次项系数,解得两根分别为-5和-1,求原来的方程.【答案】2550x x -+= 【分析】解法一:利用甲乙解出的根,可以得出两个一元二次方程,取甲方程的一次项系数,取乙方程的常数项,即可重新组合出原来正确的方程.解法二:利用根与系数的关系,取甲方程的一次项系数,取乙方程的常数项,即可重新组合出原来正确的方程.解:解法一:设原一元二次方程为2+a b 0+=x x ,代入甲解出的两根3、2得9+3a+b=04+2a+b=0⎧⎨⎩,解得a=5b=6-⎧⎨⎩,因为甲抄错常数项,所以取a=5-同理,代入乙解出的两根-5和-1,可得a=6b=5⎧⎨⎩,而乙抄错了常数项,所以取b=5,综上可得原方程为2550x x -+=解法二:甲抄错常数项,解得两个为3和2,两根之和正确;乙抄错了一次项系数,解得两根为-5和-1,则两根之积正确.设原方程的两根分别为1x 、2x ,可得12+=5x x ,12=5x x ,所以原方程就是2550x x -+=.【点拨】在没有学习根与系数关系之前,可用方程的解的性质,代入两根求出方程系数,学习之后可直接利用根与系数关系得出方程系数,更为简单.类型二、由根与系数关系求参数的值2.关于x 的一元二次方程22(21)0x m x m --+=的两根为,a b ,且4a b ab +=-,求m 的值.嘉佳的解题过程如下: 解:221,a b m ab m +=-=,2214m m ∴-=-, 整理,得2230m m --=, 解得121,3m m =-=.嘉佳的解题过程漏了考虑哪个条件?请写出正确的解题过程. 【答案】m 的值为1-. 【分析】根据一元二次方程根的判别式结合根与系数的关系解答.解:嘉佳的解题过程漏了考虑0∆这一条件.正确的解题过程如下:根据题意得22(21)40m m ∆=--,解得14m. 221,a b m ab m +=-=,2214m m ∴-=-,整理得2230m m --=,解得121,3m m =-=(舍去), m ∴的值为1-.【点拨】本题中忽略0∆这一条件导致错解针对这一类题,我们一定要看清题目中所给的条件,考虑一元二次方程有解的条件是“0∆”,才能得出正确结果.举一反三:【变式1】已知1x 、2x 是方程2220x kx k k -+-=的两个实根,是否存在常数k ,使122132x x x x +=成立?若存在,请求出k 的值;若不存在,请说明理由. 【答案】不存在.理由见分析【分析】根据根与系数关系列出关于k 的方程,根据方程有实数根列出关于k 的不等式,求解即可.解:不存在.∵1x 、2x 是方程2220x kx k k -+-=的两个实根, ∵240b ac -≥,即22(2)4()0k k k ---≥, 解得,0k ≥;由题意可知122x x k +=,212x x k k =-,∵12121212122221122()232x x x x x x x x x x x x x x +=+-=+=, ∵222(2)32)2(k k k k k --=-,解得120,7k k ==-,经检验,27k =-是原方程的解,∵0k ≥,∵不存在常数k ,使122132x x x x +=成立. 【点拨】本题考查了一元二次方程根与系数关系和解方程,解题关键是根据根与系数关系列出方程并求解,注意:根的判别式要大于或等于0.【变式2】 已知方程2 420x x m +-=的一个根比另一个根小4,求这两个根和m 的值.【答案】10x =,24x =-,0m =【分析】设两根为x 1和x 2,根据根与系数的关系得x 1+x 2,x 1·x 2,由|x 2-x 1|=4两边平方,得(x 1+x 2)2-4x 1·x 2=16,代入解得m ,此时方程为x 2+4x=0,解出两根 .解:x 2+4x -2m=0设两根为x 1和x 2,则∵=16+8m>0, 且x 1+x 2=-4,x 1·x 2=-2m 由于|x 2-x 1|=4两边平方得x 12-2x 1·x 2+x 22=16 即(x 1+x 2)2-4x 1·x 2=16 所以16+8m=16 解得:m=0此时方程为x 2+4x=0, 解得 x 1=0 , x 2=−4 .【点拨】本题考查一元二次方程的根与系数的关系,解题的关键是灵活利用一元二次方程根与系数的关系,以及完全平方公式进行变形,求出两根.类型三、根的判断别与根与系数关系综合3、已知一元二次方程220x x m -+=. (1)若方程有两个实数根,求m 的范围;(2)若方程的两个实数根为12x x 、,且1233x x +=,求m 的值. 【答案】(1)1m ≤;(2)34m = 【分析】(1)一元二次方程220x x m -+=有两个实数根,∵≥0,把系数代入可求m 的范围; (2)利用根与系数的关系,已知122x x +=结合1233x x +=,先求12x x 、,再求m . 解:(1)∵方程220x x m -+=有两个实数根,∵()22424440b ac m m =-=--=-≥, 解得1m ≤;(2)由根与系数的关系可知,122x x +=,12x x m =,解方程组1212233x x x x +=⎧⎨+=⎩,解得123212x x ⎧=⎪⎪⎨⎪=⎪⎩,∵12313224m x x ==⨯=.【点拨】本题考查了一元二次方程根的判别式以及根与系数的关系,熟练掌握根的判别式、根与系数的关系是解题的关键.【变式1】已知关于x 的一元二次方程2(8)80x k x k -++=. (1)证明:无论k 取任何实数,方程总有实数根.(2)若221268x x +=,求k 的值.(3)若等腰三角形的一边长为5,另两边长恰好是这个方程的两个根,求这个等腰三角形的周长.【答案】(1)证明见分析;(2)2k =±;(3)这个等腰三角形的周长为21或18. 【分析】(1)根据根的判别式即可得到结论;(2)先计算∵=(8+k )2−4×8k ,整理得到∵=(k−8)2,根据非负数的性质得到∵≥0,然后根据∵的意义即可得到结论;(3)先解出原方程的解为x 1=k ,x 2=8,然后分类讨论:腰长为8时,则k =8;当底边为8时,则得到k =5,然后分别计算三角形的周长.解:(1)22(8)48(8)k k k ∆=+-⨯=-.2(8)0k -,0∴∆,∴无论k 取任何实数,方程总有实数根;(2)221212128,8,68x x k x x k x x +=+=+=,()2221212122x x x x x x +=++,2(8)6816k k ∴+=+,解得2k =±;(3)解方程2(8)80x k x k -++=得12,8x k x ==.∵当腰长为8时,8k . 85138+=>,能构成三角形,∴周长为88521++=.∵当底边长为8时,5k =.55108+=>∴能构成三角形,周长为55818++=.综上,这个等腰三角形的周长为21或18.【点拨】本题考查了一元二次方程ax 2+bx +c =0(a≠0)的根与系数的关系:若方程两个为x 1,x 2,则x 1+x 2=−b a ,x 1•x 2=ca.也考查了一元二次方程的判别式和等腰三角形的性质,掌握这些知识点是解题关键.【变式2】 已知关于x 的一元二次方程()22121202x k x k -++-=.(1)求证:无论k 为何实数,方程总有两个不相等的实数根; (2)若方程的两个实数根1x ,2x 满足123x x -=,求k 的值. 【答案】(1)见分析 (2)0,-2 【分析】(1)根据根的判别式即可求证出答案;(2)可以根据一元二次方程根与系数的关系得k 与的1x 、2x 的关系式,进一步可以求出答案.解:(1)证明:∵()222121422492k k k k ⎛⎫∆=+-⨯-=++ ⎪⎝⎭()2217k =++,∵无论k 为何实数,()2210k +≥, ∵()22170k +∆=+>,∵无论k 为何实数,方程总有两个不相等的实数根;(2)由一元二次方程根与系数的关系得: 1221x x k +=+,212122x x k =-, ∵123x x -=, ∵()2129x x -=, ∵()2121249x x x x +-=,∵()221214292k k ⎛⎫+-⨯-= ⎪⎝⎭,化简得:220k k +=,解得0k =,2-.【点拨】本题主要考查根的判别式和根与系数的关系,熟练掌握概念和运算技巧即可解题.类型四、根与系数关系拓展应用14、已知m ,n 是方程x 2﹣2x ﹣1=0的两个根,是否存在实数a 使﹣(m +n )(7m 2﹣14m +a )(3n 2﹣6n ﹣7)的值等于8?若存在,求出a 的值;若不存在,请说明理由.【答案】存在,a =-6 【分析】根据方程的解的定义得出m 2-2m =1,n 2-2n =1,m +n =2,再整体代入即可得出a 的值. 解:存在,理由如下:∵m ,n 是方程x 2﹣2x ﹣1=0的两个根, ∵m 2﹣2m =1,n 2﹣2n =1,m +n =2, ∵﹣(m +n )(7m 2﹣14m +a )(3n 2﹣6n ﹣7) =﹣(m +n )[7(m 2﹣2m )+a ][3(n 2﹣2n )﹣7] =﹣2×(7+a )(3﹣7) =8(7+a ),由8(7+a )=8得a =﹣6,∵存在实数a =﹣6,使﹣(m +n )(7m 2﹣14m +a )(3n 2﹣6n ﹣7)的值等于8. 【点拨】本题考查了一元二次方程的解、根与系数的关系,解题的关键是得出m 2-2m =1,n 2-2n =1,m +n =2,注意解题中的整体代入思想.【变式1】阅读材料:已知方程p 2﹣p ﹣1=0,1﹣q ﹣q 2=0且pq ≠1,求1pq q+的值. 解:由p 2﹣p ﹣1=0,及1﹣q ﹣q 2=0可知p ≠0, 又∵pq ≠1,∵p ≠1q.∵1﹣q ﹣q 2=0可变形为211()-q q ﹣1=0,根据p 2﹣p ﹣1=0和211()-q q﹣1=0的特征,∵p 、1q 是方程x 2﹣x ﹣1=0的两个不相等的实数根,则p +1q,即11pq q +=. 根据阅读材料所提供的方法,完成下面的解答. 已知:2m 2﹣5m ﹣1=0,21520n n+-=,且m ≠n ,求: (1)mn 的值; (2)2211m n +. 【答案】(1)12-;29.【分析】(1)由题意可知:可以将方程22510m m --=化简为21520m m+-=的形式,根据根与系数的关系直接得:11m n的值; (2)将2211m n +变形为2112m n mn ⎛⎫=+- ⎪⎝⎭求解.解:由22m 5m 10--=知m≠0,∵21520m m+-=, ∵21520n n+-=,m ≠n , ∵11m n≠, ∵1m 和1n是方程2520x x +-=的两个根, (1)由1m 和1n 是方程2520x x +-=的两个根得112m n⋅=-, ∵12mn =-;经检验:12mn =-是原方程的根,且符合题意.(2)由1m和1n是方程2520x x+-=的两个根得115m n+=-,112m n⋅=-,∵2221111225429 m n m n mn⎛⎫+=+-=+=⎪⎝⎭.【点拨】本题考查一元二次方程根与系数关系,代数式的值,乘法公式,掌握一元二次方程根与系数关系与乘法公式恒等变形是解题关键.【变式2】定义:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根为x1,x2(x1<x2),分别以x1,x2为横坐标和纵坐标得到点M(x1,x2),则称点M为该一元二次方程的衍生点.(1)若方程为x2﹣2x=0,写出该方程的衍生点M的坐标.(2)若关于x的一元二次方程x2﹣(2m+1)x+2m=0(m<0)的衍生点为M,过点M向x轴和y轴作垂线,两条垂线与坐标轴恰好围成一个正方形,求m的值.(3)是否存在b,c,使得不论k(k≠0)为何值,关于x的方程x2+bx+c=0的衍生点M始终在直线y=kx﹣2(k﹣2)的图象上,若有请直接写出b,c的值,若没有说明理由.【答案】(1)衍生点为M(0,2);(2)12-;(3)存在,b=﹣6,c=8;【分析】(1)求出方程的两根,根据一元二次方程的衍生点即可解决问题;(2)求出方程的两根,根据一元二次方程的衍生点的定义,再利用正方形的性质构建方程即可解决问题;(3)求出定点,利用根与系数的关系解决问题即可;解:(1)∵x2﹣2x=0,∵x(x﹣2)=0,解得:x1=0,x2=2故方程x2﹣2x=0的衍生点为M(0,2).(2)x2﹣(2m+1)x+2m=0(m<0)∵m<0∵2m<0解得:x1=2m,x2=1,方程x2﹣(2m+1)x+2m=0(m<0)的衍生点为M(2m,1).点M在第二象限内且纵坐标为1,由于过点M向两坐标轴做垂线,两条垂线与x 轴y轴恰好围城一个正方形,所以2m =﹣1,解得12m =-.(3)存在.直线y =kx ﹣2(k ﹣2)=k (x ﹣2)+4,过定点M (2,4), ∵x 2+bx+c =0两个根为x 1=2,x 2=4, ∵2+4=﹣b ,2×4=c , ∵b =﹣6,c =8.【点拨】本题考查一元二次方程的解法及根与系数的关系、正方形的性质等知识,解题的关键是理解题意,学会用转化的思想思考问题.类型五、根与系数关系拓展应用25、如图,在平面直角坐标系中,∵ABC 的BC 边与x 轴重合,顶点A 在y 轴的正半轴上,线段OB ,OC (OB OC <)的长是关于x 的方程2760x x -+=的两个根,且满足CO =2AO .(1)求直线AC 的解析式;(2)若P 为直线AC 上一个动点,过点P 作PD ∵x 轴,垂足为D ,PD 与直线AB 交于点Q ,设∵CPQ 的面积为S (0S ≠),点P 的横坐标为a ,求S 与a 的函数关系式;(3)点M 的坐标为()m,2,当∵MAB 为直角三角形时,直接写出m 的值.【答案】(1)132y x =+; (2)22721,6042721,6042a a a a S a a a ⎧+-⎪⎪=⎨⎪---<<⎪⎩或;(3)m 的值为-3或-1或2或7;【分析】(1)根据一元二次方程的解求出OB 和OC 的长度,然后得到点B ,点C 坐标和OA 的长度,进而得到点A 坐标,最后使用待定系数法即可求出直线AC 的解析式;(2)根据点A ,点B 坐标使用待定系数法求出直线AB 的解析式,根据直线AB 解析式和直线AC 解析式求出点P ,Q ,D 坐标,进而求出PQ 和CD 的长度,然后根据三角形面积公式求出S ,最后对a 的值进行分类讨论即可;(3)根据∵MAB 的直角顶点进行分类讨论,然后根据勾股定理求解即可.(1)解:解方程2760x x -+=得16x =,21x =,∵线段OB ,OC (OB OC <)的长是关于x 的方程2760x x -+=的两个根,∵OB =1,OC =6,∵()10B ,,()6,0C -, ∵CO =2AO ,∵OA =3,∵()0,3A ,设直线AC 的解析式为()0y kx b k =+≠,把点()0,3A ,()6,0C -代入得603k b b -+=⎧⎨=⎩, 解得123k b ⎧=⎪⎨⎪=⎩, ∵直线AC 的解析式为132y x =+; (2)解:设直线AB 的解析式为y =px +q ,把()0,3A ,()10B ,代入直线AB 解析式得30q p q=⎧⎨=+⎩, 解得33p q =-⎧⎨=⎩, ∵直线AB 的解析式为33y x =-+,∵PD ∵x 轴,垂足为D ,PD 与直线AB 交于点Q ,点P 的横坐标为a , ∵1,32P a a ⎛⎫+ ⎪⎝⎭,(),33Q a a -+,(),0D a , ∵()1733322PQ a a a ⎛⎫=-+-+= ⎪⎝⎭,6CD a =+, ∵1176222S PQ CD a a =⋅=⨯⋅+,当点P 与点A 或点C 重合时,即当a =0或6a =-时,此时S =0,不符合题意,当6a <-时,()21772162242S a a a a ⎛⎫⎡⎤=⨯--+=+ ⎪⎣⎦⎝⎭, 当60a -<<时,()21772162242S a a a a ⎛⎫=⨯-+=-- ⎪⎝⎭, 当0a >时,()21772162242S a a a a =⨯+=+, ∵22721,6042721,6042a a a a S a a a ⎧+-⎪⎪=⎨⎪---<<⎪⎩或; (3)解:∵()0,3A ,()10B ,,(),2M m , ∵AB ==AM ==,BM =当∵MAB =90°时,222AM AB BM +=,∵222+=, 解得3m =-,当∵ABM =90°时,222AB BM AM+=,∵222+=, 解得m =7, 当∵AMB =90°时,222AM BM AB +=,∵222+=, 解得11m =-,22m =,∵m 的值为-3或-1或2或7.【点拨】本题考查解一元二次方程、待定系数法求一次函数解析式、三角形面积公式、勾股定理,正确应用分类讨论思想是解题关键.【变式1】PAC △在平面直角坐标系中的位置如图所示,AP 与y 轴交于点(0,2)B ,点P 的坐标为(1,3)-,线段OA ,OC 的长分别是方程29140x x -+=的两根,OC OA >.(1)求线段AC 的长;(2)动点D 从点O 出发,以每秒1个单位长度的速度沿x 轴负半轴向终点C 运动,过点D 作直线l 与x 轴垂直,设点D 运动的时间为t 秒,直线l 扫过四边形OBPC 的面积为S ,求S 与t 的关系式;(3)M 为直线l 上一点,在平面内是否存在点N ,使以A ,P ,M ,N 为顶点的四边形为正方形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.【答案】(1)9 (2)()()221201217317424t t t S t t t ⎧+<≤⎪⎪=⎨⎪-+-<≤⎪⎩ (3)存在满足条件的N 点,其坐标为(2,3)或(-4,0)或(-1,-3).【分析】(1)解方程可求得OA 、OC 的长,则可求得A 、C 的坐标,从而可得AC 长;(2)分两种情况:∵当0<t ≤1时;∵当1<t ≤7时,利用梯形的面积公式即可求解; (3)分两种情况:∵AP 为正方形的对角线时,∵AP 为正方形的边时,根据正方形以及等腰直角三角形的性质,可求得N 点坐标.(1)解:解方程x 2﹣9x +14=0可得x =2或x =7,∵线段OA ,OC 的长分别是方程x 2﹣9x +14=0的两根,且OC >OA ,∵OA =2,OC =7,∵A (2,0),C (﹣7,0),279.AC(2) 解:过点P 作PH ∵OC 于H ,而()1,3P - ,1OH ∴=,3PH = ,6CH =设直线AB 解析式为y =kx +b ,而点B (0,2),∵32k b b -+=⎧⎨=⎩, 解得12k b =-⎧⎨=⎩, ∵直线AB 解析式为y =﹣x +2,∵如图1所示,当0<t ≤1时,点E (﹣t ,t +2),∵S =S 梯形OBED =21122222t t t t (0<t ≤1); ∵如图2所示,当1<t ≤7时,设直线CP 解析式为y =mx +n ,∵C (﹣7,0),点P 的坐标为(﹣1,3),∵703m n m n -+=⎧⎨-+=⎩ ,解得1272m n ⎧=⎪⎪⎨⎪=⎪⎩, ∵直线CP 解析式为1722y x =+, 设17,22E t t , ∵DE =1722t , ∵S =S 梯形OBPH +S 梯形HPED =11172+31+132222t t 217317424t t t ;综上,()()221201217317424t t t S t t t ⎧+<≤⎪⎪=⎨⎪-+-<≤⎪⎩;图1 图2(3) 分两种情况:∵AP 为正方形的对角线时,如图3所示,∵A (2,0),B (0,2),∵∵OAB =45°,∵四边形AMPN 是正方形,∵∵P AN =45°,∵NAM =90°,∵∵OAB +∵P AN =90°,∵点M 在x 轴上,NA ∵x 轴,NP x ∥轴,∵N (2,3);∵AP 为正方形的边时,如图4所示,∵∵OAB =45°,四边形AMNP 是正方形,∵∵NAM =∵OAB =45°,AP =AM ,∵HN =PH =3,∵N (-4,0);如图5所示,四边形ANMP 是正方形,∵PH =NH =3,∵()1,3N --;∵N (-4,0)或(-1,-3),综上可知,存在满足条件的N 点,其坐标为(2,3)或(-4,0)或(-1,-3).图3 图4 图5【点拨】本题为四边形的综合题,考查了一元二次方程、勾股定理、待定系数法、正方形的性质、等腰直角三角形的性质等知识.在(1)中求得OA 、OC 的长是解题的关键,在(2)中分类讨论是解题的关键,在(3)中分类思想的运用是解题的关键.本题考查知识点较多,综合性较强,难度适中.【变式2】 菱形ABCD 的边长为5,两条对角线AC 、BD 相交于O 点,且AO ,BO 的长分别是关于x 的方程22(21)30x m x m +-++=的两根,求m 的值.【答案】3m =-.【分析】由题意可知:菱形ABCD 的边长是5,则AO 2+BO 2=25,则再根据根与系数的关系可得:AO +BO =−(2m −1),AO ∙BO =m 2+3;代入AO 2+BO 2中,得到关于m 的方程后,即可求得m 的值.解:∵AO ,BO 的长分别是关于x 的方程22(21)30x m x m +-++=的两根,设方程的两根为1x 和2x ,可令1OA x =,2OB x =,∵四边形ABCD 是菱形,∵AC BD ⊥,在Rt AOB 中:由勾股定理得:222OA OB AB +=,∵222125+=x x ,则()21212225x x x x +-=,由根与系数的关系得:12(21)x x m +=--,2123x x m ⋅=+,∵[]()22(21)2325m m ---+=, 整理得:22150m m --=,解得:15m =,23m =-又∵0∆>,∵()22(21)430--+>m m ,解得114m <-, ∵3m =-.【点拨】此题主要考查了菱形的性质、勾股定理、以及根与系数的关系,将菱形的性质与一元二次方程根与系数的关系,以及代数式变形相结合解题是一种经常使用的解题方法.。

