2014年几何难题专题训练四边形

合集下载

四边形专项训练题(培优)

四边形专项训练题(培优)

四边形专项训练题(培优)一.选择题(共10小题)1.四边形具有不稳定性,对于四条边长确定的四边形.当内角度数发生变化时,其形状也会随之改变.如图,改变正方形ABCD的内角,正方形ABCD变为菱形ABC′D′.若∠D′AB=30°,则菱形ABC′D′的面积与正方形ABCD的面积之比是()A.1B.C.D.2.如图,在▱ABCD中,一定正确的是()A.AD=CD B.AC=BD C.AB=CD D.CD=BC3.用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,这就是平面图形的镶嵌.工人师傅不能用下列哪种形状、大小完全相同的一种地砖在平整的地面上镶嵌()A.等边三角形B.正方形C.正五边形D.正六边形4.如图,在▱ABCD中,AB=8,点E是AB上一点,AE=3,连接DE,过点C作CF∥DE,交AB的延长线于点F,则BF的长为()A.5B.4C.3D.25.如图1,在菱形ABCD中,∠C=120°,M是AB的中点,N是对角线BD上一动点,设DN长为x,线段MN与AN长度的和为y,图2是y关于x的函数图象,图象右端点F 的坐标为(2,3),则图象最低点E的坐标为()A.(,2)B.(,)C.(,)D.(,2)6.如图,在△ABC中,AB=AC,△DBC和△ABC关于直线BC对称,连接AD,与BC相交于点O,过点C作CE⊥CD,垂足为C,与AD相交于点E,若AD=8,BC=6,则的值为()A.B.C.D.7.大自然中有许多小动物都是“小数学家”,如图1,蜜蜂的蜂巢结构非常精巧、实用而且节省材料,多名学者通过观测研究发现:蜂巢巢房的横截面大都是正六边形.如图2,一个巢房的横截面为正六边形ABCDEF,若对角线AD的长约为8mm,则正六边形ABCDEF 的边长为()A.2mm B.2mm C.2mm D.4mm8.如图,在正五边形ABCDE中,以AB为边向内作正△ABF,则下列结论错误的是()A.AE=AF B.∠EAF=∠CBF C.∠F=∠EAF D.∠C=∠E9.依据所标数据,下列一定为平行四边形的是()A.B.C.D.10.如图,▱ABCD的对角线AC和BD相交于点O,下列说法正确的是()A.若OB=OD,则▱ABCD是菱形B.若AC=BD,则▱ABCD是菱形C.若OA=OD,则▱ABCD是菱形D.若AC⊥BD,则▱ABCD是菱形二.填空题(共10小题)11.四边形具有不稳定性.如图,矩形ABCD按箭头方向变形成平行四边形A'B'C'D',当变形后图形面积是原图形面积的一半时,则∠A'=.12.正十二边形的一个内角的度数为.13.如图,在Rt△ABC中,∠BAC=90°,AB=3,BC=5,点P为BC边上任意一点,连接P A,以P A,PC为邻边作平行四边形P AQC,连接PQ,则PQ长度的最小值为.14.如图,在正六边形ABCDEF中,M,N是对角线BE上的两点.添加下列条件中的一个:①BM=EN;②∠F AN=∠CDM;③AM=DN;④∠AMB=∠DNE.能使四边形AMDN是平行四边形的是(填上所有符合要求的条件的序号).15.如图,菱形ABCD的边长为2,∠ABC=60°,对角线AC与BD交于点O,E为OB 中点,F为AD中点,连接EF,则EF的长为.16.如图,CD是△ABC的角平分线,过点D分别作AC,BC的平行线,交BC于点E,交AC于点F.若∠ACB=60°,CD=4,则四边形CEDF的周长是.17.七边形一共有条对角线.18.小张同学家要装修,准备购买两种边长相同的正多边形瓷砖用于铺满地面.现已选定正三角形瓷砖,则选的另一种正多边形瓷砖的边数可以是.(填一种即可)19.如图,在四边形ABCD中,连接AC,∠ACB=∠CAD.请你添加一个条件,使AB=CD.(填一种情况即可)20.如图,将△ABC沿着BC方向平移得到△DEF,只需添加一个条件即可证明四边形ABED 是菱形,这个条件可以是.(写出一个即可)三.解答题(共8小题)21.同学们在探索“多边形的内角和”时,利用了“三角形的内角和”.请你在不直接运用结论“n边形的内角和为(n﹣2)•180°”计算的条件下,利用“一个三角形的内角和等于180°”,结合图形说明:五边形ABCDE的内角和为540°.22.如图,在▱ABCD中,点E、F分别是边AB、CD的中点.求证:AF=CE.23.小惠自编一题:“如图,在四边形ABCD 中,对角线AC ,BD 交于点O ,AC ⊥BD ,OB =OD .求证:四边形ABCD 是菱形”,并将自己的证明过程与同学小洁交流.小惠:证明:∵AC ⊥BD ,OB =OD ,∴AC 垂直平分BD .∴AB =AD ,CB =CD ,∴四边形ABCD 是菱形.小洁: 这个题目还缺少条件,需要补充一个条件才能证明.若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个条件,并证明.24.如图,已知五边形ABCDE 是正五边形,连接AC 、AD .证明:∠ACD =∠ADC .25.如图,四边形ABCD 为菱形,E 为对角线AC 上的一个动点(不与点A ,C 重合),连接DE 并延长交射线AB 于点F ,连接BE .(1)求证:△DCE ≌△BCE ;(2)求证:∠AFD =∠EBC .26.如图,在四边形ABCD中,AB∥CD,AC平分∠DAB,AB=2CD,E为AB中点,连结CE.(1)求证:四边形AECD为菱形;(2)若∠D=120°,DC=2,求△ABC的面积.27.如图,在四边形ABCD中,AC与BD交于点O,BE⊥AC,DF⊥AC,垂足分别为点E,F,且BE=DF,∠ABD=∠BDC.求证:四边形ABCD是平行四边形.28.如图,在△ABC中,AD⊥BC于点D,E,F分别是AC,AB的中点,O是DF的中点,EO的延长线交线段BD于点G,连结DE,EF,FG.(1)求证:四边形DEFG是平行四边形.(2)当AD=5,tan∠EDC=时,求FG的长.。

(完整版)泰安历届中考压轴几何题

(完整版)泰安历届中考压轴几何题

几何压轴题1.(2014•泰安)如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由2.(2014年山东泰安,11分)如图,在四边形ABCD中,AB=AD,AC与BD交于点E,∠ADB=∠ACB.(1)求证:=;(2)若AB⊥AC,AE:EC=1:2,F是BC中点,求证:四边形ABFD是菱形.3.(2012•泰安)如图,在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分别为D,E,F为BC中点,BE与DF,DC分别交于点G,H,∠ABE=∠CBE.(1)线段BH与AC相等吗?若相等给予证明,若不相等请说明理由;(2)求证:BG2﹣GE2=EA2.44.(2012•泰安)如图,E是矩形ABCD的边BC上一点,EF⊥AE,EF分别交AC,CD于点M,F,BG⊥AC,垂足为C,BG交AE于点H.(1)求证:△ABE∽△ECF;(2)找出与△ABH相似的三角形,并证明;(3)若E是BC中点,BC=2AB,AB=2,求EM的长.5.(2011). (本小题满分10分)已知:在梯形ABCD中,A D∥BC,∠ABC=90°,BC=2AD,E是BC的中点,连接AE、AC。

(1)点F是DC上一点,连接EF,交AC于点O(如图1),求证:△AOE∽△COF;(2)若点F是DC的中点,连接BD,交AE与点G(如图2),求证:四边形EFDG是菱形。

6. (2011)(本小题满分10分)已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点。

(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明。

2014年中考数学二轮精品复习试卷(四边形)含答案解析

2014年中考数学二轮精品复习试卷(四边形)含答案解析

2014年中考数学二轮精品复习试卷:四边形1、如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE交CD 于点O,连结AO,下列结论不正确的是【】A.△AOB≌△BOC B.△BOC≌△EOD C.△AOD≌△EOD D.△AOD≌△BOC2、(2013年四川资阳3分)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是【】A.48 B.60 C.76 D.803、正六边形的边心距与边长之比为A.B.C.1:2 D.4、如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是A.矩形B.菱形C.正方形D.梯形5、如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB 中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为A.78°B.75°C.60°D.45°6、如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG 的长为A.B.C.D.7、如图,梯形ABCD中,AD∥BC,AB=,BC=4,连结BD,∠BAD的平分线交BD于点E,且AE∥CD,则AD的长为【】A.B.C.D.128、如图,菱形ABCD中,,AB=4,则以AC为边长的正方形ACEF的周长为【】A.14 B.15 C.16 D.179、如图,将矩形ABCD沿对角线BD折叠,使点C和点C′重合,若AB=2,则C′D的长为【】A.1 B.2 C.3 D.410、下列命题中是假命题的是【】A.平行四边形的对边相等B.菱形的四条边相等C.矩形的对边平行且相等D.等腰梯形的对边相等11、如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为A.B.C.4 D.812、如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为A.cm2B.cm2 C.cm2D.cm213、下列命题中的真命题是A.三个角相等的四边形是矩形B.对角线互相垂直且相等的四边形是正方形C.顺次连接矩形四边中点得到的四边形是菱形D.正五边形既是轴对称图形又是中心对称图形14、如图,在菱形ABCD中,∠BAD=2∠B,E,F分别为BC,CD的中点,连接AE、AC、AF,则图中与△ABE全等的三角形(△ABE除外)有A.1个B.2个C.3个D.4个15、在梯形ABCD中,AD∥BC,对角线AC和BD交于点O,下列条件中,能判断梯形ABCD是等腰梯形的是【】A.∠BDC =∠BCD B.∠ABC =∠DAB C.∠ADB =∠DAC D.∠AOB =∠BOC16、如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为【】A.6cm B.4cm C.2cm D.1cm17、如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC 交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有【】个.A.2 B.3 C.4 D.518、顺次连接等腰梯形四边中点所得的四边形一定是【】A.矩形B.正方形C.菱形D.直角梯形19、如图,边长分别为4和8的两个正方形ABCD和CEFG并排放在一起,连结BD并延长交EG于点T,交FG于点P,则GT=A.B.C.2 D.120、如图,在平行四边形ABCD中,AB>CD,按以下步骤作图:以A为圆心,小于AD 的长为半径画弧,分别交AB、CD于E、F;再分别以E、F为圆心,大于EF的长半径画弧,两弧交于点G;作射线AG交CD于点H。

