聚焦直线系、圆系方程的应用
高一数学423直线与圆的方程的应用课件新人教A版必修2
![高一数学423直线与圆的方程的应用课件新人教A版必修2](https://img.taocdn.com/s3/m/0818579502768e9951e738fe.png)
同理可求得过点 A′(-3,-3)的圆 C 的切线方程 3x-4y -3=0 或 4x-3y+3=0,
即为所求光线 m 所在直线的方程.
解题时需注意的问题是:直线的点斜式适用 于斜率存在的情况,由图知此题中,入射光线所在直线应有两 条,若 k 只有一解,应考虑 k 不存在的情况.
2-1.坐标平面上点(7,5)处有一光源,将圆 x2+(y-1)2=1 16
解:∵圆与 y 轴相切,且圆心在直线 x-3y=0 上, 故设圆的方程为(x-3b)2+(y-b)2=9b2.
又∵直线 y=x 截圆得弦长为 2 7, 则由垂径定理有|3b-2 b|2+( 7)2=9b2, 解得 b=±1. 故所求圆方程为
(x-3)2+(y-1)2=9 或(x+3)2+(y+1)2=9.
2.弦长问题: 圆的弦长的计算:常用弦心距 d,弦长的一半12a 及圆的半 径 r 所构成的直角三角形来解:r2=d2+(12a)2.
弦长问题 例 1:根据下列条件求圆的方程:与 y 轴相切,圆心在直线 x-3y=0 上,且直线 y=x 截圆所得弦长为 2 7 .
思维突破:研究圆的问题,既要理解代数方法,熟练运用解 方程思想,又要重视几何性质及定义的运用.
关于圆的弦长问题,可用几何法从半径、 弦心距、半弦所组成的直角三角形求解,也可用代数法弦长公 式求解.
1-1.一直线经过点 P-3,-23被圆 x2+y2=25 截得的弦 长为 8, 求此弦所在直线方程.
解:当斜率 k 存在时,设所求方程为 y+32=kx+3,即 kx -y+3k-32=0.
由已知,弦心距OM= 52-42=3,
由点到直线的距离公式,得
|2-0+b|= 2
3,即 b=-2±
6,
直线与圆的方程的应用
![直线与圆的方程的应用](https://img.taocdn.com/s3/m/75d84f9189eb172dec63b74c.png)
直线与圆的方程的应用(提高)学习目标1.能利用直线与圆的方程解决有关的几何问题;2.能利用直线与圆的方程解决有关的实际问题;3.进一步体会、感悟坐标法在解决有关问题时的作用.要点梳理要点一、用直线与圆的方程解决实际问题的步骤1.从实际问题中提炼几何图形;2.建立直角坐标系,用坐标和方程表示问题中的几何元素,将平面问题转化为代数问题;3.通过代数运算,解决代数问题;4.将结果“翻译”成几何结论并作答.要点二、用坐标方法解决几何问题的“三步曲”用坐标法解决几何问题时,先用坐标和方程表示相应的几何元素:点、直线、圆;然后对坐标和方程进行代数运算;最后再把代数运算结果“翻译”成相应的几何结论.这就是用坐标法解决平面几何问题的“三步曲”.第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中涉及的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:把代数运算结果“翻译”成几何结论.要点诠释:坐标法的实质就是借助于点的坐标,运用解析工具(即有关公式)将平面图形的若干性质翻译成若干数量关系.在这里,代数是工具、是方法,这是笛卡儿解析几何的精髓所在.要点三、用坐标法解决几何问题时应注意以下几点1.建立直角坐标系时不能随便,应在利于解题的原则下建立适当的直角坐标系;2.在实际问题中,有些量具有一定的条件,转化成代数问题时要注意范围;3.最后要把代数结果转化成几何结论.典型例题类型一:直线与圆的方程的实际应用1.有一种大型商品,A、B两地均有出售且价格相同,某地居民从两地之一购得商品运回来,每公里的运费A地是B地的两倍,若A、B两地相距10公里,顾客选择A地或B地购买这种商品的运费和价格的总费用较低,那么不同地点的居民应如何选择购买此商品的地点【答案】圆C内的居民应在A地购物.同理可推得圆C外的居民应在B地购物.圆C上的居民可随意选择A、B两地之一购物.【解析】以直线AB为x轴,线段AB的垂直平分线为y轴,建立直角坐标系,如下图所示.设A (―5,0),则B(5,0).在坐标平面内任取一点P(x,y),设从A地运货到P地的运费为2a元/km,则从B地运货到P地的运费为a元/km.若P地居民选择在A地购买此商品,则,整理得.即点P在圆的内部.也就是说,圆C内的居民应在A地购物.同理可推得圆C外的居民应在B地购物.圆C上的居民可随意选择A、B两地之一购物.【总结升华】利用直线与圆的方程解决实际问题的程序是:(1)认真审题,明确题意;(2)建立直角坐标系,用坐标表示点,用方程表示曲线,从而在实际问题中建立直线与圆的方程的模型;(3)利用直线与圆的方程的有关知识求解问题;(4)把代数结果还原为对实际问题的解释.在实际问题中,遇到直线与圆的问题,利用坐标法比用平面几何及纯三角的方法解决有时要简捷些,其关键在于建立适当的直角坐标系.建立适当的直角坐标系应遵循三点:(1)若曲线是轴对称图形,则可选它的对称轴为坐标轴;(2)常选特殊点作为直角坐标系的原点;(3)尽量使已知点位于坐标轴上.建立适当的直角坐标系,会简化运算过程.要想学会建立适当的直角坐标系,必须靠平时经验的积累.【变式1】如图是某圆拱桥的一孔圆拱的示意图.该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需要用一个支柱支撑,求支柱的长度(精确到).【答案】【解析】建立坐标系如图所示.圆心的坐标是(0,b),圆的半径是r,那么圆的方程是:因为P(0,4)、B(10,0)都在圆上,所以解得,.所以圆的方程为把代入圆的方程得,所以,即支柱的高度约为.【变式2】某市气象台测得今年第三号台风中心在其正东300 km处,以40 km/h的速度向西偏北30°方向移动.据测定,距台风中心250 km的圆形区域内部都将受到台风影响,请你推算该市受台风影响的起始时间与持续时间.(精确到分钟)【答案】90分钟 10 h【解析】利用坐标法来求解.如图,不妨先建立直角坐标系xOy,其中圆A的半径为250 km,过B(300,0)作倾斜角为150°的直线交圆于点C、D,则该市受台风影响的起始与终结时间分别为C开始至D结束,然后利用圆的有关知识进行求解.以该市所在位置A为原点,正东方向为x轴的正方向建立直角坐标系,开始时台风中心在B(300,0)处,台风中心沿倾斜角为150°方向的直线移动,其轨迹方程为y=(x-300)(x≤300).该市受台风影响时,台风中心在圆x2+y2=2502内,设射线与圆交于C、D,则CA=AD=250,∴台风中心到达C点时,开始影响该市,中心移至D点时,影响结束,作AH⊥CD于H,则AH=AB·sin30°=150,HB=,CH=HD==200,∴BC=-200,则该市受台风影响的起始时间t1=≈(h),即约90分钟后台风影响该市,台风影响的持续时间t2==10(h)即台风对该市的影响持续时间为10 h.【总结升华】应用问题首先要搞清题意,最好是画图分析,运用坐标法求解,首先要建立适当的坐标系,设出点的坐标.还要搞清里面叙述的术语的含义.构造圆的方程进行解题(如求函数的最值问题)时,必须充分联想其几何意义,也就是由数思形.如方程y=1+表示以(0,1)为圆心,1为半径的上半圆,表示原点与曲线f(x,y)=0上动点连线的斜率.类型二:直线与圆的方程在平面几何中的应用2.AB为圆的定直径,CD为直径,自D作AB的垂线DE,延长ED到P使|PD|=|AB|,求证:直线CP必过一定点【答案】直线CP过定点(0,―r)【解析】建立适当的直角坐标系,得到直线CP的方程,然后探讨其过定点,此时要联想证明曲线过定点的方法.证明:以线段AB所在的直线为x轴,以AB中点为原点,建立直角坐标系,如下图.设圆的方程为x2+y2=r2,直径AB位于x轴上,动直径为CD.令C(x0,y0),则D(―x0,―y0),∴P(―x0,―y0―2r).∴直线CP的方程为.即 (y0+r)x―(y+r)x0=0.∴直线CP过直线:x=0,y+r=0的交点(0,―r),即直线CP过定点(0,―r).【总结升华】利用直线与方程解决平面几何问题时,要充分利用圆的方程、直线和圆的位置关系、圆与圆的位置关系等有关知识,正确使用坐标方法,使实际问题转化为代数问题,然后通过代数运算解决代数问题,最后解释代数运算结果的实际含义.【变式】如图,在圆O上任取C点为圆心,作一圆与圆O的直径AB相切于D,圆C与圆D 交于E、F,求证:EF平分CD.证明:令圆O方程为x2+y2=1.①EF与CD相交于H,令C(x1,y1),则可得圆C的方程(x-x1)+(y-y1)2=y12,即x2+y2-2x1x-2y1y+x12=0.②①-②得2x1x+2y1y-1-x12=0.③③式就是直线EF的方程,设CD的中点为H',其坐标为,将H'代入③式,得.即H'在EF上,∴EF平分CD.类型三:直线与圆的方程在代数中的应用3.已知实数x、y满足x2+y2+4x+3=0,求的最大值与最小值.【答案】【解析】如图所示,设M(x,y),则点M在圆O:(x+2)2+y2=1上.令Q(1,2),则设,即kx―y―k+2=0.过Q作圆O1的两条切线QA、QB,则直线QM夹在两切线QA、QB之间,∴k AQ≤k QM≤k QB.