2018版高中数学北师大版必修四学案:第二章 1 从位移、速度、力到向量
数学:2.1 从位移、速度、力到向量 教案 (北师大必修4)
2.1 从位移、速度、力到向量
本节教材分析:
(1)三维目标:
1、知识与技能
(1)理解向量与数量、向量与力、速度、位移之间的区别;
(2)理解向量的实际背景与基本概念,理解向量的几何表示,并体会学科之间的联系.
(3)通过教师指导发现知识结论,培养学生抽象概括能力和逻辑思维能力
2、过程与方法
通过力与力的分析等实例,引导学生了解向量的实际背景,帮助学生理解平面向量与向量相等的含义以及向量的几何表示;最后通过讲解例题,指导学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题.
3、情感态度与价值观
通过本节的学习,使同学们对向量的实际背景、几何表示有了一个基本的认识;激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神.
(2)教学重点:向量及向量的有关概念、表示方法.
(3)教学难点:向量及向量的有关概念、表示方法.
(4)教学建议:本节要求学生掌握向量的基本概念及几何表示,本节内容从几何意义与向量的定义两方面学习,1、适当利用有趣问题和物理实例调动学生讨论问题的积极性感性认识向量;
2、类比方法引导学生从数学的角度分析这种现象,归纳出向量的概念;
3、让学生观察分析向量的数学表示,几何表示及相互之间的关系;
4、本节重点找出几何条件下的向量关系。
新课导入设计
导入一:
1. 趣味导入,引起学生的兴趣,结合物理生活背景理向量的概念;
2.通过几何意义与范例分析让学生对向量的表示与应用有个初步了解。
导入二:
1、通过对常见的向量问题分析,引入向量的概念,通过范例巩固向量概念的理解与应用。
高中数学必修4北师大版2.1从位移、速度、力到向量教案
2.1 从位移、速度、力到向量概念1.实例导入物理学中的位移、速度、力2.我能自学引入向量的概念1. 举例说明什么是向量?向量与数量有何区别? 既有大小又有方向的量叫向量。
例:力、速度、加速度、冲量等 注意:①数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小。
②从19世纪末到20世纪初,向量就成为一套优良通性的数学体系,用以研究空间性质。
2.向量的表示方法有哪些?①几何表示法:有向线段有向线段:具有方向的线段叫做有向线段。
记作:−→−AB注意:起点一定写在终点的前面。
有向线段的长度:线段AB 的长度也叫做有向线段−→−AB的长度 有向线段的三要素:起点、方向、长度②字母表示法:也可用字母a 、b 、c (黑体字)来表示,即−→−AB可表示为(印刷时用黑体字) 3. 向量的模的概念是如何定义的?向量−→−AB的大小——长度称为向量的模。
记作:|−→−AB| 模是可以比较大小的 4.两个特殊的向量:①零向量——长度(模)为0的向量,记作。
的方向是任意的.注意0与0的区别②单位向量——长度(模)为1个单位长度的向量叫做单位向量。
思考:①温度有零上零下之分,“温度”是否向量?答:不是。
因为零上零下也只是大小之分。
②−→−AB 与−→−BA是否同一向量? 答:不是同一向量。
③有几个单位向量?单位向量的大小是否相等?单位向量是否都相等? 答:有无数个单位向量,单位向量大小相等,单位向量不一定相等。
5.向量间的关系:1. 平行向量:方向相同或相反的非零向量叫做平行向量。
记作:a ∥b ∥c A(起点)B(终点)a abc规定:0与任一向量平行2. 相等向量:长度相等且方向相同的向量叫做相等向量。
记作:= 规定:0=0任两相等的非零向量都可用一有向线段表示,与起点无关。
3. 共线向量:任一组平行向量都可移到同一条直线上 , 所以平行向量也叫共线向量。
2018学年高中数学北师大版必修4学案:2.1 从位移、速
§1从位移、速度、力到向量1.1位移、速度和力1.2向量的概念1.理解向量的有关概念及向量的几何表示.(重点)2.掌握共线向量、相等向量的概念.(难点))3.正确区分向量平行与直线平行.(易混点[基础·初探]教材整理向量的概念阅读教材P73~P75“练习”以上部分,完成下列问题.1.向量的有关概念(1)定义既有大小,又有方向的量叫作向量.(2)有向线段具有方向和长度的线段叫作有向线段.其方向是由起点指向终点,以A 为起点、B 为终点的有向线段记作AB →,线段AB 的长度也叫作有向线段AB →的长度,记作|AB→|. (3)向量的长度|AB→|(或|a |)表示向量AB →(或a )的大小,即长度(也称模). (4)向量的表示法①向量可以用有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.②向量也可以用黑体小写斜体字母如a ,b ,c ,…来表示,书写用a →,b →,c →…来表示.判断(正确的打“√”,错误的打“×”) (1)数量同向量一样可以比较大小.( ) (2)向量AB →与向量BA →是相等向量.( )(3)两个向量平行时,表示向量的有向线段所在的直线一定平行.( ) (4)向量就是有向线段.( )【解析】 (1)错误.向量不能比较大小. (2)错误.AB→与BA →方向相反不是相等向量.(3)错误.两条直线平行或重合.(4)错误.向量不能等同于有向线段,有向线段只是向量的一种直观表示. 【答案】 (1)× (2)× (3)× (4)×[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:_________________________________________________________ 解惑:___________________________________________________________ 疑问2:_________________________________________________________ 解惑:___________________________________________________________疑问3:_________________________________________________________ 解惑:___________________________________________________________[小组合作型]①温度、速度、位移这些物理量都是向量;②若|a|=|b|,则a=b或a=-b;③向量的模一定是正数;④起点不同,但方向相同且模相等的几个向量是相等向量.其中说法正确的是________.(填序号)【精彩点拨】解答时可从向量的定义、向量的模、相等向量、平行向量等概念入手,逐一判断对错.【自主解答】①错误,只有速度、位移是向量.②错误.|a|=|b|仅说明a与b模相等,但不能说明它们方向的关系.③错误.0的模|0|=0.④正确.对于一个向量仅由大小和方向确定,与起点的位置无关.【答案】④1.零向量是用向量的长度来定义的,共线向量是用表示向量的有向线段所在直线平行或重合来定义的.相等向量是用向量的长度和方向共同定义的,要弄清这些概念的联系和区别.2.理解向量的有关概念时,注意区分向量与有向线段:只有起点、大小和方向均相同,才是相同的有向线段.对于向量,只要大小和方向相同,就是相等向量,而与起点无关.[再练一题]1.判断下列说法是否正确,并说明理由.(1)若向量AB→与CD →是共线向量,则A ,B ,C ,D 必在同一直线上;(2)若向量a 与b 平行,则a 与b 的方向相同或相反; (3)向量AB→的长度与向量BA →的长度相等;(4)单位向量都相等.【解】 对于(1),考查的是有向线段共线与向量共线的区别.事实上,有向线段共线要求线段必须在同一条直线上.而向量共线时,表示向量的有向线段可以是平行的,不一定在同一条直线上,所以(1)错;对于(2),由于零向量与任一向量平行,因此若a ,b 中有一个为零向量时,其方向是不确定的,所以(2)错;对于(3),向量AB→与BA →方向相反,但长度相等.所以(3)对;对于(4),需要强调的是:单位向量不仅仅指的是长度,还有方向,而向量相等不仅仅需要长度相等而且还要求方向相同,所以(4)错.(1)已知B 和终点最多可以写出________个互不相等的非零向量.(2)一辆汽车从A 点出发向西行驶了100 km 到达B 点,然后又改变方向向北偏西40°走了200 km 到达C 点,最后改变方向,向东行驶了100 km 到达D 点.①作出向量AB →,BC →,CD →; ②求|AD→|. 【精彩点拨】 (1)根据向量的表示方法求解.(2)先作出表示东南西北的方位图及100 km 长度的线段,然后解答问题. 【自主解答】 (1)设线段AD 的长度是3,则长度为1的向量有AB →=BC →=CD →,BA→=CB →=DC →,共2个互不相等的非零向量;长度为2的向量有AC →=BD →,CA →=DB →共有2个互不相等的非零向量,长度为3的向量有AD →,DA →,共2个互不相等的非零向量,综上知共6个互不相等的非零向量.【答案】 6(2)①向量AB→,BC →,CD →如图所示.②由题意,易知AB →与CD →方向相反,故AB →与CD →共线, 又|AB→|=|CD →|, ∴在四边形ABCD 中,AB 綊CD , ∴四边形ABCD 为平行四边形, ∴AD→=BC →,∴|AD →|=|BC →|=200(km).1.准确画出向量的方法是先确定向量的起点,再确定向量的方向,然后根据向量的大小确定向量的终点.用有向线段来表示向量是向量的几何表示,必须确定起点、长度和终点,三者缺一不可.2.起点相同,长度也相同的向量的终点组成以该起点为圆心,向量长度为半径的圆.[再练一题]2.小李离家从A 点出发向东走2 km 到达B 点,然后从B 点沿南偏西60°走4 km ,到达C 点,又改变方向向西走2 km 到达D 点.(1)作出AB→,BC →,CD →;(2)求小李到达D 点时与A 点的距离. 【解】 作AB→,BC →,CD →,如图所示:(2)依题意,四边形ABCD 为平行四边形,∴|AD →|=|BC →|=4,即小李到达D 点时离A 点4 km.[探究共研型]探究1 什么关系?【提示】 方向相同或相反.探究2 相等向量和共线向量有怎样的关系?两个向量能比较大小吗? 【提示】 相等向量一定是共线向量,但共线向量不一定是相等向量,两个向量不能比较大小.探究3 平行四边形的对边有哪些性质?表示共线向量的有向线段所在的直线有什么位置关系?【提示】 平行四边形的对边平行且相等,表示共线向量的有向线段所在直线平行或重合.探究4 如果非零向量AB →与CD →是共线向量,那么点A ,B ,C ,D 是否一定共线?【提示】 不一定共线.如图2-1-1所示,O 是正六边形ABCDEF 的中心,且OA→=a ,OB →=b ,OC→=c .图2-1-1(1)与a 的模相等的向量有多少个?(2)与a 的长度相等,方向相反的向量有哪些? (3)与a 共线的向量有哪些?(4)请分别一一列出与a ,b ,c 相等的向量.【精彩点拨】 由题目可获得以下主要信息: ①六边形ABCDEF 是正六边形; ②OA→=a ,OB →=b ,OC →=c ; ③求各相应向量.解答本题要充分借助几何图形的性质及向量相关概念进行判断,从而解决相应问题.【自主解答】 (1)与a 的模相等的向量有23个.(2)与a 的长度相等且方向相反的向量有OD→,BC →,AO →,FE →. (3)与a 共线的向量有EF→,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →.(4)与a 相等的向量有EF→,DO →,CB →;与b 相等的向量有DC →,EO →,F A →; 与c 相等的向量有FO→,ED →,AB →.1.向量的模是用向量的长度来定义的,共线向量是用向量的方向来定义的,而相等向量是用向量的方向和长度共同定义的,要弄清这三个概念的联系与区别.2.共线向量有四种情况方向相同且模相等;方向相同但模不等;方向相反但模相等;方向相反且模不等.这样,也就找到了共线向量与相等向量的关系,即共线向量不一定是相等向量,而相等向量一定是共线向量.3.向量的平行与直线平行的关系两条直线平行时,直线上的有向线段平行,两向量平行时,表示向量的有向线段所在直线不一定平行,也可能重合.若直线m ,n ,l ,m ∥n ,n ∥l ,则m ∥l ;若向量a ,b ,c ,a ∥b ,b ∥c ,而a ,c 不一定平行.4.向量的相关概念性质与几何知识交汇,要注意联系几何图形的相关性质,使向量与几何图形有机地结合起来.[再练一题]3.如图2-1-2所示,O 为正方形ABCD 对角线的交点,四边形OAED ,OCFB 都是正方形.在图中所示的向量中:图2-1-2(1)分别写出与AO→,BO →相等的向量; (2)写出与AO→共线的向量.【解】 (1)∵|AO→|=|OC →|=|BF →|,且OC →,BF →与AO →的方向相同,∴与AO →相等的向量是OC→,BF →.同理,与BO →相等的向量是AE →.(2)∵AO ∥DE ∥BF ,A ,O ,C 三点共线, ∴与AO→共线的向量是DE →,OC →,BF →,CO →. [构建·体系]1.下列物理量:①质量;②速度;③力;④加速度;⑤路程;⑥密度;⑦功.其中不是向量的有( )A .1个B .2个C .3个D .4个【解析】 根据向量的概念知速度、力、加速度为向量. 【答案】 D2.下列说法中正确的是( ) A .零向量没有方向 B .零向量的模等于零 C .单位向量的模等于1厘米 D .单位向量的方向都相同【解析】 零向量也有方向,其方向是任意的,因此A 错误;单位向量的模等于1个单位长度,而不是具体的1厘米,因此C 错误;单位向量的方向要因具体情况而定,因此D 错误.所以只有B 是正确的.【答案】 B 3.给出下列命题:①若|a |>|b |,则a >b ;②若a =b ,则a ∥b ;③若|a |=0,则a =0;④0=0;⑤向量AB→大于向量CD →;⑥方向不同的两个向量一定不平行.其中,正确命题的序号是________.(把你认为正确的命题序号都填上)【导学号:66470038】【解析】 ①不正确.向量不能比较大小;②正确.共线向量是指方向相同或相反的向量,相等向量一定共线;③正确;④不正确.0是一个向量,而0是一个数量,应|0|=0;⑤不正确.因为向量不能比较大小,这是向量与数量的显著区别,向量的模可以比较大小;⑥不正确.因为平行向量包括方向相同和方向相反两种情况.【答案】 ②③4.设在平面上给定了一个四边形ABCD ,点K ,L ,M ,N 分别是AB ,BC ,CD ,DA 的中点,在以已知各点为起点和终点的向量中,与向量KL →相等的向量是________.【解析】 因为K ,L 分别是AB ,BC 的中点,所以KL ∥AC ,KL =12AC ,同理MN 綊12AC ,所以KL ∥MN .KL =MN ,所以KL→=NM →.【答案】 NM →5.如图2-1-3所示,四边形ABCD 与ABEC 都是平行四边形.图2-1-3(1)用有向线段表示与向量AB→相等的向量;(2)用有向线段表示与向量AB→共线的向量.【解】 (1)与向量AB→相等的向量是向量CE →,DC →.(2)与AB→共线的向量为BA →,DC →,CD →,CE →,EC →,ED →,DE →.我还有这些不足:(1)______________________________________________________________ (2)______________________________________________________________ 我的课下提升方案:(1)______________________________________________________________ (2)______________________________________________________________。