(完整版)2014年几何专题训练中点四边形难题突破【原创】

(完整版)2014年几何专题训练中点四边形难题突破【原创】

中点四边形训练几何专题一.选择题(共5小题)1.顺次连接圆内接梯形四边的中点所得的四边形是()A.矩形B.菱形C.正方形D.等腰梯形2.顺次连接凸四边形各边中点所得到的四边形是正方形时,原四边形对角线需满足的条件是()A.对角线相等且垂直C.对角线垂直B.对角线相等D.一条对角线平分另一条对角线3.如图,在四边形ABCD中,E,H,F,G分别是AB,BD,CD,AC 的中点,要使四边形EHFG为菱形,需要添加条件()A.AC=BD B.AD=CD C.AB=BC D.AD=BC4.下列说法正确的是()A.依次连接任意四边形各边中点可以得到一个矩形B.依次连接矩形各边的中点能得到一个矩形C.依次连接正方形各边的中点能得到一个正方形D.依次连接菱形各边的中点能得到一个菱形5.如图,矩形ABCD中,AB=6,AD=8,顺次连结各边中点得到四边形A1B1C1D1,再顺次连结四边形A1B1C1D1各边中点得到四边形A2B2C2D2…,依此类推,则四边形A7B7C7D7的周长为()A.14B.10C.5D.2.5二.解答题(共9小题)6.如图,在四边形ABCD中,AC=BD,且AC⊥BD,E、F、G、H分别是AB、BC、CD、DA的中点.则四边形EFGH是怎样的四边形?证明你的结论.7.如图,在四边形ABCD中,AC=BD,E、F、G、H分别是AB、BC、CD、DA的中点.(1)求证:四边形EFGH是菱形;(2)若AC=8,求EG2+FH2的值.8.如图1,在△ABC中,点D、E分别是边AC、AB的中点,BD与CE交于点O.点F、G分别是线段BO、CO的中点.(1)求证:四边形DEFG是平行四边形;(2)如图2,若AO=BC,求证:四边形DEFG是菱形;(3)若AB=AC,且AO=BC=6,直接写出四边形DEFG的面积.9.如图,E、F、G、H分别是边AB、BC、CD、DA的中点.(1)判断四边形EFGH的形状,并说明你的理由;(2)连接BD和AC,当BD、AC满足何条件时,四边形EFGH是正方形.(不要求证明)10.已知:如图,四边形ABCD中,对角线相交于点O、E、F、G、H分别是AD、BD、BC、AC的中点.(1)请说明四边形EFGH的形状,并证明你的结论;(2)当四边形ABCD满足一个什么条件时,四边形EFGH是菱形?并证明你的结论.11.课题学习:(1)如图1,E、F、G、H分别是正方形ABCD各边的中点,则四边形EFGH是_________ 形,正方形ABCD的面积记为S1,EFGH的面积为S2,则S1和S2间的数量关系:_________ ;(2)如图2,E、F、G、H分别是菱形ABCD各边的中点,则四边形EFGH是_________ 形,菱形ABCD的面积为S1,EFGH的面积为S2,则S1和S2间的数量关系:_________ ;(3)如图3,梯形ABCD中,AD∥BC,对角线AC⊥BD,垂足为O,E、F、G、H分别为各边的中点.四边形EFGH是_________ 形;若梯形ABCD的面积记为S1,四边形EFGH的面积记为S2,由图可猜想S1和S2间的数量关系为:_________ ;(4)如图4,E、G分别是平行四边形ABCD的边AB、DC的中点,H、F分别是边形AD、BC 上的点,且四边形EFGH为平行四边形,若把平行四边形ABCD的面积记为S1,把平行四边形形EFGH的面积记为S2,试猜想S1和S2间的数量关系,并加以证明.12.如图,在四边形ABCD中,AB=CD,M、N、P、Q分别为AD、BC、BD、AC的中点.试判断线段MN、PQ的关系,并加以证明.13.如图,梯形ABCD中,AD∥BC,M、N、P、Q分别为AD、BC、BD、AC的中点.求证:MN 和PQ互相平分.14.证明:中点四边形的面积为原四边形面积的一半(不用相似三角形).。