又由O1到直线kx―y―k+2=0的距离为1,得,即.∴的最大值为,最小值为.【总结升华】本例中利用图形的形象直观性,使代数问题得以简捷地解决,如何由“数”联想到“形”呢关键是抓住“数”中的某些结构特征,联想到解析几何中的某些方程、公式,从而挖掘出“数”的几何意义,实现“数”向“形”的转化.本例中由方程联想得到圆,由等联想到斜率公式.由此可知,利用直线与圆的方程解决代数问题的关键是由某些代数式的结构特征联想其几何意义,然后利用直线与圆的方程及解析几何的有关知识并结合图形的形象直观性来分析解决问题,也就是数形结合思想方法的灵活运用.涉及与圆有关的最值问题,可借助图形性质利用数形结合求解,一般地:(1)形如形式的最值问题,可转化为动直线斜率的最值问题;(2)形如t=ax+by形式的最值问题,可转化为动直线截距的最值问题;(3)形如d=(x-a)2+(y-b)2形式的最值问题,可转化为到定点P(a,b)距离的平方的最值问题.【变式】设函数和,已知当x∈[-4,0]时,恒有,求实数a的取值范围.答案与解析【答案】【解析】因为,所以,即,分别画出和的草图,利用数形结合法,当直线与半圆相切时取到最大值,由圆心到直线的距离为2,求出,即得答案.类型四:直线与圆的方程的综合应用4.设圆满足:(1)截y轴所得的弦长为2;(2)被x轴分成两段圆弧,其弧长的比为3∶1.在满足条件(1)、(2)的所有圆中,求圆心到直线:x―2y=0的距离最小的圆的方程.【答案】(x―1)2+(y―1)2=2或(x+1)2+(y+1)2=2【解析】满足题设中两个条件的圆有无数个,但所求的圆须满足圆心到直线的距离最小.这样须通过求最小值的方法找出符合题意的圆的圆心坐标.设圆心为P(a,b),半径为r,则P点到x轴、y轴的距离分别是|b|和|a|.由题设知:圆P截y轴所得劣弧对的圆心角为90°,故圆P截x轴所得弦长为∴r2=2b2.又圆P截y轴所得的弦长为2,∴r2=a2+1,从而2b2―a2=1.又∵P(a,b)到直线x―2y=0的距离为,∴5d2=|a―2b|2=a2+4b2―4ab=2(a―b)2+2b2―a2=2(a―b)2+1≥1,当且仅当a=b时取等号,此时.由,得或,∴r2=2.故所求的圆的方程为(x―1)2+(y―1)2=2或(x+1)2+(y+1)2=2.【总结升华】解决直线与圆的综合问题,一方面,我们要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题,通过代数的计算,使问题得到解决;另一方面由于直线与圆和平面几何联系得十分紧密(其中直线与三角形、四边形紧密相连),因此我们要勤动手,准确地作出图形,并充分挖掘几何图形中所隐含的条件(性质),利用几何知识使问题得到较简捷的解决.本题若用代数方法求解,其计算量大得多,不信自己试试看.在解决有关直线与圆的综合问题时,经常需要引进一些参数(用字母表示相关量),但不一定要解出每一个几何量,而是利用有关方程消去某些参数,从而得到所要的几何量的方程,解此方程即可.这种解题方法就是“设而不求”(设出了但没有求出它)的思想方法.“设而不求”是解析几何中的一种重要的思想方法.【变式】已知圆x2+y2+x―6y+m=0与直线x+2y―3=0相交于P、Q两点,点O为坐标原点,若OP⊥OQ,求m的值.【答案】3【解析】由得代入,化简得:5y2-20y+12+m=0,y1+y6=4,设的坐标分别为,,由可得:===0解得:析【答案与解析】1.【答案】B【解析】圆心C(2,3),,∴切线长.2.【答案】B【解析】如图所示,以A地为原点,正东方向为x轴正方向建立直角坐标系,则A(0,0),B(40,0).设台风的移动方向是射OC,则射线OC的方程是y=x(x≥0),以B为圆心,30为半径长的圆与射线OC交于M和N两点,则当台风中心在线段MN上移动时,B城市处于危险区内.点B到直线OC的距离是,则有(千米),因此B城市处于危险区内的时间为(小时)故选B.3.【答案】D【解析】直线AB的方程是,,则当△ABC面积取最大值时,边AB上的高即点C到直线AB的距离d取最大值.又圆心M(1,0),半径r=1,点M到直线的距离是,由圆的几何性质得d的最大值是,所以△ABC面积的最大值是.故选D.4.【答案】C【解析】结合圆的几何性质,得圆心C到直线的距离d满足1<d<3.所以.解得-17<k<-7或3<k<13.故选C.5.【答案】B【解析】圆心坐标是(3,4),半径是5,圆心到点(3,5)的距离为1,根据题意最短弦BD和最长弦(即圆的直径)AC垂直,故最短弦的长为,所以四边形ABCD的面积为.6.【答案】B【解析】因为两条切线x―y=0与x―y―4=0平行,故它们之间的距离即为圆的直径,所以,所以.设圆心坐标为P(a,―a),则点P到两条切线的距离都等于半径,所以,,解得a=1,故圆心为(1,―1),所以圆的标准方程为(x―1)2+(y+1)2=2,故选B.7.【答案】B【解析】设点(x,y)与圆C1的圆心(―1,1)关于直线x―y―1=0对称,则,解得,从而可知圆C2的圆心为(2,―2),又知其半径为1,故所求圆C2的方程为(x―2)2+(y+2)2=1.8.【答案】B【解析】因为三角形的三边长分别为3、4、5,所以该三角形是直角三角形,其图为如图所示的Rt△ABC.圆O是△ABC的内切圆,可计算得其半径为1,过O点作三条直线EF、GH、MN,分别与△ABC三边平行此三条直线将△ABC分割成6个部分.记半径为1的圆O1的圆心到三条边AB、BC、CA的距离分别为d1、d2、d3.而圆心O1在这6个区域时,有(Ⅰ)(最多4个公共点);(Ⅱ)(最多2个公共点);(Ⅲ)(最多2个公共点);(Ⅳ)(最多4个公共点).而圆心O1在线段EF、GH、MN上时,最多有4个公共点,故选B.9.【答案】(x+1)2+y2=2【解析】根据题意可知圆心坐标是(―1,0),圆的半径等于,故所求的圆的方程是(x+1)2+y2=2.10.【答案】2x―y=0【解析】设所求直线方程为y=kx,即kx―y=0.由于直线kx―y=0被圆截得的弦长等于2,圆的半径是1,由此得圆心到直线距离等于,即圆心位于直线kx―y=0上,于是有k―2=0,即k=2,因此所求直线方程为2x―y=0.11.【答案】8【解析】依题意,可设圆心坐标为(a,a)、圆半径为r,其中r=a>0,因此圆方程是(x―a)2+(y―a)2=a2由圆过点(4,1)得(4―a)2+(1―a)2=a2,即a2―10a+17=0,则该方程的两根分别是圆心C1,C2的横坐标,.12.【答案】―1 x2+(y―1)2=1【解析】由题可知,又k1k PQ=―1k1=―1,圆关于直线对称,找到圆心(2,3)的对称点(0,1),又圆的半径不变,易得x2+(y―1)2=1.13.【答案】x2+y2―6x+2y―6=0【解析】设经过两圆交点的圆系方程为x2+y2―4x―6+(x2+y2―4y―6)=0(≠―1),即,∴圆心坐标为.又∵圆心在直线x―y―4=0上,∴,即,∴所求圆的方程为x2+y2―6x+2y―6=0.14.【答案】(1) h后观测站受到影响,影响时间是 (2) M城 h后受到影响, 影响时间是【解析】(1)设风暴中心到C处A开始受到影响,到D处A结束影响,由题意有AC=360,AB=450,∠ABC=45°,设BC=x,则.即,故.∴,故÷90≈,即约 h后观测站受到影响,影响时间是(h).(2)而MA∥BC,∴M城比A气象观测站迟(h)受到影响,故M城 h后受到影响,影响的时间是 h.15.【答案】(1)最大值为,最小值为(2)最大值为51 ,最小值为11(3)最大值为,最小值为【解析】方程x2+y2―6x―6y+14=0,变形为(x―3)2+(y―3)2=4.(1)表示圆上的点P与原点连线的斜率,显然PO与圆相切时,斜率最大或最小.设切线方程为y=kx,即kx―y=0,由圆心C(3,3)到切线的距离等于半径长2,可得,解得,所以,的最大值为,最小值为.(2)x2+y2+2x+3=(x+1)2+y2+2,它表示圆上的点P到E(―1,0)的距离的平方再加2,所以,当点P与点E的距离最大或最小时,所求式子就取最大值或最小值,显然点P与点E距离的最大值为|CE|+2,点P与点E距离的最小值为|CE|―2,又,所以x2+y2+2x+3的最大值为(5+2)2+2=51,最小值为(5―2)2+2=11.(3)设x+y=b,则b表示动直线y=―x+b与圆(x―3)2+(y―3)2=4相切时,b取最大值或最小值圆心C(3,3)到切线x+y=b的距离等于圆的半径长2,则,即,解得,所以x+y的最大值为,最小值为.。
高二数学《直线与圆的方程的应用》课件
![高二数学《直线与圆的方程的应用》课件](https://img.taocdn.com/s3/m/08b417d5900ef12d2af90242a8956bec0975a533.png)
课前预习
课堂互动
课堂反馈
圆 C:(x-a)2+(y- r2-a2)2=r2-a2. 两方程作差得直线 EF 的方程为 2ax+2 r2-a2y=r2+a2. 令 x=a,得 y=12 r2-a2, ∴H(a,12 r2-a2),即 H 为 CD 中点,
∴EF 平分 CD.
课前预习
课堂互动
课堂反馈
规律方法 坐标法建立直角坐标系应坚持的原则: (1)若有两条相互垂直的直线,一般以它们分别为x轴和y轴. (2)充分利用图形的对称性. (3)让尽可能多的点落在坐标轴上,或关于坐标轴对称. (4)关键点的坐标易于求得.