一元二次方程知识要点

一元二次方程知识要点

文案大全一元二次方程1. 一元二次方程的一般形式: a ≠0时,ax 2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a 、 b 、 c ; 其中a 、 b,、c 可能是具体数,也可能是含待定字母或特定式子的代数式.2. 一元二次方程的解法: 一元二次方程的四种解法要求灵活运用, 其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少.3. 一元二次方程根的判别式: 当ax 2+bx+c=0 (a ≠0)时,Δ=b 2-4ac 叫一元二次方程根的判别式.请注意以下等价命题:Δ>0 <=> 有两个不等的实根; Δ=0 <=> 有两个相等的实根; Δ<0 <=> 无实根; Δ≥0 <=> 有两个实根(等或不等). 4. 一元二次方程的根系关系: 当ax 2+bx+c=0 (a ≠0) 时,如Δ≥0,有下列公式: .acx x abx x )2(a 2ac 4b b x )1(212122,1=-=+-±-=,; ※ 5.当ax 2+bx+c=0 (a ≠0) 时,有以下等价命题:(以下等价关系要求会用公式 ac x x a b x x 2121=-=+,;Δ=b 2-4ac 分析,不要求背记)(1)两根互为相反数 ⇔ a b-= 0且Δ≥0 ⇔ b = 0且Δ≥0;(2)两根互为倒数 ⇔ a c=1且Δ≥0 ⇔ a = c 且Δ≥0;(3)只有一个零根 ⇔ ac = 0且a b-≠0 ⇔ c = 0且b ≠0;(4)有两个零根 ⇔ a c = 0且a b-= 0 ⇔ c = 0且b=0;(5)至少有一个零根 ⇔ ac=0 ⇔ c=0;(6)两根异号 ⇔ ac<0 ⇔ a 、c 异号;(7)两根异号,正根绝对值大于负根绝对值⇔ ac <0且a b->0⇔ a 、c 异号且a 、b 异号;(8)两根异号,负根绝对值大于正根绝对值⇔ ac <0且a b-<0⇔ a 、c 异号且a 、b 同号;(9)有两个正根 ⇔ ac >0,a b->0且Δ≥0 ⇔ a 、c 同号, a 、b 异号且Δ≥0;(10)有两个负根 ⇔ a c >0,a b-<0且Δ≥0 ⇔ a 、c 同号, a 、b 同号且Δ≥0.6.求根法因式分解二次三项式公式:注意:当Δ< 0时,二次三项式在实数范围内不能分解.文案大全ax 2+bx+c=a(x-x 1)(x-x 2) 或 ax 2+bx+c=⎪⎪⎭⎫ ⎝⎛----⎪⎪⎭⎫ ⎝⎛-+--a 2ac 4b b x a 2ac 4b b x a 22. 7.求一元二次方程的公式:x 2-(x 1+x 2)x + x 1x 2 = 0. 注意:所求出方程的系数应化为整数. 8.平均增长率问题--------应用题的类型题之一 (设增长率为x ): (1) 第一年为 a , 第二年为a(1+x) , 第三年为a(1+x)2.(2)常利用以下相等关系列方程: 第三年=第三年 或 第一年+第二年+第三年=总和. 9.分式方程的解法: .0)1(≠),值(或原方程的每个分母验增根代入最简公分母公分母两边同乘最简去分母法.0.2≠分母,值验增根代入原方程每个换元凑元,设元,换元法)(10. 二元二次方程组的解法:.0)3(0)2(0)4(0)1(0)4(0)2(0)3(0)1(0)4)(3(0)2)(1()3(;02;1⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==⎩⎨⎧===------分组为应注意:的方程)()(中含有能分解为方程组)分解降次法(程中含有一个二元一次方方程组法)代入消元(※11.几个常见转化:;;或;;;⎪⎩⎪⎨⎧<-+-=--≥-+=-=-+-=+-+=+-+=--+=+)x x (x x 4)x x ()x x ()x x (x x 4)x x ()x x (x x 2)x 1x (x1x 2)x 1x (x1x x x 4)x x ()x x (x x 2)x x (x x )1(212122122121212212212122222221221221212212221⎪⎩⎪⎨⎧=--=-=-⇒=-4x x .22x x 2x x .12x x )2(221212121)两边平方为(和分类为 ; ⎪⎩⎪⎨⎧-==⇒==.,)2(34x x 34x x )1()916x x (34x x )3(2121222121因为增加次数两边平方一般不用和分类为或 ;.0x ,0x :.1x x B sin A cos ,1A cos A sin ,90B A B sin x ,A sin x )4(2122212221>>=+==+︒=∠+∠==注意隐含条件可推出由公式时且如文案大全AB C cba.0x ,0x :.x ,x ),,(,x ,x )5(212121>>注意隐含条件的关系式推导出含有公式等式面积例如几何定理,相似形系可利用图形中的相等关时若为几何图形中线段长.k ,)6(”辅助未知元“引入些线段的比,并且可把它们转化为某比例式、等积式等条件角三角形、三角函数、如题目中给出特殊的直.,;,)7(知数的关系但总可求出任何两个未般求不出未知数的值少一个时,一方程个数比未知数个数一般可求出未知数的值数时方程个数等于未知数个解三角形1.三角函数的定义:在Rt ΔABC 中,如∠C=90°,那么sinA=c a =斜对; cosA=c b =斜对;tanA=ba=邻对; cotA=a b =对邻.2.余角三角函数关系 ------ “正余互化公式” 如∠A+∠B=90°, 那么:sinA=cosB ; cosA=sinB ; tanA=cotB ; cotA=tanB. 3. 同角三角函数关系:sin 2A+cos 2A =1; tanA ·cotA =1. ※ tanA=A cos A sin ※ cotA=Asin Acos 4. 函数的增减性:在锐角的条件下,正弦,正切函数随角的增大,函数值增大;余弦,余切函数随角的增大,函数值反而减小.5.特殊角的三角函数值:如图:这是两个特殊的直角三角形,通过设k, 它可以推出特殊角的直角三角函数 值,要熟练记忆它们.K3 KKKK2 K230°45°60°ABC ABC文案大全※ 6. 函数值的取值范围: 在0° 90°时.正弦函数值范围:0 1; 余弦函数值范围: 1 0; 正切函数值范围:0 无穷大; 余切函数值范围:无穷大 0.7.解直角三角形:对于直角三角形中的五个元素,可以“知二可求三”,但“知二”中至少应该有一个是边.※ 8. 关于直角三角形的两个公式: Rt △ABC 中: 若∠C=90°, .:m :R :r .m 2cR 2c b a r c c 斜边上中线外接圆半径,内切圆半径,;==-+=9.坡度: i = 1:m = h/l = tan α; 坡角: α.10. 方位角:11.仰角与俯角:12.解斜三角形:已知“SAS ” “SSS ” “ASA ” “AAS ” 条件的任意三角形都可以经过“斜化直”求出其余的边和角.※ 13.解符合“SSA ”条件的三角形:若三角形存在且符合“SSA ”条件,则可分三种情况:(1)∠A ≥90°,图形唯一可解; (2) ∠A <90°,∠A 的对边大于或等于它的已知邻边,图形唯一可解;(3)∠A <90°,∠A 的对边小于它的已知邻边,图形分两类可解. 14.解三角形的基本思路:(1)“斜化直,一般化特殊” ------- 加辅助线的依据;(2)合理设“辅助元k ”,并利用k 进一步转化是分析三角形问题的常用方法-------转化思想; (3)三角函数的定义,几何定理,公式,相似形等都存在着大量的相等关系,利用其列方程(或方程组)是解决数学问题的常用方法---------方程思想.北东北偏西30南偏东70仰角俯角水平线铅垂线lha i=1:m文案大全函数及其图象一 函数基本概念1.函数定义:设在某个变化过程中,有两个变量x,、y, 如对x 的每一个值, y 都有唯一的值与它对应,那么就说y 是x 的函数,x 是自变量.※ 2.相同函数三个条件:(1)自变量范围相同;(2)函数值范围相同;(3)相同的自变量值所对应的函数值也相同.※3. 函数的确定:对于 y=kx 2(k ≠0), 如x 是自变量,这个函数是二次函数;如x 2是自变量,这个函数是一次函数中的正比例函数. 4.平面直角坐标系:(1)平面上点的坐标是一对有序实数,表示为: M (x,y ),x 叫横坐标,y 叫纵坐标; (2)一点,两轴,(四半轴),四象限,象限中点的坐标符号规律如右图:(3) x 轴上的点纵坐标为0,y 轴上的点横坐标为0; 即“x 轴上的点纵为0,y 轴上的点横为0”;反之也 成立;(4)象限角平分线上点M(x,y) 的坐标特征:x=y <=> M 在一三象限角平分线上; x=-y <=> M在二四象限角平分线上. (5)对称两点M(x 1,y 1), N(x 2,y 2) 的坐标特征:关于y 轴对称的两点 <=> 横相反,纵相同; 关于x 轴对称的两点 <=> 纵相反,横相同; 关于原点对称的两点 <=> 横、纵都相反. 5.坐标系中常用的距离几个公式 -------“点求距”(1)如图,轴上两点M 、N 之间的距离:MN=|x 1-x 2|=x 大-x 小 , PQ=|y 1-y 2|=y 大-y 小 . (2)如图, 象限上的点M (x,y ):到y 轴距离:d y =|x|; 到x 轴距离: d x =|y|;22y x r +=到原点的距离:.(3)如图,轴上的点M (0,y )、N (x,0)到原点的距离: MO=|y|; NO=|x|.※(4)如图,平面上任意两点M (x 2,y 2)、N (x 2,y 2)之间的距离: .)y y ()x x (d 221221-+-=xyo + +_ _-- ++ -xyoM(x,y )r xyo M(x,y )N(x,y )C文案大全※ 6. 几个直线方程 :y 轴 <=> 直线 x=0 ; x 轴 <=> 直线 y=0 ; 与y 轴平行,距离为∣a ∣的直线 <=> 直线 x=a ; 与x 轴平行,距离为∣b ∣的直线 <=> 直线 y=b. 7. 函数的图象:(1) 把自变量x 的一个值作为点的横坐标,把与它对应的函数值y 作为点的纵坐标,组成一对有序实数对,在平面坐标系中找出点的位置,这样取得的所有的点组成的图形叫函数的图象;(2) 图象上的点都适合函数解析式,适合函数解析式的点都在函数图象上;由此可得“图象上的点就能代入”-------重要代入!(3) 坐标平面上,横轴叫自变量轴,纵轴叫函数轴;利用已知的图象,可由自变量值查出函数值,也可由函数值查出自变量值;可由自变量取值范围查出对应函数值取值范围,也可由函数值取值范围查出对应自变量取值范围;(4) 函数的图象由左至右如果是上坡,那么y 随x 增大而增大(叫递增函数);函数的图象由左至右如果是下坡,那么y 随x 增大而减小(叫递减函数). 8. 自变量取值范围与函数取值范围:一次函数1. 一次函数的一般形式:y=kx+b . (k ≠0)2. 关于一次函数的几个概念:y=kx+b (k ≠0)的图象是一条直线,所以也叫直线y=kx+b,图象必过y 轴上的点( 0,b )和x 轴上的点( -b/k,0 );注意:如图,这两个点也是画直线图象时应取的两个点. b 叫直线y=kx+b (k ≠0)在y 轴上的截距,b 的本质是直线与y轴交点的纵坐标,知道截距即知道解析式中b 的值.x y (x,y)00(0,b)(-b/k, 0)b -b/k, 即取点对角 03.y=kx+b (k≠0) 中,k,b符号与图象位置的关系:yxok>0, b>0k>0, b<0图象过一二三象限,图象上坡.图象过一三四象限,图象上坡.图象过一二四象限,图象下坡.图象过二三四象限,图象下坡.4. 两直线平行:两直线平行 <=> k1=k2※两直线垂直<=> k1k2=-1.5. 直线的平移:若m>0,n>0, 那么一次函数y=kx+b图象向上平移m个单位长度得y=kx+b+m;向下平移n 个单位长度得y=kx+b-n (直线平移时,k值不变).6.函数习题的四个基本功:(1) 式求点:已知某直线的具体解析式,设y=0,可求出直线与x轴的交点坐标(x0 ,0);设x=0,可求出直线与y轴的交点坐标(0,y0);已知两条直线的具体解析式,可通过列二元一次方程组求出两直线的交点坐标(x0 ,y0);交点坐标的本质是一个方程组的公共解;(2) 点求式:已知一次函数图象上的两个点,可设这个函数为y=kx+b,然后代入这两个点的坐标,得到关于k、b的两个方程,通过解方程组求出k、b,从而求出解析式 ------ 待定系数法;(3) 距求点:已知点M(x0 ,y0)到x轴,y轴的距离和所在象限,可求出点M的坐标;已知坐标轴上的点P到原点的距离和所在半轴,可求出点P的坐标;(4) 点求距:函数题经常和几何相结合,利用点的坐标与它所在的象限或半轴特征可求有关线段的长,从而使得函数问题几何化.正比例函数1.正比例函数的一般形式:y=kx (k≠0);属于一次函数的特殊情况;(即b=0的一次函数)它的图象是一条过原点的直线;也叫直线y=kx.2.画正比例函数的图象:正比例函数y=kx (k≠0)的图象必过(0,0)点和(1,k)点,注意:如图,这两个点也是画正比例函数图象时应取的两个点,即列表如右:xy(x, y)1K(0,0)(1,K)文案大全文案大全3.y=kx (k ≠0)中,k 的符号与图象位置的关系:k>0k<0.象限,图象下坡.4. 求正比例函数解析式:已知正比例函数图象上的一点,可设这个正比例函数为y=kx,把已知点的坐标代入后, 可求k, 从而求出具体的函数解析式------ 待定系数法.二次函数1. 二次函数的一般形式:y=ax 2+bx+c.(a ≠0)2. 关于二次函数的几个概念:二次函数的图象是抛物线,所以也叫抛物线y=ax 2+bx+c ;抛物线关于对称轴对称且以对称轴为界,一半图象上坡,另一半图象下坡;其中c 叫二次函数在y 轴上的截距, 即二次函数图象必过(0,c )点.3. y=ax 2(a ≠0)的特性:当y=ax 2+bx+c (a ≠0)中的b=0且c=0时二次函数为y=ax 2 (a ≠0);这个二次函数是一个特殊的二次函数,有下列特性:(1)图象关于y 轴对称;(2)顶点(0,0);(3)y=ax 2(a ≠0)可以经过补0看做二次函数的一般式,顶点式和双根式,即: y=ax 2+0x+0, y=a(x-0)2+0, y=a(x-0)(x-0). 4. 二次函数y=ax 2+bx+c (a ≠0)的图象及几个重要点的公式:5. 二次函数y=ax 2+bx+c (a ≠0)中,a 、b 、c 与Δ的符号与图象的关系: (1) a >0 <=> 抛物线开口向上; a <0 <=> 抛物线开口向下; (2) c >0 <=> 抛物线从原点上方通过; c=0 <=> 抛物线从原点通过;文案大全c <0 <=> 抛物线从原点下方通过;(3) a, b 异号 <=> 对称轴在y 轴的右侧; a, b 同号 <=> 对称轴在y 轴的左侧;b=0 <=> 对称轴是y 轴;(4) Δ>0 <=> 抛物线与x 轴有两个交点;Δ=0 <=> 抛物线与x 轴有一个交点(即相切); Δ<0 <=> 抛物线与x 轴无交点.6.求二次函数的解析式:已知二次函数图象上三点的坐标,可设解析式y=ax 2+bx+c ,并把这三点的坐标代入,解关于a 、b 、c 的三元一次方程组,求出a 、b 、c 的值, 从而求出解析式-------待定系数法. 8.二次函数的顶点式: y=a(x-h)2+k (a ≠0); 由顶点式可直接得出二次函数的顶点坐标(h, k ),对称轴方程 x=h 和函数的最值 y 最值= k.9.求二次函数的解析式:已知二次函数的顶点坐标(x 0,y 0)和图象上的另一点的坐标,可设解析式为y=a(x-x 0)2+ y 0,再代入另一点的坐标求a ,从而求出解析式.(注意:习题无特殊说明,最后结果要求化为一般式)10. 二次函数图象的平行移动:二次函数一般应先化为顶点式,然后才好判断图象的平行移动;y=a(x-h)2+k的图象平行移动时,改变的是h, k 的值, a 值不变,具体规律如下: k 值增大 <=> 图象向上平移; k 值减小 <=> 图象向下平移; (x-h )值增大 <=> 图象向左平移; (x-h)值减小 <=> 图象向右平移.11. 二次函数的双根式:(即交点式) y=a(x-x 1)(x-x 2) (a ≠0);由双根式直接可得二次函数图象与x 轴的交点(x 1,0),(x 2,0).12. 求二次函数的解析式:已知二次函数图象与x 轴的交点坐标(x 1,0),(x 2,0)和图象上的另一点的坐标,可设解析式为y= a(x-x 1)(x-x 2),再代入另一点的坐标求a ,从而求出解析式. (注意:习题最后结果要求化为一般式)13.二次函数图象的对称性:已知二次函数图象上的点与对称轴,可利用图象的对称性求出已知点的对称点,这个对称点也一定在图象上.反比例函数1. 反比例函数的一般形式:);0k (kx y xk y 1≠==-或图象叫双曲线.※ 2. 关于反比例函数图象的性质: 反比例函数y=kx -1中自变量x 不能取0, 故函数图象与y 轴无交点; 函数值y 也不会是0, 故图象与x 轴也不相交.3. 反比例函数中K的符号与图象所在象限的关系:图象过二四象限,图象上坡.图象过一三象限,图象下坡.k>0k<04. 求反比例函数的解析式:已知反比例函数图象上的一点,即可设解析式y=kx-1, 代入这一点可求k 值,从而求出解析式.函数综合题1.数学思想在函数问题中的应用:数学思想经常在函数问题中得到体现,例如:分析函数习题常常需要先估画符合题意的图象,利用数形结合降低难度;而点求式、式求点、点求距、距求点等基本操作则是转化思想在函数中应用;当函数问题与几何问题相结合时,方程思想则成为解决问题的基本思路;函数习题中,当图象与图形不唯一、点位置不唯一、可知条件不唯一时,往往造成函数问题的分类.2.数学方法在函数问题中的应用:建立坐标系、建立新函数、函数问题几何化、挖掘隐含条件、分类讨论、相等关系找方程、不等关系找不等式、等量代换、配方、换元、待定系数法、等各种数学方法在函数中经常得到应用,了解这些数学方法是十分必要的.3.函数与方程的关系:正比例函数y=kx (k≠0)、一次函数y=kx+b (k≠0)都可以看作二元一次方程,而二次函数y=ax2+bx+c (a≠0)可以看作二元二次方程,反比例函数)0k(xky≠-=可以看作分式方程,这些函数图象之间的交点,就是把它们联立为方程组时的公共解.4.二次函数与一元二次方程的关系:(1)如二次函数y=ax2+bx+c (a≠0)中的Δ>0时,图象与x轴相交,函数值y=0,此时, 二次函数转化为一元二次方程ax2+bx+c=0 (a≠0),这个方程的两个根x1 、x2是二次函数y=ax2+bx+c与x轴相交两点的横坐标,交点坐标为(x1 ,0)(x2 ,0);(2)当研究二次函数的图象与x轴相交时的有关问题时,应立即把函数转化为它所对应的一元二次方程,此时,一元二次方程的求根公式,Δ值,根系关系等都可用于这个二次函数.(3)如二次函数y=ax2+bx+c (a≠0)中的Δ>0时,图象与x轴相交于两点A(x1 ,0),B(x2 ,0)有重要关系式: OA=|x1|, OB=|x2|,若需要去掉绝对值符号,则必须据题意做进一步判断;同样,图象与y轴交点C(0,c),也有关系式: OC=|c|.5.二元二次方程组解的判断:一个二元一次方程和一个二元二次方程组成的方程组,若消去一个未知数,则转化为一元二次方程,此时的Δ值将决定原方程组解的情况,即:Δ>0 <=> 方程组有两个解;Δ=0 <=>方程组有一个解;Δ<0 <=>方程组无实解.文案大全初三数学应知应会的知识点 ( 圆 )几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)文案大全文案大全几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)一基本概念:圆的几何定义和集合定义、弦、弦心距、弧、等弧、弓形、弓形高文案大全文案大全三角形的外接圆、三角形的外心、三角形的内切圆、 三角形的内心、 圆心角、圆周角、 弦 切角、 圆的切线、 圆的割线、 两圆的内公切线、 两圆的外公切线、 两圆的内(外) 公切线长、 正多边形、 正多边形的中心、 正多边形的半径、 正多边形的边心距、 正 多边形的中心角. 二 定理:1.不在一直线上的三个点确定一个圆.2.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆. 3.正n 边形的半径和边心距把正n 边形分为2n 个全等的直角三角形. 三 公式:1.有关的计算:(1)圆的周长C=2πR ;(2)弧长L=180R n π;(3)圆的面积S=πR 2. (4)扇形面积S 扇形 =LR 21360R n 2=π;(5)弓形面积S 弓形 =扇形面积S AOB ±ΔAOB 的面积.(如图) 2.圆柱与圆锥的侧面展开图:(1)圆柱的侧面积:S 圆柱侧 =2πrh ; (r:底面半径;h:圆柱高)(2)圆锥的侧面积:S 圆锥侧 =LR 21. (L=2πr ,R 是圆锥母线长;r 是底面半径)四 常识:1. 圆是轴对称和中心对称图形. 2. 圆心角的度数等于它所对弧的度数.3. 三角形的外心 ⇔ 两边中垂线的交点 ⇔ 三角形的外接圆的圆心;三角形的内心 ⇔ 两内角平分线的交点 ⇔ 三角形的内切圆的圆心.4. 直线与圆的位置关系:(其中d 表示圆心到直线的距离;其中r 表示圆的半径)直线与圆相交 ⇔ d <r ; 直线与圆相切 ⇔ d=r ; 直线与圆相离 ⇔ d >r.5. 圆与圆的位置关系:(其中d 表示圆心到圆心的距离,其中R 、r 表示两个圆的半径且R ≥r )两圆外离 ⇔ d >R+r ; 两圆外切 ⇔ d=R+r ; 两圆相交 ⇔ R-r <d <R+r ; 两圆内切 ⇔ d=R-r ; 两圆内含 ⇔ d <R-r.6.证直线与圆相切,常利用:“已知交点连半径证垂直”和“不知交点作垂直证半径” 的方法加辅助线.7.关于圆的常见辅助线:文案大全文案大全文案大全。

从函数观点看一元二次方程和一元二次不等式(解析版)

从函数观点看一元二次方程和一元二次不等式(解析版)