北师大版高中数学高一必修4学案第二章1从位移、速度、力到向量
从位移、速度、力到向量预习课本P73~75,思考并完成以下问题1.向量的定义是什么?2.向量的表示方法有哪些?3.相等向量定义是什么?4.什么是共线向量?[新知初探]1.向量的概念及表示方法(1)向量的定义既有大小又有方向的量统称为向量.(2)向量的表示方法①具有方向和长度的线段,叫作有向线段.以A为起点,以B为终点的有向线段记作AB,线段AB的长度也叫作有向线段AB的长度,记作|AB|.②向量可以用有向线段来表示.有向线段的长度表示向量的大小,即长度(也称模).箭头所指的方向表示向量的方向.③向量也可以用黑体小写字母如a,b,c,…来表示,书写用a,b,c,…来表示.[点睛]用有向线段来表示向量,显示了图形的直观性,应该注意的是有向线段是向量的表示,并不是说向量就是有向线段.向量是规定了大小和方向的量,有向线段是规定了起点和终点的线段.2.与向量有关的概念[点睛](1)定义中的零向量和单位向量都是只限制大小,没有确定方向.我们规定零向量的方向是任意的;单位向量有无数个,它们大小相等,但方向不一定相同.(2)共线向量仅仅指向量的方向相同或相反;相等向量指大小和方向均相同.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)a≥0()(2)长度为1的向量是单位向量,它们一定是共线向量()(3)共线向量的方向必须相同()答案:(1)×(2)×(3)×2.下列各量中不是向量的是() A.浮力B.风速C.位移D.路程解析:选D路程没有方向.3.下列说法正确的是() A.零向量是长度为0、没有方向的向量B.任意两个单位向量长度相等、方向相同C.平行向量方向相同D.两个相等的向量起点不同时终点一定不同解析:选D零向量是长度为0、方向任意的向量,A不正确;任意两个单位向量长度相等,但方向不确定,B不正确;平行向量方向相同或相反,C不正确;相等向量长度相等且方向相同,当且仅当起点相同时,终点相同,D正确.4.如果对于任意的向量a,均有a∥b,则b为________.答案:0向量有关概念的辨析[典例]给出下列六个命题:①若两个向量相等,则它们的起点相同,终点相同;②若|a|=|b|,则a=b;③若AB=CD,则四边形ABCD为平行四边形;④在▱ABCD中,一定有AB=CD;⑤若a∥b,b∥c,则a∥c.其中不正确的命题的个数是() A.2 B.3C.4 D.5[解析]若两个向量起点相同,终点相同,则这两个向量相等,但两个向量相等,不一定有相同的起点和终点,故①不正确;|a|=|b|,由于a与b方向不确定,所以a,b不一定相等,故②不正确;AB=CD可能有A,B,C,D四点在一条直线上的情况,所以③不正确;零向量与任一向量平行,故当a∥b,b∥c时,若b=0,则a与c不一定平行,故⑤不正确.所以不正确的是①②③⑤,正确的是④.[答案] C向量概念辨析的两个注意点:(1)要准确理解平面向量的相关概念,掌握否定命题的方法,如举反例等.(2)注意零向量的特殊性.[活学活用]下列命题是真命题的是()A.若a∥b,则a=b B.若|a|<|b|,则a<bC.若|a|=0,则a=0 D.若a=b,则a,b是共线向量解析:选D对于A,a∥b说明a与b的方向相同或相反,也不一定有|a|=|b|,故A不正确;对于B,向量不能比较大小,故B不正确;对于C,零向量与数字0是两个不同的概念,零向量不等于数字0,故C不正确;D正确,相等向量是共线向量.向量的表示[典例]在如图所示的坐标纸中,用直尺与圆规画出下列向量.(1)|OA|=3,点A在点O的正东方向.(2)|OB|=3,点B在点O的正西方向.[解]如图所示:[一题多变]1.[变设问]本题的前提条件不变,试画出满足下列条件的向量.(1)|OC|=42,点C在点O的东北方向.(2)|OD|=2,点D在点O的西南方向.解:如图所示:2.[变条件]若将“|OA|=3”变为1<|OA|<2,试问A点对点的图形是怎样的?解:∵1<|OA|<2,∴点A在以O为圆心,半径为2的圆内且在以O为圆心半径为1的圆外.故点A构成的图形是一个圆环.用“四定一标”法来表示向量(1)所谓“四定”,即定向量长度、定向量的起点、定向量方向及终点.(2)所谓“一标”,即用箭头标明向量的方向性.[注意]任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.共线向量或相等向量[典例]如图所示,四边形ABCD与ABDE是平行四边形.(1)找出与向量AB共线的向量;(2)找出与向量AB相等的向量.[解](1)依据图形可知DC,ED,EC与AB方向相同,BA,CD,DE,CE与BA 方向相反,所以与向量AB共线的向量为BA,CD,DC,ED,DE,EC,CE.(2)由四边形ABCD与ABDE是平行四边形,知DC,ED与AB长度相等且方向相同,所以与向量AB相等的向量为DC和ED.寻找共线向量或相等向量的方法(1)寻找共线向量:先找与表示已知向量的有向线段平行或共线的线段,再构造同向与反向的向量,注意不要漏掉以表示已知向量的有向线段的终点为起点,起点为终点的向量.(2)寻找相等向量:先找与表示已知向量的有向线段长度相等的向量,再确定哪些是同向共线.[活学活用]如图,在▱ABCD中,点E,F分别是AB,CD的中点,图中与AE平行的向量有()A.1个B.2个C.3个D.4个解析:选C根据向量的基本概念可知与AE平行的向量有BE,FD,FD,共3个.层级一学业水平达标1.下列说法正确的是() A.向量AB与CD是共线向量,则A,B,C,D必在同一直线上B.向量a与b平行,则a与b的方向相同或相反C.向量AB与向量BA是两平行向量D.单位向量都相等解析:选C A项考查的是有向线段共线与向量共线的区别.事实上,有向线段共线要求线段必须在同一直线上.而向量共线时,表示向量的有向线段可以在两条平行直线上,不一定在同一直线上.故A项错误.由于零向量与任一向量平行,因此,若a,b中有一个为零向量时,其方向是不确定的.故B项错误.由于向量AB与BA方向相反,所以二者是平行向量.故C项正确.单位向量的长度都相等,方向任意,而向量相等不仅需要长度相等,还要求方向相同.故D项错误.2.正n边形有n条边,它们对应的向量依次为a1,a2,a3,…,a n,则这n个向量() A.都相等B.都共线C.都不共线D.模都相等解析:选D正n边形n条边相等,故这n个向量的模都相等.3. 如图所示,梯形ABCD中,对角线AC与BD交于点P,点E,F分别在两腰AD,BC上,EF过点P,且EF∥AB,则下列等式成立的是()A.AD=BC B.AC=BDC.PE=PF D.EP=PE解析:选D根据相等向量的定义,分析可得:A中,AD与BC方向不同,故AD=BC错误;B中,AC与BD方向不同,故AC=BD错误;C中,PE与PF方向相反,故PE=PF错误;D中,EP与PF方向相同,且长度都等于线段EF长度的一半,故EP=PF正确.4. 如图,在圆O中,向量OB,OC,AO是()A.有公共起点的向量B.单位向量C.模相等的向量D.相等向量解析:选C向量OB,OC有公共起点O,不与AO有公共起点,因而A错;圆O未必是单位圆,故OB,OC,AO未必是单位向量,B错;OB,OC,AO方向不相同,不是相等向量,D错.5.某人先向正东方向走了4 km,然后他向右转90°,向新的方向走了3 km,此时他距离出发点()A. 3 km B.2 3 kmC.3 km D.5 km解析:选D设他距离出发点的距离为x km,由题意,知x2=42+32,解得x=5 (负值舍去).6.给出下列四个条件:①a=b;②|a|=|b|;③a与b方向相反;④|a|=0或|b|=0.其中能使a∥b成立的条件是________(填序号).解析:若a=b,则a与b大小相等且方向相同,所以a∥b;若|a|=|b|,则a与b的大小相等,而方向不确定,因此不一定有a∥b;方向相同或相反的向量都是平行向量,因此若a与b方向相反,则有a∥b;零向量与任意向量平行,所以若|a|=0或|b|=0,则a∥b.答案:①③④7.如图,B,C是线段AD的三等分点,分别以图中各点为起点和终点,最多可以写出________个互不相等的非零向量.解析:模为1个单位的向量有2个,如AB,DC;模为2个单位的向量有2个,如AC,DB;模为3个单位的向量有2个,如AD,DA,故共有6个.答案:68.四边形ABCD满足AD=BC,且|AC|=|BD|,则四边形ABCD是______(填四边形ABCD的形状).解析:∵AD=BC,∴AD∥BC且|AD|=|BD|,∴四边形ABCD是平行四边形.又|AC|=|BD|知该平行四边形对角线相等,故四边形ABCD是矩形.答案:矩形9.已知在四边形ABCD中,AB∥CD,求AD与BC分别满足什么条件时,四边形ABCD 满足下列情况.(1)四边形ABCD是等腰梯形;(2)四边形ABCD是平行四边形.解:(1)|AD|=|BC|,且AD与BC不平行.∵AB∥CD,∴四边形ABCD为梯形或平行四边形.若四边形ABCD为等腰梯形,则|AD|=|BC|,同时两向量不共线.(2)AD=BC(或AD∥BC).若AD=BC,即四边形的一组对边平行且相等,此时四边形ABCD为平行四边形.10. 如图,D,E,F分别是△ABC各边上的中点,四边形BCGF是平行四边形,试分别写出与FE共线及相等的向量.解:(1)与FE共线的向量有:FG,EG,GF,GE,BD,DB,DC,CD,BC,CB,EF.(2)与FE相等的向量有:EG,BD,DC.层级二应试能力达标1.下列说法正确的是() A.向量AB∥CD就是AB所在的直线平行于CD所在的直线B.长度相等的向量叫做相等向量C.若a=b,b=c,则a=cD.共线向量是在一条直线上的向量解析:选C向量AB∥CD包含AB所在的直线与CD所在的直线平行和重合两种情况,故A 错;相等向量不仅要求长度相等,还要求方向相同,故B 错;C 显然正确;共线向量可以是在一条直线上的向量,也可以是所在直线互相平行的向量,故D 错.2.已知D 为平行四边形ABPC 两条对角线的交点,则|PD ||AD |的值为 ( ) A .12B. 13 C .1 D .2 解析:选C 因为四边形ABPC 是平行四边形,D 为对角线BC 与AP 的交点,所以D为PA 的中点,所以|PD ||AD |的值为1. 3.向量AB 与向量BC 共线,下列关于向量AC 的说法中,正确的为 ( )A .向量AC 与向量AB 一定同向B .向量AC ,向量AB ,向量BC 一定共线C .向量AC 与向量BC 一定相等D .以上说法都不正确解析:选B 根据共线向量定义,可知AB ,BC ,AC 这三个向量一定为共线向量,故选B.4.若|AB |=|AD |且BA =CD ,则四边形ABCD 的形状为 ( )A .平行四边形B .矩形C .菱形D .等腰梯形解析:选C 由BA =CD 知AB =CD 且AB ∥CD ,即四边形ABCD 为平行四边形.又由|AB |=|AD |知四边形为菱形.5.已知A ,B ,C 是不共线的三点,向量m 与向量AB 是平行向量,与BC 是共线向量,则m =________.解析:平行向量又叫做共线向量,而与不共线向量AB ,BC 都共线的向量只能是零向量.答案:06.设a 0,b 0是单位向量,则下列结论中正确的是________(填序号).①a 0=b 0;②a 0=-b 0;③|a 0|+|b 0|=2;④a 0∥b 0.解析:因为a0,b0是单位向量,|a0|=1,|b0|=1,所以|a0|+|b0|=2.答案:③7. 一辆消防车从A地去B地执行任务,先从A地向北偏东30°方向行驶2千米到D地,然后从D地沿北偏东60°方向行驶6千米到达C地,从C地又向南偏西30°方向行驶2千米才到达B地.(1)在如图所示的坐标系中画出AD,DC,CB,AB.(2)求B地相对于A地的位移.解:(1)向量AD,DC,CB,AB如图所示.(2)由题意知AD=BC.所以AD綊BC,则四边形ABCD为平行四边形.所以AB=DC,则B地相对于A地的位移为“在北偏东60°的方向距A地6千米”.8.如图的方格纸由若干个边长为1的小正方形并在一起组成,方格纸中有两个定点A,B,点C为小正方形的顶点,且|AC|= 5.(1)画出所有的向量AC;(2)求|BC|的最大值与最小值.解:(1)画出所有的向量AC,如图所示.(2)当点C在点C1或C2时,|BC|取得最小值12+22=5;当点C在点C5或C6时,|BC|取得最大值42+52=41,故|BC|的最大值为41,最小值为 5.。
2017_2018学年高中数学第二章平面向量1从位移速度力到向量教学案北师大版必修4
A.相等向量
B.平行向量
C.模相等的向量
D.起点相同的向量
解析:选C显然AO、BO、CO互不平行,但长度相等,因此| .
4.如下图,四边形ABCD和四边形ABDE都是平行四边形.
(1)与向量 相等的向量有________;
(2)假设 =3,那么向量 的模等于________.
讲一讲
1.判定给出以下命题是不是正确,并说明理由.
(1)假设|a|>|b|,则a>b;
(2)若|a|=|b|,则a=b;
[尝试解答] (1)不正确.向量的模是一个非负实数,能够比较大小,但向量是有方向的量,方向是不能比较大小的,因此,向量只有相等与不相等的关系.
(2)不正确.两向量相等,必需长度相等,且方向相同,因此仅模相等,并非必然是相等的向量;
2.寻求相等向量,抓住长度相等,方向相同两个要素;寻求共线向量,抓住方向相同或相反的一个要素.
练一练
3.如右图,四边形ABCD、CEFG、CGHD都是全等的菱形,那么以下关系不必然成立的是( )
解析:选C由题意知,AB=EF,∴A成立;
又AB∥FH,DC与EC共线都成立,
∴B,D成立.
而BD不必然等于EH,故C不必然成立.
解析:集合T={ |P、Q∈M,且 ≠0}中的元素为非零向量 ,且向量的起点与终点别离为矩形的极点A、B、C、D.依照集合元素的互异性,得集合T={ , }共含有8个元素.
答案:8
三、解答题
9.一架测绘飞机从A点向北飞行200km抵达B点,再从B点向东飞行100km抵达C点,再从C点向东南45°飞行了100 km抵达D点,问飞机从D点飞回A点的位移大小是多少km?