2.利用直线与圆的方程解决最值问题的关键是由某些代数式 的结构特征联想其几何意义,然后利用直线与圆的方程及 解析几何的有关知识并结合图形的几何量值关系分析、解 决问题.
课前预习Βιβλιοθήκη 课堂互动课堂反馈于是有 aa+ -110022+ +bb22= =rr22, , a2+b-42=r2.
课前预习
课堂互动
课堂反馈
解此方程组,得a=0,b=-10.5,r=14.5. 所以这座圆拱桥的拱圆的方程是 x2+(y+10.5)2=14.52(0≤y≤4). 把点D的横坐标x=-5代入上式,得y≈3.1. 由于船在水面以上高3 m,3<3.1, 所以该船可以从桥下通过.
2019高中数学第四章圆与方程4.2直线、圆的位置关系(第2课时)圆与圆的位置关系、直线与圆的方程的应用讲义
![2019高中数学第四章圆与方程4.2直线、圆的位置关系(第2课时)圆与圆的位置关系、直线与圆的方程的应用讲义](https://img.taocdn.com/s3/m/1dc5f017453610661fd9f424.png)
第2课时圆与圆的位置关系、直线与圆的方程的应用[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P129~P132,回答下列问题.(1)如何利用几何性质判断圆与圆的位置关系?判断步骤如何?提示:设两圆的连心线长为l,则判别圆与圆的位置关系的依据有以下几点:①当l>r1+r2时,圆C1与圆C2外离;②当l=r1+r2时,圆C1与圆C2外切;③当|r1-r2|<l<r1+r2时,圆C1与圆C2相交;④当l=|r1-r2|时,圆C1与圆C2内切;⑤当l<|r1-r2|时,圆C1与圆C2内含.判断步骤为:①将两圆的方程化为标准方程;②求两圆的圆心坐标和半径R、r;③求两圆的圆心距d;④比较d与|R-r|,R+r的大小关系得出结论.(2)已知两圆C1:x2+y2+D1x+E1y+F1=0和C2:x2+y2+D2x+E2y+F2=0,如何通过代数的方法判断两圆的位置关系?提示:联立两圆的方程,消去y后得到一个关于x的一元二次方程,当判别式Δ>0时,两圆相交,当Δ=0时,两圆外切或内切,当Δ<0时,两圆外离或内含.2.归纳总结,核心必记(1)圆与圆的位置关系圆与圆的位置关系有五种,分别为外离、外切、相交、内切、内含.(2)圆与圆位置关系的判定①几何法:若两圆的半径分别为r1、r2,两圆连心线的长为d,则两圆的位置关系的判断方法如下:⎭⎪⎬⎪⎫圆C 1方程圆C 2方程消元,一元二次方程⎩⎪⎨⎪⎧Δ>0⇒相交Δ=0⇒内切或外切Δ<0⇒外离或内含[问题思考]将两个相交的非同心圆的方程x 2+y 2+D i x +E i y +F i =0(i =1,2)相减,可得一直线方程,这条直线方程具有什么样的特殊性呢?提示:两圆相减得一直线方程,它经过两圆的公共点.经过相交两圆的公共交点的直线是两圆的公共弦所在的直线.[课前反思]通过以上预习,必须掌握的几个知识点. (1)圆与圆有哪些位置关系? ;(2)怎样判断圆与圆的位置关系? .下图为在某地12月24日拍到的日环食全过程.可以用两个圆来表示变化过程.[思考1] 根据上图,结合平面几何,圆与圆的位置关系有几种?提示:5种,即内含、内切、相交、外切、外离.[思考2] 能否通过一些数量关系表示这些圆的位置关系?提示:可以,利用圆心距与半径的关系可判断.[思考3] 直线与圆的位置关系可利用几何法与代数法判断,那么圆与圆的位置关系能否利用代数法判断?提示:可以.讲一讲1.当实数k为何值时,两圆C1:x2+y2+4x-6y+12=0,C2:x2+y2-2x-14y+k=0相交、相切、相离?(链接教材P129-例3)[尝试解答] 将两圆的一般方程化为标准方程,C1:(x+2)2+(y-3)2=1,C2:(x-1)2+(y-7)2=50-k.圆C1的圆心为C1(-2,3),半径长r1=1;圆C2的圆心为C2(1,7),半径长r2=50-k(k<50),从而|C1C2|=-2-2+-2=5.当1+50-k=5,即k=34时,两圆外切.当|50-k-1|=5,即50-k=6,即k=14时,两圆内切.当|50-k-1|<5<1+50-k,即k∈(14,34)时,两圆相交.当1+50-k<5或|50-k-1|>5,即k∈(34,50)∪(-∞,14)时,两圆相离.(1)判断两圆的位置关系或利用两圆的位置关系求参数的取值范围有以下几个步骤:①化成圆的标准方程,写出圆心和半径;②计算两圆圆心的距离d;③通过d,r1+r2,|r1-r2|的关系来判断两圆的位置关系或求参数的范围,必要时可借助于图形,数形结合.(2)应用几何法判定两圆的位置关系或求字母参数的范围是非常简单清晰的,要理清圆心距与两圆半径的关系.练一练1.两圆C 1:x 2+y 2-2x -3=0,C 2:x 2+y 2-4x +2y +3=0的位置关系是( ) A .相离 B .相切 C .相交 D .内含解析:选C 法一:(几何法)把两圆的方程分别配方,化为标准方程是(x -1)2+y 2=4,(x -2)2+(y +1)2=2,所以两圆圆心为C 1(1,0),C 2(2,-1),半径为r 1=2,r 2=2,则连心线的长|C 1C 2|=-2++2=2,r 1+r 2=2+2,r 1-r 2=2-2,故r 1-r 2<|C 1C 2|<r 1+r 2,两圆相交.法二:(代数法)联立方程⎩⎪⎨⎪⎧x 2+y 2-2x -3=0,x 2+y 2-4x +2y +3=0,解得⎩⎪⎨⎪⎧x 1=1,y 1=-2,⎩⎪⎨⎪⎧x 2=3,y 2=0,即方程组有2组解,也就是说两圆的交点个数为2,故可判断两圆相交.讲一讲2.已知圆C 1:x 2+y 2+2x -6y +1=0,圆C 2:x 2+y 2-4x +2y -11=0,求两圆的公共弦所在的直线方程及公共弦长.[尝试解答] 设两圆交点为A (x 1,y 1),B (x 2,y 2),则A ,B 两点坐标是方程组⎩⎪⎨⎪⎧x 2+y 2+2x -6y +1=0, ①x 2+y 2-4x +2y -11=0 ②的解,①-②得: 3x -4y +6=0. ∵A ,B 两点坐标都满足此方程,∴3x -4y +6=0即为两圆公共弦所在的直线方程. 易知圆C 1的圆心(-1,3),半径r 1=3. 又C 1到直线AB 的距离为d =|-1×3-4×3+6|32+-2=95. ∴|AB |=2r 21-d 2=232-⎝ ⎛⎭⎪⎫952=245.即两圆的公共弦长为245.(1)若圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0相交,则两圆公共弦所在直线的方程为(D 1-D 2)x +(E 1-E 2)y +F 1-F 2=0.(2)公共弦长的求法①代数法:将两圆的方程联立,解出交点坐标,利用两点间的距离公式求出弦长. ②几何法:求出公共弦所在直线的方程,利用圆的半径、半弦长、弦心距构成的直角三角形,根据勾股定理求解.练一练2.求两圆x 2+y 2-2x +10y -24=0和x 2+y 2+2x +2y -8=0的公共弦所在直线的方程及公共弦长.解:联立两圆的方程得方程组⎩⎪⎨⎪⎧x 2+y 2-2x +10y -24=0,x 2+y 2+2x +2y -8=0,两式相减得x -2y +4=0,此即为两圆公共弦所在直线的方程. 法一:设两圆相交于点A ,B , 则A ,B 两点坐标满足方程组⎩⎪⎨⎪⎧x -2y +4=0,x 2+y 2+2x +2y -8=0,解得⎩⎪⎨⎪⎧x =-4,y =0或⎩⎪⎨⎪⎧x =0,y =2.所以|AB |=-4-2+-2=25,即公共弦长为2 5.法二:由x 2+y 2-2x +10y -24=0,得(x -1)2+(y +5)2=50,其圆心坐标为(1,-5),半径长r =52,圆心到直线x -2y +4=0的距离为d =|1--+4|1+-2=3 5. 设公共弦长为2l ,由勾股定理得r 2=d 2+l 2,即50=(35)2+l 2,解得l =5,故公共弦长2l =2 5.讲一讲3.有一种大型商品,A ,B 两地均有出售且价格相同,某地居民从两地之一购得商品运回来,每公里的运费A 地是B 地的两倍,若A ,B 两地相距10公里,顾客选择A 地或B 地购买这种商品的运费和价格的总费用较低,那么不同地点的居民应如何选择购买此商品的地点?[思路点拨] 建系后利用居民选择在A 地购买商品建立不等关系后化简作出判断. [尝试解答]以直线AB 为x 轴,线段AB 的垂直平分线为y 轴,建立直角坐标系,如图所示, 设A (-5,0),则B (5,0).在坐标平面内任取一点P (x ,y ),设从A 运货到P 地的运费为2a 元/km.则从B 运货到P 地运费为a 元/km.若P 地居民选择在A 地购买此商品,则2ax +2+y 2<ax -2+y 2,整理得⎝ ⎛⎭⎪⎫x +2532+y 2<⎝ ⎛⎭⎪⎫2032,即点P 在圆C :⎝ ⎛⎭⎪⎫x +2532+y 2=⎝ ⎛⎭⎪⎫2032的内部. 也就是说,圆C 内的居民应在A 地购物. 同理可推得圆C 外的居民应在B 地购物. 圆C 上的居民可随意选择A 、B 两地之一购物.解决关于直线与圆方程实际应用问题的步骤练一练3.台风中心从A 地以20千米/时的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的时间为( )A .0.5小时B .1小时C .1.5小时D .2小时解析:选B 以台风中心A 为坐标原点建立平面直角坐标系,如图,则台风中心在直线y =x 上移动,又B (40,0)到y =x 的距离为d =202,由|BE |=|BF |=30知|EF |=20,即台风中心从E 到F 时,B 城市处于危险区内,时间为t =20千米20千米/时=1小时.