3.3 从函数观点看一元二次方程和一元二次不等式【知识点梳理】知识点一:一元二次不等式的概念一般地,我们把只含有一个末知数,并且末知数的最高次数是2的不等式,称为一元二次不等式,即形如20(0)ax bx c ++>≥或20(0)ax bx c ++<≤(其中a ,b ,c 均为常数,)0a ≠的不等式都是一元二次不等式.知识点二:二次函数的零点一般地,对于二次函数2y ax bx c =++,我们把使20ax bx c ++=的实数x 叫做二次函数2y ax bx c =++的零点.知识点三:一元二次不等式的解集的概念使一元二次不等式成立的所有未知数的值组成的集合叫做这个一元二次不等式的解集. 知识点四:二次函数与一元二次方程、不等式的解的对应关系对于一元二次方程20(0)ax bx c a ++=>的两根为12x x 、且12x x ≤,设24b ac ∆=-,它的解按照0∆>,0∆=,0∆<可分三种情况,相应地,二次函数2y ax bx c =++(0)a >的图像与x 轴的位置关系也分为三种情况.因此我们分三种情况来讨论一元二次不等式20ax bx c ++>(0)a >或20ax bx c ++<(0)a >的解集. 24b ac ∆=-0∆> 0∆= 0∆<二次函数 2y ax bx c=++(0a >)的图象20(0)ax bx c a ++=>的根有两相异实根 1212,()x x x x <有两相等实根122bx x a ==-无实根20(0)ax bx c a ++>>的解集{}12x x x x x <>或2b x x a ⎧⎫≠-⎨⎬⎩⎭R20(0)ax bx c a ++<>的解集{}12x xx x <<∅ ∅(1)一元二次方程20(0)ax bx c a ++=≠的两根12x x 、是相应的不等式的解集的端点的取值,是抛物线y =2ax bx c ++与x 轴的交点的横坐标;(2)表中不等式的二次系数均为正,如果不等式的二次项系数为负,应先利用不等式的性质转化为二次项系数为正的形式,然后讨论解决;(3)解集分0,0,0∆>∆=∆<三种情况,得到一元二次不等式20ax bx c ++>与20ax bx c ++<的解集.知识点五:利用不等式解决实际问题的一般步骤 (1)选取合适的字母表示题中的未知数;(2)由题中给出的不等关系,列出关于未知数的不等式(组); (3)求解所列出的不等式(组); (4)结合题目的实际意义确定答案. 知识点六:一元二次不等式恒成立问题(1)转化为一元二次不等式解集为R 的情况,即20(0)ax bx c a ++>≠恒成立00a >⎧⇔⎨∆<⎩恒成立20(0)ax bx c a ++<≠00.a <⎧⇔⎨∆<⎩(2)分离参数,将恒成立问题转化为求最值问题. 知识点七:简单的分式不等式的解法 系数化为正,大于取“两端”,小于取“中间”【题型归纳目录】题型一:解不含参数的一元二次不等式 题型二:一元二次不等式与根与系数关系的交汇 题型三:含有参数的一元二次不等式的解法 题型四:一次分式不等式的解法题型五:实际问题中的一元二次不等式问题 题型六:不等式的恒成立问题 【典型例题】题型一:解不含参数的一元二次不等式例1.(2022·全国·高一课时练习)不等式()273x x +≥-的解集为( )A .(]1,3,2⎡⎫-∞-⋃-+∞⎪⎢⎣⎭B .13,2⎡⎤--⎢⎥⎣⎦C .(]1,2,3⎡⎫-∞-⋃-+∞⎪⎢⎣⎭D .12,3⎡⎤--⎢⎥⎣⎦【答案】A【解析】()273x x +≥-可变形为22730x x ++≥, 令22730x x ++=,得13x =-,212x =-,所以3x ≤-或21x ≥-,即不等式的解集为(]1,3,2⎡⎫-∞-⋃-+∞⎪⎢⎣⎭.故选:A.【方法技巧与总结】解不含参数的一元二次不等式的一般步骤(1)通过对不等式的变形,使不等式右侧为0,使二次项系数为正. (2)对不等式左侧因式分解,若不易分解,则计算对应方程的判别式. (3)求出相应的一元二次方程的根或根据判别式说明方程有无实根. (4)根据一元二次方程根的情况画出对应的二次函数的草图. (5)根据图象写出不等式的解集.例2.(多选题)(2022·湖南·株洲二中高一开学考试)与不等式220x x -+>的解集相同的不等式有( ) A .220x x --<+ B .22320x x -+> C .230x x -+≥ D .220x x +->【答案】ABC【解析】因为2(1)4270∆=--⨯=-<,二次函数的图象开口朝上,所以不等式220x x -+>的解集为R ,A.14(1)(2)70∆=-⨯--=-<,二次函数的图象开口朝下,所以220x x --<+的解集为R ;B.2(3)42270∆=--⨯⨯=-<,二次函数的图象开口朝上,所以不等式22320x x -+>的解集为R ;C.2(1)413110∆=--⨯⨯=-<,二次函数的图象开口朝上,所以不等式230x x -+≥的解集为R ;D. 220x x +->,所以(2)(1)0,1x x x +->∴>或2x <-,与已知不符. 故选:ABC例3.(2022·全国·高一课时练习)解下列不等式: (1)262318x x x -≤-<;(2)1232x x +≥-; (3)2320x x -+>.【解析】(1)原不等式等价于22623318x x x x x ⎧-≤-⎨-<⎩,即22603180x x x x ⎧--≥⎨--<⎩,即()()()()320630x x x x ⎧-+≥⎪⎨-+<⎪⎩,所以2336x x x ≤-≥⎧⎨-<<⎩或,所以32x -<≤-或36x <≤,所以原不等式的解集{32x x -<≤-或}36x ≤<; (2)由1232x x +≥-,可得155203232x x x x +-+-=≥--, 所以()()55320320x x x ⎧--≤⎨-≠⎩,解得213x <≤,所以原不等式的解集为213x x ⎧⎫<≤⎨⎬⎩⎭;(3)原不等式等价于23200x x x ⎧-+>⎨≥⎩或23200x x x ⎧-+>⎨<⎩,分别解这两个不等式组,得01x ≤<或2x >或10x -<<或2x <-, 故原不等式的解集为{2x x <-或11x -<<或}2x >.题型二:一元二次不等式与根与系数关系的交汇例4.(2022·全国·高一专题练习)若不等式220ax bx +-<的解集为{}|21x x -<<,则a b +=( ) A .2- B .0 C .1 D .2【答案】D【解析】不等式220ax bx +-<的解集为{}|21x x -<<,则方程220ax bx +-=根为2-、1, 则21221ba a⎧-=-+⎪⎪⎨⎪-=-⨯⎪⎩,解得1,1a b ==,2a b ∴+=,故选:D【方法技巧与总结】 三个“二次”之间的关系(1)三个“二次”中,一元二次函数是主体,讨论一元二次函数主要是将问题转化为一元二次方程和一元二次不等式的形式来研究.(2)讨论一元二次方程和一元二次不等式又要将其与相应的一元二次函数相联系,通过一元二次函数的图象及性质来解决问题,关系如下:例5.(2022·全国·高一课时练习)若关于x 的不等式2260ax x a -+>的解集为{|1}x m x <<,则=a ______,m =______. 【答案】 3- 3-【解析】由题意知,0a <,且1,x x m ==是关于x 的方程2260ax x a -+=的两个根,∴61m a m a ⎧+=⎪⎨⎪=⎩,解得33a m =-⎧⎨=-⎩或22a m =⎧⎨=⎩, 又因为0a <,∴33a m =-⎧⎨=-⎩. 故答案为:-3,-3.例6.(2022·江苏·高一专题练习)若不等式20ax bx c ++>的解集为{}12x x -<<,则不等式()21(1)2a x b x c ax ++-+>的解集是( )A .{}03x x <<B .{0x x <或}3x >C .{}13x x <<D .{}13x x -<<【答案】A【解析】由()()2112a x b x c ax ++-+>,整理得()()220ax b a x a c b +-++-> ①.又不等式20ax bx c ++>的解集为{}12x x -<<, 所以0a <,且(1)2(1)2b ac a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,即12b ac a⎧=-⎪⎪⎨⎪=-⎪⎩②.将①两边同除以a 得:2210b c b x x a a a ⎛⎫⎛⎫+-++-< ⎪ ⎪⎝⎭⎝⎭③.将②代入③得:230x x -<,解得03x <<. 故选:A例7.(2022·浙江·磐安县第二中学高一开学考试)已知不等式20ax bx c ++>的解集为()2,3,则20cx bx a ++>的解集为( ) A .11,32⎛⎫⎪⎝⎭B .11,,32⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .11,23⎛⎫-- ⎪⎝⎭D .11,,23∞∞⎛⎫⎛⎫--⋃-+ ⎪ ⎪⎝⎭⎝⎭【答案】A【解析】∵不等式20ax bx c ++>的解集为()2,3, ∴2和3是方程20ax bx c ++=的两个根.∴02323a ba ca⎧⎪<⎪⎪-=+⎨⎪⎪=⨯⎪⎩,可得5,6b a c a =-=. 20cx bx a ++>可化为2650ax ax a -+>,即26510x x -+<,即()()31210x x --<,解得1132x <<.故选:A.例8.(2022·全国·高一专题练习)设集合{}|1A x x =≥,{}2|0B x x mx =-≤,若{}|14A B x x ⋂=≤≤,则m 的值为_________.【答案】4【解析】当0m =时,{}{}2|00B x x =≤=,显然A B =∅,不符合题意;当0m >时,{}2|0[0,]B x x mx m =-≤=,因为{}|14A B x x ⋂=≤≤,所以必有4m =; 当0m <时,{}2|0[,0]B x x mx m =-≤=,显然A B =∅,不符合题意.故答案为:4m =.例9.(2022·江苏·高一专题练习)已知不等式20ax bx c ++>的解集是{|}x x αβ<<,0α>,则不等式20cx bx a ++>的解集是____________.【答案】11βα⎛⎫⎪⎝⎭,【解析】由不等式20ax bx c ++>的解集是{|}0x x αβα<<>(),可知:α,β是一元二次方程20ax bx c ++=的实数根,且0a <; 由根与系数的关系可得:b a αβ+=-,caαβ⋅= , 所以不等式20cx bx a ++>化为 210c bx x a a++<,即:()210x x αβαβ-++<; 化为()()110x x αβ--<; 又,0αβα,110αβ∴>>;∴不等式20cx bx a ++<的解集为:{x |11x βα<<},故答案为:11βα⎛⎫⎪⎝⎭,例10.(2022·全国·高一单元测试)已知关于x 的一元二次不等式20ax bx c ++<的解集为{}3|1x x <<,则20cx bx a -+>的解集是___________.【答案】{13x x >-或}1x <-【解析】因为关于x 的一元二次不等式20ax bx c ++<的解集为{}3|1x x <<, 所以0a >,且方程20ax bx c ++=得解为121,3x x ==, 则4,3b ca a-==, 所以4,3b a c a =-=,则不等式20cx bx a -+>,即为2340ax ax a ++>, 即23410x x ++>,解得13x >-或1x <-,所以20cx bx a -+>的解集是{13x x >-或}1x <-.故答案为:{13x x >-或}1x <-.题型三:含有参数的一元二次不等式的解法例11.(2022·全国·高一课时练习)不等式()()222240a x a x -+--≥的解集为∅,则实数a的取值范围是( ) A .{2|a a <-或2}a ≥ B .{}22a a -<< C .{}22a a -<≤ D .{}2a a <【答案】C【解析】因为不等式()()222240a x a x -+--≥的解集为∅, 所以不等式()()222240a x a x -+--<的解集为R .当20a -=,即2a =时,40-<,符合题意.当20a -<,即2a <时,()()2224420a a ⎡⎤∆=-+⨯⨯-<⎣⎦,解得22a -<<. 综上,实数a 的取值范围是{}22a a -<≤. 故选:C【方法技巧与总结】解含参数的一元二次不等式的一般步骤(1)讨论二次项系数:二次项若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程根的个数:讨论判别式Δ与0的关系.(3)写出解集:确定无根时可直接写出解集;确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.例12.(2022·江苏·盐城市田家炳中学高一期中)已知不等式220ax bx -+>的解集为{}12x x x 或.(1)求实数a ,b 的值;(2)解关于x 的不等式()20x ac b x bx -++>(其中c 为实数).【解析】(1)由题意,121,2x x ==为一元二次方程220ax bx -+=, 由韦达定理,可得12212b aa ⎧+=⎪⎪⎨⎪⨯=⎪⎩,解得13a b =⎧⎨=⎩. (2)由(1),不等式()20x ac b x bx -++>,可得()2330x c x x -++>,整理可得:()0x x c ->,当0c 时,不等式的解集为{}0x x ≠; 当0c >时,不等式的解集为{}0x x x c 或; 当0c <时,不等式的解集为{}0x x c x 或.例13.(2022·全国·高一专题练习)已知关于x 的不等式ax 2﹣x +1﹣a <0. (1)当a =2时,解关于x 的不等式; (2)当a >0时,解关于x 的不等式.【解析】(1)当a =2时,不等式2x 2﹣x ﹣1<0可化为:(2x +1)(x ﹣1)<0, ∴不等式的解集为1{|1}2x x -<<;(2)不等式ax 2﹣x +1﹣a <0可化为:(x ﹣1)(ax +a ﹣1)<0, 当a >0时,()1110x x a ⎛⎫-+- ⎪⎝⎭<,()1110x x a ⎛⎫-+-= ⎪⎝⎭的根为:12111x x a==-,, ①当102a <<时,111a -<,∴不等式解集为1{|11}x x a-<<,②当12a =时,111a=-,不等式解集为∅,③当12a >时,111a->,∴不等式解集为{x |11a -<x <1},综上,当102a <<时,不等式解集为1{|11}x x a-<<,当a 12=时,不等式解集为∅, 当12a >时,不等式解集为{x |11a-<x <1}..例14.(2022·全国·高一专题练习)解关于x 的不等式 220x x a ++>. 【解析】方程220x x a ++=中()4441a a =-=-, ①当10a -<即1a >时,不等式的解集是R ,②当10a -=,即1a =时,不等式的解集是{|1}x x ∈≠-R , ③当10a ->即1a <时,由220x x a ++=解得:121111x a x a =--=--,1a ∴<时,不等式的解集是{|11>-+-x x a 11}<--x a , 综上,1a >时,不等式的解集是R , 1a =时,不等式的解集是{|1}x x ∈≠-R ,1a <时,不等式的解集是{|11>-+-x x a 11}<--x a ,例15.(2022·全国·高一专题练习)解关于x 的不等式2110x a x a ⎛⎫-++< ⎪⎝⎭.【解析】原不等式可化为:()10x a x a ⎛⎫--< ⎪⎝⎭ ,令1a a = 可得:1a =±∴当1a <-或01a <<时,1a a <, 1aa x ∴<< ; 当1a =或1a =-时,1a a=,不等式无解; 当10a -<<或1a > 时,1a a>,1x a a ∴<<综上所述,当1a =或1a =-时,不等式解集为∅; 当1a <-或01a <<时,不等式的解集为1|x a x a ⎧⎫<<⎨⎬⎩⎭; 当10a -<<或1a >时,不等式解集为1|x x a a ⎧⎫<<⎨⎬⎩⎭.例16.(2022·全国·高一专题练习)若R a ∈,解关于x 的不等式2(1)10ax a x +++>.