高中数学2.1《从位移、速度、力到向量》学案(北师大版必修4)
CB《从位移、速度、力到向量》课堂练习Ⅰ.合作交流,感知概念Ⅱ、判断对错,理解概念⑴若向量AB 与CD 是共线向量,则,,,A B C D 四点共线.⑵若四边形ABCD 是平行四边形,则AB DC =;反之,若AB DC =,则A 、B 、C 、D 四点必能组成平行四边形. ⑶若,,a b b c ==则a c = ⑷若//,//,a b b a 则//a cⅢ.应用迁移,巩固提高如图,,,D E F 依次为等边三解形ABC 的边,,AB BC AC ,,,,,A B C D E F 为起点或终点的向量中,⑴找出与DE 相等的向量。
⑵找出与DF 共线的向量。
Ⅳ.创新应用,提升能力请你当一回老师,考考你的搭档,在方格中画出一些向量(要求所画向量的起点和终点必须在方格的格点处),让其辩认出是否存在共线向量、相等相量?若存在,请一一举出。
Ⅴ.回顾历史,感受文化Ⅵ. 总结反思,布置作业数学诗《我的向量》1、小结给你一个方向,你就成为我的向量2、作业给你一个坐标系,你就在我心空飞翔⑴课本73页第4题.给你一个基底,带着我,征途启航⑵请同学们逐步积累资料,在学完繁复的几何关系,变成纯代数的情疡《平面向量》一章后,以《话说“优美的动态结构,没有人情冷暖世态炎凉向量”》为题,写一篇数学短文,不管起点在哪里,你始终在水一方谈谈你对向量知识的理解.哪怕山高路远,哪怕风雨苍茫(参考网址:)啊,我的向量,你是一股力量溶进了我的身体,在我的血管量,静静地流淌Ⅶ.数学日记姓名:日期:今天数学课的课题:;今天所学的重要数学知识:;理解得最好的地方:;不明白或还需要进一步理解的地方:;你对什么问题还有不同见解:;今天你独立或和谁一起合作解决了什么问题:;所学内容能否应用在日常生活中,请举例说明:;自我评价:;教师评价:;。
2017-2018学年高中数学第二章平面向量1从位移、速度、力到向量教学案北师大版必修4
1 从位移、速度、力到向量[核心必知]1.位移、速度和力位移、速度和力这些物理量都是既有大小,又有方向的量,在物理中称为“矢量”,它们和长度、面积、质量等只有大小的量是不同的.2.向量的概念(1)向量的定义:在数学中,把既有大小,又有方向的量统称为向量.(2)向量的表示法①有向线段:具有方向和长度的线段叫作有向线段.②向量的表示法(ⅰ)几何表示法:用有向线段表示,若有向线段的起点为A ,终点为B ,则该有向线段记作:(ⅱ)字母表示法:用黑体小写字母a,b,c,…表示,书写用表示.(3)向量的模(长度)向量 (或a)的大小,称为向量 (或a)的长度,也叫模,记作||(或|a|).(4)与向量有关的概念零向量长度为零的向量称为零向量,记作0单位向量与向量a同方向,且长度为单位1的向量,叫作a方向上的单位向量,记作a0自由向量由大小和方向确定,而与起点位置无关的向量称为自由向量相等向量长度相等且方向相同的向量,叫作相等向量.向量a与b相等,记作a=b平行(共线)向量如果表示两个向量的有向线段所在的直线平行或重合,则称这两个向量平行或共线.a与b平行或共线,记作a∥b.零向量与任一向量平行[问题思考]1.有向线段就是向量,对吗?提示:不对.有向线段的起点、终点是确定的,而向量与起点无关,可以自由平移,它可以用有向线段表示,但不能说有向线段就是向量.2.相等向量的起点相同,对吗?提示:不对.相等向量是指长度相等且方向相同的向量.所以,两个向量只要长度相等,方向相同,即是相等的向量,与起点的位置无关.讲一讲1.判断给出下列命题是否正确,并说明理由.(1)若|a|>|b|,则a>b;(2)若|a|=|b|,则a=b;[尝试解答] (1)不正确.向量的模是一个非负实数,可以比较大小,但向量是有方向的量,方向是不能比较大小的,所以,向量只有相等与不相等的关系.(2)不正确.两向量相等,必须长度相等,且方向相同,所以仅模相等,并不一定是相等的向量;1.对向量有关概念的理解要严谨、准确,特别注意向量不同于数量,它既有大小,又有方向,而方向不能比较大小,所以任给两个向量都不能比较大小.2.对于两个向量,只要方向相同或相反,一定是共线向量.3.零向量是特殊的向量,解题时一定要注意其方向的任意性.练一练1.给出下列命题(1)若|a|=0,则a=0;(2)若a=b,则|a|=|b|;(3)向量a与向量b平行,则a与b的方向相同或相反;(4)两个有共同起点而且相等的向量,其终点必相同;(5)两个有共同终点的向量,一定是共线向量;其中正确命题的个数是( )A.1 B.2C.3 D.4解析:选B (1)不正确.零向量与数字0是两个不同的概念,零向量是一个向量,而数字0是一个实数,没有等量关系;(2)正确.两向量相等,其长度必然相等;(3)不正确.若a与b中有一个为零向量时,其方向是不确定的;(4)正确.相等的向量,长度相等且方向相同,若起点相同,则终点必相同;(5)不正确.终点相同并不能说明这两个向量的方向相同或相反.讲一讲2.小李离家从A点出发向东走2 km到达B点,然后从B点沿南偏西60°走4 km,到达C 点,又改变方向向西走2 km到达D点.(2)求小李到达D点时与A点的距离.即小李到达D点时离A点4 km.1.用有向线段表示向量时,先确定起点,再确定方向,最后依据模的大小确定向量的终点.2.确定向量的长度或方向时,需要用平面几何的知识,如直角三角形的解法、平行四边形的性质等.练一练2. 中国象棋中规定:马走“日”字,象走“田”字.如下图所示,在中国象棋的半个棋盘(4×8个矩形中,每个小方格都是单位正方形)中,若马在A处,可跳到A1处,也可跳到A2处,用向量表示马走了“一步”,试在图中画出马在B、C处走了一步的所有情况.解:如图,以点C为起点作向量(共8个),以点B为起点作向量(共3个).讲一讲3.如图所示,O为正方形ABCD对角线的交点,四边形OAED、OCFB都是正方形.在图中所示的向量中:(1)分别写出与相等的向量;(2)写出与共线的向量.1.在平面图形中找相等向量、共线向量时,首先要注意分析平面图形中相等、平行关系,同时注意线段的平行和相等与向量平行和相等的区别,充分利用平行四边形的性质.2.寻求相等向量,抓住长度相等,方向相同两个要素;寻求共线向量,抓住方向相同或相反的一个要素.练一练3. 如右图,四边形ABCD、CEFG、CGHD都是全等的菱形,则下列关系不一定成立的是( )解析:选C 由题意知,AB=EF,∴A成立;又AB∥FH,DC与EC共线都成立,∴B,D成立.而BD不一定等于EH,故C不一定成立.[巧思] =1说明点P到定点O的距离为1,即P在以原点为圆心,以1为半径的圆上,Q点在圆外,表示P、Q两点的距离,因此可采用数形结合法来解决.[妙解] 如图,由=1知动点P的轨迹是单位圆,连接QO并延长与单位圆相交于A,B两点,由平面知识易知:当P运动至A,B两点时,向量|分别取最小值,最大值,1.下列物理量:①质量;②速度;③力;④加速度;⑤路程;⑥密度;⑦功.其中不是向量的有( )A.1个B.2个C.3个 D.4个解析:选D 本题主要考查向量的概念,看一个量是不是向量,就是看它是否具备向量的两个要素:大小和方向,因为②③④是既有大小,又有方向的量,所以它们是向量;而①⑤⑥⑦只有大小而没有方向的量,所以不是向量.2.给出下列命题:①起点相同,方向相同的两个非零向量的终点相同;②起点相同的两个相等的非零向量的终点相同;③两个平行的非零向量的方向相同;④两个共线的非零向量的起点与终点一定共线.其中正确的是( )A.①② B.②C.②③ D.③④解析:选B 起点相同,方向相同的两个非零向量若长度不相等,则终点不相同,故①不正确;起点相同且相等的两个非零向量的终点相同,故②正确;两个平行的非零向量的方向相同或相反,故③不正确;两个共线的非零向量的起点与终点不一定共线,所对应的直线可能平行,故④不正确.3. 设O为△ABC的外心,则是( )A.相等向量B.平行向量C.模相等的向量D.起点相同的向量解析:选C 显然AO、BO、CO互不平行,但长度相等,所以|.4.如图所示,四边形ABCD和四边形ABDE都是平行四边形.(1)与向量相等的向量有________;(2)若=3,则向量的模等于________.解析:(1)相等向量既模相等,又方向相同,所以与相等的向量有.5. 如图,B、C是线段AD的三等分点,分别以图中各点为起点和终点最多可以写出________个互不相等的非零向量.答案: 66.我国国内有些城市的道路命名非常有趣,它以“经纬”来命名道路,目前比较典型的有郑州市,其经纬路走向与地理意义上的经纬走向保持了一致,济南市的命名则与地理意义的经纬走向是完全相反的,另外西安市以前也以经纬命名道路,但后来大多更名.设某城市的地图如图(街道刚好分布在一个方形格纸中且距离都为1个单位):请作出某人从经1纬2路口走到经3纬4路口的位移,并计算其走过的最短路程和位移的大小.解:如图,用向量表示某人的位移.位移的大小为22+22=22个单位长度.从A走到B,必然向右走2个单位,向下走2个单位,所以走过的路程为4个单位长度.一、选择题1.给出下列命题:①若a=-b,则|a|=|b|;②若|a|<|b|,则a<b;③若a=b,则a∥b;④若a∥b,b∥c,则a∥c.其中正确命题的个数是( )A.0 B.1C.2 D.3解析:选C 对于①,若a=-b,则a,b互为反向量,所以|a|=|b|,①正确;对于②,向量的长度有大小,但向量不能比较大小,所以②不正确;对于③,a=b,意味着a与b的方向相同,所以a∥b;对于④,若b=0,则a∥b,b∥c,但a与c方向不一定相同或相反,所以④不正确.2.某人向正东方向行进100 m后,再向正南方向行进100 3 m,则此人位移的方向是( ) A.南偏东60° B.南偏东45°C.南偏东30° D.南偏东15°∴θ=60°.3.下列说法中正确的是( )A.平行向量一定方向相同B.共线向量一定相等C.起点不同,但方向和模相等的几个向量一定是相等的向量D.与任意向量都平行的向量不一定是零向量解析:选C 非零平行(共线)向量要么方向相同,要么方向相反,所以A、B均不正确;只有零向量与任意向量平行,故D不正确;C正确.4.已知集合A={与a共线的向量},B={与a长度相等的向量},C={与a长度相等,方向相反的向量},其中a为非零向量,则下列命题中错误的是( )A.C A B.A∩B=CC.C B D.A∩B C解析:选B ∵A∩B中还含有向量a,故B错.二、填空题5. 如图,在四边形ABCD中,且则四边形ABCD为________.答案:菱形6.在▱ABCD中,E,F分别是AB、CD的中点,如图所示的向量中,设=a,=b,则与a相等的向量是________;与b共线的向量是________.7.如图,设每一个正方形小方格的边长为1,则向量,GH―→的长度从小到大排列依次为________________.8. 如图,已知矩形ABCD中,设点集M={A,B,C,D},集合T={PQ|P、Q∈M,且PQ≠0}.则集合T中有________个元素.解析:集合T={PQ|P、Q∈M,且PQ≠0}中的元素为非零向量PQ,且向量的起点与终点分别为矩形的顶点A、B、C、D.根据集合元素的互异性,得集合T={,}共含有8个元素.答案:8三、解答题9.一架测绘飞机从A点向北飞行200 km到达B点,再从B点向东飞行100 km到达C点,再从C点向东南45°飞行了100 2 km到达D点,问飞机从D点飞回A点的位移大小是多少km?解:如图,建立平面直角坐标系xAy,其中x轴的正方向表示正东方向,y轴的正方向表示正北方向,作DE⊥AB,CF⊥DE,垂足分别为E、F.在Rt△CDF中,|CD|=1002,∠CFD=90°,∠CDF=45°,∴CF=DF=100,ED=200,在Rt△AED中,BE=EA=100,∴|DA|=1002+2002=1005(km).故飞机从D点飞回A点的位移大小为100 5 km.10.在如图所示的方格纸上(每个小方格边长均为1),已知向量a.(1)试以B为起点画一个向量b,使b=a;(2)画一个以C为起点的向量c,使|c|=2,并说出c的终点的轨迹是什么.解:(1)根据相等向量的定义,所作向量应与a平行,且长度相等,如图所示.(2)由平面几何知识可作满足条件的向量c.所有这样的向量c的终点的轨迹是以C为圆心,2为半径的圆,如上图.。
北师大版高中高二数学必修4《从位移,速度,力到向量》教案及教学反思
北师大版高中高二数学必修4《从位移、速度、力到向量》教案及教学反思1. 教学目标本章教学主要目的是引导学生理解和运用向量的概念和方法,能够用向量的加、减、乘等运算法则,解决静力学问题。
同时,注重拓展学生思维的多样性和可塑性,培养学生创新意识和解决问题的能力。
2. 教学重点及难点重点:1.掌握向量的基本概念和表示方法2.掌握向量的加、减、标量乘法运算,运用于解决静力学问题3.学会构建向量方程,解决静力学问题难点:1.学生根据题目内容理解问题,构建向量方程的能力2.学生对向量乘法的掌握和应用3. 教学环节及具体时间安排教学环节具体时间概念讲解30分钟实例分析40分钟练习演练50分钟解题思路分享30分钟4. 教学内容4.1 向量概念向量是一个既有大小又有方向的量。
在静力学中,一般用箭头表示,箭头的长度代表向量的大小,箭头的方向代表向量的方向。
4.2 向量运算4.2.1 向量加法向量加法满足“交换律”和“结合律”,即:$$ \\overrightarrow{a} + \\overrightarrow{b} =\\overrightarrow{b} + \\overrightarrow{a} $$$$ \\overrightarrow{a} + (\\overrightarrow{b} +\\overrightarrow{c}) = (\\overrightarrow{a}+\\overrightarrow{b})+ \\overrightarrow{c} $$4.2.2 向量减法向量减法可以看做向量加法的一种特殊情况,即:$$ \\overrightarrow{a} - \\overrightarrow{b} =\\overrightarrow{a} + (-\\overrightarrow{b}) $$4.2.3 向量的标量乘法向量的标量乘法是指将向量乘以一个实数,即:$$ k\\overrightarrow{a} = \\overrightarrow{a_1} $$其中,k表示实数,$\\overrightarrow{a}$ 表示向量,$\\overrightarrow{a_1}$ 表示向量的新的大小和方向。
(北师大版)高中数学必修四:2.1《从位移、速度、力到向量》教案设计
从位移、速度、力到向量一、教学目标: 1.知识与技能(1)理解向量与数量、向量与力、速度、位移之间的区别;(2)理解向量的实际背景与基本概念,理解向量的几何表示,并体会之间的联系. (3)通过教师指导发现知识结论,培养学生抽象概括能力和逻辑思维能力 2.过程与方法通过力与力的分析等实例,引导学生了解向量的实际背景,帮助学生理解平面向量与向量相等的含义以及向量的几何表示;最后通过讲解例题,指导学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题.3.情感态度价值观通过本节的学习,使同学们对向量的实际背景、几何表示有了一个基本的认识;激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神. 二.教学重、难点重点: 向量及向量的有关概念、表示方法. 难点: 向量及向量的有关概念、表示方法. 三.学法与教学用具学法:(1)自主性学习+探究式学习法:(2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距. 教学用具:电脑、投影机. 四.教学设想 【创设情境】实例:老鼠由A 向西北逃窜,猫在B 处向东追去,问:猫能否追到老鼠?(画图) 结论:猫的速度再快也没用,因为方向错了.【探究新知】1.学生阅读教材思考如下问题[展示投影](学生先讲,教师提示或适当补充) 1. 举例说明什么是向量?向量与数量有何区别?既有大小又有方向的量叫向量。