故选B.———————————[课堂归纳·感悟提升]————————————1.本节课的重点是理解并掌握圆与圆的位置关系,会利用方程判断圆与圆的位置关系,以及解决有关问题,能利用直线与圆的方程解决平面几何问题,能利用直线与圆的方程解决简单的实际生活问题.难点是利用方程判断圆与圆的位置关系及利用直线与圆的方程解决简单的实际生活问题.2.本节课要重点掌握的规律方法(1)判断两圆位置关系的方法及应用,见讲1. (2)求两圆公共弦长的方法,见讲2.(3)解决直线与圆的方程的实际应用问题的步骤,见讲3.3.本节课的易错点是判断两圆位置关系时易忽略相切的两种情况而丢解,如讲1.课下能力提升(二十五) [学业水平达标练]题组1 圆与圆的位置关系1.圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系为( ) A .相离 B .相交 C .外切 D .内切解析:选B 圆O 1的圆心坐标为(1,0),半径长r 1=1;圆O 2的圆心坐标为(0,2),半径长r 2=2; 1=r 2-r 1<|O 1O 2|=5<r 1+r 2=3,即两圆相交.2.若两圆x 2+y 2=m 和x 2+y 2+6x -8y -11=0有公共点,则实数m 的取值范围是( )A.(-∞,1) B.(121,+∞)C.[1,121] D.(1,121)解析:选C x2+y2+6x-8y-11=0化成标准方程为(x+3)2+(y-4)2=36.圆心距为d =+2+-2=5,若两圆有公共点,则|6-m|≤5≤6+m,∴1≤m≤121.3.已知圆C1:(x-1)2+(y-2)2=4,圆C2:(x+2)2+(y+2)2=9,则两圆的位置关系是________.解析:C1(1,2),r1=2,C2(-2,-2),r2=3,|C1C2|=5,r1+r2=5,因此两圆外切.答案:外切4.已知两圆x2+y2=10和(x-1)2+(y-3)2=20相交于A,B两点,则直线AB的方程是________.解析:圆的方程(x-1)2+(y-3)2=20可化为x2+y2-2x-6y=10.又x2+y2=10,两式相减得2x+6y=0,即x+3y=0.答案:x+3y=05.求与圆(x-2)2+(y+1)2=4相切于点A(4,-1)且半径为1的圆的方程.解:设所求圆的圆心为P(a,b),则a-2+b+12=1. ①(1)若两圆外切,则有a-2+b+2=1+2=3, ②联立①②,解得a=5,b=-1,所以,所求圆的方程为(x-5)2+(y+1)2=1;(2)若两圆内切,则有a-2+b+2=|2-1|=1, ③联立①③,解得a=3,b=-1,所以,所求圆的方程为(x-3)2+(y+1)2=1.综上所述,所求圆的方程为(x-5)2+(y+1)2=1或(x-3)2+(y+1)2=1.题组2 直线与圆的方程的应用6.一辆卡车宽1.6米,要经过一个半径为3.6米的半圆形隧道,则这辆卡车的平顶车蓬蓬顶距地面的高度不得超过( )A.1.4米 B.3.5米C.3.6米 D.2米解析:选B 建立如图所示的平面直角坐标系.如图设蓬顶距地面高度为h,则A(0.8,h-3.6)所在圆的方程为:x2+(y+3.6)2=3.62,把A(0.8,h-3.6)代入得0.82+h2=3.62.∴h=40.77≈3.5(米).7.某公园有A、B两个景点,位于一条小路(直道)的同侧,分别距小路 2 km和2 2 km,且A、B景点间相距2 km,今欲在该小路上设一观景点,使两景点在同时进入视线时有最佳观赏和拍摄效果,则观景点应设在何处?解:所选观景点应使对两景点的视角最大.由平面几何知识知,该点应是过A 、B 两点的圆与小路所在的直线相切时的切点.以小路所在直线为x 轴,B 点在y 轴正半轴上建立平面直角坐标系.由题意,得A (2,2),B (0,22),设圆的方程为(x -a )2+(y -b )2=b 2,由A 、B 两点在圆上,得⎩⎨⎧a =0,b =2或⎩⎨⎧a =42,b =52,由实际意义知a =0,b =2,∴圆的方程为x 2+(y -2)2=2,切点为(0,0), ∴观景点应设在B 景点在小路的投影处.8.(2016·日照高一检测)为了适应市场需要,某地准备建一个圆形生猪储备基地(如图),它的附近有一条公路,从基地中心O 处向东走1 km 是储备基地的边界上的点A ,接着向东再走7 km 到达公路上的点B ;从基地中心O 向正北走8 km 到达公路的另一点C .现准备在储备基地的边界上选一点D ,修建一条由D 通往公路BC 的专用线DE ,求DE 的最短距离.解:以O 为坐标原点,过OB ,OC 的直线分别为x 轴和y 轴,建立平面直角坐标系,则圆O 的方程为x 2+y 2=1.因为点B (8,0),C (0,8),所以直线BC 的方程为x 8+y8=1,即x +y =8.当点D 选在与直线BC 平行的直线(距BC 较近的一条)与圆的切点处时,DE 为最短距离.所以DE 长的最小值为|0+0-8|2-1=(42-1) km.[能力提升综合练]1.半径长为6的圆与x 轴相切,且与圆x 2+(y -3)2=1内切,则此圆的方程为( ) A .(x -4)2+(y -6)2=6B .(x ±4)2+(y -6)2=6 C .(x -4)2+(y -6)2=36 D .(x ±4)2+(y -6)2=36解析:选D ∵半径长为6的圆与x 轴相切,设圆心坐标为(a ,b ),则b =6(b =-6舍去).再由a 2+32=5,可以解得a =±4,故所求圆的方程为(x ±4)2+(y -6)2=36.2.两圆C 1:x 2+y 2+4x -4y +7=0,C 2:x 2+y 2-4x -10y +13=0的公切线的条数为( ) A .1 B .2 C .3 D .4解析:选C ∵圆C 1的圆心C 1(-2,2),半径为r 1=1,圆C 2的圆心C 2(2,5),半径r 2=4,∴C 1C 2=+2+-2=5=r 1+r 2,∴两圆相外切,∴两圆共有3条公切线.3.(2016· 衡水高一检测)已知半径为1的动圆与圆(x -5)2+(y +7)2=16相切,则动圆圆心的轨迹方程是( )A .(x -5)2+(y -7)2=25B .(x -5)2+(y -7)2=17或(x -5)2+(y +7)2=15 C .(x -5)2+(y -7)2=9D .(x -5)2+(y +7)2=25或(x -5)2+(y +7)2=9解析:选D 设动圆圆心为(x ,y ),若动圆与已知圆外切,则x -2+y +2=4+1,∴(x -5)2+(y +7)2=25;若动圆与已知圆内切,则x -2+y +2=4-1,∴(x -5)2+(y +7)2=9.4.设两圆C 1,C 2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C 1C 2|=( ) A .4 B .4 2 C .8 D .8 2解析:选C ∵两圆与两坐标轴都相切,且都经过点(4,1),∴两圆圆心均在第一象限且横、纵坐标相等.设两圆的圆心分别为(a ,a ),(b ,b ),则有(4-a )2+(1-a )2=a 2,(4-b )2+(1-b )2=b 2,即a ,b 为方程(4-x )2+(1-x )2=x 2的两个根,整理得x 2-10x +17=0,∴a +b =10,ab =17. ∴(a -b )2=(a +b )2-4ab =100-4×17=32, ∴|C 1C 2|=a -b2+a -b2=32×2=8.5.若圆x 2+y 2=4与圆x 2+y 2+2ay -6=0(a >0)的公共弦长为23,则a =__________. 解析:由已知两个圆的方程作差可以得到相应弦的直线方程为y =1a,利用圆心(0,0)到直线的距离d =⎪⎪⎪⎪⎪⎪1a 1=22-32=1,解得a =1.答案:16.一艘轮船沿直线返回港口的途中,接到气象台的台风预报,台风中心位于轮船正西70 km 处,受影响的范围是半径为30 km 的圆形区域,已知港口位于台风中心正北40 km 处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?解:以台风中心为坐标原点,以东西方向为x 轴建立直角坐标系(如图),其中取10 km 为单位长度,则受台风影响的圆形区域所对应的圆的方程为x 2+y 2=9,港口所对应的点的坐标为(0,4),轮船的初始位置所对应的点的坐标为(7,0),则轮船航线所在直线l 的方程为x 7+y 4=1, 即4x +7y -28=0.圆心(0,0)到航线4x +7y -28=0的距离d =|28|42+72=2865,而半径r =3,∴d >r , ∴直线与圆相离,即轮船不会受到台风的影响.。
10.5直线与圆的方程应用举例
![10.5直线与圆的方程应用举例](https://img.taocdn.com/s3/m/46f349a87c1cfad6195fa77f.png)
48(海里).
32 42
由48 50 ,故渔船在不改变航向的情况下,它会受到台风 的影响.
10.5直线与圆的方程应用举例
1.若直线3x 4y m 0 与圆x2 y2 6x 5 0相切,求 m 的值. 2.著名的圆拱桥赵州桥跨度是 米.圆拱高约为 米,求这座 圆拱桥的圆拱所在圆的方程.