【解析】当0a =时,1x >-,当0a ≠时,1()(1)0a x x a++>,当0a <时,1()(1)0x x a ++<,解得11x a -<<-,当0a >时,1()(1)0x x a++>,若1a =,则1x ≠-,若01a <<,则1x a<-或1x >-,若1a >,则1x <-或1x a >-,所以当0a <时,原不等式的解集是{}|11x x a -<<-;当0a =时,原不等式的解集是{|1}x x >-;当01a <≤时,原不等式的解集是1{|x x a<-或1}x >-;当1a >时,原不等式的解集是{|1x x <-或1}x a>-.例17.(2022·全国·高一专题练习)若关于x 的不等式2220x m x m -++<()的解集中恰有4个正整数,求实数m 的取值范围. 【解析】原不等式可化为(2)()0x x m --<,若2m <,则不等式的解是2m x <<;若2m =,则不等式无解; 即不等式的解集中均不可能有4个正整数,所以2m >; 此时不等式的解是2x m <<;所以不等式的解集中4个正整数分别是3456,,,; 则m 的取值范围是{|67}m m <≤.例18.(2022·陕西·长安一中高一期中)已知关于x 的不等式()()230a b x a b +-<+的解集为34x x ⎧⎫>-⎨⎬⎩⎭.(1)写出a 和b 满足的关系;(2)解关于x 的不等式()()()222120a b x a b x a ---->++.【解析】(1)因为()()230a b x a b <++-,所以()32a b x b a +<-,因为不等式的解集为34x x ⎧⎫>-⎨⎬⎩⎭,所以0a b +<,且3234b a a b -=-+,解得3a b =. (2)由(1)得30a b =<则不等式()()()222120a b x a b x a -+--+->等价为()()242320bx b x b +-+->,即222430x x b b +-⎛⎫⎛⎫ ⎪ +⎪⎝⎭⎝⎭-<,即()2130x x b ⎛⎫+ ⎝-⎪⎭+<.因为231b -+<-,所以不等式的解为231x b-+<<-. 即所求不等式的解集为231x x b ⎧⎫-+<<-⎨⎬⎩⎭.(说明:解集也可以用a 表示)题型四:一次分式不等式的解法例19.(2022·全国·高一课时练习)不等式()()232101xx x x -++≤-的解集为( )A .[-1,2]B .[-2,1]C .[-2,1)∪(1,3]D .[-1,1)∪(1,2]【答案】D【解析】由()()232101x x x x -++≤-可得,()()()12101x x x x --+≤-,∴()()21010x x x ⎧-+≤⎨-≠⎩,解得12x -≤≤且1x ≠,故原不等式的解集为[1,1)(1,2]-. 故选:D.【方法技巧与总结】分式不等式转化为整式不等式的基本类型有哪些? (1)()()00cx dax b cx d ax b+>⇔++>+ (2)()()00cx dax b cx d ax b+<⇔++<+ (3)()()00cx dax b cx d ax b+≥⇔++>+且0ax b +≠ (4)()()00cx dax b cx d ax b+≤⇔++≤+且0ax b +≠ 例20.(2022·湖南·株洲二中高一开学考试)已知不等式210ax bx ++>的解集为1123xx ⎧⎫-<<⎨⎬⎩⎭∣,求不等式30ax x b +≤-的解集. 【解析】依题意,12-和13是方程210ax bx ++=的两根,法1:由韦达定理,11111,2323b a a ∴-+=--⨯=,解得6,1a b =-=-,法2:直接代入方程得,22111022111033a b a b ⎧⎛⎫⎛⎫⨯-+⨯-+=⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪⨯+⨯+= ⎪ ⎪⎪⎝⎭⎝⎭⎩,解得6,1a b =-=-, ∴不等式30ax x b +≤-为6301x x -+≤+,即:()()631010x x x ⎧-+≥⎨+≠⎩,解得:1x <-或12x ≥, ∴不等式30ax x b +≤-的解集为{1xx <-∣或1}2x ≥.例21.(2022·陕西·长安一中高一期末)不等式22301x x x +-≥+的解集为__________.【答案】[3,1)[1,)--+∞【解析】原不等式等价于223010x x x ⎧+-≥⎨+>⎩或223010x x x ⎧+-≤⎨+<⎩,解得1≥x 或31x -≤<- , 故答案为:[3,1)[1,)--+∞例22.(2022·全国·高一课时练习)不等式301x x +>-的解集为______________. 【答案】{3x x <-或1}x > 【解析】由301x x +>-,得(1)(3)0x x -+>, 所以3x <-或1x >,故不等式得解集为{3x x <-或1}x >. 故答案为:{3x x <-或1}x >.例23.(2022·宁夏·灵武市第一中学高一期末)不等式201xx->+的解集为___________. 【答案】(1,2)- 【解析】20(2)(1)01xx x x->⇔-+<+,解得12x -<<,故解集为(1,2)-, 故答案为(1,2)-.例24.(2022·全国·高一课时练习)不等式21131x x ->+的解集是____________. 【答案】1{2}3xx -<<-∣ 【解析】21131x x ->+可化为211031x x -->+, 2031x x +<+,等价于()()2310x x ++<, 解得123x -<<-,所以不等式21131x x ->+的解集是1{2}3x x -<<-∣, 故答案为:1{2}3xx -<<-∣. 例25.(2022·全国·高一课时练习)关于x 的不等式()(5)0x b ax ++>的解集为{|1x x <-或3}x >,(1)求关于x 的不等式220x bx a +-<的解集 (2)求关于x 的不等式11x ax b->-的解集. 【解析】(1)不等式()(5)0x b ax ++>的解集为{|1x x <-或3}x >, 所以0513a ab >⎧⎪⎪-=-⎨⎪-=⎪⎩,解得5a =,3b =-;所以不等式220x bx a +-<化为23100x x --<,解得25x -<<; 所求不等式的解集为{|25}x x -<<; (2)1153x x ->+化为11053x x -->+即44053x x -->+,()()1530x x ∴++< 所求不等式的解集为31,5⎛⎫-- ⎪⎝⎭.题型五:实际问题中的一元二次不等式问题例26.(2022·贵州黔东南·高一期末)黔东南某地有一座水库,设计最大容量为128000m 3.根据预测,汛期时水库的进水量n S (单位:m 3)与天数()*n n N ∈的关系是5000()(10)n S n n t n =+≤,水库原有水量为80000m 3,若水闸开闸泄水,则每天可泄水4000m 3;水库水量差最大容量23000m 3时系统就会自动报警提醒,水库水量超过最大容量时,堤坝就会发生危险;如果汛期来临水库不泄洪,1天后就会出现系统自动报警. (1)求t 的值;(2)当汛期来临第一天,水库就开始泄洪,估计汛期将持续10天,问:此期间堤坝会发生危险吗?请说明理由.【解析】(1)由题意得: 1280008000050001(1)23000t --⨯+, 即24t =(2)由(1)得5000(24)(10)n S n n n =+≤设第n 天发生危险,由题意得 5000(24)400012800080000n n n +>-,即2242560n n +->,得8n >.所以汛期的第9天会有危险【方法技巧与总结】利用不等式解决实际问题需注意以下四点(1)阅读理解材料:应用题所用语言多为文字语言,而且不少应用题文字叙述篇幅较长.阅读理解材料要达到的目的是将实际问题抽象成数学模型,这就要求解题者领悟问题的实际背景,确定问题中量与量之间的关系,初步形成用怎样的模型能够解决问题的思路,明确解题方向.(2)建立数学模型:根据(1)中的分析,把实际问题用“符号语言”“图形语言”抽象成数学模型,并且,建立所得数学模型与已知数学模型的对应关系,以便确立下一步的努力方向.(3)讨论不等关系:根据(2)中建立起来的数学模型和题目要求,讨论与结论有关的不等关系,得到有关理论参数的值.(4)作出问题结论:根据(3)中得到的理论参数的值,结合题目要求作出问题的结论. 例27.(2022·全国·高一课时练习)某旅店有200张床位.若每张床位一晚上的租金为50元,则可全部租出;若将出租收费标准每晚提高10x 元(x 为正整数),则租出的床位会相应减少10x 张.若要使该旅店某晚的收入超过12600元,则每张床位的出租价格可定在什么范围内?【解析】设该旅店某晚的收入为y 元,则 *(5010)(20010),y x x x N =+-∈由题意12600y >,则(5010)(20010)12600x x +-> 即210000150010012600x x +->,即215260x x -+<, 解得:213x <<,且*x ∈N所以每个床位的出租价格应定在70元到180元之间(不包括70元,180元)例28.(2022·湖南·高一课时练习)汽车在行驶中,由于惯性的作用,刹车后还要继续向前滑行一段距离才能停住,这段距离称为“刹车距离”.刹车距离是分析交通事故的一个重要指标.在一个限速为40km/h 的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了.事后现场勘查测得甲车的刹车距离略超过12m ,乙车的刹车距离略超过10m ,又知甲、乙两种车型的刹车距离()m s 与车速()km/h x 分别有如下关系式:210.10.01s v v =+,220.050.005s v v =+.问:甲、乙两辆汽车是否有超速现象?【解析】因为甲种车型的刹车距离()m s 与车速()km/h x 的关系式:210.10.01s v v =+, 所以由题意可得:2210.10.0112101200030s v v v v v =+>⇒+->⇒>,或40v <-舍去,即30v >,当40v =时,10.1400.0116002012s =⨯+⨯=>,显然甲种车型没有超速现象;因为乙种车型的刹车距离()m s 与车速()km/h x 的关系式:220.050.005s v v =+,所以由题意可得:2220.050.005102000040s v v v v v =+>⇒+->⇒>,或50v <-舍去,即40v >,因此乙种车型有超速现象.例29.(2022·湖北十堰·高一期中)某学校欲在广场旁的一块矩形空地上进行绿化.如图所示,两块完全相同的长方形种植绿草坪,草坪周围(斜线部分)均种满宽度相同的鲜花.已知两块绿草坪的面积均为200平方米.(1)若矩形草坪的长比宽至少多10米,求草坪宽的最大值; (2)若草坪四周及中间的宽度均为2米,求整个绿化面积的最小值. 【解析】(1)设草坪的宽为x 米,长为y 米,由面积均为200平方米,得200y x=, 因为矩形草坪的长比宽至少多10米, 所以20010x x≥+,又0x >, 所以2102000x x +-≤,解得010x <≤, 所以宽的最大值为10米;(2)记整个绿化面积为S 平方米,由题意得,200150(26)(4)(26)442484246S x y x x x x ⎛⎫⎛⎫=++=++=++≥+ ⎪ ⎪⎝⎭⎝⎭56x =时,等号成立,所以整个绿化面积的最小值为(424806)+平方米题型六:不等式的恒成立问题例30.(2022·全国·高一单元测试)对任意实数x ,不等式2230kx kx +-<恒成立,则实数k 的取值范围是( ) A .()0,24 B .(]24,0-C .(]0,24D .[)24,∞+【答案】B【解析】由题意,对任意实数x ,不等式2230kx kx +-<恒成立, 当0k =时,不等式即为30-<,不等式恒成立; 当0k ≠时,若不等式2230kx kx +-<恒成立,则满足2Δ240k k k <⎧⎨=+<⎩,解得240k -<<, 综上,实数k 的取值范围为(24,0]-. 故选:B .【方法技巧与总结】不等式对一切实数恒成立,即不等式的解集为R ,要解决这个问题还需要讨论二次项的系数.例31.(2022·全国·高一课时练习)若0a >,且关于x 的不等式22334ax ax a -+-<在R 上有解,求实数a 的取值范围.【解析】方法一(判别式法)关于x 的不等式22334ax ax a -+-<可变形为22370ax ax a -+-<,由题可得()()223470a a a ∆=--->,解得744a -<<,又0a >,所以实数a 的取值范围为()0,4;方法二(分离变量法)因为0a >,所以关于x 的不等式22334ax ax a -+-<可变形为2273a x x a--<,因为223993244x x x ⎛⎫-=--≥- ⎪⎝⎭,所以2974a a--<,解得744a -<<,又0a >,所以实数a 的取值范围为()0,4.例32.(2022·湖南·雅礼中学高一开学考试)不等式()()221110a x a x ----<的解集是全体实数,求实数a 的取值范围________. 【答案】315a -<≤【解析】根据题意,当210a -≠时,可得()()222Δ141010a a a ⎧=-+-<⎪⎨-<⎪⎩,解得315a -<<,当1a =时,不等式()()221110a x a x ----<显然成立. 综上可得,315a -<≤,故答案为:315a -<≤.例33.(2022·江苏·盐城市田家炳中学高一期中)已知命题p :x R ∃∈,210x ax -+<,若命题p 是假命题,则实数a 的取值范围为_________.【答案】[]22-,【解析】若命题p 是假命题,则210x ax -+≥恒成立, 则2Δ40a =-≤,解得22a -≤≤.故答案为:[]22-,. 例34.(2022·全国·高一专题练习)不等式 2(2)4(2)120a x a x -+--<的解集为R ,则实数a 的取值范围是( )A .{}|12a a -≤<B .{}|12a a -<≤C .{}|12a a -<<D .{}|12a a -≤≤【答案】B【解析】当2a =时,原不等式为120-<满足解集为R ;当a ≠2时,根据题意得20a -<,且216(2)4(2)(12)0a a ∆=---⨯-<,解得1a 2-<<. 综上,a 的取值范围为{}|12a a -<≤. 故选:B .例35.(2022·全国·高一课时练习)已知对任意[]1,3m ∈,215mx mx m --<-+恒成立,则实数x 的取值范围是( )A .6,7⎛⎫+∞ ⎪⎝⎭B .1515∞∞⎛⎫-+-⋃+ ⎪ ⎪⎝⎭⎝⎭ C .6,7⎛⎫-∞ ⎪⎝⎭D .1515-+⎝⎭【答案】D【解析】对任意[]1,3m ∈,不等式215mx mx m --<-+恒成立,即对任意[]1,3m ∈,()216m x x -+<恒成立, 所以对任意[]1,3m ∈,261x x m-+<恒成立, 所以对任意[]1,3m ∈,2min12x x m ⎛-+<= ⎝,所以212x x -+<1515x -+<<故实数x 的取值范围是1515-+⎝⎭.故选:D .例36.(2022·全国·高一课时练习)已知关于x 的不等式244x mx x m +>+-. (1)若对任意实数x ,不等式恒成立,求实数m 的取值范围; (2)若对于04m ≤≤,不等式恒成立,求实数x 的取值范围.【解析】(1)若对任意实数x ,不等式恒成立,即2440x mx x m +--+>恒成立 则关于x 的方程2440x mx x m +--+=的判别式()()24440m m ∆=---+<, 即240m m -<,解得04m <<,所以实数m 的取值范围为(0,4). (2)不等式244x mx x m +>+-,可看成关于m 的一次不等式()21440m x x x -+-+>,又04m ≤≤,所以224404(1)440x x x x x ⎧-+>⎨-+-+>⎩,解得2x ≠且0x ≠,所以实数x 的取值范围是()()(),00,22,-∞⋃⋃+∞.例37.