例:力、速度、加速度、冲量等 注意:①数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,A B不能比较大小。
②从19世纪末到20世纪初,向量就成为一套优良通性的数学体系,用以研究空间性质。
2.向量的表示方法有哪些? ①几何表示法:有向线段有向线段:具有方向的线段叫做有向线段。
记作:−→−AB 注意:起点一定写在终点的前面。
有向线段的长度:线段AB 的长度也叫做有向线段−→−AB 的长度 有向线段的三要素:起点、方向、长度②字母表示法:也可用字母a 、b 、c (黑体字)来表示,即−→−AB 可表示为(印刷时用黑体字) 3. 向量的模的概念是如何定义的? 向量−→−AB 的大小——长度称为向量的模。
2.1从位移、速度、力到向量教案北师大版必修4
2.1 从位移、速度、力到向量整体设计教学分析1.本节是本章的入门课,概念较多,但难度不大.位移、速度、力等物理量学生都学过,这里仅是列出这些物理量让学生感知矢量,为进一步学习向量的概念作铺垫.由于向量来源于物理,并且兼具“数”和“形”的特点,所以它在物理和几何中具有广泛的应用.可通过几个具体的例子说明它的应用.位移、速度、力等是物理中的基本量,也是几何研究的重要对象.几何中常用点表示位置,研究如何由一点的位置确定另外一点的位置.位移简明地表示了点的位置之间的相对关系,它是向量的重要的物理模型.力是常见的物理量.重力、浮力、弹力等都是既有大小又有方向的量.物理中还有其他力,让学生举出物理学中力的其他一些实例,目的是要建立物理课中学过的位移、力及矢量等概念与向量之间的联系,以此更加自然地引入向量概念,并建立学习向量的认知基础.2.在类比数量的抽象过程而引出向量的概念后,为了使学生更好地理解向量概念,可采用与数量概念比较的方法,引导学生认识年龄、身高、长度、面积、体积、质量等量是“只有大小,没有方向的量”,同时给出“时间、路程、功是向量吗?速度、加速度是向量吗?”的思考题.通过这样的比较,可以使学生在区分相似概念的过程中更深刻地把握向量概念.实数与数轴上的点是一一对应的,数量常常用数轴上的一个点表示.教科书通过类比实数在数轴上的表示,给出了向量的几何表示——用有向线段表示向量.用有向线段表示向量,赋予了向量一定的几何意义.有向线段使向量的“方向”得到了表示,那么向量的大小又该如何表示呢?一个自然的想法是用有向线段的长度来表示.从而引出向量的模、零向量及单位向量等概念,为学习向量作了很好的铺垫.3.数学中,引进一个新的量后,首先要考虑的是如何规定它的“相等”,这是讨论这个量的基础.如何规定“相等向量”呢?由于向量涉及大小和方向,因此把“长度相等且方向相同的向量”规定为相等向量是非常自然的.由向量相等的定义可以知道,对于一个向量,只要不改变它的方向和大小,就可以任意平行移动.因此,用有向线段表示向量时,可以任意选取有向线段的起点,这为用向量处理几何问题带来方便,并使平面上的向量与向量的坐标得以一一对应.教学时可结合例题、习题说明这种思想.4.共线向量和平行向量是研究向量的基础,由此可以将一组平行向量平移(不改变大小和方向)到一条直线上,这给问题的研究带来方便.教学中,要使学生体会两个共线向量并不一定要在一条直线上,只要两个向量平行就是共线向量,当然,在同一直线上的向量也是平行向量.要避免向量的平行、共线与平面几何中直线、线段的平行和共线相混淆,教学中可以通过对具体例子的辨析来正确掌握概念.三维目标1.通过物理中的位移、速度、力等矢量,利用平面向量的实际背景以及研究平面向量的必要性,理解平面向量的概念以及确定平面向量的两个要素,搞清数量与向量的区别.2.理解自由向量、相等向量、相反向量、平行向量、零向量等概念,并能判断向量之间的关系.并会辨认图形中的相等向量或作出与某一已知向量相等的向量.3.在教学过程中,应充分根据平面向量的两个要素加以研究向量的关系,揭示向量可以平移这一特性.并通过本节学习,培养学生从数学的角度思考生活中实际问题的习惯.加强数学的应用意识,切实做到学以致用.用联系、发展的观点观察世界.重点难点教学重点:理解并掌握向量、零向量、单位向量、向量的模、相等向量、共线向量的概念,会表示向量.教学难点:平行向量、相等向量和共线向量的区别和联系.课时安排1课时教学过程导入新课图1思路1.先引导学生阅读本章引言并观察思考章头图,然后提出问题:在同一时刻,老鼠由A 向西北方向的C处逃窜,猫在B处向正东方向的D处追去,猫能否追到老鼠呢(如图1)?学生马上得出结论:追不上,猫的速度再快也没用,因为方向错了.教师适时设问:如何从数学的角度来揭示这个问题的本质?由此展开新课的探究.思路2.创设实物情境,回忆物理相关知识,让学生思考:两列火车先后从同一站台沿相反方向开出,各走了相同的路程,怎样用数学式子表示这两列火车的位移?中国象棋中规定马走“日”,象走“田”,让学生在图上画出马、象走过的路线,从物理知识位移的视角观察思考,并由此展开新课,这也是一个不错的导入选择.推进新课新知探究提出问题①回忆初中物理课中,我们学过的“位移”“速度”“力”等物理概念,让学生举出我们日常生活中有关“位移”“速度”“力”的实例.②“位移”“速度”“力”这些量的共同特征是什么?③“位移”“速度”“力”等量与长度、面积、质量等量有哪些不同?即数量与矢量的本质区别在哪里?活动:教师指导学生阅读课本,思考讨论课本中的实例所反映的物理量的特征.实例(1)反映的是物理量——位移:民航每天都有从北京飞往上海、广州、重庆、哈尔滨等地的航班,每次飞行都是民航客机的一次位移.由于飞行的距离和方向各不相同,因此,它们是不同的位移;实例(2)反映的也是物理量——位移:假如学校位于你家东偏北30°方向,距离你家2 000 m,从家到学校,可能有长短不同的几条路.无论走哪条路,你的位移都是向东偏北30°方向移动了2 000 m;实例(3)反映的是物理量——速度:飞机向东北方向飞行了150 km,飞行时间为半小时,飞行速度的大小是300km/h,方向是东北;实例(4)反映的也是物理量——速度:某著名运动员投掷标枪时,标枪的初速度的记录资料是:平均出手角度θ=43.242°,平均出手速度大小为v=28.35m/s;最后两个实例反映的是物理量——力:起重机吊装物体时,物体既受到竖直向下的重力作用,同时又受到竖直向上的起重机拉力的作用.当拉力的大小超过重力的大小时,物体即被吊起;汽车爬倾斜角为θ的坡路时,汽车的牵引力大小为F(N),方向倾斜向上,与水平方向成θ角.我们身边这样的实例很多,可让学生充分思考讨论再举出一些位移、速度、力的实例来,如果学生举出的是一些有关长度、面积、质量的例子,效果会更好,这样就有了比较,教师因势利导,学生更能明了这些量的本质.例如:物体在液体中受到的浮力是竖直向上的,物体浸在液体中的体积越大它受到的浮力越大;被拉长的弹簧的弹力是沿着反拉方向的,被压缩的弹簧的弹力是沿着反压方向的,并且在弹性限度内,弹簧拉长或压缩的长度越大,弹力越大;物理中的速度与加速度,物理中的动量与冲量等,这些量的共同特征是既有大小又有方向.如有学生举出我们的身高、运动会上的百米赛跑的跑道长度及场地面积、铅球体积、铅球质量等实例,教师适时地让学生讨论:这些量显然与以上那些量不同,因为长度、面积等这些量只有大小而无方向.教师与学生一起归纳总结以上实例:位移、速度和力等这些物理量都是既有大小,又有方向的量,在物理中称为“矢量”.只有大小,没有方向的量,如年龄、身高、长度、面积、体积、质量等称为数量,物理学上称为标量.显然数量和向量的区别就在于方向问题,矢量与标量是完全不同的两个量.铺垫已经完成,至此时机成熟,教师恰时恰点地引导学生思考:在现实世界中,像位移、速度、力等既有大小,又有方向的量是很多的,我们能否在数学学科中对这些量加以抽象,形成一种新的量?由此引入本章重要概念——向量.在数学中,我们把这种既有大小,又有方向的量统称为向量.讨论结果:①—③略.提出问题①在数学中,怎样表示向量呢?②什么叫有向线段?有向线段和线段有何区别和联系?分别可以表示向量的什么?③怎样定义零向量?怎样定义单位向量?④满足什么条件的两个向量叫作相等向量?⑤有一组向量,它们的方向相同或相反,这组向量有什么关系?怎样定义平行向量?⑥如果把一组平行向量的起点全部移到一点O,它们是不是平行向量?这时各向量的终点之间有什么关系?⑦什么是向量的模?活动:教师指导学生阅读教材,并思考讨论以上问题,特别是有向线段,这是学习向量的关键.我们知道,在物理学中,表示位移最简单的方法,是用一条带箭头的线段,箭头的方向表示位移的方向,线段的长度表示位移的大小.速度和力也是用这种方法表示的,箭头的方向分别表示速度和力的方向,线段长度分别表示速度和力的大小.图2这种带箭头的线段,在数学中叫作“有向线段”.一般地,若规定线段AB的端点A为起点,端点B为终点,则线段AB就具有了从起点A到终点B的方向和长度.这种具有方向和长度的线段叫作有向线段(如图2),记作AB,线段AB的长度也叫作有向线段AB的长度,记作||.有向线段包含三个要素:起点、方向、长度.知道了有向线段的起点、方向和长度,它的终点就唯一确定.向量可以用有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.向量也可以用黑体小写字母如a,b,c表示.一定要学生规范:印刷用黑体a,手写一定要在小写字母上加箭头.要注意不能说“向量就是有向线段,有向线段就是向量”,有向线段只是向量的一种几何表示,二者有本质的区别.向量只由方向和大小决定,而与向量的起点的位置无关,但有向线段不仅与方向、长度有关,也与起点的位置有关.如图2,在线段AB的两个端点中,规定一个顺序,假设A为起点,B为终点,我们就说线段AB具有方向,具有方向的线段叫作有向线段,通常在有向线段的终点处画上箭头表示它的方向.以A为起点、B为终点的有向线段记作.起点要写在终点的前面,即是说的方向是由点A指向点B,点A是向量的起点.图3如图3,关于向量的长度,这是向量的一个重要概念;向量(或a)的大小,就是向量AB(或a)的长度(或称模),记作|AB|(或|a|).教师应注意引导学生将数量与向量的模进行比较,以明确向量的意义.数量有大小而没有方向,其大小有正、负和0之分,可进行运算,并可比较大小;向量的模是正数或0,也可以比较大小.但向量具有方向,由于方向不能比较大小,向量也就不能比较大小,像a>b就没有意义,而|a|>|b|就有意义.理解了以上向量概念,那么关于向量相等和向量平行就很容易理解了,教师引导学生阅读教材即可.讨论结果:①用字母a,b,c,…表示向量(印刷用粗黑体表示),手写用字母加箭头来表示,或用表示向量的有向线段的起点和终点字母表示,如,.注意:手写体上面的箭头一定不能漏写.②有向线段:具有方向的线段就叫作有向线段,三个要素:起点、方向、长度.向量与有向线段的区别:向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.图4③长度为0的向量叫零向量,记作0,规定零向量的方向是任意的.长度为单位1的向量,叫单位向量.但要注意,零向量、单位向量的定义都只是限制了大小.④长度相等且方向相同的向量叫相等向量.⑤关于平行向量的定义:第一,方向相同或相反的非零向量叫平行向量;第二我们规定0与任一向量平行,即0∥a.综合第一、第二才是平行向量的完整定义.向量a,b,c平行,记作a∥b∥c.如图4.图5又如图5,a,b,c是一组平行向量,任作一条与a所在直线平行的直线l,在l上任取一点O,则可在l上分别作出OA=a,OB=b,OC=c.这就是说,任一组平行向量都可以移动到同一直线上,因此,平行向量也叫作共线向量.这里教师要提醒学生注意:平行向量可以在同一直线上,要区别于两平行线的位置关系.⑥是共线向量,也就是平行向量.但要注意,平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关).平行向量可以在同一直线上,要区别于两平行线的位置关系;共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.⑦|AB|〔或|a|表示向量AB(或a)的大小,即长度(也称为模)〕.应用示例例1 如图6,D,E,F依次是等边△ABC的边AB, BC, AC的中点.在以A,B,C,D,E,F为起点或终点的向量中,图6(1)找出与向量DE相等的向量;(2)找出与向量共线的向量.活动:教材安排本例的目的是让学生进一步熟悉向量的概念,属于基础练习,需要用到初中所学平面几何的相关知识,教师引导学生回忆相关知识后,可让学生充分讨论合作解决. 解:由初中所学三角形中位线定理不难得到:(1)在以A,B,C,D,E,F为起点或终点的向量中,与向量相等的向量有:和;(2)在以A,B,C,D,E,F为起点或终点的向量中,与向量共线的向量有:,,,.,变式训练判断下列命题是否正确,若不正确,请简述理由.图7(1)ABCD中,与是共线向量;(2)单位向量都相等.解:(1)正确;(2)不正确.点评:本题考查基本概念,对于单位向量、共线向量的概念特征及相互关系必须把握好.教师引导学生画出平行四边形,如图7.因为AB∥CD,所以,AB∥CD.由于上面已经明确,单位向量只限制了大小,方向不确定,所以单位向量不一定相等,即单位向量模均相等且为1,但方向不确定.例2 一个人从A 点出发沿东北方向走了100m 到达B 点,然后改变方向,沿南偏东15°方向又走了100m 到达C 点,求此人从C 点走回A 点的位移.图8活动:本例是一个简单的实际问题,让学生画出有向线段表示位移.本例目的在于巩固向量概念及其几何表示.解:根据题意画出示意图,如图8所示. ||=100m,||=100m,∠ABC=45°+15°=60°,∴△ABC 为正三角形.∴|CA |=100m,即此人从C 点返回A 点所走的路程为100m. ∵∠BAC=60°,∴∠CAD=∠BAC -∠BAD=15°,即此人行走的方向为西偏北15°.点评:位置是几何学研究的重要内容之一,几何中常用点表示位置,研究如何由一点的位置确定另外一点的位置.如图8,由A 点确定B 点、C 点的位置.例3 如图9,设O 是正六边形ABCDEF 的中心,分别写出图中与OC OB OA 相等的量.图9活动:本例是结合正六边形的一些几何性质,让学生巩固相等向量和平行向量的概念,正六边形是边长等于半径并且对边互相平行的正多边形,它既是轴对称图形,又是中心对称图形,具有丰富的几何性质.教科书中要求判断OA 与EF ,OB 与AF 是否相等,是要通过长度相等方向相反的两个向量的不等,让学生从反面认识向量相等的概念.解: ==;==;===.点评:向量相等是一个重要的概念,今后经常用到.让学生在训练中明确,向量相等不仅大小相等,还要方向相同.变式训练(演示课件)1.本例变式一:与向量长度相等的向量有多少个?(11个) 本例变式二:是否存在与向量长度相等、方向相反的向量?(存在) 本例变式三:与向量共线的向量还有哪些?(,,,,,)2.对命题“a ∥b ∥c 推出a ∥c ”,关于真假问题,甲、乙两个学生的判断如下:甲生判断是真命题.理由是:由a∥b可知a与b的方向相同或相反,由b∥c可知c与b的方向相同或相反,从而有a与c的方向相同或相反,故a∥c,即原命题为真命题;乙生判断是假命题.理由是:当两个非零向量a,c不平行,而b=0时,显然a∥b且b∥c,但不能推出a∥b∥c,故此时结论不成立,即原命题为假命题.究竟甲、乙两生谁的判断正确呢?请给以分析.解:乙的判断正确.由于存在“零向量与任一向量都平行”这一特殊结论,所以在平行向量中应弄清是否有零向量存在.甲生没有考虑到向量b可能为零向量的情况,故甲生的判断是错误的;乙生的判断完全正确.这说明向量平行的传递性若要成立,则“过渡”向量b需不为零向量,即在b≠0时有:(1)当a≠0,b≠0时,由a∥b,b∥c可推出a∥c;(2)若a与c中有一个为0,则另一个向量无论是否为0,均可推出a∥c.4(1)下列命题正确的是( )A.a与b共线,b与c共线,则a与c也共线B.任意两个相等的非零向量的起点与终点是一平行四边形的四顶点C.向量a与b不共线,则a与b都是非零向量D.有相同起点的两个非零向量不平行活动:由于零向量与任一向量都共线,所以A不正确.