3.已知圆C:x2 y2 16 ,点 P(1, 2) 在圆内,过点 P 的直线 l与
圆 C 相交于 A、B 两点,且弦 AB是所有过点 P的弦中长度最
短的,求直线 l的方程.
解:建立如图所示直角坐标系,使圆心
在 y 轴上.设圆心的坐标是 ,圆的半径是r
,那么圆的方程是 x2 ( y b)2 r2 因为点A、P都在圆上,所以它们的坐标(9,0),
(0,4)都满足方程 x2 ( y b)2 r2 .于是,得到方程组
92 (0 b)2 r2 , 02 (4 b)2 r2.
10.5直线与圆的方程应用举例
例2 一艘渔船正沿直线返回港口的途中,接到气象台的 台风预报,台风中心位于渔船的正东方80海里处,受到影响的 范围是半径为50海里的圆形区域.已知港口位于台风中心正北 方60海里处,假设台风中心不移动,试问:渔船在不改变航向 的情况下,它是否会受到台风的影响.
解:如图以台风中心为坐标原点,东西方向
为 轴x ,南北方向为 轴y 建立平面直角坐标系.
于是渔船A和港口B的坐标分别为(80, 0)、(0, 60)
直线 AB的斜率为 k 60 0 3
0 (80) 4
求得直线 AB的方程为3x 4y 240 0 .
10.5直线与圆的方程应用举例
240
台风中心点O 到直线 AB 的距离为 d
直线与圆的方程的实际应用
![直线与圆的方程的实际应用](https://img.taocdn.com/s3/m/e1c2a3cd4793daef5ef7ba0d4a7302768e996ff7.png)
直线与圆的方 程的实际应用
综合应用
直线与圆的方 程的实际应用
坐标法
综合应用
典例精析
题型二:坐标法的应用
例2.如图所示,AB是圆O的直径,CD是圆O的一条弦,且AB⊥CD,E为垂足.利用坐
标法证明E是CD的中点.
证明:如图所示,以O为坐标原点,以直 即b1,b2是关于b的方程m2+b2=r2的根,
径AB所在直线为x轴建立平面直角坐标系, 解方程得 b r2 m2 , 设圆O的半径为r,|OE|=m,则圆O的方 则CD的中点坐标为
12 (1)2
2
答案:-2
跟踪练习
2.如图,圆弧形拱桥的跨度AB=12 m,拱高CD=4 m, 则拱桥的直径为________ m.
解析:设圆心为O,半径为r,则由勾股定理得,|OB|2=|OD|2+|BD|2,
即 r 2 (r 4)2 62
解得 r 13
2
所以拱桥的直径为13 m.
答案:13
3
求新桥BC的长.
又因为AB⊥BC,所以直线AB的斜率
k AB
3 4
,
设点B的坐标为(a,b),
则
k AB
b 60 a0
3 4
, kBC
b0 4, a 170 3
解得a=80,b=120. BC (170 80)2 (0 120)2 150,
因此新桥BC的长为150 m.
课堂小结
直线与圆的方 程的实际应用
新知探索
直线与圆的方程的实际应用方法
仔细读题(审题)→建立数学模型→解答数学模型→检验,给 出实际问题的答案.
新知探索
直线与圆的方程的实际应用方法
用坐标法解决平面几何问题的“三步曲”
高中数学优秀教学设计及说课稿《直线与圆的方程的应用》
![高中数学优秀教学设计及说课稿《直线与圆的方程的应用》](https://img.taocdn.com/s3/m/0e1fbdb8f021dd36a32d7375a417866fb84ac012.png)
直线与圆的方程的应用课题:4.2.3直线与圆的方程的应用.一、教材分析(一)教材的地位和作用“直线与圆问题研究”是解析几何研究的一个重要问题之一。
它是学生在学习了圆锥曲线之后的后续内容,又可贯穿于解析几何学习的始终。
所以,通过这部分内容的学习,可以帮助学生更好的理解解析几何的核心问题——圆锥曲线的概念,也能为学好圆锥曲线作好理论和方法上的准备,是解析几何中承上启下的关键内容。
(二)教学目标的确定及依据基于对课程标准、教材的学习与分析和学生学情的分析,制定如下的教学目标和重难点:知识与技能:(1)利用平面直角坐标系解决直线与圆的位置关系,解决一些实际问题;(2)会用“数形结合”的数学思想解决问题.能力目标:让学生通过观察图形,理解并掌握直线与圆的方程的应用,培养学生分析问题与解决问题的能力.情感目标:在利用直线与圆的位置关系探究解决一些实际问题线面垂直性质的研究中,培养自主探索、合作交流的精神和辩证唯物主义观念。
(三)教学重点、难点及关键教学重点:直线与圆的方程的应用,用坐标法解决平面几何.教学难点:用坐标法解决平面几何。
教学关键:类比、转化数学思想的应用。
二、学法指导在本节课的学习时,学生在前面已经学习了直线与方程、圆的方程的相关知识,并初步探索了运用解析法解决平面上一些与直线有关的实际问题。
学生具备了一定的运用解析法解决问题的能力。
观察、概括、总结、归纳、类比、联想是学法指导的重点。
让学生观察、思考后,总结、概括、归纳的知识更有利于学生掌握;为了加深知识理解、掌握和更灵活地运用,运用类比联想去主动的发现问题、解决问题,从而更系统地掌握所学知识,形成新的认知结构和知识网络,让学生真正地体会到在问题解决中学习,在交流中学习。
这样,可以增进热爱数学的情感,应用数学的自信心和形成新的学习动力。
三、教学方法与手段建构主义认为,知识是在原有知识的基础上,在人与环境的相互作用过程中,通过同化和顺应,使自身的认知结构得以转换和发展。
直线与圆的方程的应用
![直线与圆的方程的应用](https://img.taocdn.com/s3/m/d996073f9a6648d7c1c708a1284ac850ad0204f0.png)
谢谢各位老师莅临指导
汇报人姓名
通过代数运算,解决代数问题;
3
把代数运算结果“翻译”成几何结论.
4
课堂小结:
1、熟悉直线、圆的方程;
2、用坐标系解决实际、几何问题,以及它的解题步骤
(1)建立适当的直角坐标系,用坐标,方程表 示问题中的量;
(2)通过代数运算,解决代数问题;
(3)把代数运算结果“翻译”成实际问题或几何结论。
课后作业:课本144页 练习:2、4
解:
01
建立适当的直角坐标系,将实际量转化成数学量;
02
利用数学知识解出所要求的数学量;
03
将数学量回归实际量,下结论。
注意:(用坐标系解决实际问题)
练习1:某圆拱桥的水面跨度是20m,拱高4m.现有一船,宽10m,水面以上高3m,这条船能否从桥下通过? (精确到0.1;其中 )
01
分析:如图所示,要判断船能否通过拱桥,只需判断
02
解:
例2:已知内接于圆的四边形的对角线互相垂直,求证:圆心到一边的距离等于这条边所对边长的一半.
1
分析:
2
证明:
用坐标法解决几何问题的步骤:
建立适当的平面直角坐标系,用坐标和方程 表示问题中的几何元素,将平面几何问题转化为代数问题;
4.2.1 直线与圆的方程的应用
直线与圆的方程在生产、 生活实践以及数学中有着广泛的应用,本节课我们将通过几个例子说明直线与圆的方程在实际生活以及平面几何中的应用
例1:如图是圆拱形桥一孔圆拱的示意图.这个圆的圆拱跨度 AB=20m,拱高OP=4m, 建造时每间隔4m需要用一根支柱支撑.求支柱 的高度(精确到0.01;其中 )
人教版高中数学直线与圆的方程的应用(共20张PPT)教育课件
![人教版高中数学直线与圆的方程的应用(共20张PPT)教育课件](https://img.taocdn.com/s3/m/acaea91f5fbfc77da369b11c.png)
:
那
你
的
第
一
口
罗
没
有
我
和
他
不
同
。
我
是
从
底
层
但
是
当
我
拍
完
但
是
我
年
轻
时
有
一
个
想
法
就
是
如
果
我
告
诉
你
怎
么
弄
■
电
:
“
口
罗
部
爬
一
,
1
戏
有
上
来
的
我
个
5
分
钟
后
你
还
色
其
没
清
镜
没
有
楚 弄
有 怎
完 情
么
头
我
就
胆
怯
,
像
运
作
这
个
东
西
(
,
下
不
耐
烦
像
如
果
我
自
己
弄
费
电
影
一
五
分
钟
男
女
实
里
拍
个
就
弄
尼
摄
)
所
镜
完
所
以
最
是
拍 以
后
通
不
第
一
为
则四个顶点坐标分别为 A(a,0),B(0,b),C(0,c),D(0,d)
第一步:建立坐 标y系,用坐标表 示B有(0关,b的) 量。
《直线系方程和圆系方程及其应用》
![《直线系方程和圆系方程及其应用》](https://img.taocdn.com/s3/m/c1db1aade53a580216fcfef6.png)
题醉了
二、典型例题 例题 1 求证:无论 m 取何实数时,直线
2(m + 1)x + (m - 1)y - (m + 3) = 0
恒过定点,并求出定点的坐标.
【规律方法】 (1)分离系数法:一般,去了括号后,根据是否含有 m 的项分组,得
(2x - y - 3) + m(2x + y - 1) = 0 ì ï 2x - y - 3 = 0 从中可得到两个直线方程, 最后, 联立解方程组 í 可得定点坐标; ï î 2x + y - 1 = 0
x2 + y2 + Dx + Ey + F = 0 的同心圆系方程: x2 + y2 +Dx +Ey + λ = 0 .
2 2 Ax + By + C = 0 x + y +Dx +Ey +F = 0 交点的圆系方程为: 2.过直线 与
x2 + y2 +Dx +Ey +F + λ(Ax +By + C) = 0(λ ? R) ;
m(x + 2y + 3) + n(2x + y - 5) = 0 .