(2022·全国·高一课时练习)在x ∃∈R ①,2220x x a ++-=,②存在集合{24}A x x =<<,非空集合{}3B x a x a =<<,使得A B =∅这两个条件中任选一个,补充在下面问题中,并解答.问题:求解实数a ,使得命题{}:12p x x x ∀∈≤≤,20x a -≥,命题q :______都是真命题. 注:如果选择多个条件分别解答,按第一个解答计分.【解析】若选条件①,由命题p 为真,可得20x a -≥在12x ≤≤上恒成立. 因为12{|}x x x ∈≤≤,所以214x ≤≤,所以1a ≤. 由命题q 为真,则方程2220x x a ++-=有解. 所以()4420a ∆=--≥,所以1a ≥.又因为,p q 都为真命题,所以11a a ≤⎧⎨≥⎩,所以1a =.所以实数a 的值为1.若选条件②,由命题p 为真,可得20x a -≥在12x ≤≤上恒成立. 因为{}12x x x ∈≤≤,所以214x ≤≤.所以1a ≤.由命题q 为真,可得4a ≥或32a ≤,因为非空集合{|3}B x a x a =<<,所以必有0a >, 所以203a <≤或4a ≥, 又因为,p q 都为真命题,所以12043a a a ≤⎧⎪⎨<≤≥⎪⎩或,解得203a <≤. 所以实数a 的取值范围是2|03a a ⎧⎫<≤⎨⎬⎩⎭. 【同步练习】一、单选题 1.(2022·全国·高一课时练习)不等式23180x x -++<的解集为( ) A .{6x x >或3}x <- B .{}36x x -<< C .{3x x >或6}x <- D .{}63x x -<<【答案】A【解析】23180x x -++<可化为23180x x -->, 即()()630x x -+>,即6x >或3x <-. 所以不等式的解集为{6x x >或3}x <-.故选:A2.(2022·全国·高一课时练习)已知二次函数2y ax bx c =++的图象如图所示,则不等式20ax bx c ++>的解集是( )A .{}21x x -<<B .{|2x x <-或1}x >C .{}21x x -≤≤D .{|2x x ≤-或1}x ≥【答案】A【解析】由二次函数图象知:20ax bx c ++>有21x -<<. 故选:A3.(2022·全国·高一课时练习)已知函数2y x ax b =++(,R a b ∈)的最小值为0,若关于x 的不等式2x ax b c 的解集为{}|4x m x m <<+,则实数c 的值为( ) A .9 B .8 C .6 D .4【答案】D【解析】∵函数2y x ax b =++(,R a b ∈)的最小值为0, ∴2404b a -=,∴24a b =, ∴函数222224a y x ax b x ax x a ⎛⎫=++=++=+ ⎪⎝⎭,其图像的对称轴为2a x =-.∵不等式2x ax b c 的解集为{}|4x m x m <<+, ∴方程2204a c x ax ++-=的根为m ,4m +,∴4m m a ++=-,解得42a m --=,22am ∴+=-, 又∵2204a m am c ++-=,∴222442a a c m am m ⎛⎫=++=+= ⎪⎝⎭.故A ,B ,C 错误.故选:D .4.(2022·全国·高一课时练习)若使不等式()2220x a x a +++≤成立的任意一个x 都满足不等式10x -≤,则实数a 的取值范围为( ) A .{}1a a >- B .{}1a a ≥-C .{}1a a <-D .{}1a a ≤-【答案】B【解析】因为不等式10x -≤的解集为{}1x x ≤,由题意得不等式()2220x a x a +++≤的解集是{}1x x ≤的子集, 不等式()2220x a x a +++≤,即()()20x x a ++≤,①当2a =时,不等式的解集为{}2-,满足{}{}21x x -⊆≤; ②当2a <时,不等式的解集为{}2x x a -≤≤-, 若{}{}21x x a x x -≤≤-⊆≤,则1a -≤, 所以12a -≤<;③当2a >时,不等式的解集为{}2x a x -≤≤-,满足{}{}21x a x x x -≤≤-⊆≤; 综上所述,实数a 的取值范围为{}1a a ≥-. 故选:B .5.(2022·全国·高一课时练习)已知()()()2022y x m x n n m =--+<,且(),αβαβ<是方程0y =的两实数根,则α,β,m ,n 的大小关系是( )A .m n αβ<<<B .m n αβ<<<C .m n αβ<<<D .m n αβ<<<【答案】C【解析】∵α,β为方程0y =的两实数根,∴α,β为函数()()2022y x m x n =--+的图像与x 轴交点的横坐标,令()()1y x m x n =--,∴m ,n 为函数()()1y x m x n =--的图像与x 轴交点的横坐标,易知函数()()2022y x m x n =--+的图像可由()()1y x m x n =--的图像向上平移2022个单位长度得到,所以m n αβ<<<. 故选:C.6.(2022·湖南·长沙一中高一开学考试)关于x 的方程()2290ax a x a +++=有两个不相等的实数根12,x x ,且121x x ,那么a 的取值范围是( ) A .2275a -<<B .25a > C .27a <-D .2011a -<< 【答案】D【解析】当0a =时,()2290ax a x a +++=即为20x =,不符合题意;故0a ≠,()2290ax a x a +++=即为22190x x a ⎛⎫+++= ⎪⎝⎭,令2219y x x a ⎛⎫=+++ ⎪⎝⎭,由于关于x 的方程()2290ax a x a +++=有两个不相等的实数根12,x x ,且121x x , 则()229y ax a x a =+++与x 轴有两个交点,且分布在1的两侧,故1x =时,0y <,即211190a ⎛⎫++⨯+< ⎪⎝⎭,解得211a <-,故2011a -<<,故选:D7.(2022·全国·高一单元测试)已知 0,0x y >>且141x y+=,若28x y m m +>+恒成立,则实数m 的取值范围是( ) A . 1|2x x ⎧⎫≥⎨⎬⎩⎭B .{}|3x x ≤-}C .{}|1x x ≥D .{}|91x x -<<【答案】D【解析】∵0,0x y >>,且141x y+=,∴1444()()5259y x y xx y x y x y x y x y+=++=++≥⋅=, 当且仅当3,6x y ==时取等号,∴min ()9x y +=,由28x y m m +>+恒成立可得2min 8()9m m x y +<+=,解得:91m -<<, 故选:D.8.(2022·全国·高一课时练习)在R 上定义运算():1x y x y ⊗⊗=-.若不等式()()1x a x a -⊗+<对任意实数x 都成立,则实数a 的取值范围为( )A .1322a a ⎧⎫-<<⎨⎬⎩⎭B .{}02a a <<C .{}11a a -<<D .3122a a ⎧⎫-<<⎨⎬⎩⎭【答案】A【解析】由()()1x a x a -⊗+<,得()()11x a x a ---<,即221a a x x --<-,令2t x x =-,此时只需2min 1a a t --<,又221124t x x x ⎛⎫=-=-- ⎪⎝⎭,所以2114a a --<-,即24430a a --<,解得1322a -<<.故选:A. 二、多选题9.(2022·全国·高一课时练习)不等式22x bx c x b ++≥+对任意的x ∈R 恒成立,则( ) A .2440b c -+≤ B .0b ≤ C .1c ≥ D .0b c +≥【答案】ACD【解析】22x bx c x b ++≥+可整理为()220x b x c b +-+-≥,则()()2224440b c b b c ∆=---=-+≤,故A 正确. 当1b =,2c =时,满足0∆≤,即原不等式成立.B 错误; 由0∆≤,得214b c ≥+,所以1c ≥.C 正确;2211042b b b c b ⎛⎫+≥++=+≥ ⎪⎝⎭.D 正确.故选:ACD .10.(2022·江苏·高一)已知关于x 的一元二次不等式()22120ax a x --->,其中0a <,则该不等式的解集可能是( ) A .∅ B .12,a ⎛⎫- ⎪⎝⎭C .()1,2,a ⎛⎫-∞-⋃+∞ ⎪⎝⎭ D .1,2a ⎛⎫- ⎪⎝⎭【答案】ABD【解析】不等式变形为(2)(1)0x ax -+>,又0a <,所以1(2)()0x x a-+<,12a =-时,不等式解集为空集;12a <-,12x a -<<,102a -<<时,12x a <<-,因此解集可能为ABD . 故选:ABD .11.(2022·福建省龙岩第一中学高一开学考试)已知关于x 的不等式20ax bx c ++≥的解集为{3x x ≤或}4x ≥,则下列结论中,正确结论的序号是( )A .0a >B .不等式0bx c +>的解集为{}4x x <-C .不等式20cx bx a -+<的解集为14x x ⎧<-⎨⎩或13x ⎫>⎬⎭ D .0a b c ++>【答案】AD【解析】对于A ,由不等式的解集可知:0a >且3473412bac a⎧-=+=⎪⎪⎨⎪=⨯=⎪⎩,7b a ∴=-,12c a =,A 正确;对于B ,7120bx c ax a +=-+>,又0a >,127x ∴<,B 错误; 对于C ,221270cx bx a ax ax a -+=++<,即212710x x ++<,解得:1134x -<<-,C 错误; 对于D ,71260a b c a a a a ++=-+=>,D 正确. 故选:AD.12.(2022·湖南·株洲二中高一开学考试)已知关于x 的不等式组222802(27)70x x x k x k ⎧-->⎨+++<⎩仅有一个整数解,则k 的值可能为( ) A .5- B .3-C .πD .5【答案】ABD【解析】解不等式2280x x -->,得4x >或2x <- 解方程22(27)70x k x k +++=,得127,2x x k =-=-(1)当72k >,即72k -<-时,不等式22(27)70x k x k +++<的解为:72k x -<<-此时不等式组222802(27)70x x x k x k ⎧-->⎨+++<⎩的解集为7,2k ⎛⎫-- ⎪⎝⎭,依题意,则54k -≤-<-,即45k <≤;(2)当72k <,即72k ->-时,不等式22(27)70x k x k +++<的解为:72x k -<<-,要使不等式组222802(27)70x x x k x k ⎧-->⎨+++<⎩的解集中只有一个整数,则需满足:35k -<-≤,即53k -≤<; 所以k 的取值范围为[5,3)(4,5]-. 故选:ABD. 三、填空题13.(2022·全国·高一专题练习)若不等式220ax bx ++>的解集是1123x x ⎧⎫-<<⎨⎬⎩⎭,则0ax b +>的解集为__________. 【答案】1,6⎛⎫-∞- ⎪⎝⎭【解析】不等式220ax bx ++>的解集是1123x x ⎧⎫-<<⎨⎬⎩⎭,则根据对应方程的韦达定理得到:112311223ba a⎧⎛⎫-+=- ⎪⎪⎪⎝⎭⎨⎛⎫⎪-⋅= ⎪⎪⎝⎭⎩,解得122a b =-⎧⎨=-⎩,则1220x -->的解集为1,6⎛⎫-∞- ⎪⎝⎭.故答案为:1,6⎛⎫-∞- ⎪⎝⎭.14.(2022·陕西·千阳县中学高一开学考试)不等式517x ≥--的解集为__________. 【答案】{|7x x >或2}x ≤ 【解析】因为517x ≥--,所以5107x +≥-,即207x x -≥-, 等价于(2)(7)070x x x --≥⎧⎨-≠⎩,解得7x >或2x ≤,所以不等式的解集为{|7x x >或2}x ≤. 故答案为:{|7x x >或2}x ≤15.(2022·全国·高一专题练习)关于x 的不等式()210x a x a -++<的解集中恰有1个整数,则实数a 的取值范围是_________. 【答案】[)(]1,02,3-⋃【解析】由()210x a x a -++<得()()10x x a --< ,若1a =,则不等式无解;若1a >,则不等式的解为1x a <<,此时要使不等式的解集中恰有1个整数解,则此时1个整数解为2x =,则23a <≤;若1a <,则不等式的解为1<<a x ,此时要使不等式的解集中恰有1个整数解,则此时1个整数解为0x =,则10a -≤<.综上,满足条件的a 的取值范围是[)(]1,02,3-⋃. 故答案为:[)(]1,02,3-⋃.16.(2022·全国·高一课时练习)知关于x 的不等式2240ax bx ++<的解集为4(,)m m,其中0m <,则44b a b+的最小值为______. 【答案】2【解析】∵2240ax bx ++<的解集为4,m m ⎛⎫⎪⎝⎭,∴0a >,且方程2240ax bx ++=的两根为m ,4m, ∴42bm m a +=-,44m m a ⋅=,∴1a =,∵0m <,∴424b m m=-+≥-, 即2b ≥,当且仅当2m =-时取“=”. ∴44244b b a b b +=+≥,当且仅当4b =时取“=”, ∴44b a b+的最小值为2. 故答案为:2 四、解答题17.(2022·全国·高一专题练习)解下列不等式: (1)22530x x +->; (2)220x x +-≤; (3)4220x x --≥; (4)21x x >.【解析】(1)由22530x x +->,得()()3210x x +->,解得3x <-或12x >, 所以不等式的解集为{3x x <-或12x ⎫>⎬⎭.(2)由220x x +-≤,得220x x --≥,()()120x x +-≥, 解得1x ≤-或2x ≥,所以不等式的解集为{1x x ≤-或}2x ≥.(3)由4220x x --≥,得()()22120x x +-≥,解得21x ≤-(舍去)或22x ≥,得2x ≤-2x ≥,所以不等式的解集为{2x x ≤-}2x ≥. (4)由21x x ,得2210xx >,1x >12x -(舍去),所以1x >,所以不等式的解集为{}1x x >.18.(2022·辽宁·营口市第二高级中学高一期末)已知关于x 的不等式2320(R)ax x a ++>∈.(1)若2320ax x ++>的解集为{}1x b x <<,求实数,a b 的值; (2)求关于x 的不等式2321ax x ax -+>-的解集.【解析】(1)因为2320ax x ++>的解集为{}1x b x <<,所以方程2320ax x ++=的两个根为,1(1)b b <,由根与系数关系得:3121b ab a ⎧+=-⎪⎪⎨⎪⋅=⎪⎩,解得525a b =-⎧⎪⎨=-⎪⎩;(2)22321(3)30(3)(1)0ax x ax ax a x ax x -+>-⇒-++>⇒-->, 当a =0,不等式为10x -<,不等式的解集为{}1x x <;当0a <时,不等式化为3()(1)0x x a --<,不等式的解集为31x x a ⎧⎫<<⎨⎬⎩⎭当0a >时,方程2321ax x ax -+=-的两个根分别为:3,1a.当3a =时,两根相等,故不等式的解集为{|1}x x ≠; 当3a >时,31a <,不等式的解集为3{|x x a<或1}x >; 当0<<3a 时,31a>,不等式的解集为{|1x x <或3}x a >,.综上:当0a <时,不等式的解集为31x x a ⎧⎫<<⎨⎬⎩⎭当a =0,不等式的解集为{}1x x <;当0<<3a 时,不等式的解集为{|1x x <或3}x a >.当3a =时,不等式的解集为{|1}x x ≠; 当3a >时,不等式的解集为3{|x x a<或1}x >; 19.(2022·湖南·株洲二中高一开学考试)解下列关于x 的不等式:(a 为实数) (1)220x x a ++< (2)102ax x ->-. 【解析】(1)原不等式对应的一元二次方程为:220x x a ++=, Δ44a =-,当1a ≥时,Δ440a =-≤,原不等式无解;当1a <时,对应一元二次方程的两个解为:11x a =-- 所以220x x a ++<的解为:1111a x a --<--。