由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B不正确.向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确.对于C,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若a 与b不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a 与b共线,不符合已知条件,所以有a与b都是非零向量,所以只有C正确.答案:C点评:对于有关向量基本概念的考查,可以从概念特征入手,也可以从反面进行考虑.即要判断一个结论不正确,只需举一个反例即可.要启发学生注意正反这两方面的结合.变式训练1.判断:(1)平行向量是否一定方向相同?(不一定)(2)不相等的向量是否一定不平行?(不一定)(3)与零向量相等的向量必定是什么向量?(零向量)(4)与任意向量都平行的向量是什么向量?(零向量)(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(平行向量)(6)两个非零向量相等当且仅当什么?(长度相等且方向相同)(7)共线向量一定在同一直线上吗?(不一定)2.把一切单位向量归结到共同的始点,那么这些向量的终点所构成的图形是( )A.一条线段B.一段圆弧C.两个点D.一个圆3.将平行于一直线的所有单位向量的起点平移到同一始点,则这些向量的终点所构成的图形是( )A.一个点B.两个点C.一个圆D.一条线段答案:1.略 2.D 3.B知能训练课本本节练习1、2、3课堂小结1.先由学生回顾本节都学了哪些概念:向量,向量的两种表示,特别是对向量的手写要标上箭头,图示上要标上箭头和始点、终点,零向量、单位向量、平行向量、相等向量等概念,明了平行向量不是平面几何中的平行线段的简单类比.2.再由教师简要总结:本节课我们学习了向量、向量的两种表示方法及向量的有关概念:如向量的模、平行向量、共线向量、相等向量等重要概念,这些概念是我们进一步学习后续课程的基础,必须要在理解的基础上把握好.3.点拨学生要领悟我们是如何从大量的实际背景中获得这些数学概念的方法,本节的数学知识或许将来会忘掉或全部忘掉,但是我们探究这些知识的方法却会伴随我们一生,永远不会忘掉,使我们终生受益.作业如图10,在梯形ABCD 中,AB∥CD,AE∶ED=BF∶FC=AB∶DC,O 是AC 与BD 的交点,求证:=.图10证明:如图10,∵AB∥CD,∴AO∶OC=BO∶OD=AB∶CD.又AE∶ED=BF∶FC=AB∶DC,∴AE∶ED=AO∶OC.∴EO∥DC.同理,OF∥DC,∴E,O,F 在同一直线上. ∴.DCOF BC BF AD AE DC EO ===.∴E O=OF, 即|EO |=|OF |. 又EO 与OF 方向相同,∴EO =OF .设计感想1.本节是平面向量的第一节,对向量概念的理解无疑是重点,也是难点.本节教案的设计总思路是:把学生划分小组合作讨论学习,经过小组成员们的合作探究,对平面向量的基本概念,和基本解题方法有个清晰的认识,学生有很多的成功之处或收获.对失败或教训之处可能是对一些概念性问题没有深入研究,导致解题存在困难,不过这些会通过学习的深入弥补上来的.2.本教案设计充分利用向量的物理背景.作为现代数学重要标志之一的向量引入中学数学以后,给中学数学带来无限生机.通过本节大量物理背景实例的铺垫及数学问题的解决,让学生体会到数学在生活中的重要作用,并在实际课堂教学中规范学生的习惯,培养严谨的思考习惯和行为习惯,为后面学习打下基础.3.本教案设计遵循学生的认知规律,体现新课标理念,设计的教学方法主要是让学生自主探究,呈现“现实情境—数学模型—应用于现实问题”的特点,让学生通过观察、分析、归纳、验证,培养学生的主动探究的积极精神,让学生初步感受到向量确实生动有趣,是培养学生数学能力的很好题材.备课资料一、向量中有关概念的辨析1.数量、向量、有向线段对这几个概念的理解容易出现概念不清的问题.数量只有大小,没有方向,其大小可以用实数来表示,它是一个代数量,数量之间可以比较大小;向量既有大小又有方向,向量之间不可以比较大小;有向线段是向量的直观性表示,不能说向量就是有向线段.2.平行向量、共线向量、相等向量平行向量也叫共线向量,故平行向量与共线向量没有区别,而相等向量一定是平行向量,但平行向量不一定是相等向量,即平行向量是相等向量的必要条件而非充分条件.二、备用习题1.若正多边形有n条边,它们对应的向量依次为a1,a2,…a n,则这n个向量( )图16A.都相等B.都共线C.都不共线D.模都相等2.如图16所示,在△ABC中,DE∥BC,则其中共线向量有…( )A.一组B.二组C.三组D.四组3.若命题p为a=b,命题q为|a|=|b|,则p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不必要又不充分条件4.如图17所示,在四边形ABCD中,若=,则下列各组向量相等的是( )图17A.与B.与C.与D.与OB5.已知a,b是任意两个向量,有下列条件:①|a|=|b|;②a=b;③a与b的方向相反;④a=0或b=0;⑤a与b都是单位向量.其中是向量a与b共线的充分不必要条件的为__________.(把你认为正确的命题序号全都填上)6.如图18所示,四边形ABCD和ABDE都是平行四边形.图18(1)写出与相等的向量;(2)若||=3,求向量的模.7.判断下列各命题的真假:①向量AB的长度与向量BA的长度相等;②向量a∥b,则a与b的方向相同或相反;③两个有共同起点而且相等的向量,其终点必相同;④两个有公共终点的向量,一定是共线向量;⑤向量与向量是共线向量,则点A、B、C、D必在同一条直线上;⑥有向线段就是向量,向量就是有向线段.其中假命题的个数为 ( ) A.2 B.3 C.4 D.5参考答案:1.D 2.C 3.A 4.D5.②③④6.解:(1)与相等的向量有和,因为四边形ABCD和ABDE都是平行四边形,故AB=ED=DC;(2)向量EC的模|EC|=6.7.C因为①真命题;②假命题;③真命题;④假命题;⑤假命题;⑥假命题.。
高中数学 第二章 平面向量 2.1 从位移、速度、力到向量学案 北师大版必修4
从位移、速度、力到向量1.向量的概念既有____,又有____的量叫作向量. 预习交流1有下列物理量:①质量;②力;③加速度;④路程;⑤密度;⑥功.其中不.是向量的有( ).A .1个B .2个C .3个D .4个 2.向量的表示方法(1)具有__________的线段,叫作有向线段.以A 为始点,以B 为终点的有向线段记作______,线段AB →的长度也叫作有向线段AB →的长度,记作|AB →|.(2)向量可以用________来表示.有向线段的长度表示__________,箭头所指的方向表示__________.(3)向量也可以用黑体小写字母如a ,b ,c ,…来表示,书写用a →, b →, c →,…来表示.预习交流2有向线段是向量吗? 3.向量的长度(模)(或____)表示向量AB →(或a )的大小,即长度(也称模).预习交流3两个向量的模能否比较大小?两个向量呢? 4.4种重要的向量(1)长度为零的向量叫作______,记作__或__,它的方向与任一向量平行.(2)与向量a ______,且长度为______的向量,叫作a 方向上的单位向量,记作______. (3)长度____且方向____的向量叫作相等向量,向量a 与b 相等,记作a =b .规定所有的零向量____.(4)如果表示两个向量的有向线段所在的直线__________,则称这些向量____或____,a 与b 平行或共线,记作a ∥b .预习交流4(1)0与0相同吗?有什么区别?(2)表示相等向量的有向线段一定重合吗?答案:1.大小 方向预习交流1:D 解析:质量、路程、密度、功只有大小而没有方向,不是向量.2.(1)方向和长度 AB (2)有向线段 向量的大小 向量的方向 预习交流2:提示:有向线段不是向量,它只是向量的一种表现形式.3.|AB | |a |预习交流3:提示:模是向量的长度,所以能比较大小,而向量不能,因为向量的大小即长度可以比较大小,但方向不能比较大小.4.(1)零向量 0 0→(2)同方向 单位1 a 0 (3)相等 相同 相等 (4)平行或重合 平行 共线预习交流4:(1)提示:不相同,0是向量,模等于0,0是数量,无方向. (2)提示:不一定,也可能平行或在同一条直线上.1.向量的有关概念给出下列几种说法:(1)温度、速度、位移这些物理量都是向量; (2)若|a|=|b|,则a =b 或a =-b ; (3)向量的模一定是正数;(4)起点不同,但方向相同且模相等的几个向量是相等向量; (5)向量AB →与CD →是共线向量,则A ,B ,C ,D 四点必在同一直线上.其中正确的序号是________.思路分析:本题涉及了向量的几个重要概念.解答时可从向量的定义、向量的模、相等向量、平行向量等概念入手,逐一判断对错.判断下列说法是否正确,并说明理由.(1)两个向量相等,则它们的起点相同,终点相同; (2)两个有公共终点的向量,一定是共线向量; (3)数轴是向量;(4)由于0方向不确定,故0不能与任意向量平行; (5)若向量a 与b 同向,且|a|>|b|,则a >b .对向量有关概念的理解要严谨、准确,特别注意向量不同于数量,它既有大小又有方向,方向不能比较大小.零向量是比较特殊的向量,解题时一定要看清是“零向量”还是“非零向量”.2.向量的表示方法一运输汽车从A 点出发向西行驶了100 km 到达B 点,然后又改变方向向西偏北50°走了200 km 到达C 点,最后又改变方向,向东行驶了100 km 到达D 点.(1)作出向量AB →,BC →,CD →; (2)求AD →.思路分析:作图时既要考虑向量的大小,又要考虑其方向及起点,为此应首先建立坐标系,然后再根据行驶方向确定出有关向量,进而求解.在如图所示的坐标系中(1个小方格表示1个单位长度),用直尺和圆规画出下列向量.(1)|OA →|=3,点A 在点O 正西方向;(2)|OB →|=32,点B 在点O 北偏西45°方向; (3)|OC →|=2,点C 在点O 南偏东60°方向.准确画出向量的方法是先确定向量的起点,再确定向量的方向,然后根据向量的大小确定向量的终点. 3.相等向量与共线向量如图所示,△ABC 的三边均不相等,E ,F ,D 分别是AC ,AB ,BC 的中点.(1)写出与EF →共线的向量; (2)写出与EF →的模大小相等的向量;。
高中数学必修四北师大版 学案 2.1从位移、速度、力到向量 导学案
课题第二章平面向量 2.1.1位移、速度和力 2.1.2向量的概念学习目标1.知识与技能(1)了解向量的实际背景(2)理解平面向量的概念和向量的几何意义.2.过程与方法通过分析教材中给出的有关位移、速度和力的大量实例,让学生亲身经历观察、分析、归纳、抽象概括出平面向量概念的思维过程;3.情感、态度与价值观从学生熟悉的生活实例出发建立平面向量概念,激发学生的学习兴趣学习重点:向量的概念,向量的几何表示.学习难点:对自由向量的理解.学习方法:以讲学稿为依托的多媒体辅助教学方式.学习过程一、课前预习指导:仔细阅读课本72页内容,完成以下预习检测1.向量:既有________,又有______的量叫做向量.2.向量的几何表示:以A为起点、B为终点的有向线段记作_____.3.向量的有关概念:(1)零向量:长度为__的向量叫做零向量,记作__.(2)单位向量:长度为______的向量叫做单位向量.(3)相等向量:__________且__________的向量叫做相等向量.(4)平行向量(共线向量):方向_____________的______向量叫做平行向量,也叫共线向量.①记法:向量a平行于b,记作_____.②规定:零向量与_____________平行.二、新课学习问题探究一几个向量概念的理解1.已知下列各量:①力;②功;③速度;④质量;⑤温度;⑥位移;⑦加速度;⑧重力;⑨路程;⑩密度.其中是数量的有___________,是向量的有____________.2.下列说法中正确的是________.①长度相等的向量叫作相等向量;②一个向量的相等向量有无数多个;③方向相反的向量叫作相反向量;④相反向量一定是共线向量.问题探究二平行向量与共线向量例1判断下列命题是否正确,并说明理由.①若a≠b,则a一定不与b共线;②若AB→=DC→,则A、B、C、D四点是平行四边形的四个顶点;③在平行四边形ABCD中,一定有AB→=DC→;④若向量a与任一向量b平行,则a=0;⑤若a=b,b=c,则a=c;⑥若a∥b,b∥c,则a∥c.学后检测1 .判断下列命题是否正确,并说明理由.(1)若向量a与b同向,且|a|>|b|,则a>b;(2)若向量|a|=|b|,则a与b的长度相等且方向相同或相反;(3)对于任意|a|=|b|,且a与b的方向相同,则a=b;(4)向量a与向量b平行,则向量a与b方向相同或相反.例2 一辆汽车从A 点出发向西行驶了100 km 到达B 点,然后又改变方向向西偏北50°走了200 km 到达C 点,最后又改变方向,向东行驶了100 km 到达D 点.(1)作出向量AB →、BC →、CD →; (2)求|AD →|.学后检测2 在如图的方格纸上,已向量a ,每个小正方形的边长为1. (1)试以B 为终点画一个向量b ,使b =a ;(2)在图中画一个以A 为起点的向量c ,使|c |=5,并说出向量c 的终点的轨迹是什么?学后检测3 阅读教材73页例题完成下面检测如图所示,△ABC 的三边均不相等,E 、F 、D 分别是AC 、AB 、BC 的中点.(1)写出与向量EF →共线的向量;(2)写出与向量EF →的模大小相等的向量;(3)写出与向量EF →相等的向量.三、当堂检测1.如图所示,四边形ABCD 和BCED 都是平行四边形,(1)写出与向量BC →相等的向量:________.(2)写出与向量BC →共线的向量:________ 2.下列说法正确的是( )A .方向相同或相反的向量是平行向量B .零向量的长度是0C .长度相等的向量叫相等向量D .共线向量是在同一条直线上的向量 3.下列命题正确的是( )A .若|a |=|b |,则a =b 或a =-bB .向量的模一定是正数C .起点不同,但方向相同且模相等的几个向量是相等向量D .向量AB →与CD →是共线向量,则A 、B 、C 、D 四点必在同一直线上4.如图所示,以1×2方格纸中的格点(各线段的交点)为起点和终点的向量中.(1)写出与AF →、AE →相等的向量;(2)写出与AD →模相等的向量.四、课堂小结五、课后作业六.板书设计七.教(学)后反思。
2018_2019学年高中数学第二章平面向量1从位移速度力到向量学案北师大版必修4