2014年中考数学真题专题训练之四边形和多边形

2014年中考数学真题专题训练之四边形和多边形

四边形和多边形专题训练1(2014青海西宁)如图,A B是⊙O的直径,点C,D是半圆O的三等分点,过点C作⊙O的切线交A D的延长线于点E,过点D作D F⊥A B于点F,交⊙O于点H,连接D C,A C.(1)求证:∠A E C=90°;(2)试判断以点A,O,C,D为顶点的四边形的形状,并说明理由;(3)若D C=2,求D H的长.2(2014青海西宁)如图,点G是正方形AB C D 对角线C A的延长线上任意一点,以线段A G为边作一个正方形A E F G,线段E B和G D相交于点H.若,A G=1,则E B=________.3(2014宁夏)在平行四边形A B C D中,将△A B C 沿A C对折,使点B落在B′处,A B′和C D相交于点O.求证:O A =O C.4(2014宁夏)如下图,在四边形A B C D中,A D∥B C,A B=C D=2,B C=5,∠B A D的平分线交B C于点E,且AE∥C D,则四边形A B C D的面积为________.5(2014辽宁盘锦)已知,四边形A B C D是正方形,点P在直线B C上,点G在直线A D上(P、G不与正方形顶点重合,且在C D的同侧),P D=P G,DF⊥P G于点H,交直线A B于点F,将线段P G绕点P逆时针旋转90°得到线段P E,连结E F.(1)如图1,当点P与点G分别在线段BC与线段A D上时.①求证:D G=2P C;②求证:四边形P E FD是菱形;(2)如图2,当点P与点G分别在线段BC与线段A D的延长线上时,请猜想四边形P E F D是怎样的特殊四边形,并证明你的猜想.6(2014广西崇左)下列说法正确的是()A.对角线相等的平行四边形是菱形B.有一组邻边相等的平行四边形是菱形C.对角线相互垂直的四边形是菱形D.有一个角是直角的平行四边形是菱形7(2014辽宁大连)如图,菱形A B C D中,A C、B D相交于点O,若∠BC O=55°,则∠AD O=________.8(2014辽宁营口)四边形A B C D是正方形,A C与B D相交于点O,点E、F是直线A D上两动点,且A E=D F,C F所在直线与对角线BD所在直线交于点G,连接A G,直线A G交B E于点H.(1)如图①,当点E、F在线段A D上时,①求证:∠D A C=∠D C G;②猜想A G与B E的位置关系,并加以证明;(2)如图②,在(1)条件下,连接H O,试说明H O平分∠B H G;(3)当点E、F运动到如图③所示的位置时,其它条件不变,请将图形补充完整,并直接写出∠B H O的度数.9(2014辽宁营口)如图,在矩形A B C D中,A B=2,A C =3,点E是B C边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△A P B的面积y与点P经过的路径长x之间的函数关系用图像表示大致是()A.B.C.D.10(2014辽宁锦州)菱形A B C D的边长为2,∠A B C =60°,E是A D边中点,点P是对角线B D上的动点,当A P+P E的值最小时,P C的长是__________.11(2014江苏宿迁)如图,在△A B C中,点D,E,F分别是A B,B C,C A的中点,A H是边BC上的高.(1)求证:四边形A D E F是平行四边形;(2)求证:∠D H F=∠D E F.12(2014江苏宿迁)如图,在平面直角坐标系x O y中,若菱形A B CD的顶点A,B的坐标分别为(-3,0),(2,0),点D在y轴上,则点C的坐标是________.13(2014福建莆田)如图,在边长为4的正方形A B C D中,动点E以每秒1个单位长度的速度从点A开始沿边AB向点B运动,动点F以每秒2个单位长度的速度从点B开始沿折线B C-C D向点D运动,动点E比动点F先出发1秒,其中一个动点到达终点时,另一个动点也随之停止运动.设点F的运动时间为t秒.(1)点F在边B C上.①如图1,连接D E,A F,若D E⊥A F,求t的值;②如图2,连结E F,D F,当t为何值时,△E B F与△D C F相似?(2)如图3,若点G是边A D的中点,B G,E F相交于点O,试探究:是否存在某一时刻t,使得?若存在,求出t的值;若不存在,请说明理由.14(2014江苏淮安)如图1,矩形O A B C 顶点B的坐标为(8,3),定点D的坐标为(12,0),动点P从点O出发,以每秒2个单位长度的速度沿x轴的正方向匀速运动,动点Q 从点D出发,以每秒1个单位长度的速度沿x轴的负方向匀速运动,P Q两点同时运动,相遇时停止.在运动过程中,以P Q为斜边在x 轴上方作等腰直角三角形P Q R.设运动时间为t秒.(1)当t=________时,△P Q R的边Q R经过点B;(2)设△P Q R和矩形O A B C重叠部分的面积为S,求S关于t的函数关系式;(3)如图2,过定点E(5,0)作E F⊥B C,垂足为F,当△P Q R的顶点R落在矩形O A B C的内部时,过点R作x轴、y轴的平行线,分别交E F、B C于点M、N,若∠M A N=45°,求t的值.15(2014江苏淮安)如图,在三角形纸片A B C中,A D平分∠B A C,将△A B C折叠,使点A与点D重合,展开后折痕分别交A B、A C于点E、F,连接D E、D F.求证:四边形A E D F是菱形.16(2014江苏淮安)如图,顺次连接边长为1的正方形A B C D四边的中点,得到四边形A1B1C1D1,然后顺次连接四边形A1B1C1D1的中点,得到四边形A2B2C2D2,再顺次连接四边形A2B2C2D2四边的中点,得到四边形A3B3C3D3,…,按此方法得到的四边形A8B8C8D8的周长为________.17(2014贵州六盘水)六盘水市“琼都大剧院”即将完工,现需选用同一种地砖进行装修,以下不能镶嵌的地砖是()A.正五边形地砖B.正三角形地砖C.正六边形地砖D.正四边形地砖18(2014贵州贵阳)如图,在R t△A B C中,∠A C B=90°,D、E分别为A B,A C边上的中点,连接D E,将△AD E绕点E 旋转180°得到△C F E,连接A F,C D.(1)求证:四边形A DC F是菱形;(2)若B C=8,A C=6,求四边形A B C F的周长.19(2014黑龙江绥化)如图,在矩形A B C D中,,∠B A D的平分线交B C于点E,D H⊥A E于点H,连接B H并延长交C D于点F,连接D E交B F于点O,下列结论:①∠A E D=∠C E D;②O E=O D;③B H=H F;④B C-C F=2H E;⑤A B=H F,其中正确的有()A.2个B.3个C.4个D.5个20(2014甘肃天水)如图,在正方形A B C D中,点E、F分别在边A B、B C上,∠A D E=∠C D F.(1)求证:A E=C F;(2)连结D B交E F于点O,延长O B至点G,使O G=O D,连结EG、F G,判断四边形D E G F是否是菱形,并说明理由.21(2014福建龙岩)如图,我们把依次连接任意四边形A B C D各边中点所得四边形E F G H叫中点四边形.(1)若四边形A B C D是菱形,则它的中点四边形E F G H一定是________;(A)菱形(B)矩形(C)正方形(D)梯形(2)若四边形A B C D的面积记为S1,中点四边形E F G H的面积记为S2,则S1与S2的数量关系是S1=________S2;(3)在四边形A B C D中,沿中点四边形E F G H的其中三边剪开,可得三个小三角形,将这三个小三角形与原图中未剪开的小三角形拼接成一个平行四边形,请在答题卡的图形上画出一种拼接示意图,并写出对应全等的三角形.22(2014四川乐山)如图,在平行四边形AB C D 中,对角线A C、B D交于点O.M为A D中点,连结C M交B D于点N,且O N=1.(1)求B D的长;(2)若△D C N的面积为2,求四边形A B C M 的面积.23(2014四川乐山)如图,在梯形A B C D中,A D∥B C,∠A D C=90°,∠B=30°,C E⊥A B,垂足为点E.若A D=1,,求C E的长.24(2014四川乐山)如图,在△A B C中,A B=A C,四边形A D E F是菱形,求证:B E=C E.25(2014湖南永州)在同一平面内,△A B C和△A B D如图①放置,其中A B=B D.小明做了如下操作:将△A B C绕着边A C的中点旋转180°得到△C E A,将△A BD绕着边A D的中点旋转180°得到△D F A,如图②,请完成下列问题:(1)试猜想四边形A BD F是什么特殊四边形,并说明理由;(2)连接E F,C D,如图③,求证:四边形CD F E是平行四边形.26(2014湖北黄石)如图,A,B是⊙O上的两点,∠A O B=120°,C是的中点.(1)求证:A B平分∠O A C;(2)延长O A至P使得O A=A P,连接P C,若⊙O的半径R=1,求P C的长.27(2014湖北黄石)如下图,在等腰梯形A BC D 中,A B∥C D,∠D=45°,A B=1,C D=3,B E∥A D交C D于E,则△B C E 的周长l为________.28(2014湖北黄石)以下命题是真命题的是()A.梯形是轴对称图形B.对角线相等的平行四边形是矩形C.四边相等的四边形是正方形D.有两条相互垂直的对称轴的四边形是菱形29(2014湖北黄石)如图,一个矩形纸片,剪去部分后得到一个三角形,则图中∠1+∠2的度数是()A.30°B.60°C.90°D.120°30(2014江苏盐城)如图,在矩形A B C D中,,A D=1,把该矩形绕点A顺时针旋转α度得矩形A B′C′D′,点C′落在A B的延长线上,则图中阴影部分的面积是________.31(2014四川资阳)如图,在边长为4的正方形A B C D中,E是A B边上的一点,且A E=3,点Q为对角线A C上的动点,则△B E Q周长的最小值为________.32(2014四川资阳)下列命题中,真命题是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的平行四边形是矩形C.对角线垂直的梯形是等腰梯形D.对角线相等的菱形是正方形33(2014四川攀枝花)如图,正方形A B C D的边C D与正方形C G F E的边C E重合,O是E G的中点,∠E G C的平分线G H过点D,交B E 于H,连接O H、F H、E G与F H交于M,对于下面四个结论:①G H⊥B E;②;③点H不在正方形C G F E的外接圆上;④△G B E∽△G M F.其中正确的结论有()A.1个B.2个C.3个D.4个34(2014湖北宜昌)平行四边形的内角和为()A.180°B.270°C.360°D.640°35(2014山东聊城)如图,四边形A B C D是平行四边形,作A F∥C E,B E∥D F,A F交B E与G点、交D F与F点,C E 交D F于H点、交B E于E点.求证:△E B C≌△F D A.36(2014浙江绍兴)(1)如图1,正方形A B C D中,点E,F分别在边B C,C D上,∠E A F=45°,延长C D到点G,使D G=B E,连结E F,A G.求证:E F=F G.(2)如图2,等腰直角三角形A B C中,∠B A C=90°,A B=A C,点M,N在边B C上,且∠MA N=45°,若B M=1,C N=3,求M N的长.37(2014广西贺州)如图,四边形A B C D是平行四边形,E、F是对角线B D上的点,∠1=∠2.(1)求证:B E=D F;(2)求证:A F∥C E.38(2014山东济南)如图,将边长为12的正方形A B C D是沿其对角线A C剪开,再把△AB C沿着A D方向平移,得到△A′B′C′,当两个三角形重叠的面积为32时,它移动的距离A A′等于________.39(2014山东济南)如图,在□A B C D中,延长A B到E,使B E=A B,连接D E交B C于点F,则下列结论不一定成立的是()A.∠E=∠CDF B.EF=DF C.AD=2BF D.BE=2CF40(2014山东济南)下列命题中,真命题是()A.两对角线相等的四边形是矩形B.两对角线互相平分的四边形是平行四边形C.两对角线互相垂直的四边形是菱形D.两对角线相等的四边形是等腰梯形41(2014吉林)如图,菱形A B C D中,对角线A C,B D相交于点O,且A C=6c m,B D=8c m,动点P,Q分别从点B,D同时出发,运动速度均为1c m/s,点P沿B→C→D运动,到点D停止,点Q沿D→O→B运动,到点O停止1s后继续运动,到点B停止,连接A P,A Q,P Q.设△A P Q的面积为y(c m2)(这里规定:线段是面积为0的几何图形),点P的运动时间为x(s).(1)填空:A B=________c m,A B与C D之间的距离为________c m;(2)当4≤x≤10时,求y与x之间的函数解析式;(3)直接写出在整个运动过程中,使P Q与菱形A B C D一边平行的所有x的值.42(2014吉林)如图,四边形A B C D、A E F G都是正方形,点E、G分别在A B,A D上,连接F C,过点E作E H∥F C交B C于点H.若A B=4,A E=1,则B H的长为()A.1B.2C.3D.43(2014福建泉州)如图,在锐角三角形纸片A B C中,A C>B C,点D、E、F分别在边A B、B C、C A上.(1)已知:D E∥A C,D F∥B C.①判断四边形D E C F一定是什么形状;②裁剪当A C=24c m,B C=20c m,∠A C B=45°时,请你探索:如何剪四边形D E C F,能使它的面积最大,并证明你的结论;(2)折叠请你只用两次折叠,确定四边形的顶点D、E、C、F,使它恰好为菱形,并说明你的折法和理由.44(2014福建泉州)已知:如图,在矩形AB C D中,点E、F分别在A B、C D边上,B E=DF,连接C E、A F.求证:A F =C E.45(2014江西)图1中的中国结挂件是由四个相同的菱形在顶点处依次串接而成,每相邻两个菱形均成30°的夹角,示意图如图2所示.在图2中,每个菱形的边长为10c m,锐角为60°.(1)连接C D、E B,猜想它们的位置关系并加以证明;(2)求A、B两点之间的距离(结果取整数,可以使用计算器).(参考数据:,,)46(2014广西玉林)如图,在正方形A B C D中,点M是B C边上的任一点,连接A M并将线段A M绕M顺时针旋转90°得到线段M N,在C D边上取点P使C P=BM,连接N P,B P.(1)求证:四边形B M N P是平行四边形;(2)线段M N与C D交于点Q,连接A Q,若△M C Q∽△A M Q,则B M与M C存在怎样的数量关系?请说明理由.47(2014广西玉林)如图,在直角梯形A B C D中,A D∥B C,∠C=90°,∠A=120°,A D=2,B D平分∠A B C,则梯形A B C D的周长是________.48(2014广西玉林)下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形49(2014山东枣庄)如图,菱形A B C D的边长为4,过点A、C作对角线AC的垂线,分别交C B和A D的延长线于点E、F,A E=3,则四边形A EC F的周长为()A.22B.18C.14D.1150(2014山东威海)猜想与证明:如图1摆放矩形纸片A B C D与矩形纸片E C G F,使B、C、G三点在一条直线上,C E在边C D上,连接A F,若M为A F的中点,连接D M,ME,试猜想D M与M E的关系,并证明你的结论.拓展与延伸:(1)若将“猜想与证明”中的纸片换成正方形纸片A B C D与正方形纸片E C G F,其他条件不变,则D M和M E的关系为________.(2)如图2摆放正方形纸片A B C D与正方形纸片E C G F,使点F在边C D上,点M仍为A F的中点,试证明(1)中的结论仍然成立.51(2014广东珠海)如图,在正方形A B C D中,点E在边A D上,点F在边B C的延长线上,连结E F与边C D相交于点G,连结B E与对角线A C相交于点H,A E=C F,B E=E G.(1)求证:E F∥A C;(2)求∠B EF的大小;(3)求证:.52(2014北京)在正方形A B C D外侧作直线A P,点B关于直线A P的对称点为E,连接B E,D E,其中D E交直线A P于点F.(1)依题意补全图1;(2)若∠P A B=20°,求∠A D F的度数;(3)如图2,若45°<∠P A B<90°,用等式表示线段A B,FE,F D之间的数量关系,并证明.53(2014北京)如图,在□A B C D中,A E平分∠B A D,交B C于点E,B F平分∠A B C,交A D于点F,A E与B F交于点P,连接E F,P D.(1)求证:四边形A B E F是菱形;(2)若A B=4,A D =6,∠A B C=60°,求t a n∠A D P的值.54(2014广东广州)如图,梯形A B C D中,A B∥C D,∠A B C=90°,A B=3,B C=4,C D=5,点E为线段C D上一动点(不与点C重合),△B CE关于B E的轴对称图形为△B F E,连接C F,设C E=x,△B C F的面积为S1,△C E F的面积为S2.(1)当点F落在梯形A B C D的中位线上时,求x的值;(2)试用x表示,并写出x的取值范围;(3)当△B F E的外接圆与A D相切时,求的值.55(2014广东广州)如图,四边形A B C D、CE F G 都是正方形,点G在线段C D上,连接B G、D E,D E和F G相交于点O.设A B=a,C G=b(a>b).下列结论:①△BC G≌△D C E;②B G⊥D E;③;④(a-b)2·S△E F O=b2·S△D G O.其中结论正确的个数是()A.4个B.3个C.2个D.1个56(2014广东广州)将四根长度相等的细木条首尾相接,用钉子钉成四边形A B C D,转动这个四边形,使它形状改变.当∠B=90°时,如图①,测得A C=2.当∠B=60°时,如图②,A C =()A.B.2C.D.57(2014广东)如图,在□A B C D中,下列说法一定正确的是()A.AC=BD B.AC⊥BD C.AB=CD D.AB=BC58(2014山东滨州)如图,如果将△A B C的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段A C的关系是()A.垂直B.相等C.平分D.平分且垂直59(2014安徽)如图,在□A B C D中,A D=2A B,F是A D的中点,作C E⊥A B,垂足E在线段A B上,连接E F、C F,则下列结论中一定成立的是________.(把所有正确结论的序号都填在横线上)(1),(2)E F=C F;(3)S△B E C=2S△C E F;(4)∠D F E=3∠A E F.60(2014安徽)如图,正方形A B C D的对角线B D长为,若直线l满足:(1)点D到直线l的距离为,(2)A、C两点到直线l的距离相等,则符合题意的直线l的条数为()A.1B.2C.3D.461(2014江苏苏州)如图,在矩形A B C D中,.以点B为圆心,BC长为半径画弧,交边A D于点E,若,则矩形A B C D的面积为________.62(2014江苏苏州)已知正方形A B C D的对角线,则正方形A B C D 的周长为________.63(2014江苏南京)如图,在△A B C中,D,E分别是A B,A C的中点,过点E做E F∥A B,交B C于点F.(1)求证:四边形D B F E是平行四边形;(2)当△A B C满足什么条件时,四边形D B F E是菱形,为什么?64(2014江苏南京)如图,A D是正五边形AB C D E 的一条对角线,则∠B A D=________°.65(2014江苏连云港)如图,矩形A B C D的对角线A C、B D相交于点O,D E∥A C,C E∥B D.(1)求证:四边形O C E D为菱形;(2)连接A E、B E.A E与B E相等吗?请说明理由.66(2014云南)如图,在平行四边形A B C D中,∠C=60°,M、N分别是A D、B C的中点,B C=2C D.(1)求证:四边形M N C D是平行四边形;(2)求证:.67(2014浙江湖州)在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.68(2014四川成都)如图,矩形A B C D中,A D=2A B,E是A D边上一点,(n为大于2的整数),连接B E,作B E的垂直平分线分别交A D,B C于点F,G,F G与B E的交点为O,连接B F和E G.(1)试判断四边形B FE G的形状,并说明理由;(2)当A B=a(a为常数),n=3时,求FG的长;(3)记四边形B F E G的面积为S1,矩形A B C D的面积为S2,当时,求n的值.(直接写出结果,不必写出解答过程)69(2014四川巴中)如图,在四边形A B C D中,点H是B C的中点,作射线A H,在线段AH及其延长线上分别取点E,F,连结B E,C F.(1)请你添加一个条件,使得△B E H≌△C F H,你添加的条件是________,并证明.(2)在问题(1)中,当B H与E H满足什么关系时,四边形B F C E是矩形,请说明理由.70(2014四川巴中)在四边形A B C D中,(1)A B∥C D,(2)A D∥B C,(3)A B =C D,(4)A D=B C,在这四个条件中任选两个作为已知条件,能判定四边形A B C D是平行四边形的概率是________.71(2014重庆B)如图,在边长为的正方形A B C D中,E是A B边上一点,G是A D延长线上一点,B E=D G,连接E G,C F⊥E G交E G于点H,交A D于点F,连接C E、B H.若B H=8,则F G=________.72(2014重庆B)如图,菱形A B C D的对角线A C、B D相交于点O,A C=8,B D=6,以A B为直径作一个半圆,则图中阴影部分的面积为()A.25π-6B.C.D.73(2014浙江台州)如图1是某公共汽车前挡风玻璃的雨刮器,其工作原理如图2,雨刷E F⊥A D,垂足为A,A B=C D,且A D=B C.这样能使雨刷E F在运动时.始终垂直于玻璃窗下沿B C.请证明这一结论.74(2014浙江宁波)如图,正方形A B C D和正方形C E F G中,点D在C G上,B C=1,C E=3,H是A F的中点,那么C H的长是()A.2.5B.C.D.275(2014浙江宁波)菱形的两条对角线长分别是6和8,则此菱形的边长是()A.10B.8C.6D.576(2014浙江宁波)用矩形纸片折出直角的平分线,下列折法正确的是()A.B.C.D.77(2014浙江金华)如图,矩形A B C D中,A B=8,点E是A D上一点,有A E=4,B E的垂直平分线交B C的延长线于点F,连结E F交C D 于点G,若G是C D的中点,则B C的长是________.(2014浙江嘉兴)已知:如图,在□A B CD中,O为对角线B D的中点,过点O的直线EF分别交A D,B C于E,F两点,连结B E,D F.(1)求证:△D O E≌△B O F.(2)当∠D O E等于多少度时,四边形B F E D为菱形?请说明理由.79(2014浙江杭州)菱形A B C D的对角线A C,B D相交于点O,,B D=4,动点P在线段B D上从点B向点D运动,P F⊥A B 于点P F,四边形P F B G关于B D对称.四边形Q E D H与四边形P F B G关于A C对称,设菱形A B C D被这两个四边形盖住部分的面积为S1,未盖住部分的面积为S2,B P=x.(1)用含x代数式分别表示S1,S2;(2)若S1=S2,求x.80(2014浙江杭州)下列命题中,正确的是()A.梯形的对角线相等B.菱形的对角线不相等C.矩形的对角线不能互相垂直D.平行四边形的对角线可以互相垂直81如图,菱形O A B C的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数的图象经过点C,则k的值为________.。

