新人教版八年级数学下册学案:勾股定理第2课时勾股定理在实际生活中的应用导学案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十七章勾股定理
2.如图,学校教学楼前有一块长方形长为4米,宽为3米的草坪,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“径路”,却踩伤了花草. (1)求这条“径路”的长;
(2)他们仅仅少走了几步(假设2步为1米)?
探究点2:利用勾股定理求两点距离及验证“HL ”
思考:在八年级上册中,我们曾经通过画图得到结论:斜边和一条直角边分别相等的两个直角三角形全等.学习了勾股定理后,你能证明这一结论吗?
证明:如图,在Rt △ABC 和Rt △A ’ B ’ C ’中,∠C =∠C ’=90°, AB =A ’ B ’,AC =A ’ C ’.
求证:△ABC ≌△A ’ B ’ C ’ .
证明:在Rt △ABC 和Rt △A ’ B ’ C ’中,∠C=∠C ’=90°,
根据勾股定理得BC =_______________,B ’ C ’=_________________. ∵AB=A ’ B ’,AC=A ’ C ’,∴_______=________. ∴____________≌____________ (________).
例2 如图,在平面直角坐标系中有两点A (-3,5),B (1,2)求A ,B 两点间的距离.
探究点3:利用勾股定理求最短距离
想一想:1.在一个圆柱石凳上,若小明在吃东西时留下一点食物在B 处,恰好一只在A 处的蚂蚁捕捉到这一信息,于是它想从A 处爬向B 处,蚂蚁怎么走最近(在以下四条路线中选择一条)?
处放上了点儿火腿肠粒,你
的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多
求直线同侧的两点到直线上一点所连线段的和的最短路径的方法:先找到其中一点关于这条直线的对称点,连接对称点与另一点的线段就是最短路径长,以连接对称点与另一个点的线段为斜边,构造出直角三角形,再运用勾股定理求最短路径. m
2.如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm,内壁高12cm,则这只铅笔的长度可能是()
A.9cm
B.12cm
C.15cm
D.18cm
3.已知点(2,5),(-4,-3),
则这两点的距离为_______.
4.如图,有两棵树,一棵高8米,另一棵2米,两棵对相距8米.一只鸟从一棵树的树梢飞到另一棵的树梢,问小鸟至少飞行多少?
5.如图,是一个三级台阶,它的每一级的长、宽和高分别等于55cm,10cm和6cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去吃可口的食物.这只蚂蚁从A点出发,沿着台阶面爬到B点,最短线路是多少?
能力提升
6.为筹备迎接新生晚会,同学们设计了一个圆筒形灯罩,底色漆成白色,然后缠绕红色油纸,如图.已知圆筒的高为108cm,其横截面周长为36cm,如果在表面均匀缠绕油纸4圈,应裁剪多长的油纸?