§1 从位移、速度、力到向量内容要求 1.通过力和力的分析等实例,了解向量的实际背景.2.理解平面向量和向量相等的含义,理解向量的几何表示的意义和方法.知识点1 向量的概念数学中,我们把既有大小,又有方向的量统称为向量,而把那些只有大小,没有方向的量(如年龄、身高、体积等)称为数量.注意 ①向量的两个要素:大小和方向,缺一不可.解题时,注意从两个要素出发考虑问题. ②数量之间可以比较大小,而两个向量不能比较大小. 【预习评价】 已知下列各量:①力;②功;③速度;④质量;⑤温度;⑥位移;⑦加速度;⑧重力;⑨路程;⑩密度. 其中是数量的有②④⑤⑨⑩,是向量的有①③⑥⑦⑧. 知识点2 向量的表示方法(1)具有方向和长度的线段,叫作有向线段.以A 为起点,以B 为终点的有向线段记作AB →,线段AB 的长度也叫作有向线段AB →的长度,记作|AB →|.(2)向量可以用有向线段来表示.有向线段的长度表示向量的大小,即长度(也称模).箭头所指的方向表示向量的方向.(3)向量也可以用黑体小写字母如a ,b ,c ,…来表示,书写用a →,b →,c →,…来表示. 【预习评价】两个向量能比较大小吗?有向线段是向量吗?提示 两个向量不能比较大小,因为向量既有大小也有方向.有向线段表示向量,但有向线段不是向量.知识点3 与向量有关的概念(1)向量的两个要素是大小与方向.(√) (2)长度相等的向量是相等向量.(×) (3)方向相同的向量是共线向量.(√)题型一 向量的有关概念【例1】 判断下列命题是否正确,并说明理由. (1)若a ≠b ,则a 一定不与b 共线;(2)若AB →=DC →,则A 、B 、C 、D 四点是平行四边形的四个顶点; (3)在平行四边形ABCD 中,一定有AB →=DC →; (4)若向量a 与任一向量b 平行,则a =0; (5)若a =b ,b =c ,则a =c ;解 两个向量不相等,可能是长度不同,方向可以相同或相反,所以a 与b 有共线的可能,故(1)不正确.(2)AB →=DC →,A 、B 、C 、D 四点可能在同一条直线上,故(2)不正确.(3)在平行四边形ABCD 中,|AB →|=|DC →|,AB →与DC →平行且方向相同,故AB →=DC →,(3)正确.(4)零向量的方向是任意的,与任一向量平行,(4)正确.(5)a =b ,则|a |=|b |且a 与b 方向相同;b =c ,则|b |=|c |且b 与c 方向相同,则a 与c 方向相同且模相等,故a =c ,(5)正确. 规律方法 对于命题判断正误题,应熟记有关概念,看清、理解各命题,逐一进行判断,有时对错误命题的判断只需举一反例即可.【训练1】 下列说法正确的有________(填序号). ①若|a |=|b |,则a =b 或a =-b ;②向量AB →与CD →是共线向量,则A 、B 、C 、D 四点必在同一条直线上; ③向量AB →与BA →是平行向量; ④任何两个单位向量都是相等向量.解析 ①错误.由|a |=|b |仅说明a 与b 模相等,但不能说明它们方向的关系.②错误.共线向量即平行向量,只要方向相同或相反,并不要求两个向量AB →、CD →必须在同一直线上,因此点A 、B 、C 、D 不一定在同一条直线上. ③正确.向量AB →和BA →是长度相等,方向相反的两个向量.④错误.单位向量不仅有长度,而且有方向;单位向量的方向不一定相同,而相等向量要求长度相等,方向相同.答案 ③题型二 向量的表示【例2】 一艘军舰从基地A 出发向东航行了200海里到达基地B ,然后改变航线向东偏北60°航行了400海里到达C 岛,最后又改变航线向西航行了200海里到达D 岛. (1)试作出向量AB →,BC →,CD →; (2)求|AD →|.解 (1)建立如图所示的直角坐标系,向量AB →,BC →,CD →即为所求. (2)根据题意,向量AB →与CD →方向相反,故向量AB →∥CD →.又|AB →|=|CD →|,∴在四边形ABCD 中,AB 綊CD ,四边形ABCD 为平行四边形, ∴AD →=BC →,∴|AD →|=|BC →|=400(海里).规律方法 1.准确画出向量的方法是先确定向量的起点,再确定向量的方向,然后根据向量的大小确定向量的终点.用有向线段来表示向量是向量的几何表示,必须确定起点、长度和终点,三者缺一不可.2.起点相同,长度也相同的向量的终点组成以该起点为圆心、向量长度为半径的圆. 【训练2】 一辆消防车从A 地去B 地执行任务,先从A 地向北偏东30°方向行驶2千米到D 地,然后从D 地沿北偏东60°方向行驶6千米到达C 地,从C 地又向南偏西30°方向行驶了2千米才到达B 地.(1)在如图所示的坐标系中画出AD →,DC →,CB →,AB →; (2)求B 地相对于A 地的位置向量.解 (1)向量AD →,DC →,CB →,AB →如图所示.(2)由题意知AD →=BC →, ∴AD 綊BC ,∴四边形ABCD 为平行四边形, ∴AB →=DC →,∴B 地相对于A 地的位置向量为“北偏东60°,6千米”.【例3】 如图,设O 是正六边形ABCDEF 的中心,分别写出图中所示与OA →,OB →,OC →相等的向量.解 OA →=CB →=DO →;OB →=DC →=EO →; OC →=AB →=ED →=FO →.【迁移1】 例3中与OA →模相等的向量有多少? 解 由图知与OA →的模相等的向量有23个.【迁移2】 例3中与向量OA →的长度相等方向相反的向量有哪些? 解 与向量OA →长度相等方向相反的向量有OD →,BC →,FE →,AO →. 【迁移3】 例3中与向量OA →共线的向量有哪些?解 与向量OA →共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →.规律方法 判断一组向量是否相等,关键是看这组向量是否方向相同,长度相等,与起点和终点的位置无关.对于共线向量,则只要判断它们是否同向或反向即可.课堂达标1.下列说法错误的是( )A .若a =0,则|a |=0B .零向量是没有方向的C .零向量与任一向量平行D .零向量的方向是任意的解析 零向量的长度为0,方向是任意的,它与任何向量都平行,所以B 是错误的. 答案 B2.如图所示,梯形ABCD 为等腰梯形,则两腰上的向量AB →与DC →的关系是( )A.AB →=DC → B .|AB →|=|DC →| C.AB →>DC →D.AB →<DC →解析 |AB →|与|DC →|表示等腰梯形两腰的长度,故相等. 答案 B3.把平行于某一条直线的所有向量归结到共同的起点,则终点构成的图形是________;若这些向量是单位向量,则终点构成的图形是________.解析 因为向量平行,且表示它们的有向线段有共同的起点,所以终点在一条直线上;而对于单位向量,其大小都是一个单位,所以它们的终点在起点的两侧,且距起点一个单位,所以终点构成的图形是两个点. 答案 一条直线 两个点4.设O 是正方形ABCD 的中心,则OA →,BO →,AC →,BD →中,模相等的向量是________. 答案 OA →与BO →,AC →与BD →5.如图所示,以1×2方格纸中的格点(各线段的交点)为起点和终点的向量中.(1)写出与AF →、AE →相等的向量; (2)写出与AD →模相等的向量.解 (1)AF →=BE →=CD →,AE →=BD →.(2)DA →,CF →,FC →.课堂小结1.向量的模可以比较大小,但因为向量有方向,所以不能比较大小.2.用有向线段来表示向量,显示了图形的直观性,应该注意的是有向线段是向量的表示,并不是说向量就是有向线段.有向线段的起点、终点是确定的,而向量仅由大小和方向确定,与起点位置无关.3.共线向量也就是平行向量,其要求是几个非零向量的方向相同或相反,当然向量所在的直线可以平行,也可以重合,其中“平行”的含义不同于平面几何中“平行”的含义.基础过关1.下列条件中能得到a =b 的是( ) A .|a |=|b |B .a 与b 的方向相同C .a =0,b 为任意向量D .a =0且b =0答案 D2.下列说法正确的是( )A .若a ∥b ,则a 与b 的方向相同或相反B .若a ∥b ,b ∥c ,则a ∥cC .若两个单位向量平行,则这两个单位向量相等D .若a =b ,b =c ,则a =c 答案 D3.如图,在四边形ABCD 中,若AB →=DC →,则图中相等的向量是( )A.AD →与CB →B.OB →与OD →C.AC →与BD →D.AO →与OC →解析 ∵AB →=DC →,∴四边形ABCD 是平行四边形,∴AC 、BD 互相平分,∴AO →=OC →. 答案 D4.若对任意向量b ,均有a ∥b ,则a 为________. 答案 零向量5.在四边形ABCD 中,AB →=DC →且|AB →|=|AD →|,则四边形的形状为________. 解析 ∵AB →=DC →,∴AB 綊DC ∴四边形ABCD 是平行四边形,∵|AB →|=|AD →|,∴四边形ABCD 是菱形. 答案 菱形6.在平面直角坐标系中,画出下列向量.(1)|a |=2,a 的方向与x 轴正方向的夹角为60°,与y 轴正方向的夹角为30°; (2)|a |=4,a 的方向与x 轴正方向的夹角为30°,与y 轴正方向的夹角为120°; (3)|a |=42,a 的方向与x 轴正方向的夹角为135°,与y 轴正方向的夹角为135°. 解7.如图,四边形ABCD 和四边形ABDE 都是平行四边形.(1)写出与向量ED →相等的向量; (2)写出与向量ED →共线的向量;解 (1)∵四边形ABDE 和四边形ABCD 都是平行四边形, ∴AB 綊ED ,AB 綊DC , ∴AB →=ED →,AB →=DC →,∴ED →=DC →. 故与向量ED →相等的向量是AB →,DC →.(2)由共线向量的条件知,与ED →共线的向量有DE →,AB →,BA →,DC →,CD →,EC →,CE →.能力提升8.若a 为任一非零向量,b 为模为1的向量,下列各式:①|a |>|b |;②a ∥b ; ③|a |>0;④|b |=±1,其中正确的是( ) A .①④ B .③ C .①②③D .②③解析 a 为任一非零向量,故|a |>0. 答案 B9.下列命题中不正确的命题个数为( ) ①若向量a 与b 同向,且|a |>|b |,则a>b ;②若|a |=|b |,则a 与b 的长度相等且方向相同或相反; ③对于任意|a |=|b |,且a 与b 的方向相同,则a =b ; ④向量a 与向量b 平行,则向量a 与b 方向相同或相反. A .1 B .2 C .3D .4解析 ①不正确.因为向量是不同于数量的一种量.它由两个因素来确定,即大小与方向,所以两个向量不能比较大小,故①不正确.②不正确.由|a |=|b |只能判断两向量长度相等,并不能判断方向. ③正确.因为|a |=|b |,且a 与b 同向.由两向量相等的条件可得a =b . ④不正确.因为向量a 与向量b 若有一个是零向量,则其方向不确定. 答案 C10.给出以下5个条件:①a =b ;②|a |=|b |;③a 与b 的方向相反;④|a |=0或|b |=0;⑤a 与b 都是单位向量.其中能使a ∥b 成立的是________(填序号).解析 相等向量一定是共线向量,①能使a ∥b ;方向相同或相反的向量一定是共线向量,③能使a ∥b ;零向量与任一向量平行,④成立. 答案 ①③④11.已知在边长为2的菱形ABCD 中,∠ABC =60°,则|BD →|=________.解析 易知AC ⊥BD ,且∠ABD =30°,设AC 与BD 交于点O ,则AO =12AB =1.在Rt △ABO 中,易得|BO →|=3,∴|BD →|=2|BO →|=2 3. 答案 2 312.如图,在四边形ABCD 中,AB →=DC →,N 、M 分别是AD 、BC 上的点,且CN →=MA →.求证:DN →=MB →.证明 ∵AB →=DC →,∴|AB →|=|CD →|且AB ∥CD , ∴四边形ABCD 是平行四边形, ∴|DA →|=|CB →|,且DA ∥CB . 又∵DA →与CB →的方向相同,∴CB →=DA →.∵CN →=MA →,四边形CNAM 是平行四边形, ∴CM →=NA →.∵|CB →|=|DA →|,|CM →|=|NA →|, ∴|DN →|=|MB →|.∵DN ∥MB 且DN →与MB →的方向相同, ∴DN →=MB →.13.(选做题)如图,A ,B ,C 三点的坐标依次是(-1,0),(0,1),(x ,y ),其中x ,y ∈R .当x ,y 满足什么条件时,向量OC →与AB →共线(其中O 为坐标原点)?解 由点A 、B 的坐标分别是(-1,0),(0,1)得∠BAO =45°.①当点C 的坐标满足x =y =0时,点C 与点O 重合,则有|OC |=0,即|OC →|=0,所以OC →=0,这时OC →与AB →共线(零向量与任一向量都共线);②当点C 的坐标满足xy ≠0,且x =y ,即点C 在第一、三象限角平分线上时,有AB ∥OC ,这时OC →与AB →共线.综上可知,当x =y 时,OC →与AB →共线.。
北师版数学高一-必修4学案 -1.2 位移、速度和力 向量的概念
§1 从位移、速度、力到向量1.1 位移、速度和力 1.2 向量的概念[学习目标] 1.能结合物理中的力、位移、速度等具体背景认识向量,掌握向量与数量的区别.2.会用有向线段作向量的几何表示,了解有向线段与向量的联系与区别,会用字母表示向量.3.理解零向量、单位向量、平行向量、共线向量、相等向量及向量的模等概念,会辨识图形中这些相关的概念.[知识链接]1.力和位移都是既有大小,又有方向的量,在物理学常称为矢量,在数学中叫作向量;而把那些只有大小,没有方向的量称为数量,在物理学常称为标量. 2.已知下列各量:①力;②功;③速度;④质量;⑤温度;⑥位移;⑦加速度;⑧重力;⑨路程;⑩密度. 其中是数量的有②④⑤⑨⑩,是向量的有①③⑥⑦⑧. 3.向量与数量有什么联系和区别?答 联系是向量与数量都是有大小的量;区别是向量有方向且不能比较大小,数量无方向且能比较大小. [预习导引]1.向量:既有大小,又有方向的量叫作向量.2.向量的几何表示:以A 为起点、B 为终点的有向线段记作AB →. 3.向量的有关概念:(1)零向量:长度为0的向量,叫作零向量,记作0或0→. (2)单位向量:长度为单位1的向量叫作单位向量. (3)相等向量:长度相等且方向相同的向量叫作相等向量.(4)平行向量(共线向量):如果表示两个向量的有向线段所在的直线平行或重合,则称这两个向量平行或共线.①记法:向量a 平行于b ,记作a ∥b . ②规定:零向量与任一向量平行.要点一 向量的概念 例1 给出下列各命题: (1)零向量没有方向; (2)若|a |=|b |,则a =b ; (3)单位向量都相等; (4)向量就是有向线段;(5)两相等向量若其起点相同,则终点也相同; (6)若a =b ,b =c ,则a =c ; (7)若a ∥b ,b ∥c ,则a ∥c ;(8)若四边形ABCD 是平行四边形,则AB →=CD →,BC →=DA →. 其中正确命题的序号是________. 答案 (5)(6)解析 (1)该命题不正确,零向量不是没有方向,只是方向不确定; (2)该命题不正确,|a |=|b |只是说明这两向量的模相等,但其方向未必相同; (3)该命题不正确,单位向量只是模为单位长度1,而对方向没要求;(4)该命题不正确,有向线段只是向量的一种表示形式,但不能把两者等同起来;(5)该命题正确,因两相等向量的模相等,方向相同,故当它们的起点相同时,其终点必重合; (6)该命题正确.由向量相等的定义知,a 与b 的模相等,b 与c 的模相等,从而a 与c 的模相等;又a 与b 的方向相同,b 与c 的方向相同,从而a 与c 的方向也必相同,故a =c ; (7)该命题不正确.因若b =0,则对两不共线的向量a 与c ,也有a ∥0,0∥c ,但a ≠c ; (8)该命题不正确.如图所示,显然有AB →≠CD →,BC →≠DA →.规律方法 要充分理解与向量有关的概念,明白它们各自所表示的含义,搞清楚它们之间的区别是解决与向量概念有关问题的关键. 跟踪演练1 下列命题中,正确的是( ) A .a ,b 是两个单位向量,则a 与b 相等 B .若向量a 与b 不共线,则a 与b 都是非零向量 C .两个相等的向量,起点、方向、长度必须都相同 D .共线的单位向量必是相等向量 答案 B解析 若a 与b 中有一个是零向量,则a 与b 是平行向量,即向量a 与b 共线,与前提矛盾,所以a 与b 都是非零向量. 要点二 向量的表示例2 在如图所示的坐标纸上(每个小方格边长为1),用直尺和圆规画出下列向量:(1)OA →,使|OA →|=42,点A 在点O 北偏东45°; (2)AB →,使|AB →|=4,点B 在点A 正东; (3)BC →,使|BC →|=6,点C 在点B 北偏东30°.解 (1)由于点A 在点O 北偏东45°处,所以在坐标纸上点A 距点O 的横向小方格数与纵向小方格数相等.又|OA →|=42,小方格边长为1,所以点A 距点O 的横向小方格数与纵向小方格数都为4,于是点A 位置可以确定,画出向量OA →如图所示.