4.一个二次方程表示两个直线方程:例如
(x + 2y) ? (2x y - 5) = 0 就表示两条直线 x + 2y = 0 和 2x + y - 5 = 0 亦即二次方程
2x2 + 2y2 + 6xy - 5x - 10y = 0 就表示以上两条直线.
堂练习
1.方程 x2 - y2 = 0表示的图形是 两条直线x +y = 0和x - y = 0 . 2. 直线系2x - y +m = 0 中任意一条直线与直线系2x + 4y +n = 0 中的任意一条 直线的位置关系是 垂直 . 3.方程 x + y - 6 x + y +3m = 0表示两条直线,求 m 的取值范围.
直线与圆的方程应用举例教案
![直线与圆的方程应用举例教案](https://img.taocdn.com/s3/m/94344f2024c52cc58bd63186bceb19e8b8f6ecc2.png)
直线与圆的方程应用举例教案引言直线与圆是高中数学中常见的几何概念,它们在现实生活中有着广泛的应用。
本教案将通过一些具体的实例,帮助学生更好地理解直线与圆的方程,并学习如何应用这些知识解决实际问题。
例题1:判断点在直线上的方法问题描述在直角坐标系中,给定直线的方程为2x−3y=6,判断点P(4,−2)是否在直线上。
解题思路要判断点是否在直线上,可以将点的坐标代入直线的方程,若等式成立,则点在直线上。
具体步骤如下:1.将点的坐标代入直线的方程:$2 \\cdot 4 - 3 \\cdot (-2) = 6$。
2.计算等式左边的值:8+6=14。
3.判断等式是否成立:14=14,因此点P(4,−2)在直线2x−3y=6上。
结论点P(4,−2)在直线2x−3y=6上。
例题2:求直线与圆的交点问题描述在直角坐标系中,给定圆的方程为x2+y2=25,直线的方程为y=2x+1,求直线与圆的交点。
解题思路要求直线与圆的交点,可以将直线的方程代入圆的方程,求解方程组得到交点的坐标。
具体步骤如下:1.将直线的方程代入圆的方程:x2+(2x+1)2=25。
2.化简方程:x2+4x2+4x+1=25。
3.组合同类项:5x2+4x−24=0。
4.求解方程:可以使用因式分解或二次方程公式求解方程5x2+4x−24=0,得到x1=2和x2=−2.4。
5.将x的值代入直线的方程,求解y的值:$y = 2 \\cdot 2 + 1 = 5$ 和$y = 2 \\cdot (-2.4) + 1 = -3.8$。
6.得到两个交点的坐标:交点1为P1(2,5),交点2为P2(−2.4,−3.8)。
结论直线y=2x+1与圆x2+y2=25相交于两个点,分别为点P1(2,5)和P2(−2.4,−3.8)。
例题3:利用圆的方程求解实际问题问题描述一个游乐场的中央有一座圆形喷泉,喷泉周围有一圈供游客休息坐椅的位置。
已知坐椅到喷泉的距离为10米,并且坐椅到喷泉的连线垂直于坐椅到游乐场中心的半径。
直线与圆的方程的应用新教材选择性必修人教版选择性必修第一册
![直线与圆的方程的应用新教材选择性必修人教版选择性必修第一册](https://img.taocdn.com/s3/m/e08a25e355270722182ef781.png)
第2课时直线与圆的方程的应用学习任务核心素养1.能用直线和圆的方程解决一些简单的数学问题与实际问题.(重点)2.会用“数形结合”的数学思想解决问题.(难点) 通过直线与圆的位置关系的应用,提升直观想象、数学运算及逻辑推理素养.有一座圆拱桥,当水面在如图所示位置时,拱顶离水面2 m,水面宽12 m.当水面下降1 m后,水面宽多少米?如何才能正确地解决上述问题?知识点用坐标法解决平面几何问题的“三步曲”第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,如点、直线、圆,把平面几何问题转化为代数问题.第二步:通过代数运算,解决代数问题.第三步:把代数运算结果“翻译”成几何结论.一涵洞的横截面是半径为5 m的半圆,则该半圆的方程是() A.x2+y2=25B.x2+y2=25(y≥0)C.(x+5)2+y2=25(y≤0)D.随建立直角坐标系的变化而变化D[没有建立平面直角坐标系,因此圆的方程无法确定,故选D.]类型1 直线与圆的方程的实际应用【例1】 (对接教材P 93例题)某圆拱桥的水面跨度为20 m ,拱高为4 m .现有一船,宽10 m ,水面以上高3 m ,这条船能否从桥下通过?[解] 建立如图所示的坐标系,使圆心C 在y 轴上.依题意,有A (-10,0),B (10,0),P (0,4),D (-5,0),E (5,0).设这座圆拱桥的拱圆的方程是x 2+(y -b )2=r 2(r >0),则有⎩⎪⎨⎪⎧ 102+b 2=r 2,02+(b -4)2=r 2,解得⎩⎪⎨⎪⎧b =-10.5,r =14.5, 所以这座圆拱桥的拱圆的方程是x 2+(y +10.5)2=14.52(0≤y ≤4).把点D 的横坐标x =-5代入上式,得y ≈3.1.由于船在水面以上高3 m,3<3.1,所以该船可以从桥下通过.试总结应用直线与圆的方程解决实际问题的步骤.[提示] (1)审题:从题目中抽象出几何模型,明确已知和未知;(2)建系:建立适当的直角坐标系,用坐标和方程表示几何模型中的基本元素;(3)求解:利用直线与圆的有关知识求出未知;(4)还原:将运算结果还原到实际问题中去. [跟进训练]1.台风中心从A 地以20 km/h 的速度向东北方向移动,离台风中心30 km内的地区为危险区,城市B 在A 地正东40 km 处,则城市B 处于危险区内的时间为________小时.1 [如图,以A 地为原点,AB 所在直线为x 轴,建立平面直角坐标系,则以B (40,0)为圆心,30为半径的圆内MN 之间(含端点)为危险区,取MN 的中点E ,连接BE ,BN ,BM ,则BE ⊥MN ,BN =BM ,△ABE 为等腰直角三角形,因为AB=40,所以BE =202km ,在Rt △BEN 中,NE =BN 2-BE 2=10,则|MN |=20,所以时间为1 h .]类型2 直线与圆的综合性问题【例2】 (1)圆:x 2+y 2-2x -2y +1=0上的点到直线x -y =2的距离的最大值是( )A .2B .1+2C .1+22D .1+2 2(2)已知圆M 与直线x =2相切,圆心在直线x +y =0上,且直线x -y -2=0被圆M 截得的弦长为22,则圆的方程为________.(1)B (2)x 2+y 2=4 [(1)圆:x 2+y 2-2x -2y +1=0化为标准方程得(x -1)2+(y -1)2=1,所以圆心为(1,1),半径为1.所以圆心(1,1)到直线x -y =2的距离d =|1-1-2|2=2, 则所求距离的最大值为1+ 2.(2)因为圆心在直线x +y =0上,所以设圆心M (a ,-a ),因为圆M 与直线x =2相切,且直线x -y -2=0被圆M 截得的弦长为22,所以⎩⎪⎨⎪⎧ r =|a -2|,2|a -1|2=r 2-2,解得⎩⎪⎨⎪⎧a =0,r =2,所以圆的方程为x 2+y 2=4.]已知直线和圆的位置关系求圆的方程已知直线与圆的位置关系求圆的方程时,可将位置关系中的等量关系作为确定圆心和半径或圆的方程中待定系数的已知条件,从而求解出圆的方程.基本步骤为:设所求圆的方程→根据已知位置关系或数量关系建立方程→解出参数并检验→确定圆的方程. [跟进训练] 2.(1)M 为圆x 2+y 2=1上的动点,则点M 到直线l :3x -4y -10=0的距离的最大值为________.(2)一圆与y 轴相切,圆心在直线x -3y =0上,且直线y =x 被圆所截得的弦长为27,则此圆的方程为________.(1)3 (2)(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9[(1)圆x 2+y 2=1的圆心O (0,0)到直线3x -4y -10=0的距离为d =|0-0-10|32+(-4)2=2,又圆的半径r =1,故M 点到直线l 的最大距离为d +r =2+1=3.(2)因为圆与y 轴相切,且圆心在直线x -3y =0上,所以设圆心坐标为(3b ,b ),圆的半径为3|b |,故圆的方程为(x -3b )2+(y -b )2=9b 2.