一元二次方程试题4

一元二次方程试题4

复习(专项)之一元二次方程第一部分:填空题1、一元二次方程12)3)(31(2+=-+x x x 化为一般形式为: ,二次项系数为: ,一次项系数为: ,常数项为: 。

2、有一个一元二次方程,未知数为y ,二次项的系数为-1,一次项的系数为3,常数项为-6,请你写出它的一般形式______________。

3、在关于x 的方程(m-5)x m-7+(m+3)x-3=0中:当m=_____时,它是一元二次方程;当m=_____时,它是一元一次方程。

4、已知关于x 的一元二次方程x 2+kx+k=0的一个根是–2,那么k=_ __。

5、若-2是关于x 的一元二次方程(k 2-1)x 2+2kx+4=0的一个根,则k=________.6、已知方程3ax 2-bx-1=0和ax 2+2bx-5=0,有共同的根-1, 则a= , b= .7、若一元二次方程ax 2+bx+c=0(a ≠0)有一个根为1,则a+b+c= ;若有一个根为-1,则b 与a 、c 之间的关系为 ;若有一个根为零,则c= . 8、方程x x =23的解是 。

方程x 2-2x-3=0的根是________.9、已知y=x 2-2x-3,当x= 时,y 的值是-3。

10、已知x 2+3x+5的值为11,则代数式3x 2+9x+12的值为11、已知一元二次方程有一个根是2,那么这个方程可以是 (填上你认为正确的一个方程即可)12、若方程032=+-m x x 有两个相等的实数根,则m = ,两个根分别为 。

13、已知关于x 的方程x 2-(a +2)x +a -2b =0的判别式等于0,且x =12是方程的根,则a +b 的值为 ______________。

14、已知关于x 的一元二次方程01)12()2(22=+++-x m x m 有两个不相等的实数根,则m 的取值范围是15、如果关于x 的一元二次方程2x(ax -4)-x 2+6=0没有实数根,那么a 的最小整数值是 。

初三数学一元二次方程根与系数的关系及其应用知识精讲

初三数学一元二次方程根与系数的关系及其应用知识精讲

初三数学一元二次方程根与系数的关系及其应用知识精讲一元二次方程根与系数的关系及其应用一元二次方程ax bx c a 200++=≠()的根x x 12、是由系数a 、b 、c 决定的,它们之间有密切的关系。

x x b a x x c a1212+=-=, 这就是根与系数的关系,也称为韦达定理。

反之,一元二次方程的两根也制约着这个方程的系数,当a =1时,有()b x x =-+12,c x x =12,从而有以两个数x x 12、为根的二次项系数为1的一元二次方程是()x x x x x x 212120-++=。

需要指出,韦达定理应该是在判别式大于等于零的前提下使用,即在保证一元二次方程有实数根的条件下使用。

一元二次方程的韦达定理,揭示了根与系数的一种必然联系,利用这个关系,我们可以解决诸如已知一根求另一根,求根的代数式的值,构造方程,确定系数等问题,它是中学数学中的一个有用的工具。

例(2002·南京)已知:关于x 的方程x kx 220--= (1)求证:方程有两个不相等的实数根;(2)设方程的两根为x x 12、,如果()21212x x x x +>,求k 的取值范围。