(2)由于点B 在点A 正东方向处,且|AB →|=4,所以在坐标纸上点B 距点A 的横向小方格数为4,纵向小方格数为0,于是点B 位置可以确定,画出向量AB →如图所示.(3)由于点C 在点B 北偏东30°处,且|BC →|=6,依据勾股定理可得:在坐标纸上点C 距点B 的横向小方格数为3,纵向小方格数为33≈5.2,于是点C 位置可以确定,画出向量BC →如图所示.规律方法 在画图时,向量是用有向线段来表示的,用有向线段的长度表示向量的大小,用箭头所指的方向表示向量的方向.应该注意的是有向线段是向量的表示,并不是说向量就是有向线段.跟踪演练2 中国象棋中规定:马走“日”字.下图是中国象棋的半个棋盘,若马在A 处,可跳到A 1处,也可跳到A 2处,用向量AA 1→或AA 2→表示马走了“一步”.试在图中画出马在B ,C 处走了“一步”的所有情况.解 根据规则,画出符合要求的所有向量. 马在B 处走了“一步”的情况如图(1)所示; 马在C 处走了“一步”的情况如图(2)所示.要点三 相等向量与共线向量例3 如图所示,O 为正方形ABCD 对角线的交点,四边形OAED 、OCFB 都是正方形.(1)写出与AO →相等的向量; (2)写出与AO →共线的向量; (3)向量AO →与CO →是否相等?→相等的向量为:OC→、BF→、ED→.解(1)与AO→共线的向量为:OA→、OC→、CO→、AC→、CA→、ED→、DE→、BF→、FB→.(2)与AO→与CO→不相等,因为AO→与CO→的方向相反,所以它们不相等.(3)向量AO规律方法判断一组向量是否相等,关键是看这组向量是否方向相同、长度相等,与起点和终点的位置无关.对于共线向量,则只要判断它们是否同向或反向即可.跟踪演练3如图,在正方形ABCD中,M,N分别为AB和CD的中点,在以A,B,C,D,M,N为起点和终点的所有向量中,相等的向量分别有多少对?解不妨设正方形的边长为2,则以A,B,C,D,M,N为起点和终点的向量中:→=DC→,BA→=CD→,AD→=BC→,DA→=CB→,AD→=MN→,DA→=NM→,(1)模为2的相等向量共有8对,AB→=MN→,CB→=NM→.BC→同向的有MB→,DN→,NC→,这四个向量组成相等的向(2)模为1的相等向量有12对,其中与AM量有6对,即AM→=→,AM→=DN→,AM→=NC→,MB→=DN→,MB→=NC→,DN→=NC→,同理与AM→反向的也有6对.MB→=MC→,NA→=CM→,MD→=BN→,DM→=NB→.(3)模为5的相等向量共有4对,AN1.下列说法正确的是()A.零向量没有大小,没有方向B.零向量是唯一没有方向的向量C.零向量的长度为0D.任意两个单位向量方向相同答案C解析零向量的长度为0,方向是任意的,故A,B错误,C正确.任意两个单位向量的长度相等,但方向不一定相同,故D错误.2.如图,在四边形ABCD 中,若AB →=DC →,则图中相等的向量是( )A.AD →与CB →B.OB →与OD →C.AC →与BD →D.AO →与OC →答案 D解析 ∵AB →=DC →,∴四边形ABCD 是平行四边形,∴AC 、BD 互相平分,∴AO →=OC →. 3.如图,在△ABC 中,若DE ∥BC ,则图中是共线向量的有________.答案 ED →与CB →,AD →与BD →,AE →与CE →解析 观察图形,并结合共线向量的定义可得解.4.在四边形ABCD 中,AB →∥CD →且|AB →|≠|CD →|,则四边形ABCD 的形状是________. 答案 梯形解析 ∵AB →∥CD →且|AB →|≠|CD →|,∴AB ∥DC ,且AB ≠DC ,∴四边形ABCD 是梯形.1.向量是既有大小又有方向的量,从其定义看出向量既有代数特征又有几何特征,因此借助于向量,我们可以将某些代数问题转化为几何问题,又将几何问题转化为代数问题,故向量能起数形结合的桥梁作用.2.共线向量与平行向量是一组等价的概念.平行向量是指向量所在直线平行或重合,是一种广义的平行.3.注意两个特殊向量——零向量和单位向量,零向量与任何向量都平行,单位向量有无穷多个,起点相同的所有单位向量的终点在平面内形成一个单位圆.一、基础达标 1.有下列说法:①若向量a 与向量b 不平行,则a 与b 方向一定不相同; ②若向量AB →,CD →满足|AB →|>|CD →|,且AB →与CD →同向,则AB →>CD →; ③若|a |=|b |,则a ,b 的长度相等且方向相同或相反; ④由于零向量方向不确定,故其不能与任何向量平行. 其中,正确说法的个数是( ) A .1 B .2 C .3D .4答案 A解析 对于①,由共线向量的定义知,两向量不平行,方向一定不相同,故①正确; 对于②,因为向量不能比较大小,故②错误;对于③,由|a |=|b |,只能说明a ,b 的长度相等,不能确定它们的方向,故③错误; 对于④,因为零向量与任一向量平行,故④错误. 2.下列说法中错误的是( )A .有向线段可以表示向量但不是向量,且向量也不是有向线段B .若向量a 与b 不共线,则a 与b 都是非零向量C .长度相等但方向相反的两个向量不一定共线D .方向相反的两个非零向量必不相等 答案 C解析 长度相等但方向相反的两个向量一定共线,由向量的概念及向量的模的意义可判断A 、B 、D 选项内容都是正确的. 3.给出下列六个命题:①两个向量相等,则它们的起点相同,终点相同; ②若|a |=|b |,则a =b ;③若AB →=DC →,则四边形ABCD 是正方形; ④平行四边形ABCD 中,一定有AB →=DC →; 其中不正确的命题的个数为( ) A .2 B .3 C .4 D .5答案 B解析 不正确的是①②③.4.设O 是正方形ABCD 的中心,则向量AO →,BO →,OC →,OD →是( ) A .相等的向量B .平行的向量C .有相同起点的向量D .模相等的向量答案 D解析 这四个向量的模相等.5.若a 是任一非零向量,b 是模为1的向量,下列各式:①|a |>|b |;②a ∥b ;③|a |>0;④|b |=±1.其中正确的是( )A .①④B .③C .①②③D .②③ 答案 B解析 a 任一非零向量,故|a |>0.6.如图,等腰梯形ABCD 中,对角线AC 与BD 交于点P ,点E ,F 分别在两腰AD ,BC 上,EF 过点P ,且EF ∥AB ,则( )A.AD →=BC →B.AC →=BD →C.PE →=PF →D.EP →=PF → 答案 D解析 由平面几何知识知,AD →与BC →方向不同,故AD →≠BC →;AC →与BD →方向不同,故AC →≠BD →;PE →与PF →模相等而方向相反,故PE →≠PF →;EP →与PF →模相等且方向相同,故EP →=PF →.7.如图,在四边形ABCD 中,AB →=DC →,N 、M 分别是AD 、BC 上的点,且CN →=MA →.求证:DN →=MB →.证明 ∵AB →=DC →, ∴|AB →|=|CD →|且AB ∥CD , ∴四边形ABCD 是平行四边形, ∴|DA →|=|CB →|,且DA ∥CB . 又∵DA →与CB →的方向相同,∴CB →=DA →.同理可证,四边形CNAM 是平行四边形, ∴CM →=NA →.∵|CB →|=|DA →|,|CM →|=|NA →|, ∴|DN →|=|MB →|.∵DN ∥MB 且DN →与MB →的方向相同, ∴DN →=MB →. 二、能力提升8.以下命题:①若AB →=DC →,则A 、B 、C 、D 四点是平行四边形的四个顶点;②若m =n ,n =k ,则m =k ;③单位向量都是共线向量.其中,正确命题的个数是( ) A .0 B .1 C .2 D .3 答案 B解析 ①A 、B 、C 、D 四点可能共线;③单位向量的模相等,但方向不确定,所以未必共线. 9.给出下列四个条件:①a =b ;②|a |=|b |;③a 与b 方向相反;④|a |=0或|b |=0.其中能使a ∥b 成立的条件是________. 答案 ①③④解析 因为a =b ⇒a ∥b ,即①能够使a ∥b 成立;由于|a |=|b |并没有确定a 与b 的方向,即②不能够使a ∥b 成立;因为a 与b 方向相反时,a ∥b ,即③能够使a ∥b 成立;因为零向量与任意向量共线,所以|a |=0或|b |=0时,a ∥b 能够成立.故使a ∥b 成立的条件是①③④. 10.一辆汽车从A 点出发向西行驶了100 km 到达B 点,然后又改变方向向北偏西40°走了200 km 到达C 点,最后又改变方向,向东行驶了100 km 到达D 点. (1)作出向量AB →、BC →、CD →; (2)求|AD →|.解 (1)向量AB →、BC →、CD →如图所示:(2)由题意,易知AB →与CD →方向相反,故AB →与CD →共线, 又|AB →|=|CD →|,∴在四边形ABCD 中,AB 綊CD . ∴四边形ABCD 为平行四边形. ∴AD →=BC →,∴|AD |→=|BC →|=200 km.11.如图,已知矩形ABCD 中,设点集M ={A ,B ,C ,D },求集合T ={PQ →|P 、Q ∈M ,且PQ →=0}.解 集合T ={PQ →|P 、Q ∈M ,且PQ →≠0}中的元素为非零向量PQ →,且向量的起点与终点分别为矩形的顶点ABCD .这些向量为AB →,AC →,AD →,BA →,BC →,BD →,CB →,CA →,CD →,DA →,DB →,DC →. 由于AB →=DC →,AD →=BC →,BA →=CD →,DA →=CB →,根据集合元素的互异性,得集合T ={AB →,AC →,AD →,BD →,CD →,CA →,DA →,DB →}. 12.如图所示,已知AA ′→=BB ′→=CC ′→.求证:(1)△ABC ≌△A ′B ′C ′; (2)AB →=A ′B ′→,AC →=A ′C ′→. 证明 (1)∵AA ′→=BB ′→, ∴|AA ′→|=|BB ′→|,且AA ′→∥BB ′→.打印版高中数学 又∵A 不在BB ′→上,∴AA ′∥BB ′.∴四边形AA ′B ′B 是平行四边形.∴|AB →|=|A ′B ′→|.同理|AC →|=|A ′C ′→|,|BC →|=|B ′C ′→|.∴△ABC ≌△A ′B ′C ′.(2)由(1)知,四边形AA ′B ′B 是平行四边形,∴AB →∥A ′B ′→,且|AB →|=|A ′B ′→|.∴AB →=A ′B ′→.同理可证AC →=A ′C ′→.三、探究与创新13.如图,在平行四边形ABCD 中,O 是两对角线AC ,BD 的交点,设点集S ={A ,B ,C ,D ,O },向量集合T ={MN →|M ,N ∈S ,且M ,N 不重合},试求集合T 中元素的个数.解 由题意知,集合T 中的元素实质上是S 中任意两点连成的有向线段,共有20个,即AB →,AC →,AD →,AO →;BA →,BC →,BD →,BO →;CA →,CB →,CD →,CO →;DA →,DB →,DC →,DO →;OA →,OB →,OC →,OD →.由平行四边形的性质可知,共有8对向量相等,即AB →=DC →,AD →=BC →,DA →=CB →,BA →=CD →,AO →=OC →,OA →=CO →,DO →=OB →,OD →=BO →.∵集合中元素具有互异性,∴集合T 中的元素共有12个.。
2018版高中数学北师大版必修四学案:第二章 1 从位移、速度、力到向量 精品
学习目标 1.能结合物理中的力、位移、速度等具体背景认识向量,掌握向量与数量的区别.2.会用有向线段作向量的几何表示,了解有向线段与向量的联系与区别,会用字母表示向量.3.理解零向量、单位向量、平行向量、共线向量、相等向量及向量的模等概念,会辨识图形中这些相关的概念.知识点一向量的概念思考1在日常生活中有很多量,如面积、质量、速度、位移等,这些量有什么区别?思考2两个数量可以比较大小,那么两个向量能比较大小吗?梳理向量与数量(1)向量:既有________,又有________的量统称为向量.(2)数量:只有________,没有________的量称为数量.知识点二向量的表示方法思考1向量既有大小又有方向,那么如何形象、直观地表示出来?思考20的模长是多少?0有方向吗?思考3 单位向量的模长是多少?梳理 (1)向量的表示①具有________和长度的线段叫作有向线段,以A 为起点,以B 为终点的有向线段记作________,线段AB 的长度也叫作有向线段AB →的长度,记作________.②向量可以用____________来表示.有向线段的长度表示____________,即长度(也称模).箭头所指的方向表示____________.③向量也可以用黑体小写字母如a ,b ,c ,…来表示,书写用a →, b →, c →,…来表示. (2)________的向量叫作零向量,记作______________;______________________________的向量,叫作a 方向上的单位向量,记作a 0. 知识点三 相等向量与共线向量思考1 已知A ,B 为平面上不同两点,那么向量AB →和向量BA →相等吗?它们共线吗?思考2 向量平行、共线与平面几何中的直线、线段平行、共线相同吗?思考3 若a ∥b ,b ∥c ,那么一定有a ∥c 吗?梳理 (1)相等向量:____________且____________的向量叫作相等向量.(2)平行向量:如果表示两个向量的有向线段所在的直线______________,则称这两个向量平行或共线.①记法:a 与b 平行或共线,记作________. ②规定:零向量与____________平行.类型一 向量的概念例1 下列说法正确的是( ) A .向量AB →与向量BA →的长度相等B .两个有共同起点,且长度相等的向量,它们的终点相同C .零向量没有方向D .任意两个单位向量都相等反思与感悟 解决向量概念问题一定要紧扣定义,对单位向量与零向量要特别注意方向问题. 跟踪训练1 下列说法正确的有________. ①若|a |=|b |,则a =b 或a =-b ;②向量AB →与CD →是共线向量,则A 、B 、C 、D 四点必在同一条直线上; ③向量AB →与BA →是平行向量. 类型二 共线向量与相等向量例2 如图所示,△ABC 的三边均不相等,E 、F 、D分别是AC 、AB 、BC 的中点. (1)写出与EF →共线的向量; (2)写出与EF →的模大小相等的向量; (3)写出与EF →相等的向量.反思与感悟 (1)非零向量共线是指向量的方向相同或相反. (2)共线的向量不一定相等,但相等的向量一定共线. 跟踪训练2如图所示,O 是正六边形ABCDEF 的中心.(1)与OA →的模相等的向量有多少个?(2)是否存在与OA →长度相等、方向相反的向量?若存在,有几个? (3)与OA →共线的向量有哪些?类型三 向量的表示及应用例3 一辆汽车从A 点出发向西行驶了100 km 到达B 点,然后又改变方向,向西偏北50°的方向走了200 km 到达C 点,最后又改变方向,向东行驶了100 km 到达D 点.(1)作出向量AB →、BC →、CD →; (2)求|AD →|.反思与感悟 准确画出向量的方法是先确定向量的起点,再确定向量的方向,然后根据向量的大小确定向量的终点.跟踪训练3 在如图的方格纸上,已知向量a ,每个小正方形的边长为1.(1)试以B 为终点画一个向量b ,使b =a ;(2)在图中画一个以A 为起点的向量c ,使|c |=5,并说出向量c 的终点的轨迹是什么?1.下列结论正确的个数是( )①温度含零上和零下温度,所以温度是向量; ②向量的模是一个正实数;③向量a 与b 不共线,则a 与b 都是非零向量; ④若|a |>|b |,则a >b . A .0 B .1 C .2D .32.下列说法错误的是( ) A .若a =0,则|a |=0 B .零向量是没有方向的 C .零向量与任一向量平行 D .零向量的方向是任意的3.