2014年全国中考数学试卷解析分类汇编:与特殊四边形有关的填空压轴题

2014年全国中考数学试卷解析分类汇编:与特殊四边形有关的填空压轴题

2014年全国中考数学试卷解析分类汇编:与特殊四边形有关的填空压轴题2014年中考数学分类汇编:与特殊四边形有关的填空压轴题2014年中考数学分类汇编中,涉及与特殊四边形(正多边形)有关的填空压轴题,包括折叠问题、旋转问题、三角形全等问题、平面展开最短路径问题、动点问题的函数图象问题。

知识点包括全等三角形的判定与性质、正方形的判定和性质、解直角三角形、勾股定理、正多边形性质和锐角三角函数。

数学思想涉及分类讨论、数形结合和方程思想。

以下是部分省市的2014年中考题展示。

题1】(2014年河南省第题)在矩形ABCD中,AD=5,AB=7,点E为DC上的一个动点。

把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为多少?考点】:折叠问题。

分析】:连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P。

先利用勾股定理求出MD′,再分两种情况利用勾股定理求出DE。

解答】:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P。

因为点D的对应点D′落在∠ABC的角平分线上,所以MD′=PD′。

设MD′=x,则PD′=BM=x,AM=AB-BM=7-x。

又折叠图形可得AD=AD′=5,所以x+(7-x)=25,解得x=3或4,即MD′=3或4.在RT△END′中,设ED′=a。

①当MD′=3时,D′E=5-3=2,EN=7-CN-DE=7-3-a=4-a,所以a=2+(4-a),解得a=3,即DE=4.②当MD′=4时,D′E=5-4=1,EN=7-CN-DE=7-4-a=3-a,所以a=1+(3-a),解得a=2,即DE=3.故答案为3或4.点评】:本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的。

题2】(2014年四川省绵阳市第17题)在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为多少?考点】:旋转的性质;全等三角形的判定与性质;勾股定理;正方形的性质。