解:(1)证明: ∆=-=+>b ac k 22480 ∴原方程有两个不相等的实数根 (2) x x k x x 12122+==-, 又() 21212x x x x +>∴>-∴>-221k k说明:本题侧重考察对基本知识点的掌握,难度不大,可以说是中考中的送分题,同学们应该把这类题的分数拿到手。

例(2000上海)已知关于x 的一元二次方程()mx m x m m 221200--+-=>()(1)求证:这个方程有两个不相等的实数根;(2)如果这个方程的两个实数根分别为x x 12、,且()()x x m 12335--=,求m 的值。

解:(1)证明:()[]()∆=----21422m m m=-+-+=+441484122m m m m mm m >∴4+>010, ∴方程有两个不相等的实数根 (2)由()()x x m 12335--= ()x x x x m 12123950-++-=x x m mx x m m1212212+=-=-()∴---+-=m m m mm 2321950 解得:m m 12115==-,经检验m m 12、都是方程的根。

一元二次方程基础题

一元二次方程基础题

一元二次方程基础题一、 填空1.一元二次方程12)3)(31(2+=-+x x x 化为一般形式为: ,二次项系数为: ,一次项系数为: ,常数项为: .2.关于x 的方程023)1()1(2=++++-m x m x m ,当m 时为一元一次方程;当m 时为一元二次方程。

3.(2009重庆綦江)一元二次方程x 2=16的解是 .4. (2009威海) 若关于x 的一元二次方程2(3)0x k x k +++=的一个根是2-,则另一个根是______.5.方程(x-1)2=4的解是 .6.用配方法和公式法解方程(1)2250x x --= (2) 23610x x -+=7.已知直角三角形三边长为连续整数,则它的三边长是 .8. ++x x 32 +=x ( 2);-2x x (2=+ 2).9.直角三角形的两直角边是3 : 4,而斜边的长是15㎝,那么这个三角形的面积是 .10.若方程02=++q px x 的两个根是2-和3,则q p ,的值分别为 .11.若代数式5242--x x 与122+x 的值互为相反数,则x 的值是 .12.方程492=x 与a x =23的解相同,则a = .13.当t 时,关于x 的方程032=+-t x x 可用公式法求解.14.若实数b a ,满足022=-+b ab a ,则ba = . 15.若8)2)((=+++b a b a ,则b a += .16.已知1322++x x 的值是10,则代数式1642++x x 的值是 .17.请你写出一个有一根为1的一元二次方程: .18.设a b ,是方程220090x x +-=的两个实数根,则22a a b ++的值为 .19.(2006年广西省)已知y=-2x+m ,当x=3时,y=1,则直线y=-2x+m 与x 轴的交点坐标为_______.20.若直线y=12x-2与直线y=-14x+a 相交于x 轴,则直线y=-14x+a 不经过的象限是_____.21.若不等式kx+b>0的解集为x>-2,则直线y=kx+b 与x 轴的交点为_____.22.(2006年衡阳市)如图,直线y 1=k 1x+b 1与直线y 2=k 2x+b 2交于点(-2,2),则当x____时,y 1<y 2.(第4题) (第7题) (第8题)23.若方程2x 2+bx+c=0有两个不相等的实数根,则抛物线y=2x 2+bx+c 与x 轴有____个交点.24.直线y=ax+b 与y=ax 2+bx+c (a ≠0)的交点为(-1,2)和(3,-4),则方程组2y ax b y ax bx c =+⎧⎨=++⎩的解为_________.二、 选择1.下列方程中,无论a 取何值,总是关于x 的一元二次方程的是( )(A )02=++c bx ax (B )x x ax -=+221(C )0)1()1(222=--+x a x a (D )2103x a x +-=+ 2.若12+x 与12-x 互为倒数,则实数x 为( ) (A )±21 (B )±1 (C )±22 (D )±2 3. 关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是( )A .6B .7C .8D .94.若m 是关于x 的一元二次方程02=++m nx x 的根,且m ≠0,则n m +的值为( )(A )1- (B )1 (C )21- (D )21 5.关于x 的一元二次方程02=++m nx x 的两根中只有一个等于0,则下列条(A )0,0==n m (B )0,0≠=n m (C )0,0=≠n m (D )0,0≠≠n m 6.关于x 的一元二次方程02=+k x 有实数根,则( )(A )k <0 (B )k >0 (C )k ≥0 (D )k ≤07.已知x 、y 是实数,若0=xy ,则下列说法正确的是( )(A )x 一定是0 (B )y 一定是0 (C )0=x 或0=y (D )0=x 且0=y8.若方程02=++c bx ax )0(≠a 中,c b a ,,满足0=++c b a 和0=+-c b a ,则方程的根是( )(A )1,0 (B )-1,0 (C )1,-1 (D )无法确定9.关于x 的一元二次方程01)12(2=-+++k x k x 的根的情况是( )A.有两个不等实根B.有两个相等实根C.没有实根D.无法判断10. 已知关于x 的一元二次方程220x x k ++=没有实数根,则k 的取值范围是( )A.1k ≤B.1k ≥C.1k <D.1k >11. 若关于x 的一元二次方程0)21()2(2=+-+-a x a x a 有实根,则 ( )A . 41->aB .41-≥aC . 41-≥a 且2≠aD .41->a 且2≠a 12. 若关于x 的一元二次方程kx 2 – 6x +9=0有两个不.相等的实数根,则k 的取值范围( )A .k >–1B .k <1C .k >–1且k ≠ 0D .k <1且k ≠ 013.某场一月份生产产品150台,计划二、三月份共生产450台,平均二、三月平均每月增长率为x ,根据题意列出方程式( )A .2150(1)450x += B.2150(1)150(1)450x x +++=C .2150(1)450x -= D.2150(1)x +14.函数y=kx+b (k 、b 为常数)的图象如图,则关于x 的不等式kx+b>0的解集为( )A .x>0B .x<0C .x<2D .x>215.(2006年安徽省)已知甲、乙两弹簧的长度y (cm )与所挂物体质量x (kg )之间的函数解析式分别为y 1=k 1x+a 1和y 2=k 2x+a 2,图象如图所示,设所挂物体质量为2kg 时,甲弹簧长为y 1,乙弹簧长为y 2,则y 1与y 2的大小关系为( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能确定16.如图是甲、乙两家商店销售同一种产品的销售价y (元)与销售量x (件)之间的函数图象.下列说法:①售2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买乙家的1件售价约为3元,A.①② B.②③④ C.②③ D.①②③17.(2006年江苏省)如图,L1反映了某公司的销售收入与销售量的关系,L2反映了该公司产品的销售成本与销售量的关系.当该公司赢利(收入大于成本)时,销售量应()A.小于3吨 B.大于3吨 C.小于4吨 D.大于4吨(第9题) (第10题)三、解方程(选用合适的方法解下列方程)1. 解方程:x2+8x-9=0.2. 解方程:x2-2x-4=0.3. 解方程:5x2=4x4. 解方程:x-2=x(x-2)5.x2-4x+3=0;6.2x2-4x-1=0;7.(x-2)(3x-5)=18. )4(5)4(2+=+xx9 .xx4)1(2=+10. 22)21()3(xx-=+11. 31022=-xx四、解答题1.已知等腰三角形底边长为8,腰长是方程02092=+-x x 的一个根,求这个三角形的腰长.2.已知一元二次方程0437122=-+++-m m mx x m )(有一个根为零,求m 的值.3.关于x 的方程04)2(2=+++k x k kx 有两个不相等的实数根. 求k 的取值范围。

21.2.4一元二次方程的根与系数的关系

21.2.4一元二次方程的根与系数的关系

7 3
x1x2=
9 3

3
(3)5x-1=4x²
解:方程化为4x²-5x+1=0
x1+x2=

5 4

5 4
x1x2=
1 4
课件PPT
课件PPT
典题精讲
x 例2 已知关于 的方程 x2 2m1xm2 2 0 ,m
取何值时,(1)方程有两个不相等的实数根;
1
无论k取何值, k

2
2


0


,


k

2 2
1
0
所以此方程有两个不相等的实数根。
课堂作业
课件PPT
9、关于x的方程kx2+(k+1)x+k/4=0有两个不相等 的实数根,求k的取值范围.
k>-1/2,且k≠0.
10、已知:a,b,c是△ABC的三边,若方程
ax 2 2 b 2 c 2x 2(b c) 2a 有 两 个 等 根 ,
(2)利用求根公式解一元二次方程的方法叫公式法.
(3)由求根公式可知,一元二次方程最多有 个实数根,也可能有 1 个实根或者没有实根.
(4)一般地,式子b2-4ac叫做方程ax2+bx+ c=0(a≠0)的根的判别式,通常用希腊字母Δ 表示它,即Δ=b2-4ac.
课件PPT
探索新知
1.一元二次方程ax2+bx+c=0(a≠0)的根的情况: (1)当Δ>0时,方程有两个不相等的实数根; (2)当Δ=0时,方程有两个相等的实数根; (3)当Δ<0时,方程无实数根.
典题精讲
例2
已知关于x的方程
x22m1xm22 0

一元二次方程根与系数的关系

一元二次方程根与系数的关系

(2)解:当a=5为底边长时,b=c 当a=5为腰长时,不妨设a=b=5, 由根与系数的关系:5+c=2k-3 2 ∴Δ = (2K-5) =0,k=2.5, 5c=2k-4 2 原方程为:x -2x+1=0 解得:c=1,k=4.5 ∴b=c=1 ∵b+c<a ∴此三角形的周长为a+b+c=11 ∴此时不构成三角形,舍去。
_年 _月 _日
星期_______
天气_____ 自我评价:___________ 悄悄话:老师我想对你说______ _______________________ _______________________ ________________________
学习课题:_____________ 知识归纳与整理:________ _____________________ 有那些数学思想方法_____ 我的收获与困惑_________
分析解答
2、已知关于的方程。x2-(2k-3)x +2k-4=0 (1)求证:无论取什么实数值,方程总有实数根。 (2)若等腰三角形的一边长a=5,另两边长b、c恰好是这个方程的两个实数根, 求这个三角形的周长?
(1)证明: ∵Δ =[-(2k-3)]2-4(2k-4) =(2K-5)2 ∴不论k取何值,(2K-5)2 ≥0, 即Δ ≥0,原方程总有实数根。
2、方程2x2-3x+1=0的两根记作x1,x2, 不解方程,求:
(1) x1 x2 x2 x1 ;
分析解答
由根与系数的关系得:x1+x2=3/2 x1x2=1/2
x x ( x1 x2 ) 2 2 x1 x2 x1 x2 x1 x2 x1 x2 x2 x1