又因为直线y =x 被圆所截得的弦长为27,所以⎝⎛⎭⎪⎫|3b -b |22+(7)2=9b 2,解得b =±1,故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9.]类型3 与圆有关的最值问题【例3】 已知点P (x ,y )在圆C :x 2+y 2-6x -6y +14=0上.(1)求y x 的最大值和最小值;(2)求x 2+y 2+2x +3的最大值与最小值;(3)求x +y 的最大值与最小值.式子y -b x -a,(x -a )2+(y -b )2,t =ax +by 各有什么几何意义?根据几何意义,能否求各式的最值?[解] 方程x 2+y 2-6x -6y +14=0可化为(x -3)2+(y -3)2=4.(1)y x 表示圆上的点P 与原点连线的斜率,如图(1),显然PO (O 为坐标原点)与圆相切时,斜率最大或最小.设切线方程为y =kx (由题意知,斜率一定存在),即kx -y =0,由圆心C (3,3)到切线的距离等于半径长,可得|3k -3|k 2+1=2,解得k=9±2145,所以y x 的最大值为9+2145,最小值为9-2145.(2)x 2+y 2+2x +3=(x +1)2+y 2+2,它表示圆上的点P 到E (-1,0)的距离的平方再加2,所以当点P 与点E 的距离最大或最小时,式子取得最大值或最小值.如图(2),显然点E 在圆C 的外部,所以点P 与点E 距离的最大值为|CE |+2,点P 与点E 距离的最小值为|CE |-2.又|CE |=(3+1)2+32=5,所以x 2+y 2+2x +3的最大值为(5+2)2+2=51,最小值为(5-2)2+2=11.(3)设x +y =b ,则b 表示动直线y =-x +b 在y 轴上的截距,如图(3),显然当动直线y =-x +b 与圆(x -3)2+(y -3)2=4相切时,b 取得最大值或最小值.此时圆心C (3,3)到切线x +y =b 的距离等于圆的半径长2,则|3+3-b |12+12=2,即|6-b |=22,解得b =6±22,所以x +y 的最大值为6+22,最小值为6-2 2.(1)(2)(3)与圆上点(x,y)有关的最值问题的常见类型及解法(1)形如t=y-bx-a形式的最值问题,可转化为动直线斜率的最值问题,即转化为过点(a,b)和点(x,y)的直线的斜率的最值;(2)形如t=ax+by形式的最值问题,可转化为动直线截距的最值问题;(3)形如t=(x-a)2+(y-b)2形式的最值问题,可转化为动点到定点的距离平方的最值问题.[跟进训练]3.已知实数x,y满足方程(x-2)2+y2=3.(1)求yx的最大值和最小值;(2)求y-x的最大值和最小值;(3)求x2+y2的最大值和最小值.[解]方程(x-2)2+y2=3表示以点(2,0)为圆心.(1)3为半径的圆,设yx=k,即y-kx=0,当直线y=kx与圆相切时,斜率k取得最大值和最小值,此时|2k-0|k2+1=3,解得k=±3.故yx的最大值为3,最小值为- 3.(2)设y-x=b,即x-y+b=0,当y=x+b与圆相切时,纵截距b取得最大值和最小值,此时|2-0+b|12+(-1)2=3,即b=-2±6.故y-x的最大值为-2+6,最小值为-2- 6.(3)x2+y2表示圆上的点与原点距离的平方,由平面几何知识知,它在过原点和圆心的直线与圆的两个交点处取得最大值和最小值,又圆心到原点的距离为2,故(x2+y2)max=(2+3)2=7+43,(x2+y2)min=(2-3)2=7-4 3.1.已知直线l:x-y+4=0与圆C:(x-1)2+(y-1)2=2,则圆C上的点到直线l的距离的最小值为()A.2B.3C.1D.3A[由题意知,圆C上的点到直线l的距离的最小值等于圆心(1,1)到直线l的距离减去圆的半径,即|1-1+4|12+(-1)2-2= 2.]2.一辆货车宽1.6米,要经过一个半径为3.6米的半圆形单行隧道,则这辆货车的平顶车篷的篷顶距离地面高度最高约为()A.2.4米B.3.5米C.3.6米D.2.0米B[以半圆所在直径为x轴,过圆心且与x轴垂直的直线为y轴,建立如图所示的平面直角坐标系.易知半圆所在的圆的方程为x2+y2=3.62(y≥0),由图可知,当货车恰好在隧道中间行走时车篷最高,此时x=0.8或x=-0.8,代入x2+y2=3.62,得y≈3.5(负值舍去).]3.已知圆C与直线y=x及x-y-4=0都相切,圆心在直线y=-x上,则圆C 的方程为( )A .(x +1)2+(y -1)2=2B .(x +1)2+(y +1)2=2C .(x -1)2+(y -1)2=2D .(x -1)2+(y +1)2=2D [由题意可设圆心坐标为(a ,-a ),则|a +a |2=|a +a -4|2,解得a =1,所以圆心坐标为(1,-1),又|4|2=2r ,所以r =2,所以圆的方程为(x -1)2+(y +1)2=2,故选D .]4.已知实数x ,y 满足方程x 2+y 2-4x -4y +7=0,则y -x 的最小值是________.-2 [方程x 2+y 2-4x -4y +7=0可化为(x -2)2+(y -2)2=1,令y -x =b ,则y =x +b ,b 是直线y =x +b 在y 轴上的纵截距,当直线y =x +b 与圆相切时,b 取得最大值和最小值,又圆心(2,2)则|2-2+b |2=1,即|b |=2,∴b =±2,因此y -x 的最小值为- 2.]5.已知圆O :x 2+y 2=5和点A (1,2),则过点A 与圆O 相切的直线与两坐标轴围成的三角形的面积为________.254[∵点A (1,2)在圆x 2+y 2=5上,∴过点A 与圆O 相切的切线方程为x +2y =5,易知切线在坐标轴上的截距分别为5,52,∴切线与坐标轴围成的三角形的面积为254.]回顾本节知识,自我完成以下问题:(1)用直线和圆的方程解决实际问题的步骤是什么?[提示](2)与圆有关的最值问题有哪些类型?[提示] ①形如u =y -b x -a的最值问题,可转化为动直线斜率的最值问题. ②形如t =ax +by 的最值问题,可转化为动直线截距的最值问题. ③形如(x -a )2+(y -b )2的最值问题,可转化为动点到定点的距离的平方的最值问题.。
中职数学第八章第八节直线与圆的方程应用举例复习课件
![中职数学第八章第八节直线与圆的方程应用举例复习课件](https://img.taocdn.com/s3/m/493827f2eff9aef8951e0606.png)
1.了解直线与圆的方程与实际生活的联系. 2.学会用数学的思想和方法解决实际问题.
学法指导:
(1)学习教材直线与圆的方程的应用的内容. (2)本学时的重点是对应用题的阅读、理解和分析,列出方程或方 程组,难点是根据实际问题建系设点,建立数学模型. (3)在解解析几何应用题时,首先要注重对题目的阅读理解,分析 其含义;其次是寻找和整理数据,建立数学模型;寻求几何元素之 间关系,抓住几何特征列方程或方程组;然后解方程或方程组.
直点P的位置是坐标(
3 7 ,3 1
65 65
)
例2 某城市交通规划中,拟在半径为50m的高架圆形道东侧某处开一个 出口,以与圆形道相切的方式,引伸一条直道到距圆形道圆心正北150m 处的道路上,试建立适当的坐标系,写出所引伸直道的方程,并计算出 口应开在圆形道何处.
答案: 以圆心为坐标原点建立直角坐标系,所引伸直道的
课堂探究:
1.探究问题:
【探究】某操场400m跑道的直道长为86.96m,弯道是两个半圆弧,其半径 为36m,以操场中心为坐标原点建立坐标系,求弯道所在圆的方程.
x2 ( y 43.48)2 362
2.拓展提高:
例1 x-3y+2=0表示地面上的一条河,两村分别位于点A(-2,1),B(3,5),拟 在河边建一码头P,使两村到码头的路途之和最短,求点P的位置?.
方程是 2 2 x y 15 0
3.当堂训练: 小河同侧有两个村庄A、计划于河边上建一水电站供两村使用,
已知A、B两村到河边的垂直距离分别为500m和700m,且两村相距500m, 问:水电站建在何处,送电到两村所用电线最省?