2014年一模,四边形汇编

2014年一模,四边形汇编

初中数学杜老师-----136********1、14东城一模19. 如图,将一张矩形纸片ABCD 沿直线MN 折叠,使点C 落在点A 处,点D 落在点E 处,直线MN 交BC 于点M ,交AD 于点N . (1)求证:CM =CN ; (2)若△CMN 的面积与△CDN 的面积比为3:1,且CD =4,求线段MN 的长.19.(本小题满分5分)(1)证明:由折叠的性质可得:∠ANM =∠CNM . ∵ 四边形ABCD 是矩形,∴ AD ∥BC . ∴ ∠ANM =∠CMN . ∴ ∠CMN =∠CNM . ∴ CM =CN . ………2分 (2)解:过点N 作NH ⊥BC 于点H ,则四边形NHCD 是矩形. ∴ HC =DN ,NH =DC . ∵ △CM N 的面积与△CDN 的面积比为3:1, ∴ MC =3ND =3HC .∴ MH =2HC .设DN =x ,则HC =x ,MH =2x , ∴CM =3x =CN , 在Rt △CDN 中,DC =2x =4,∴x =∴ HM =2.在Rt △MNH 中,MN=2、14西城一模19.如图,在△ABC 中,AB =AC ,AD 平分∠BAC ,CE ∥AD 且CE=AD . (1)求证:四边形ADCE 是矩形;(2)若△ABC 是边长为4的等边三角形,对角线AC ,DE 相交于点O ,在CE 上截取CF=CO ,连接OF ,求FC 的长及四边形AOFE 的面积.19.解:(1)∵CE ∥AD 且CE=AD ,∴四边形ADCE 是平行四边形. ··························································· 1分又在△ABC 中,AB =AC ,AD 平分∠BAC , ∴AD ⊥BC . ∴∠ADC =90°..∴四边形ADCE 是矩形. ····································································· 2分 (2)作 OH ⊥CE 于点H ,∵△ABC 是边长为4的等边三角形, ∴∠ACB =60°, 1302DAC BAC ∠=∠=︒,122CD BC ==.由(1)知四边形ADCE 是矩形, ∴AC 与DE 互相平分,AO =OC 122AC ==. ∴FC =OC =2. ······································ 3分 ∵在矩形ADCE 中.∠AED =∠DCE =90°. ∴∠ACE =∠DCA =30°.在Rt △COH 中, 112OH OC ==. ························································ 4分∴CH EH ==∴11122ACE FOC AOFE S S S AE CE CF OH ∆∆=-=⋅-⋅=四边形. ········ 5分 3、14年海淀一模19. 如图,在△ABC 中,∠ACB =90º,∠ABC =30º,BC=AC 为边在△ABC 的外部作等边△ACD ,连接BD .(1)求四边形ABCD 的面积; (2)求BD 的长.19. 解:(1)∵在△ABC 中,∠ACB =90º,∠ABC =30º,BD =∴1cos ,2BC ABC AC AB AB ∠==,90903060BAC ABC ∠=-∠=-=.∴14,42cos 2BC AB AC ABC ====⨯=∠. …………………………1分∵△ACD 为等边三角形,∴2AD CD AC ===,60DAC ∠=. 过点D 作DE AC ⊥于E , 则sin 2sin603DE AD DAC =∠=⨯=∴ABC ACD ABCD S S S =+△△四边形1122AC BC AC DE=⋅+⋅112222=⨯⨯⨯=. ………………………………………3分 (2)过点D 作DF AB ⊥于F .∵180180606060DAF BAC DAC ∠=-∠-∠=--=, ∴sin 2sin603DF AD DAF =⋅∠==A CDcos 2cos601AF AD DAF =⋅∠==. ………………………………………4分∴415BF AB AF =+=+=. ∵DF AB ⊥,∴在Rt BDF△中,22222528BD DF BF =+=+=.∴BD = …………………………………………………………………5分4、14年朝阳19.如图,△ABC 中,BC >AC ,点D 在BC 上,且CA =CD ,∠ACB 的平分线交AD 于点F ,E 是AB 的中点. (1)求证:EF ∥BD ; (2)若∠ACB =60°,AC =8,BC =12,求四边形BDFE 的面积.19.(1)证明:∵ CA =CD ,CF 平分∠ACB ,∴ CF 是AD 边的中线. …………………………………………………1分 ∵ E 是AB 的中点,∴ EF 是△ABD 的中位线.∴ EF ∥BD ; ………………………………………………………………2分(2)解:∵ ∠ACB =60°,CA =CD ,∴ △CAD 是等边三角形.∴ ∠ADC =60°,AD =DC =AC =8.∴ BD =BC -CD =4.过点A 作AM ⊥BC ,垂足为M .∴ sin AM AD ADC=⋅∠=.12ABD S BD AM ∆=⋅= …………………………………………………… 3分∵ EF ∥BD ,∴ △AEF ∽△ABD ,且12EF BD =.∴14AEF ABD S S ∆∆=.∴AEF S ∆= …………………………………………… 4分 四边形BDFE的面积=ABD AEF S S ∆∆-= ………………………………… 5分5、14年石景山一模19.如图,在四边形ABCD 中,2AB =,︒=∠=∠60C A ,DB AB⊥于点B , 45DBC ∠=︒,求BC 的长.GFEDCBA19. 解:过点D 作BC DE ⊥于点E . ……………………1分︒=∠=⊥60 2,A AB AB DB ,,∴3260tan =︒⨯=AB BD . ………………2分 45DBC ∠=︒,BC DE ⊥,∴645sin =︒⨯==BD DE BE …………3分︒=∠︒=∠=∠9060DEC A C , 260tan =︒=∴DECE . ……………………4分62+=∴BC .………………………………5分6、14门头沟一模19.如图7,菱形ABCD 的对角线交于O 点,DE ∥AC ,CE ∥BD , (1)求证:四边形OCED 是矩形;(2)若AD =5,BD =8,计算sin DCE ∠的值. 19.(1) ∵DE ∥AC ,CE ∥BD∴四边形OCED 是平行四边形 ……………………………..1 ∵四边形ABCD 是菱形∴ AC BD ⊥ (2)90DOC ∠=o∴四边形OCED 是矩形 …………………………….3 (2)∵四边形ABCD 是菱形,BD =8 ∴12OD BD ==4,OC=OA ,AD=CD ∵AD =5,由勾股定理得OC =3 ……………………………4 ∵四边形OCED 是矩形∴DE=OC=3,在Rt △DEC 中,sin DCE ∠=35DE DC = ……………………………5 7、14年丰台一模19. 如图,在ABCD 中,E F 、分别为边AB CD 、的中点,BD 是对角线,过A 点作AG DB ∥交CB 的延长线于点.G (1)求证:四边形DEBF 是平行四边形;(2)如果90G ∠=°,60C ∠=°,=2BC ,求四边形DEBF 的面积.图7GFEDCBA19. 解:(1)在ABCD 中,∴AB CD AB CD =∥, ……………………1分 E F 、分别为边AB CD 、的中点1122DF DC BE AB ∴==,DF BE DF BE ∴=∥, …………………………2分 ∴四边形DEBF 为平行四边形…………………………3分(2)作BH ⊥CD 于点HAG BD ∥90G DBC ∴∠=∠=° DBC ∴△为直角三角形又∵ 60C ∠=°,且BC=2∴CD=4,∴BH =又F 为边CD 的中点∴DF=2……………………………………………………4分∴DEBFS =………………………………………5分8、19.解:过点E 作AC EF ⊥于点F , ∵四边形ABCD 是正方形,∴AC D BAD ,90︒=∠=∠平分BAD ∠, DC AD =.∴︒=∠45CAD ,AD AC 2=.∵E 是AD 中点,∴AD DE AE 21==. …………………………1分设x DE AE ==,则x DC AD 2==,x AC 22=,x CE 5=.在Rt △AEF 中,x CAD AE EF 22sin =∠⋅=,x EF AF 22==.……2分∴x x x AF AC CF 2232222=-=-=. ………………………………3分HABCDEFGBCDEF∴101035223cos ===∠xxCECF ACE ,…………………………………………4分 3122322t a n ===∠xx CFEF ACE . …………………………………………5分9、14年昌平一模19. 已知:BD 是四边形ABCD 的对角线,AB ⊥BC ,∠C =60°,AB =1,BC=3+CD=(1)求tan ∠ABD 的值;(2)求AD 的长.19. 解:(1) 作DE BC ⊥于点E .∵在Rt △CDE 中,∠C =60°,CD=,∴ 3.CE DE ==………………………………………………… 1分 ∵BC=3+∴3 3.BE BC CE =-=∴ 3.DE BE == ………………………………………………… 2分 ∴在Rt △BDE 中,∠EDB = ∠EBD =45º.∵AB ⊥BC ,∠ABC =90º,∴∠ABD =∠ABC -∠EBD =45º.∴tan∠ABD =1. ………………………………………………………………………………3分 (2) 作AF BD ⊥于点F .在Rt △ABF 中,∠ABF =45º, AB =1,2BF AF ∴==……………………………………………………………………… 4分 ∵在Rt △BDE 中,3DE BE ==,∴BD =DCEDC BA∴22DF BD BF =-== ∴在Rt△AFD中,AD == ……………………………………… 5分10、14年顺义一摸19.如图,在四边形ABCD 中,∠B=∠D=90°,∠C=60°,BC=4,CD=3,求AB 的长.19.解:延长BA 、CD 交于点E .∵∠B=90°,∠C=60°,BC=4,∴∠E=30°,CE =8,BE= 2分 ∵CD=3, ∴DE =5.……………………………………… 3分∴5cos cos30DE AE E ===︒ 4分∴AB BE AE =-== 5分 11、14年房山一模19.已知:如图,在△ABC 中,点D 是BC 中点,点E 是AC 中点,且AD ⊥BC ,BE ⊥AC , BE,AD 相交于点G ,过点B 作BF ∥AC 交AD 的延长线于点F , DF=6. (1) 求AE 的长; (2) 求AEG FBGSS的值.19. 证明:(1)∵点D 是BC 中点,点E 是AC 中点,AD ⊥BC , BE ⊥AC ,AC AB CB ∴==∴△ABC 是等边三角形 ..................................2分60C ∴∠= 30F ∴∠=∵6DF =12BD BC ∴==又∵BD DC EC AE ===AE ∴=..................................3分(2)由(1)DF =6,∠ F =30°,∠ BDF =90° ∴BF= ∴12AE BF = ..................................4分 ∵AE ∥BF ∴△AEG ∽△FBG∴221124AEG FBG S AE S BF ∆∆⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ ..................................5分 12、14年燕山一模19. 如图,在四边形ABCD 中,BC AD //,25=AB ,4=BC ,连接BD ,BAD ∠的平分线交BD 于点E ,且CD AE //. (1)求AD 的长;(2)若︒=∠30C ,求四边形ABCD 的周长.19.解:(1)延长AE 交BC 于点F .∵AE 平分BAD ∠,∴DAF BAF ∠=∠. ∵BC AD //, ∴DAF AFB ∠=∠, ∴AFB BAF ∠=∠, ………1分∴25==AB BF . ∵4=BC , ∴23254=-=FC . ……………2分 ∵BC AD DC AF //,//,∴四边形AFCD 是平行四边形,∴23==FC AD .………3分 (2)过B 作AF 的垂线BG ,垂足为G . ∵DC AF //,︒=∠=∠30C AFB ,ED CBAGF ED CBA在BGF Rt ∆中,435232530cos =⨯=︒⋅=BF GF , ∴23543522=⨯===GF AF DC . ………………4分 ∴四边形ABCD 的周长.235823235425+=+++=+++=DA CD BC AB………………5分19.∵四边形ABCD 是平行四边形,∴AB ∥DC ,AB=CD ,……………………………….1分 ∵AE ∥BD , ∴四边形ABDE 是平行四边形,…………….. 2分 ∴AB=DE=CD ,…………………………………….. 3分 即D 为CE 中点, ∵EF ⊥BC , ∴∠EFC=90°, ∵AB ∥CD , ∴∠DCF=∠ABC=60°,…………………………4分 ∴∠CEF=30°, ∵EF=, ∴CE=2,∴AB=1,………………………………………………5分14、14年通州一模20.如图:在矩形ABCD 中,AB =2,BC =5,E 、P 分别在AD 、BC 上,且DE =BP =1.求证:四边形EFPH 为矩形.PADC B H F EACEFD20.解: 在矩形ABCD 中 ∴,DC AB =AD//BCED =BP∴四边形DEBP 是平行四边形 ∴BE//DPAD=BC ,AD//BC ,DE=BP ∴AE=CP∴四边形AECP 是平行四边形∴AP//CE∴四边形EFPH 是平行四边形 在矩形ABCD 中∴∠ADC=∠ABP=90º,AD=BC=5,AB=CD=2 ∴CE=5,同理BE =2 ∴ 222BC CE BE =+ ∴∠BEC=90º∴四边形EFPH 是矩形15、14年一模平谷19.如图,在△ABC 中,D 为AB 边上一点、F 为AC 的中点,过点C 作CE //AB 交DF 的延长线于点E ,连结AE .(1)求证:四边形ADCE 为平行四边形.(2)若EF =22,︒=∠︒=∠4530AED FCD ,,求DC 的长.19.(本小题满分5分)(1)证明:∵CE //AB ,∴∠DAF =∠ECF . ∵F 为AC 的中点,∴AF =CF . 在△DAF 和△ECF 中⎪⎩⎪⎨⎧∠=∠=∠=∠,,,CFE AFD CF AF ECF DAF ∴ △DAF ≌△ECF .∴ AD =CE . ------------------------------------------------------------------------------------2分H ACEFD∵CE //AB ,∴ 四边形ADCE 为平行四边形. --------------------------------------------------------------------3分(2)作FH ⊥DC 于点H .∵ 四边形ADCE 为平行四边形.∴ AE //DC ,DF = EF =22, ∴∠FDC =∠AED =45°.在Rt △DFH 中,∠DHF=90°,DF =22,∠FDC=45°, ∴ sin ∠FDC=22=DF FH ,得FH =2,tan ∠FDC=1=HDHF ,得DH =2. ----------------------------------------------------------------------4分 在Rt △CFH 中,∠FHC=90°,FH =2,∠FCD=30°,∴ FC =4. 由勾股定理,得HC =32.∴ DC=DH+HC=2+32. ------------------------------------------------------------------------5分 16、14年怀柔一模19.如图,在平行四边形ABCD 中,∠ABC=45°,E 、F 分别在CD 和BC的延长线上,AE∥BD,∠EFC=30°, AB=2. 求CF 的长.19.解:∵四边形ABCD 是平行四边形,∴AB∥DC,AB=DC ,∵AE∥BD, ∴四边形ABDE 是平行四边形,∴AB=DE=CD,……………………………………………2分 即D 为CE 中点, ∵AB=2,∴CE=4,…………………………………………3分 又∵AB∥CD,∴∠E CF=∠ABC=45°, 过点E 作EH ⊥BF 于点H ,∵CE=4,∠ECF=45°,∴EH=CH=22,………………………………………………4分 ∵∠EFC=30°,∴ FH=26,∴ CF=22+26.…………………………………5分 17、14年延庆一模20. 如图,在Rt △ABC 中,∠C =90°,AB 的垂直平分线与AC ,AB 的交点分别为D ,E . (1)若AD =15,4cos 5BDC ∠=, 求AC 的长和tan A 的值;(2)设BDC α∠=,计算tan2α的值.(用sin α和cos α的式子表示)20.解:(1)∵ DE 垂直平分AB ,∴ 15BD AD ==. ………………………………1分H FE D C B A (第20题)BACED(第20题)BACED在Rt △ACD 中,90C ∠=︒,AD =15,4cos 5BDC ∠=, ∴ 4cos 15125CD AD BDC =⋅∠=⨯=. 3sin 1595BC AD BDC =⋅∠=⨯=.∴ 27AC CD AD =+=. ……………………………2分 在Rt △ABC 中,90C ∠=︒, ∴ 91tan 273BC A AC ===. …………………………3分 (2)在Rt △ACD 中,90C ∠=︒,∴ cos CD AD BDC =⋅∠.sin BC AD BDC =⋅∠.∴ cos AC CD AD AD BDC =+=⋅∠. ……………………………4分 在Rt △ABC 中,90C ∠=︒, ∴ sin sin tan cos 1cos BC AD BDC BDCA AC AD AD BDC BDC∠∠===+∠+∠. ……………5分。