一元二次方程的判别式及跟与系数的关系

一元二次方程的判别式及跟与系数的关系

一元二次方程的根的判别式及根与系数的关系要点一、一元二次方程的判别式1.定义:在一元二次方程()ax bx c a 2++=0≠0中,只有当系数a 、b 、c 满足条件△≥b ac 2=−40时才有实数根.这里b ac 2−4叫做一元二次方程根的判别式,记作△.2.判别式与根的关系:在实数范围内,一元二次方程()ax bx c a 2++=0≠0的根的情况由△b ac 2=−4确定. 设一元二次方程为()ax bx c a 2++=0≠0,其根的判别式为:△b ac 2=−4,则①△>0⇔方程()ax bx c a 2++=0≠0有两个不相等的实数根,x 12.②△=0⇔方程()ax bx c a 2++=0≠0有两个相等的实数根b x x a12==−2. ③△<0⇔方程()ax bx c a 2++=0≠0没有实数根. 特殊的:(1)若a ,b ,c 为有理数,且△为完全平方式,则方程的解为有理根;(2)若△为完全平方式,同时b −±2a 的整数倍,则方程的根为整数根.【例1】(1)不解方程,直接判断下列方程的解的情况: ①x x 27−−1=0 ②()x x 29=43−1 ③x x 2+7+15=0④()mx m x 2−+1+=02(m 为常数)(2)已知a 、b 、c 分别是三角形的三边,则方程()()a b x cx a b 2++2++=0的根的情况是( ) A .没有实数根B .可能有且只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根【解析】(1)①△>0,有两个不等实根;②△=0,有两个相等实根; ③△<0,无实根;④△m 2=+1>0,方程有两个不等实根. (2)由题()()()()△c a b a b c c a b 22=2−4+=4++−−∵a b c ++>0,c a b −−<0,故方程没有实根.选A .【点评】这道题(1)主要考察判别式与根的关系,属于特别基础的题,锻炼孩子们的思维,(2)结合三角形三边关系来考察一元二次方程的判别式和根的个数的关系.【例2】(1)若关于x 的一元二次方程()k x x 21−1+−=04有实根,则k 的取值范围为______. 【解析】(1)≥k 0且≠k 1;【变式2-1】若关于x 的一元二次方程kx 2﹣4x+3=0有实数根,则k 的非负整数值是( ) A. 1 B. 0,1 C. 1,2 D. 1,2,3【答案】A.提示:根据题意得:△=16﹣12k≥0,且k≠0,解得:k≤,且k≠0. 则k 的非负整数值为1.【变式2-2】已知关于x 的一元二次方程有实数根,则m 的取值范围是________ 【答案】且m≠1 【解析】因为方程有实数根,所以,解得, 同时要特别注意一元二次方程的二次项系数不为0,即, ∴ m 的取值范围是且m≠1. 【总结升华】注意一元二次方程的二次项系数不为0,即,m≠1.【例3】已知:关于x 的方程有两个不相等的实数根,求k 的取值范围. 【答案】.【变式3-1】关于x的一元二次方程()k x 21−2−−1=0有两个不相等的实数根,则k 的取值范围______.≤k −1<2且k 1≠2, 由题意,得()()k k k k 4+1+41−2>0⎧⎪+1≥0⎨⎪1−2≠0⎩,解得≤k −1<2且k 1≠2;2(1)10m x x −++=54m ≤2(1)10m x x −++=214(1)450m m =−−=−+≥△54m ≤(1)0m −≠54m ≤(1)0m −≠2(1)04kkx k x +++=102k k ≠>-且【变式3-2】已知关于x 的方程x 2+2x+a ﹣2=0.(1)若该方程有两个不相等的实数根,求实数a 的取值范围; (2)当该方程的一个根为1时,求a 的值及方程的另一根. 【思路点拨】(1已知方程有两个不相等的实数根,即判别式△=b 2﹣4ac >0.即可得到关于a 的不等式,从而求得a 的范围.(2)设方程的另一根为x 1,根据根与系数的关系列出方程组,求出a 的值和方程的另一根. 【答案与解析】解:(1)∵b 2﹣4ac=(﹣2)2﹣4×1×(a ﹣2)=12﹣4a >0,解得:a <3.∴a 的取值范围是a <3;(2)设方程的另一根为x 1,由根与系数的关系得:,解得:,则a 的值是﹣1,该方程的另一根为﹣3.【变式3-2】关于x 的一元二次方程(k ﹣1)x 2﹣2x+1=0有两个不相等的实数根,则实数k 的取值范围是 .【思路点拨】此题要考虑两方面:判别式要大于0,二次项系数不等于0. 【答案】k <2且k≠1;【解析】解:∵关于x 的一元二次方程(k ﹣1)x 2﹣2x+1=0有两个不相等的实数根, ∴k ﹣1≠0且△=(﹣2)2﹣4(k ﹣1)>0, 解得:k <2且k≠1. 故答案为:k <2且k≠1.【总结升华】不能忽略二次项系数不为0这一条件.【例4】当a 、b 为何值时,方程()x a x a ab b 222+21++3+4+4+2=0有实根?(3)要使关于x 的一元二次方程()x a x a ab b 222+21++3+4+4+2=0有实根,则必有△≥0,即()()≥a a ab b 22241+−43+4+4+20,得()()a b a 22+2+−1≤0.又因为()()a b a 22+2+−1≥0,所以()()a b a 22+2+−1=0,得a =1,b 1=−2.【变式4-1】已知关于x 的一元二次方程()a x ax 213−1−+=04有两个相等的实数根,求代数式a a a21−2+1+的值.【解析】由题,一元二次方程()a x ax 213−1−+=04有两个相等的实数根, 所以a a 2−3+1=0.所以有a a a 2−2+1=,a a 2+1=3.代入a a a21−2+1+,得a a a a a a a a a 2211+13−2+1+=+===3.【点评】这道题主要是考察判别式与代数式的结合,难度不大.【变式4-2】m 为任意实数,试说明关于x 的方程x 2-(m-1)x-3(m+3)= 0恒有两个不相等的实数根. 【答案】∵Δ=[-(m-1)]2-4×[-3(m+3)]=m 2+10m+37=(m+5)2+12>0,∴关于x 的方程x 2-(m-1)x-3(m+3)= 0恒有两个不相等的实数根.【例5】在等腰△ABC 中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,已知a =3,b 和c 是关于x 的方程x mx m 21++2−=02的两个实数根,求△ABC 的周长.【解析】当b c =时,方程有两个相等的实数根,则=△m m 21⎛⎫−42−=0 ⎪2⎝⎭,∴m 1=−4,m 2=2.若m =−4,原方程化为x x 2−4+4=0, 则x x 12==2,即b c ==2, ∴△ABC 的周长为2+2+3=7. 若m =2,原方程化为x x 2+2+1=0, 则x x 12==−1,不合题意.当a b =或a c =时,x =3是方程的一个根, 则m m 19+3+2−=02,则m 22=−5,原方程化为x x 22221−+=055,解得x 1=3,x 27=5, ∴ABC △的周长为7373+3+=55.综上所述,ABC △的周长为7或375. 【点评】这道题主要考察学生们的分类讨论能力,应对多种情况是要理清思路.要点二、一元二次方程的根与系数关系(韦达定理)1.韦达定理:如果()ax bx c a 2++=0≠0的两根是x 1,x 2,则b x x a 12+=−,cx x a12=.(使用前提:△≥0)特别地,当一元二次方程的二次项系数为1时,设x 1,x 2是方程x px q 2++=0的两个根,则x x p 12+=−,x x q 12=. 2.韦达定理的逆定理:如果有两个数x 1,x 2满足b x x a 12+=−,cx x a12=,那么x 1,x 2必定是()ax bx c a 2++=0≠0的两个根.特别地,以两个数x 1、x 2为根的一元二次方程(二次项系数为1)是()x x x x x x 21212−++=0. 3.韦达定理与根的符号关系:在△≥b ac 2=−40的条件下,我们有如下结论: (1)当ca<0时,方程的两根必一正一负. ①若≥b a −0,则此方程的正根不小于负根的绝对值;②若ba−<0,则此方程的正根小于负根的绝对值.(2)当ca>0时,方程的两根同正或同负. ①若b a −>0,则此方程的两根均为正根;②若ba−<0,则此方程的两根均为负根.注意:(1)若ac <0,则方程()ax bx c a 2++=0≠0必有实数根.(2)若ac >0,方程()ax bx c a 2++=0≠0不一定有实数根.【例6】(1)已知一元二次方程ax ax c 2+2+=0的一根x 1=2,则方程的另一根______x 2=.(2)已知x 1,x 2是方程x x 2−3+1=0的两个实数根,则:①x x 2212+;②()()x x 12−2⋅−2;③x x x x 221122+⋅+;④x x x x 2112+;⑤x x 12−;⑥x x 2212−;⑦x x 1211−.【解析】(1)−4;(2)()x x x x x x 2222121212+=+−2⋅=3−2⨯1=7, ()()()x x x x x x 121212−2⋅−2=⋅−2++4=1−2⨯3+4=−1, ()x x x x x x x x 22211221212+⋅+=+−⋅=9−1=8,x x x x x x x x 2221211212+7+===7⋅1,()()x x x x x x 222121212−=+−4⋅=3−4⨯1=5,∴x x 12−=,∴()()(x x x x x x 22121212−=+−=3⨯=x x x x x x 21121211−−==.【点评】第三小题,主要是考察韦达定理的灵活运用,包含了各种变形情况.【例7】(1)已知关于x 的方程()x k x k 22+2−3+−3=0有两个实数根x 1,x 2,且x x x x 121211+=+,求k 值.(2)已知x 1,x 2是方程ax ax a 24−4++4=0的两实根,是否能适当选取a 的值,使得()()x x x x 1221−2−2的值等于54.【解析】(1)∵方程()x k x k 22+2−3+−3=0有两个实数根x 1,x 2,∴()()△≥k k k 22=2−3−4−3=21−120得:≤k 74. 由韦达定理得,()x x k x x k 12212+=−2−3⎧⎪⎨⋅=−3⎪⎩. ∵x x x x 121211+=+,∴x xx x x x 121212++=,x x 12+=0或x x 12=1,当x x 12+=0时,k 3−2=0,k 3=2,∵k 37=<24,所以k 3=2符合题意. 当x x 12=1时,k 2−3=1,k =±2,∵k 7≤4,∴k =2舍去.∴k 的值为32或−2. (2)显然a ≠0由()△a a a 2=16−16+4≥0得a <0, 由韦达定理知x x 12+=1,a x x a12+4=4, 所以()()()()()a x x x x x x x x x x x x a 2221221121212129+4−2−2=5−2+=9−2+=−24a a+36=4 若有()(),x x x x 12215−2−2=4则a a +365=44,∴a =9,这与0a <矛盾, 故不存在a ,使()()x x x x 12215−2⋅−2=4. 【点评】这道题主要锻炼孩子们的过程,以及有两个实根,解出来别忘了限制条件,这种类型的题比较常见,一定不要忽视∆的限定条件以及用韦达定理可得到的限定条件.【例8】(1)若m ,n 是方程x x 2+−1=0的两个实数根,则m m n 2+2+−1的值为________.(2)已知a ,b 是方程x x 2+2−5=0的两个实数根,则a ab a b 2−+3+的值为__________.(3)已知m 、n 是方程x x 2+2016+7=0的两个根,则()()m m n n 22+2015+6+2017+8= ________.【解析】(1)∵m ,n 是方程x x 2+−1=0的两个实数根,∴m n +=−1,m m 2+−1=0,则原式()()m m m n 2=+−1++=−1=−1,(2)∵a 是方程x x 2+2−5=0的实数根,∴a a 2+2−5=0,∴a a 2=5−2,∴a ab a b a ab a b a b ab 2−+3+=5−2−+3+=+−+5, ∵a ,b 是方程x x 2+2−5=0的两个实数根,∴a b +=−2,ab =−5,∴a ab a b 2−+3+=−2+5+5=8. 故答案为8.(3)∵m 、n 是方程x x 2+2016+7=0的两个根,∴m n +=−2016,mn =7;∴m m 2+2016+7=0,n n 2+2016+7=0,()()()()m m n n m m m n n n 2222+2015+6+2017+8=+2016+7−−1+2016+7++1()()()()m n mn m n =−+1+1=−+++1=−7−2016+1=2008故答案是:2008.【点评】这道题主要考查韦达定理根系关系的应用,进一步强化孩子对于韦达定理应用的理解.【例9】(1)已知一元二次方程()ax a x a 2+3−2+−1=0的两根都是负数,则k 的取值范围是_________.(2)已知二次方程342x x k 2−+−=0的两根都是非负数,则k 的取值范围是__________.【解析】(1)此方程两实根为,x x 12,由已知得a x x x x 1212≠0⎧⎪∆0⎪⎨+<0⎪⎪>0⎩≥,∴()()a a a a a a a a2≠0⎧⎪3−24−10⎪⎪2−3⎨<0⎪⎪−1⎪>0⎩-≥g ,即a 91<8≤.(2)此方程两实根为,x x 12,由已知得≥x x x x 1212∆≥0⎧⎪+≥0⎨⎪0⎩,得:∴2()43()k k ⎧⎪−4−⨯−2≥0⎪4⎪>0⎨3⎪−2⎪≥0⎪3⎩即k 102≤≤3. 【点评】这道题主要考查韦达定理和判别式结合不等式组的形式去判定根的具体情况,这类题是比较常见一类题,要将这种不等的思想传授给孩子.【课后作业】1.已知关于x 的一元二次方程()()k x k x 22−1+2+1+1=0有两个不相等的实数根,则k 的取值范围为_____________. A .k 1≥4 B .k 1>4且≠k 1 C .k 1<4且≠k 1 D .k 1≥4且≠k 1【解析】B .2.已知关于x 的一元二次方程x m 2−=0有两个不相等的实数根,则m 的取值范围__________.3.关于x 的方程()()m x m x 22−4+2+1+1=0有实根,则m 的取值范围__________.【解析】2.由题意可知,原方程的判别式(m m m 21∆=+4=1+3>0⇒>−3.又≥≤m m 1−0⇒1, 故≤m 1−<13.3.题设中的方程未指明是一元二次方程,还是一元一次方程,所以应分0m 2−4=和m 2−4≠0,两种情形讨论:当m 2−4=0即m =±2时,()m 2+1≠0,方程为一元一次方程,总有实根; 当m 2−4≠0即m ≠±2时,方程有根的条件是: [()]()≥m m m 22=2+1−4−4=8+20∆0,解得m 5≥−2.∴当m 5≥−2且m ≠±2时,方程有实根.综上所述:当m 5≥−2时,方程有实根.4.已知关于x 的方程()x k x k 2−+1+2−2=0. (1)求证:无论k 为何值,方程总有实根;(2)若等腰ABC △,底边a =3,另两边b 、c 恰好是此方程的两根,求ABC △的周长.【解析】(1)()()()≥△k k k 22=+1−42−2=−30,∴无论k 为何值,方程总有实根.(2)当a =3为底,b ,c 为腰时,b c =,∴方程有两个相等的实根,∴∆=0,即()k 2−3=0,k =3,此时方程为x x 2−4+4=0,解x x 12==2,∴ABC △的周长为3+2+2=7,当a =3为腰,则方程有一根为3,将x =3代入方程,得k =4,方程为x x 2−5+6=0,解得x 1=2,x 2=3,∴ABC △的周长为2+3+3=8,综上所述,ABC △的周长为7或8.5.关于x 的方程x kx 22+=10的一个根是−2,则方程的另一根是_______;k =________.6.已知a ,b ,c 为正数,若二次方程ax bx c 2++=0有两个实数根,那么方程a x b x c 2222++=0的根的情况是( ) A .有两个不相等的正实数根 B .有两个异号的实数根 C .有两个不相等的负实数根D .不一定有实数根7.设α,β是一元二次方程x x 2+3−7=0的两个根,则ααβ2+4+=________.【解析】5.设另一根为x ,由根与系数的关系可建立关于x 和k 的方程组,解之即得.x 5=2,k =−1. 6.a x b x c 2222++=0的()()D b a c b ac b ac 42222=−4=+2−2, ∵二次方程ax bx c 2++=0有两个实数根, ∴≥b ac 2−40, ∴b ac 2−2>0,∴()()△b a c b ac b ac 42222=−4=+2−2>0∴方程有两个不相等的实数根,而两根之和为负,两根之积为正. 故有两个负根.故选C .7.∵α,β是一元二次方程x x 2+3−7=0的两个根, ∴αβ+=−3,αα2+3−7=0, ∴αα2+3=7,∴ααβαααβ22+4+=+3++=7−3=4,故答案为:4.11 8.已知关于x 的方程()x m x m 22+2+2+−5=0有两个实数根,并且这两个根的平方和比这两个根的积大16,求m 的值.【解析】有实数根,则∆≥0,且x x x x 221212+−=16,联立解得m 的值.依题意有:()2()3()()x x m x x m x x x x m m 12212121222+=−2+2⎧⎪=−5⎪⎨+−=16⎪⎪∆=4+2−4−5≥0⎩,解得:m =−1或m =−15且m 9≥−4, ∴ m =−1.韦达定理说明了一元n 次方程中根和系数之间的关系。

一元二次方程根与系数关系

一元二次方程根与系数关系

1
一元二次方程根与系数关系
知识定位
设一元二次方程有二实数根,则,。

这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。

其逆命题也成立。

韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。

而且这部分内容题型多样,方法灵活,触及知识面广。

知识梳理
知识梳理1:求代数式的值
应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。

知识梳理2:构造一元二次方程
如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。

知识梳理3:证明等式或不等式
根据韦达定理(或逆定理)及判别式,可以证明某些恒等式或不等式
知识梳理4:研究方程根的情况
将韦达定理和判别式定理相结合,可以研究二次方程根的符号、区间分布、整数性等。

关于方程的实根符号判定有下述定理:
⑴方程有二正根,ab<0,ac>0;
⑵方程有二负根,ab>0,ac>0;
⑶方程有异号二根,ac<0;
⑷方程两根均为“0”,b=c=0,;
1。

一元二次方程的解和a b c的关系

一元二次方程的解和a b c的关系

一元二次方程的解和a b c的关系
一元二次方程的形式为:
2 + + = 0
其中,,为常数,不等于0。

一元二次方程的通解由,,决定,具体关系如下:
1. 当不等于0,等于0,等于0时,方程为2=0,解为=0(重根)。

2. 当不等于0,不等于0,Δ=2-4小于0时,方程无实数解。

3. 当不等于0,不等于0,Δ=2-4等于0时,方程有一个实数解=-/2。

4. 当不等于0,不等于0,Δ=2-4大于0时,方程有两个实数解:
1=-/2+√(2-4)/2
2=-/2-√(2-4)/2
所以,一元二次方程的解性质完全取决于其系数,,,通过判断这三个因子可以确定方程是否有解,有几个解,解的表达形式等。

,,三个因子之间的大小关系决定了方程的解集。

一元二次方程根与系数的关系2

一元二次方程根与系数的关系2

解:将②代入①中得(2x+m)2=4x即4x2+4(m-1)x+m2=0 Δ =[4(m-1)]2-4×4m2=-32m+16=0 ∴m=1/2
典型例题解析
【例1】 (2008年·北京市)已知:关于x的方程 x2-2mx+3m=0的两个实数根是x1,x2,且(x1-x2)2=16,如果关 于 x 的另一个方程 x2-2mx+6m-9=0 的两个实数根都在 x1 和 x2 之间,求m的值. m=4 【例2】 (2008年·四川省)已知x1,x2是一元二次方程 4kx2-4kx+k+1=0的两个实数根. (1) 是否有在实数 k,使 (2x1-x2)(x1-2x2)=-3/2 成立 ? 若存 在,求出k的值;若不存在,请说明理由. x1 x2 (2)求使 x x 2 的值为整数的实数k的整数值.
第二章第六课时:
一元二次方程根与 系数的关系(二)
要点、考点聚焦 课前热身 典型例题解析 课时训练
要点、考点聚焦
1. 能利用一元二次方程根与系数的关系式,确定方程 中字母系数的值或其取值范围. 2.运用韦达定理应适用的条件,确定所求字母系数的 值是否符合条件. 3.能把二次三项式或二次函数以及二元二次方程组等 问题转化为根与系数问题加以解决.
2 1 2
,x12+x22=
7
.
课前热身
3.(2008年· 河南省)m,n是方程x2+2002x-1=0的两个实数根, 则m2n+mn2-mn= 2003 . 4.设x1,x2是方程2x2-3x+m=0的两个实根,且 8x1-2x2=7, 则m的值是 1 .
y 2 4 x 5.如果方程组 只有一个实数解,求m值. y 2 x m
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档