;
;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚焦直线系、圆系方程的应用【直线系方程的应用】一、过定点直线系方程在解题中的应用过定点(0x ,0y )的直线系方程:00()()0A x x B y y -+-=(A,B 不同时为0). 例 1 求过点(14)P -,圆22(2)(3)1x y -+-=的切线的方程. 分析:本题是过定点直线方程问题,可用定点直线系法.解析:设所求直线的方程为(1)(4)0A x B y ++-=(其中A B ,不全为零), 则整理有40Ax By A B ++-=,∵直线l 与圆相切,∴圆心(23)C ,到直线l 的距离等于半径11=,整理,得(43)0A A B -=,即0A =(这时0B ≠),或304A B =≠. 故所求直线l 的方程为4y =或34130x y +-=.点评:对求过定点(0x ,0y )的直线方程问题,常用过定点直线法,即设直线方程为: 00()()0A x x B y y -+-=,注意的此方程表示的是过点00()P x y ,的所有直线(即直线系),应用这种直线方程可以不受直线的斜率、截距等因素的限制,在实际解答问题时可以避免分类讨论,有效地防止解题出现漏解或错解的现象.练习: 过点(14)P -,作圆22(2)(3)1x y -+-=的切线l ,求切线l 的方程. 解:设所求直线l 的方程为(1)(4)0A x B y ++-=(其中A B ,不全为零), 则整理有40Ax By A B ++-=,∵直线l 与圆相切,∴圆心(23)C ,到直线l 的距离等于半径11=,整理,得(43)0A A B -=,即0A =(这时0B ≠),或304A B =≠. 故所求直线l 的方程为4y =或34130x y +-=. 二、过两直线交点的直线系方程在解题中的应用过直线l :1110A x B y C ++=(11,A B 不同时为0)与m :2220A x B y C ++=(22,A B 不同时为0)交点的直线系方程为:111222()0A x B y C A x B y C λ+++++=(R λ∈,λ为参数).例2 求过直线:210x y ++=与直线:210x y -+=的交点且在两坐标轴上截距相等的直线方程. 分析:本题是过两直线交点的直线系问题,可用过交点直线系求解. 解析:设所求直线方程为:21(21)0x y x y λ+++-+=,当直线过原点时,则1λ+=0,则λ=-1, 此时所求直线方程为:20x y -=; 当所求直线不过原点时,令x =0,解得y =12λλ+-, 令y =0,解得x =121λλ+-+, 由题意得,12λλ+-=121λλ+-+,解得13λ=,此时,所求直线方程为:5540x y ++=.综上所述,所求直线方程为:20x y -=或5540x y ++=. 三、求直线系方程过定点问题例3 证明:直线10mx y m +--=(m 是参数且m ∈R)过定点,并求出定点坐标. 分析:本题是证明直线系过定点问题,可用恒等式法和特殊直线法. 解析:(恒等式法)直线方程化为:(1)10x m y -+-=,∵m ∈R, ∴1010x y -=⎧⎨-=⎩,解得,1x =,1y =,∴直线10mx y m +--=(m 是参数且m ∈R)过定点(1,1).(特殊直线法)取m =0,m =1得,1y =,20x y +-=,联立解得,1x =,1y =, 将(1,1)代入10mx y m +--=检验满足方程,∴直线10mx y m +--=(m 是参数且m ∈R)过定点(1,1).点评:对证明直线系过定点问题,常用方法有恒等式法和特殊直线法,恒等式法就是将直线方程化为关于参数的恒等式形式,利用参数属于R ,则恒等式个系数为0,列出关于,x y 的方程组,通过解方程组,求出定点坐标;特殊直线法,去两个特殊参数值,得到两条特殊直线,通过接着两条特殊直线的交点坐标,并代入原直线系方程检验,即得定点.【圆系方程的应用】常见的圆系方程有如下几种:1、以(,)a b 为圆心的同心圆系方程:222()()(0)x a y b λλ-+-=>与圆22y x ++Dx +Ey +F=0同心的圆系方程为:22y x ++Dx +Ey +λ=02、过直线Ax +By +C=0与圆22y x ++Dx +Ey +F=0交点的圆系方程为:22y x ++Dx +Ey +F+λ(Ax+By +C)=0(λ∈R)3、过两圆1C :22y x ++111F y E x D ++=0,2C :22y x ++222F y E x D ++=0交点的圆系方程为:22y x ++111F y E x D +++λ(22y x ++222F y E x D ++)=0(λ≠-1,此圆系不含2C :22y x ++222F y E x D ++=0)特别地,当λ=-1时,上述方程为根轴方程.两圆相交时,表示公共弦方程;两圆相切时,表示公切线方程. 注:为了避免利用上述圆系方程时讨论圆2C ,可等价转化为过圆1C 和两圆公共弦所在直线交点的圆系方程:22111121212[()()()]0x y D x E y F D D x E E y F F λ+++++-+-+-=一、利用圆系方程求圆的方程:例1、求经过两圆22y x ++3x -y -2=0和2233y x ++2x +y +1=0交点和坐标原点的圆的方程. 解:方法3:由题可设所求圆的方程为:(22y x ++3x -y -2)+λ(2233y x ++2x +y +1)=0 ∵(0,0)在所求的圆上,∴ 有-2+λ=0. 从而λ=2故所求的圆的方程为: 0)1233(2)23(2222=+++++--++y x y x y x y x 即 2277y x ++7x +y =0。
练习:求经过两圆x 2+y 2+6x -4=0和x 2+y 2+6y -28=0的交点,并且圆心在直线x -y -4=0上的圆的方程. 1解: 构造方程 x 2+y 2+6x -4+λ(x 2+y 2+6y -28)=0 即 (1+λ)x 2+(1+λ)y 2+6x+6λy -(4+28λ)=0 此方程的曲线是过已知两圆交点的圆,且圆心为)13,13(λλλ+-+- 当该圆心在直线x -y -4=0上时,即.7,041313-==-+++-λλλλ得 ∴ 所求圆方程为 x 2+y 2-x+7y -32=0.)0,2(),3,1(02024:22的圆的方程且过切于求与圆练习B A y x y x --=---+.02018477,78)0,2(0)1543(202401543)3,1(2222=-+-+==+++---+=++--y x y x y x y x y x y x A 所以所求圆方程为得代入,。
与已知圆构造圆系的圆的切线为解:过λλ二、利用圆系方程求最小面积的圆的方程:例2(1):求过两圆225x y +=和22(1)(1)16x y -+-=的交点且面积最小的圆的方程。
分析:本题若先联立方程求交点,再设所求圆方程,寻求各变量关系,求半径最值,虽然可行,但运算量较大。
自然选用过两圆交点的圆系方程简便易行。
为了避免讨论,先求出两圆公共弦所在直线方程。
则问题可转化为求过两圆公共弦及圆交点且面积最小的圆的问题。
解:圆225x y +=和22(1)(1)16x y -+-=的公共弦方程为22110x y +-= 过直线22110x y +-=与圆225x y +=的交点的圆系方程为2225(2211)0x y x y λ+-++-=,即2222(1125)0x y x y λλλ+++-+=依题意,欲使所求圆面积最小,只需圆半径最小,则两圆的公共弦必为所求圆的直径, 圆心(,)λλ--必在公共弦所在直线22110x y +-=上。
即22110λλ--+=,则114λ=- 代回圆系方程得所求圆方程22111179()()448x y -+-=例2(2); 求经过直线l :2x +y +4=0与圆C:22y x ++2x -4y +1=0的交点且面积最小的圆的方程.解:设圆的方程为:22y x ++2x -4y +1+λ(2x +y +4)=0即22y x ++y x )4()1(2-++λλ+(1+4λ)=0则[]54)58(45)41(4)4()1(4412222+-=+--++=λλλλr ,当λ=58时,2r 最小,从而圆的面积最小,故所求圆的方程为:2255y x ++26x -12y +37=0 练习:1.求经过圆x 2+y 2+8x -6y +21=0与直线x -y +7=0的两个交点且过原点的圆的方程。
(常数项为零)2.求经过圆x 2+y 2+8x -6y +21=0与直线x -y +5=0的两个交点且圆心在x 轴上的圆的方程。
(圆心的纵坐标为零) 3.求经过圆x 2+y 2+8x -6y +21=0与直线x -y +5=0的两个交点且面积最小的圆方程。
(半径最小或圆心在直线上) 4.求经过圆x 2+y 2+8x -6y +21=0与直线x -y +5=0的两个交点且与x 轴相切的圆的方程;并求出切点坐标。
(圆心到x 轴的距离等于半径)三、利用圆系方程求参数的值:例3:已知圆2260x y x y m ++-+=与直线230x y +-=相交于P ,Q 两点,O 为坐标原点,若OP OQ ⊥,求实数m 的值。
分析:此题最易想到设出1122(,),(,)P x y Q x y ,由OP OQ ⊥得到12120x x y y +=,利用设而不求的思想,联立方程,由根与系数关系得出关于m 的方程,最后验证得解。
倘若充分挖掘本题的几何关系OP OQ ⊥,不难得出O 在以PQ 为直径的圆上。
而P ,Q 刚好为直线与圆的交点,选取过直线与圆交点的圆系方程,可极大地简化运算过程。
解:过直线230x y +-=与圆2260x y x y m ++-+=的交点的圆系方程为:226(23)0x y x y m x y λ++-+++-=,即22(1)2(3)30x y x y m λλλ++++-+-=………………….①依题意,O 在以PQ 为直径的圆上,则圆心1(,3)2λλ+--显然在直线230x y +-=上,则12(3)302λλ+-+--=,解之可得1λ=又(0,0)O 满足方程①,则30m λ-=,故3m =。
四、利用圆系方程判断直线与圆的位置关系:例4 圆系22y x ++2k x +(4k +10)y +10k +20=0(k ∈R,k ≠-1)中,任意两个圆的位置关系如何?解:圆系方程可化为:22y x ++10y +20+k (2x +4y +10)=0∵ 与k 无关 ∴ ⎩⎨⎧=+++=++020*********y y x y x 即⎩⎨⎧=++=++5)5(05222y x y x 易知圆心(0,-5)到直线x +2y +5=0的距离恰等于圆22)5(++y x =5的半径.故直线x +2y +5=0与圆22)5(++y x =5相切,即上述方程组有且只有一个解,从而圆系方程所表示的任意两个圆有且只有一个公共点,故它们的关系是外切或内切.五、巧用过两圆交点的曲线系方程求圆方程例1求过圆:2x +2y 2x -+2y +1=0与圆:2x +2y +4x 2y -4-=0的交点,圆心在直线:250x y --=的圆的方程.分析:本题是求过两圆的交点的圆的方程问题,用过两圆的交点的圆系方程求解.解析:设所求圆的方程为:2x +2y 2x -+2y +1+(λ2x +2y +4x 2y -4-)=0(λ≠1-). 整理得 22(1)(1)(42)2(1)14x y x y λλλλλ++++-+-+-=0, 所以所求圆的圆心为121(,)11λλλλ--++, 由已知知所求圆的圆心在直线:250x y -+=上,所以1212511λλλλ---⨯+++=0,解得,λ=8-,代入圆系方程整理得, 所以,所求圆的方程为223418330777x y x y ++--=.点评:对过两圆交点的圆的问题,用过两圆的交点的圆系方程求解,可以优化解题过程,注意过交点的圆系方程表示的圆包括哪一个圆不包括那一个圆,且参数λ不等于1-这一条件,同学们应很好掌握这一方法.六、巧用过两圆交点的曲线系方程求直线方程例2已知圆O :222410x y x y +-++=和圆外一点A (3,4),过点A 作圆O 的切线,切点分别为C 、D ,求过切点C 、D 的直线方程.分析:本题是求过切点的直线方程,由切线性质知,切点在以线段AO 为直径的圆上,故直线CD 是以线段AO 为直径的圆与圆O 的公共弦所在的直线方程,故可用过两圆交点的曲线系方程求此直线方程.解析:由切线性质知,切点C 、D 在以线段AO 为直径的圆上,由题知,O(1,2-),∴,线段AO 的中点为(2,1),∴以线段AO 为直径的圆的方程为,22(2)(1)10x y -+-=,即224250x y x y +---=,圆O的方程与以AO为直径的圆的方程相减整理得:x+3y+3=0,∴直线CD的方程为x+3y+3=0.点评:对过圆切点的直线方程问题,可通过构造圆,利用过两圆交点的曲线系方程求直线方程,注意过两圆交点的曲线系方程参数λ为何值时表示圆,参数λ为何值时表示直线.例如:求与圆x2+y2-4x-2y-20=0切于A(―1,―3),且过B(2,0)的圆的方程。