2014中考数学专题八三角形和四边形复习题及答案.doc

2014中考数学专题八三角形和四边形复习题及答案.doc

专题八三角形和四边形⊙热点一:与三角形、四边形有关的计算、证明1.(2013 年吉林长春 )如图 Z8- 3,以△ ABC 的顶点 A 为圆心,以BC 长为半径作弧,再以顶点 C 为圆心,以AB长为半径作弧,两弧交于点 D ,连接 AD,CD.若∠ B= 65°,则∠ADC 的大小为 ________ .图Z8-32. (2013 年河南 )如图 Z8-4,在矩形 ABCD 中, AB= 3, BC=4,点 E 是 BC 边上一点,连接 AE,把∠ B 沿 AE 折叠,使点 B 落在点 B′处,当△ CEB′为直角三角形时, BE 的长为________.图Z8-43. (2013 年江苏扬州 )如图 Z8- 5,在△ ABC 中,∠ ACB=90°, AC= BC,点 D 在边 AB 上,连接 CD ,将线段 CD 绕点 C 顺时针旋转 90°至 CE 的位置,连接 AE.(1)求证: AB⊥ AE;(2)若 BC2=AD ·AB ,求证:四边形ADCE 是正方形.图Z8-5⊙热点二:与三角形、四边形有关的操作探究题w W w .x K b 1.c o M1.(2013 年湖南湘潭 )在数学活动课中,小辉将边长为2和 3 的 2 个正方形放置在直线l 上,如图 Z8-6(1) ,他连接 AD , CF,经测量发现AD= CF .(1)他将正方形 ODEF 绕 O 点逆时针旋转一定的角度,如图Z8- 6(2),试判断 AD 与 CF 还相等吗?说明你的理由;求出(2)他将正方形 CF 的长.ODEF绕 O 点逆时针旋转,使点E 旋转至直线l 上,如图Z8-6(3),请你 (1)(2) (3)图 Z8-6http://www.xkb1.co m2. (2013 年湖北武汉节选 )已知在四边形 ABCD 中, E , F 分别是 AB , AD 边上的点,DE 与 CF 交于点 G.DE = AD ;(1)如图 Z8-7(1),若四边形 ABCD 是矩形,且 DE ⊥ CF .求证 CF CD(2)如图 Z8-7(2),若四边形 ABCD 是平行四边形.试探究:当∠ B 与∠ EGC 满足什么关系时,使得DE=AD成立?并证明你的结论.CF CD(1)(2)图 Z8-7三角形和四边形热点一1. 65°2.3 或 3解析: ①点 B ′落在 AD 上时,∵四边形 ABCD 是矩形,∴∠ A =∠ B = 90°,2AD ∥BC.由折叠可知∠ AB ′ E =90°, AB = AB ′ .∴四边形 ABEB ′是正方形,∴∠ B ′ EC = 90°, BE = AB = 3;②点 B ′落在 AC 上时,∵四边形 ABCD 是矩形,∴∠ B = 90°.由折叠可知∠ AB ′E = 90°,AB = AB ′= 3,BE = B ′ E ,∴∠ EB ′C = 90°﹒在 Rt △ABC 中,AB = 3,BC = 4,∴ AC = 32+ 42= 5.∴ CB ′= AC -AB ′= 5- 3= 2.在 Rt △ B ′CE 中,设 B ′ E = BE = x ,则 CE = 4- x , x 2+22= (4- x)2,解得 x =32,即 BE =32.综上所述, BE 的长为 3 或32﹒3. 证明: (1)∵∠ ACB =90°, AC = BC ,∴∠ B =∠ BAC = 45°, ∴∠ ACB -∠ ACD =∠ DCE -∠ ACD ,即∠ BCD =∠ ACE. ∵线段 CD 绕点 C 顺时针旋转 90°至 CE 位置, ∴∠ DCE = 90°, CD =CE.BC = AC ,在△ BCD 和△ ACE 中, ∠BCD =∠ ACE ,新 - 课 - 标 - 第 - 一 - 网CD = CE ,∴△ BCD ≌△ ACE ,∴∠ B =∠ CAE =45°. ∴∠ BAE =45°+ 45°= 90°,∴ AB ⊥AE .(2)∵ BC 2=AD ·AB ,BC = AC ,∴ AC 2= AD ·AB ,则 AD =AC,AC AB∵∠ DAC =∠ CAB ,∴△ DAC ∽△ CAB. ∴∠ CDA =∠ BCA = 90°.而∠ DAE = 90°,∠ DCE = 90°,∴四边形 ADCE 为矩形. 又∵ CD = CE ,∴四边形 ADCE 为正方形. 热点二1. 解: (1)AD 与 CF 还相等,理由如下: ∵四边形 ODEF 、四边形 ABCO 为正方形,∴∠ DOF =∠ COA = 90°,DO = OF , CO =OA . 又∵∠ COD +∠ DOF =∠ COD +∠ COA , ∴∠ COF =∠ AOD.∴△ COF ≌△ AOD (SAS) .∴ AD = CF . (2)如图 92,连接 DF ,交 EO 于 G ,则 DF ⊥ EO ,DG = OG =1EO =1. 2∴ GA = 4.∴ AD = DG 2+GA 2= 1+ 42 = 17. 由 (1),得 CF = AD = 17.图 92 图 932. (1) 证明: ∵四边形 ABCD 是矩形,∴∠ A =∠ ADC = 90°.∵ DE ⊥ CF ,∴∠ ADE =∠ DCF .∴△ ADE ∽△ DCF .∴ DE = AD.CF DCDE AD(2)当∠ B +∠ EGC =180 °时, CF = DC 成立. 在 AD 的延长线上取点 M ,使得 CF = CM ,如图 93,则∠ CMF =∠ CFM .∵ AB ∥CD ,∴∠ A =∠ CDM . ∵ AD ∥ BC ,∴∠ CFM =∠ FCB .∵∠ B +∠ EGC = 180°,∴∠ AED =∠ FCB , w W w .x K b 1.c o M ∴∠ CMF =∠ AED .∴△ ADE ∽△ DCM .∴ DE = AD ,即 DE =AD.CM DC CF DC新课标第一网 系列资料。