如图所示,梯形ABCD 为等腰梯形,则两腰上的向量AB →与DC →的关系是( )A.AB →=DC → B .|AB →|=|DC →| C.AB →>DC → D.AB →<DC →4.如图所示,在以1×2方格纸中的格点(各线段的交点)为起点和终点的向量中.(1)写出与AF →、AE →相等的向量; (2)写出与AD →的模相等的向量.1.向量是既有大小又有方向的量,从其定义可以看出向量既有代数特征又有几何特征,因此借助于向量,我们可以将某些代数问题转化为几何问题,又将几何问题转化为代数问题,故向量能起到数形结合的桥梁作用.2.共线向量与平行向量是一组等价的概念.两个共线向量不一定要在一条直线上.当然,同一直线上的向量也是平行向量.3.注意两个特殊向量——零向量和单位向量,零向量与任何向量都平行,单位向量有无穷多个,起点相同的所有单位向量的终点在平面内形成一个单位圆.答案精析问题导学 知识点一思考1 面积、质量只有大小,没有方向;而速度和位移既有大小又有方向. 思考2 数量之间可以比较大小,而两个向量不能比较大小. 梳理 (1)大小 方向 (2)大小 方向 知识点二思考1 可以用一条有向线段表示. 思考2 0的模长为0,方向任意. 思考3 单位向量的模长为1个单位长度.梳理 (1)①方向 AB → |AB →| ②有向线段 向量的大小 向量的方向 (2)长度为0 0或 0→与向量a 同方向,且长度为单位1 知识点三思考1 因为向量AB →和向量BA →方向不同,所以二者不相等.又表示它们的有向线段在同一直线上,所以两向量共线.思考2 不相同,由相等向量定义可知,向量可以任意移动.由于任意一组平行向量都可以移动到同一直线上,所以平行向量也叫作共线向量.因此共线向量所在的直线可以平行,也可以重合.思考3 不一定.因为当b =0时,a ,c 可以是任意向量.梳理 (1)长度相等 方向相同 (2)平行或重合 ①a ∥b ②任一向量 题型探究 例1 A 跟踪训练1 ③例2 解 (1)因为E 、F 分别是AC 、AB 的中点, 所以EF 綊12BC .又因为D 是BC 的中点,所以与EF →共线的向量有FE →,BD →,DB →,DC →,CD →,BC →,CB →. (2)与EF →模相等的向量有FE →,BD →,DB →,DC →,CD →. (3)与EF →相等的向量有DB →,CD →.跟踪训练2 解 (1)与OA →的模相等的线段是六条边和六条半径(如OB ),而每一条线段可以有两个向量,所以这样的向量共有23个.(2)存在.由正六边形的性质可知,BC ∥AO ∥EF ,所以与OA →长度相等、方向相反的向量有AO →,OD →,FE →,BC →,共4个.(3)由(2)知,BC ∥OA ∥EF ,线段OD ,AD 与OA 在同一条直线上,所以与OA →共线的向量有BC →,CB →,EF →,FE →,AO →,OD →,DO →,AD →,DA →,共9个. 例3 解 (1)向量AB →、BC →、CD →如图所示.(2)由题意易知,AB →与CD →方向相反,故AB →与CD →共线. 又∵|AB →|=|CD →|,∴在四边形ABCD 中,AB 綊CD , ∴四边形ABCD 为平行四边形, ∴AD →=BC →,∴|AD →|=|BC →|=200 km.跟踪训练3 解 (1)根据相等向量的定义,所作向量与向量a 平行,且长度相等(作图略). (2)由平面几何知识可知,所有这样的向量c 的终点的轨迹是以A 为圆心,5为半径的圆(作图略). 当堂训练 1.B 2.B 3.B4.解 (1)AF →=BE →=CD →,AE →=BD →. (2)与AD →的模相等的向量有DA →,CF →,FC →.。
高中数学第二章平面向量2.1从位移、速度、力到向量课堂导学案北师大版必修4
2.1 从位移、速度、力到向量课堂导学三点剖析1.向量、相等向量、共线向量的概念【例1】如右图,四边形ABCD与四边形ABEC都是平行四边形.(1)用有向线段表示与向量相等的向量;(2)用有向线段表示与向量AB共线的向量.思路分析:寻找相等向量时要从大小和方向两个方面来考虑,寻找共线向量只考虑方向即可,两向量方向相同或相反就是共线向量.解:(1)与向量相等的向量是、;(2)与向量AB共线的向量是DE、DC、CE.友情提示用有向线段表示向量是数形结合思想的具体运用,利用图形的直观性、向量之间的关系(共线向量、相等向量等)可通过图形的几何特征得到.各个击破类题演练 1如右图,四边形ABCD为正方形△BCE为等腰直角三角形,(1)图中与AB共线的向量有____________;(2)图中与相等的向量有____________;(3)图中与模相等的向量有____________;(4)图中与相等的向量有____________.解:(1)DC、BE、BA、CD、EB、AE、EA(2)DC,BE(3)、、、、、、、、(4)BD变式提升 1如右图,B、C是线段AD的三等分点,分别以图中各点为起点和终点最多可以写出_______个互不相等的非零向量.解析:可设AD的长度为3,那么长度为1的向量有6个,其中==,==;长度为2的向量有4个,其中=,=;长度为3的向量有2个,分别是和,所以最多可以写出6个互不相等的向量.答案:62.共线向量(平行向量)的判断【例2】给出以下五个条件:①a=b;②|a|=|b|;③a与b的方向相反;④|a|=0或|b|=0;⑤a与b都是单位向量,其中能使a与b共线成立的是____________.思路分析:利用向量共线的定义,抓住方向相同或相反的条件,但不要忽视零向量.解析:模相等的向量不一定共线,②不能使a与b共线成立;单位向量不一定是共线向量,⑤不能使a与b共线成立.①③④都是正确的.答案:①③④友情提示注意区分相等向量与共线向量的联系与区别,相等向量一定是共线向量,而共线向量不一定是相等向量.类题演练 2有下列说法:①两个有公共起点且长度相等的向量,其终点可能不同②若非零向量与是共线向量,则A、B、C、D四点共线③若a∥b且b∥c,则a∥c④当且仅当AB=DC时,四边形ABCD是平行四边形.其中正确的个数为( )A.0B.1C.2D.3解析:①正确.②不正确.这是由于向量的共线与表示向量的有向线段共线是两个不同的概念.③不正确.假设向量b为零向量,因为零向量与任何一个向量都平行,符合a∥b且b∥c的条件,但结论a∥c却不能成立.④正确.综上可知应选C.答案:C变式提升 2下列命题中,正确的是()A.|a|=|b|⇒a=bB.|a|>|b|⇒a>bC.a=b⇒a∥bD.|a|=0⇒a=0解析:(排除法)由向量的定义知:向量既有大小,又有方向,由向量具有方向性可排除A、B.零向量、数字0是两个不同的概念,零向量是不等于数字0.∴应排除D.答案:C3.零向量的应用【例3】下列说法正确的有几个()①零向量是没有方向的向量②零向量与任一向量共线③零向量的方向是任意的④零向量只能与零向量共线A.0个B.1个C.2个D.3个思路分析:从零向量的概念来判断是否正确.解析:由零向量的特点可知②③对.答案:C友情提示容易把零向量当成是没有方向的向量,对于零向量我们应从大小与方向两个角度来理解,把它同实数中的零进行类比.类题演练 3下列四个说法:①若|a|=0;则a=0;②若|a|=|b|,则a=b或a=-b;③若a∥b,则|a|=|b|;④若a=0,则-a=0,其中正确命题的个数是()A.1B.2C.3D.4解析:由向量的有关定义知①②③错误,④正确.故选A.答案:A变式提升 3下列条件中能得到a=b的是()A.|a|=|b|B.a,b同向C.a=0,b任意D.a=0,b=0答案:D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习目标 1.能结合物理中的力、位移、速度等具体背景认识向量,掌握向量与数量的区别.2.会用有向线段作向量的几何表示,了解有向线段与向量的联系与区别,会用字母表示向量.3.理解零向量、单位向量、平行向量、共线向量、相等向量及向量的模等概念,会辨识图形中这些相关的概念.
知识点一向量的概念
思考1在日常生活中有很多量,如面积、质量、速度、位移等,这些量有什么区别?
思考2两个数量可以比较大小,那么两个向量能比较大小吗?
梳理向量与数量
(1)向量:既有________,又有________的量统称为向量.
(2)数量:只有________,没有________的量称为数量.
知识点二向量的表示方法
思考1向量既有大小又有方向,那么如何形象、直观地表示出来?
思考20的模长是多少?0有方向吗?
思考3 单位向量的模长是多少?
梳理 (1)向量的表示
①具有________和长度的线段叫作有向线段,以A 为起点,以B 为终点的有向线段记作________,线段AB 的长度也叫作有向线段AB →
的长度,记作________.
②向量可以用____________来表示.有向线段的长度表示____________,即长度(也称模).箭头所指的方向表示____________.
③向量也可以用黑体小写字母如a ,b ,c ,…来表示,书写用a →
, b →
, c →
,…来表示. (2)________的向量叫作零向量,记作______________;______________________________的向量,叫作a 方向上的单位向量,记作a 0. 知识点三 相等向量与共线向量
思考1 已知A ,B 为平面上不同两点,那么向量AB →和向量BA →
相等吗?它们共线吗?
思考2 向量平行、共线与平面几何中的直线、线段平行、共线相同吗?
思考3 若a ∥b ,b ∥c ,那么一定有a ∥c 吗?
梳理 (1)相等向量:____________且____________的向量叫作相等向量.
(2)平行向量:如果表示两个向量的有向线段所在的直线______________,则称这两个向量平行或共线.
①记法:a 与b 平行或共线,记作________. ②规定:零向量与____________平行.
类型一 向量的概念
例1 下列说法正确的是( ) A .向量AB →与向量BA →
的长度相等
B .两个有共同起点,且长度相等的向量,它们的终点相同
C .零向量没有方向
D .任意两个单位向量都相等
反思与感悟 解决向量概念问题一定要紧扣定义,对单位向量与零向量要特别注意方向问题. 跟踪训练1 下列说法正确的有________. ①若|a |=|b |,则a =b 或a =-b ;
②向量AB →与CD →
是共线向量,则A 、B 、C 、D 四点必在同一条直线上; ③向量AB →与BA →
是平行向量. 类型二 共线向量与相等向量
例2 如图所示,△ABC 的三边均不相等,E 、F 、D
分别是AC 、AB 、BC 的中点. (1)写出与EF →
共线的向量; (2)写出与EF →
的模大小相等的向量; (3)写出与EF →
相等的向量.
反思与感悟 (1)非零向量共线是指向量的方向相同或相反. (2)共线的向量不一定相等,但相等的向量一定共线. 跟踪训练2
如图所示,O 是正六边形ABCDEF 的中心.
(1)与OA →
的模相等的向量有多少个?
(2)是否存在与OA →
长度相等、方向相反的向量?若存在,有几个? (3)与OA →
共线的向量有哪些?
类型三 向量的表示及应用
例3 一辆汽车从A 点出发向西行驶了100 km 到达B 点,然后又改变方向,向西偏北50°的方向走了200 km 到达C 点,最后又改变方向,向东行驶了100 km 到达D 点.
(1)作出向量AB →、BC →、CD →
; (2)求|AD →|.
反思与感悟 准确画出向量的方法是先确定向量的起点,再确定向量的方向,然后根据向量的大小确定向量的终点.
跟踪训练3 在如图的方格纸上,已知向量a ,每个小正方形的边长为1.
(1)试以B 为终点画一个向量b ,使b =a ;
(2)在图中画一个以A 为起点的向量c ,使|c |=5,并说出向量c 的终点的轨迹是什么?
1.下列结论正确的个数是( )
①温度含零上和零下温度,所以温度是向量; ②向量的模是一个正实数;
③向量a 与b 不共线,则a 与b 都是非零向量; ④若|a |>|b |,则a >b . A .0 B .1 C .2
D .3
2.下列说法错误的是( ) A .若a =0,则|a |=0 B .零向量是没有方向的 C .零向量与任一向量平行 D .零向量的方向是任意的
3.如图所示,梯形ABCD 为等腰梯形,则两腰上的向量AB →与DC →
的关系是( )
A.AB →=DC → B .|AB →|=|DC →| C.AB →>DC → D.AB →<DC →
4.如图所示,在以1×2方格纸中的格点(各线段的交点)为起点和终点的向量中.
(1)写出与AF →、AE →
相等的向量; (2)写出与AD →
的模相等的向量.
1.向量是既有大小又有方向的量,从其定义可以看出向量既有代数特征又有几何特征,因此借助于向量,我们可以将某些代数问题转化为几何问题,又将几何问题转化为代数问题,故向量能起到数形结合的桥梁作用.
2.共线向量与平行向量是一组等价的概念.两个共线向量不一定要在一条直线上.当然,同一直线上的向量也是平行向量.
3.注意两个特殊向量——零向量和单位向量,零向量与任何向量都平行,单位向量有无穷多个,起点相同的所有单位向量的终点在平面内形成一个单位圆.
答案精析
问题导学 知识点一
思考1 面积、质量只有大小,没有方向;而速度和位移既有大小又有方向. 思考2 数量之间可以比较大小,而两个向量不能比较大小. 梳理 (1)大小 方向 (2)大小 方向 知识点二
思考1 可以用一条有向线段表示. 思考2 0的模长为0,方向任意. 思考3 单位向量的模长为1个单位长度.
梳理 (1)①方向 AB → |AB →
| ②有向线段 向量的大小 向量的方向 (2)长度为0 0或0→
与向量a 同方向,且长度为单位1 知识点三
思考1 因为向量AB →和向量BA →
方向不同,所以二者不相等.又表示它们的有向线段在同一直线上,所以两向量共线.
思考2 不相同,由相等向量定义可知,向量可以任意移动.由于任意一组平行向量都可以移动到同一直线上,所以平行向量也叫作共线向量.因此共线向量所在的直线可以平行,也可以重合.
思考3 不一定.因为当b =0时,a ,c 可以是任意向量.
梳理 (1)长度相等 方向相同 (2)平行或重合 ①a ∥b ②任一向量 题型探究 例1 A 跟踪训练1 ③
例2 解 (1)因为E 、F 分别是AC 、AB 的中点, 所以EF 綊1
2
BC .又因为D 是BC 的中点,
所以与EF →共线的向量有FE →,BD →,DB →,DC →,CD →,BC →,CB →
. (2)与EF →模相等的向量有FE →,BD →,DB →,DC →,CD →. (3)与EF →相等的向量有DB →,CD →.
跟踪训练2 解 (1)与OA →
的模相等的线段是六条边和六条半径(如OB ),而每一条线段可以有两个向量,所以这样的向量共有23个.
(2)存在.由正六边形的性质可知,BC ∥AO ∥EF ,所以与OA →长度相等、方向相反的向量有AO →
,OD →,FE →,BC →
,共4个.
(3)由(2)知,BC ∥OA ∥EF ,线段OD ,AD 与OA 在同一条直线上,所以与OA →共线的向量有BC →
,CB →,EF →,FE →,AO →,OD →,DO →,AD →,DA →
,共9个. 例3 解 (1)向量AB →、BC →、CD →
如图所示.
(2)由题意易知,AB →与CD →方向相反,故AB →与CD →
共线. 又∵|AB →|=|CD →|,
∴在四边形ABCD 中,AB 綊CD , ∴四边形ABCD 为平行四边形, ∴AD →=BC →,∴|AD →|=|BC →
|=200 km.
跟踪训练3 解 (1)根据相等向量的定义,所作向量与向量a 平行,且长度相等(作图略). (2)由平面几何知识可知,所有这样的向量c 的终点的轨迹是以A 为圆心,5为半径的圆(作图略). 当堂训练 1.B 2.B 3.B
4.解 (1)AF →=BE →=CD →,AE →=BD →
. (2)与AD →的模相等的向量有DA →,CF →,FC →.。