2014高考立体几何解答题及答案

2014高考立体几何解答题及答案

2014高考立体几何解答题及答案一.解答题(共17小题)1.(2014•山东)如图,四棱锥P﹣ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分别为线段AD,PC的中点.(Ⅰ)求证:AP∥平面BEF;(Ⅱ)求证:BE⊥平面PAC.BC=2.(2014•四川)在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形(Ⅰ)若AC⊥BC,证明:直线BC⊥平面ACC1A1;(Ⅱ)设D、E分别是线段BC、CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.MD=AC3.(2014•湖北)在四棱锥P﹣ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.(Ⅰ)求证:BE∥平面PAD;(Ⅱ)求证:BC⊥平面PBD;(Ⅲ)设Q为侧棱PC上一点,,试确定λ的值,使得二面角Q﹣BD﹣P为45°.的法向量,利用的法向量的坐标,由两个法向量的数量积运算表示二面角的余弦值,化简后求出,且,,=,,4.(2014•江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.PA=3EF=BC=45.(2014•黄山一模)如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,CD=2,E、F分别是AB、PD的中点.(1)求证:AF∥平面PCE;(2)求证:平面PCE⊥平面PCD;(3)求四面体PEFC的体积.AECD AE CDCD=,=V=6.(2014•南海区模拟)如图,四棱锥P﹣ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB和△PAD是两个边长为2的正三角形,DC=4,O为BD的中点,E为PA的中点.(Ⅰ)求证:PO⊥平面ABCD;(Ⅱ)求证:OE∥平面PDC;(Ⅲ)求直线CB与平面PDC所成角的正弦值.的法向量为,∴=,,,的法向量为,即,解得,又所成角的正弦值为7.(2014•天津模拟)如图,在四棱台ABCD﹣A1B1C1D1中,下底ABCD是边长为2的正方形,上底A1B1C1D1是边长为1的正方形,侧棱DD1⊥平面ABCD,DD1=2.(1)求证:B1B∥平面D1AC;(2)求证:平面D1AC⊥平面B1BDD1.8.(2013•北京)如图,在四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E 和F分别是CD和PC的中点,求证:(Ⅰ)PA⊥底面ABCD;(Ⅱ)BE∥平面PAD;(Ⅲ)平面BEF⊥平面PCD.9.(2013•天津)如图,三棱柱ABC﹣A1B1C1中,侧棱A1A⊥底面ABC,且各棱长均相等.D,E,F分别为棱AB,BC,A1C1的中点.(Ⅰ)证明:EF∥平面A1CD;(Ⅱ)证明:平面A1CD⊥平面A1ABB1;(Ⅲ)求直线BC与平面A1CD所成角的正弦值.ACD=BG==,所成角的正弦值10.(2013•浙江)如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G为线段PC上的点.(Ⅰ)证明:BD⊥平面PAC;(Ⅱ)若G是PC的中点,求DG与PAC所成的角的正切值;(Ⅲ)若G满足PC⊥面BGD,求的值.PC=AD=CD=PAPA=,.OD=DGO==,可得,解得GC=﹣,∴=11.(2013•湖南)如图.在直棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=,AA1=3,D是BC的中点,点E 在棱BB1上运动.(1)证明:AD⊥C1E;(2)当异面直线AC,C1E 所成的角为60°时,求三棱锥C1﹣A1B1E的体积.面积为,由此结合锥体体积公式即可算出三棱锥=E=S××12.(2012•山东)如图,几何体E﹣ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(Ⅰ)求证:BE=DE;(Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.AB=AF13.(2012•江苏)如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.14.(2011•天津)如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC 中点,PO⊥平面ABCD,PO=2,M为PD中点.(Ⅰ)证明:PB∥平面ACM;(Ⅱ)证明:AD⊥平面PAC;(Ⅲ)求直线AM与平面ABCD所成角的正切值.MN=PO=1中,,所以,中,=所成的正切值为15.(2011•北京)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若PA=AB,求PB与AC所成角的余弦值;(Ⅲ)当平面PBC与平面PDC垂直时,求PA的长.,则,代入公式可求的法向量的法向量,,﹣,,,=|)知,设的法向量令,的法向量所以的法向量=0t=PA=16.(2010•深圳模拟)如图,在四棱锥S﹣ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别是AB、SC的中点(1)求证:EF∥平面SAD(2)设SD=2CD,求二面角A﹣EF﹣D的大小.法二:建立空间直角坐标系,和,利用,又的平面角的大小为,的中点.,,,所以向量的夹角等于二面角的平面角.的大小为17.(2010•重庆)如图,三棱锥P﹣ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD⊥平面PAB.(1)求证:AB⊥平面PCB;(2)求二面角C﹣PA﹣B的大小的余弦值.,PB=COD=。

四边形几何证明题精选含解析

四边形几何证明题精选含解析

四边形几何证明精选一、解答题1.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N.当∠MAB绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN旋转到BM≠DN时(如图2),线段BM,DN和MN之间有怎样的数量关系?写出猜想,并加以证明.(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间又有怎样的数量关系?请写出你的猜想,并加以证明.2.如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.3.【问题情境】如图,在正方形ABCD中,点E是线段BG上的动点,AE⊥EF,EF交正方形外角∠DCG的平分线CF于点F.【探究展示】(1)如图1,若点E是BC的中点,证明:∠BAE+∠EFC=∠DCF.(2)如图2,若点E是BC边上的任意一点(B、C除外),∠BAE+∠EFC=∠DCF是否仍然成立?若成立,请予以证明;若不成立,请说明理由.【拓展延伸】(3)如图3,若点E是BC延长线(C除外)上的任意一点,求证:AE=EF.4.如图1,在正方形ABCD中,P为对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F,连接CE.(1)求证:△PCE是等腰直角三角形;(2)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,判断△PCE的形状,并说明理由.5.如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.6.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.(1)猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;(2)将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断(1)中得到的结论是否仍然成立,并证明你的判断.7.如图,在正方形ABCD中,点E是边AD上任意一点,BE的垂直平分线FG交对角AC于点F.求证:(1)BF=DF;(2)BF⊥FE.8.如图所示,E、F分别为平行四边形ABCD边AB、CD的中点,AG//DB交CB的延长线于点G.(1)求证:DE//BF;(2)若∠G=90°,判断四边形DEBF的形状,并说明理由.9.如图,把正方形ABCD绕点C按顺时针方向旋转45°得到正方形A′B′CD′(此时,点B′落在对角线AC上,点A′落在CD的延长线上),A′B′交AD于点E,连接AA′、CE.求证:(1)△ADA′≌△CDE;(2)直线CE是线段AA′的垂直平分线.10.如图,在▱ABCD中,已知E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF.(1)求证:AB=CF;(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.11.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.12.已知:如图,在四边形ABCD中,点G在边BC的延长线上,CE平分∠BCD,CF平分∠GCD,EF//BC交CD于点O.(1)求证:OE=OF;(2)若点O为CD的中点,求证:四边形DECF是矩形.13.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.14.如图1,四边形ABCD是正方形,点G是BC边上任意一点.DE⊥AG于点E,BF//DE且交AG于点F.(1)求证:AE=BF;(2)如图2,如果点G是BC延长线上一点,其余条件不变,则线段AF、BF、EF有什么数量关系?请证明出你的结论.15.如图,在△ABC中,∠ABC=90°,点D为AC的中点,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)证明:四边形BDFG是菱形;(2)若AC=10,CF=6,求线段AG的长度.16.已知正方形ABCD中,对角线AC、BD相交于O.①如图1,若E是AC上的点,过A作AG⊥BE于G,AG、BD交于F,求证:OE=OF②如图2,若点E在AC的延长线上,AG⊥EB交EB的延长线于G,AG延长DB延长线于点F,其它条件不变,OE=OF还成立吗?17.如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.18.如图,EF是平行四边ABCD的对角线BD的垂直平分线,EF与边AD,BC分别交于点E,F.(1)求证:四边形BFDE是菱形;(2)若ED=5,BD=8,求菱形BFDE的面积.19.如图,已知平行四边形ABCD,过A作AM⊥BC于M,交BD于E,过C作CN⊥AD于F,连接AF、CE.(1)求证:四边形AECF为平行四边形;(2)当四边形AECF为菱形,M点为BC的中点时,求∠CBD的度数.20.如图,在矩形ABCD中,E为AB边上一点,EC平分∠DEB,F为CE的中点,连接AF,BF,过点E作EH//BC分别交AF,CD于G,H两点.(1)求证:DE=DC;(2)求证:AF⊥BF;答案和解析1.【答案】解:(1)BM +DN =MN 成立.证明:如图,把△ADN 绕点A 顺时针旋转90°,得到△ABE ,则可证得E 、B 、M 三点共线(图形画正确).∴∠EAM =90°−∠NAM =90°−45°=45°,又∵∠NAM =45°,∴在△AEM 与△ANM 中,{AE =AN ∠EAM =∠NAM AM =AM,∴△AEM≌△ANM(SAS),∴ME =MN ,∵ME =BE +BM =DN +BM ,∴DN +BM =MN ;(2)DN −BM =MN .在线段DN 上截取DQ =BM ,在△ADQ 与△ABM 中,∵{AD =AB∠ADQ =∠ABM DQ =MB,∴△ADQ≌△ABM(SAS),∴∠DAQ =∠BAM ,∴∠QAN =∠MAN .在△AMN 和△AQN 中,{AQ =AM ∠QAN =∠MAN AN =AN,∴△AMN≌△AQN(SAS),∴MN =QN ,∴DN −BM =MN .【解析】(1)结论:BM +DN =MN 成立,证得B 、E 、M 三点共线即可得到△AEM≌△ANM ,从而证得ME =MN .(2)结论:DN −BM =MN.首先证明△ADQ≌△ABM ,得DQ =BM ,再证明△AMN≌△AQN(SAS),得MN =QN ,本题考查正方形的性质、旋转变换等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考常考题型.2.【答案】证明:(1)∵四边形ABCD 是矩形,∴AD =BC ,AB =CD .由折叠的性质可得:BC =CE ,AB =AE ,∴AD =CE ,AE =CD .在△ADE 和△CED 中,{AD =CEAE =CD DE =ED,∴△ADE≌△CED(SSS).(2)由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形.【解析】(1)根据矩形的性质可得出AD=BC、AB=CD,结合折叠的性质可得出AD= CE、AE=CD,进而即可证出△ADE≌△CED(SSS);(2)根据全等三角形的性质可得出∠DEF=∠EDF,利用等边对等角可得出EF=DF,由此即可证出△DEF是等腰三角形.本题考查了全等三角形的判定与性质、翻折变换以及矩形的性质,解题的关键是:(1)根据矩形的性质结合折叠的性质找出AD=CE、AE=CD;(2)利用全等三角形的性质找出∠DEF=∠EDF.3.【答案】(1)证明:取AB的中点M,连结EM,如图1:∵M是AB的中点,E是BC的中点,∴在正方形ABCD中,AM=EC,∵CF是∠DCG的平分线,∴∠ECF=90°+45°=135°,∵BM=BE,∴∠BME=45°,∴∠AME=∠ECF=135°,∵∠BEA+∠CEF=90°,∠MAE+∠BEA=90°,∴∠MAE=∠CEF,在△AME与△ECF中,{∠MAE=∠CEF AM=EC∠AME=∠ECF,∴△AME≌△ECF(ASA),∴∠BAE+∠EFC=∠FCG=∠DCF;(2)证明:取AB上的任意一点M,使得AM=EC,连结EM,如图2:∵AE⊥EF,AB⊥BC,∴∠BAE+∠BEA=90°,∠BEA+∠CEF=90°,∴∠MAE=∠CEF,∵AM=EC,∴在正方形ABCD中,BM=BE,∴∠AME=∠ECF=135°,在△AME与△ECF中,{∠MAE=∠CEF AM=EC∠AME=∠ECF,∴△AME≌△ECF(ASA),∴∠BAE+∠EFC=∠FCG=∠DCF;(3)证明:取BA延长线上的一点N使得AN=CE,如图3:∵AN=CE,AB⊥BC,∴∠ANE=45°,∴∠ECF=∠ANE=45°,∵AD//BE,∴∠DAE=∠BEA,∵NA⊥AD,AE⊥EF,∴∠NAE=∠CEF,在△ANE与△ECF中,{∠NAE=∠CEFAN=CE∠ANE=∠ECF,∴△ANE≌△ECF(ASA),∴AE=EF.【解析】(1)取AB的中点M,连结EM,根据正方形的性质和全等三角形的判定证明即可;(2)在AB上取一点M,使AM=EC,连接EM,根据已知条件利用ASA判定△AME≌△ECF,利用全等三角形的性质证明即可.(3)在BA的延长线上取一点N,使AN=CE,连接NE,根据已知利用ASA判定△ANE≌△ECF,利用全等三角形的性质证明即可.此题主要考查全等三角形的判定和性质,关键是熟练掌握正方形的性质,角平分线的性质及全等三角形的判定方法.4.【答案】(1)证明:如图1中,∵四边形ABCD是正方形,∴AD=DC,∠ADB=∠CDB=45°,∠ADC=90°,在△PDA和△PDC中,{PD=PD∠PDA=∠PDC DA=DC,∴△PDA≌△PDC,∴PA=PC,∠3=∠1,∵PA=PE,∴∠2=∠3,∴∠1=∠2,∵∠EDF=90°,∠DFE=∠PFC,∴∠FPC=∠EDF=90°,∴△PEC是等腰直角三角形.(2)解:如图2中,结论:△PCE是等边三角形.理由:∵四边形ABCD是菱形,∴AD=DC,∠ADB=∠CDB,∠ADC=∠ABC=120°,在△PDA和△PDC中,{PD=PD∠PDA=∠PDC DA=DC,∴△PDA≌△PDC,∴PA=PC,∠3=∠1,∵PA=PE,∴∠2=∠3,PA=PE=PC,∴∠1=∠2,∵∠DFE=∠PFC,∴∠EPC=∠EDC,∵∠ADC=120°,∴∠EDC=60°,∴∠EPC=60°,∵PE=PC,∴△PEC是等边三角形.【解析】本题考查正方形的性质、菱形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.(1)由△PDA≌△PDC,推出PA=PC,∠3=∠1,由PA=PE,推出∠2=∠3,推出∠1=∠2,由∠EDF=90°,∠DFE=∠PFC,推出∠FPC=∠EDF=90°,推出△PEC是等腰直角三角形;(2)由△PDA≌△PDC,推出PA=PC,∠3=∠1,由PA=PE,推出∠2=∠3,PA=PE= PC,推出∠1=∠2,由∠DFE=∠PFC,推出∠EPC=∠EDC,由∠ADC=120°,推出∠EDC=60°,推出∠EPC=60°,由PE=PC,即可证明△PEC是等边三角形.5.【答案】(1)证明:∵四边形ABCD是正方形,∵△EBF是等腰直角三角形,其中∠EBF=90°,∴BE=BF,∴∠ABC−∠CBF=∠EBF−∠CBF,∴∠ABF=∠CBE.在△ABF和△CBE中,有{AB=CB∠ABF=∠CBE BF=BE,∴△ABF≌△CBE(SAS).(2)解:△CEF是直角三角形.理由如下:∵△EBF是等腰直角三角形,∴∠BFE=∠FEB=45°,∴∠AFB=180°−∠BFE=135°,又∵△ABF≌△CBE,∴∠CEB=∠AFB=135°,∴∠CEF=∠CEB−∠FEB=135°−45°=90°,∴△CEF是直角三角形.【解析】(1)由四边形ABCD是正方形可得出AB=CB,∠ABC=90°,再由△EBF是等腰直角三角形可得出BE=BF,通过角的计算可得出∠ABF=∠CBE,利用全等三角形的判定定理SAS即可证出△ABF≌△CBE;(2)根据△EBF是等腰直角三角形可得出∠BFE=∠FEB,通过角的计算可得出∠AFB= 135°,再根据全等三角形的性质可得出∠CEB=∠AFB=135°,通过角的计算即可得出∠CEF=90°,从而得出△CEF是直角三角形.本题考查了正方形的性质.全等三角形的判定及性质、等腰直角三角形的性质以及角的计算,解题的关键是:(1)根据判定定理SAS证明△ABF≌△CBE;(2)通过角的计算得出∠CEF=90°.本题属于中档题,难度不大,解决该题型题目时,通过正方形和等腰三角形的性质找出相等的边,再通过角的计算找出相等的角,以此来证明两三角形全等是关键.6.【答案】解:(1)延长BG交DE于点H,在△BCG与△DCE中,{BC=DC∠BCG=∠DCECG=CE,∴△BCG≌△DCE(SAS),∴∠GBC=∠EDC,BG=DE,∵∠BGC=∠DGH,∴∠DHB=∠BCG=90°,∴BG⊥DE;(2)BG=DE,BG⊥DE仍然成立如图2,∠BCD+∠DCG=∠ECG+∠DCG,即∠BCG=∠DCE,在△BCG与△DCE中,{BC=DC∠BCG=∠DCE CG=CE,∴△BCG≌△DCE(SAS),∵∠BHC=∠DHG,∴∠BCD=∠DOB=90°,即BG⊥DE【解析】(1)延长BG交DE于点H,易证△BCG≌△DCE,所以∠GBC=∠EDC,BG=DE,所以∠DHB=90°;(2)易证△BCG≌△DCE,所以∠GBC=∠EDC,BG=DE,所以∠BCD=90°.本题主要考查正方形,涉及正方形的性质,旋转的性质,全等三角形的判定与性质,综合程度较高,需要学生根据所学知识灵活解答.7.【答案】证明:如图所示:(1)∵四边形ABCD是正方形,∴AB=AD,∠BAF=∠DAF=45°,∠BAE=90°,在△BAF和△DAF中,{AB=AD ∠BAF=∠DAF AF=AF ,∴△BAF≌△DAF(SAS),∴BF=DF;(2)∵BE的垂直平分线FG交对角AC于点F,∴BF=EF,∵BF=DF,∴EF=DF,∴∠FDE=∠FED,∵△BAF≌△DAF,∴∠ABF=∠FDE,∴∠ABF=∠FED,∵∠FED+∠FEA=180°,∴∠ABF+∠FEA=180°,∴∠BAE+∠BFE=180°,∴∠BFE=90°,∴BF⊥FE.【解析】(1)由正方形的性质得出AB=AD,∠BAF=∠DAF=45°,由SAS证明△BAF≌△DAF,得出对应边相等即可;(2)由线段垂直平分线的性质得出BF=EF,证出EF=DF,得出∠FDE=∠FED,再由全等三角形的性质证出∠ABF=∠FED,由邻补角关系得出∠FED+∠FEA=180°,证出∠ABF+∠FEA=180°,由四边形内角和得出∠BAE+∠BFE=180°,求出∠BFE= 90°即可.本题考查了正方形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、四边形内角和定理等知识;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.8.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AB//CD,AB=CD.∵点E、F分别是AB、CD的中点,∴BE=12AB,DF=12CD.∴BE=DF,BE//DF,∴四边形DFBE是平行四边形,(2)解:四边形DEBF 是菱形;理由如下:∵∠G =90°,AG//BD ,AD//BG ,∴四边形AGBD 是矩形,∴∠ADB =90°,在Rt △ADB 中∵E 为AB 的中点,∴AE =BE =DE ,∵四边形DFBE 是平行四边形,∴四边形DEBF 是菱形.【解析】(1)根据已知条件证明BE =DF ,BE//DF ,从而得出四边形DFBE 是平行四边形,即可证明DE//BF ,(2)先证明DE =BE ,再根据邻边相等的平行四边形是菱形,从而得出结论.本题主要考查了平行四边形的性质、菱形的判定,直角三角形的性质:在直角三角形中斜边中线等于斜边一半,比较综合,难度适中.9.【答案】证明:(1)∵四边形ABCD 是正方形,∴AD =CD ,∠ADC =90°,∴∠A′DE =90°,根据旋转的方法可得:∠EA′D =45°,∴∠A′ED =45°,∴A′D =ED ,在△AA′D 和△CED 中{AD =CD∠ADA′=∠CDE A′D =ED,∴△ADA′≌△CDE(SAS);(2)由正方形的性质及旋转,得CD =CB′,∠CB′E =∠CDE =90°,又CE =CE ,∴Rt △CEB′≌Rt △CED∴∠B′CE =∠DCE ,∵AC =A′C∴直线CE 是线段AA′的垂直平分线.【解析】(1)根据正方形的性质可得AD =CD ,∠ADC =90°,∠EA′D =45°,则∠A′DE =90°,再计算出∠A′ED =45°,根据等角对等边可得A′D =ED ,即可利用SAS 证明△ADA′≌△CDE ;(2)首先由AC =A′C ,可得点C 在AA′的垂直平分线上;再证明△AEB′≌△A′ED ,可得AE =A′E ,进而得到点E 也在AA′的垂直平分线上,再根据两点确定一条直线可得直线CE 是线段AA′的垂直平分线.此题主要考查了正方形的性质,以及旋转的性质,关键是熟练掌握正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;找准旋转后相等的线段.10.【答案】(1)证明:∵四边形ABCD 是平行四边形,∴AB//DF ,∴∠BAF =∠CFA .∵E 为BC 的中点,在△AEB和△FEC中,{∠BAE=∠CFA ∠AEB=∠FEC BE=EC,∴△AEB≌△FEC(AAS)∴AB=CF;(2)解:当BC=AF时,四边形ABFC是矩形,理由:∵AB=CF,AB‖CF,∴四边形ABFC是平行四边形,∵BC=AF,∴四边形ABFC是矩形.【解析】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,正确得出△AEB≌△FEC(AAS)是解题关键.(1)利用平行四边形的性质得出∠BAF=∠CFA,进而得出△AEB≌△FEC(AAS),求出答案;(2)首先得出四边形ABFC是平行四边形,进而得出答案.11.【答案】(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是∠BAC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,∴AD=BD=CD,∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.【解析】(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.此题主要考查了正方形的判定以及矩形的判定和等腰直角三角形的性质等知识,熟练掌握正方形和矩形的判定是解题关键.12.【答案】证明:(1)∵CE平分∠BCD、CF平分∠GCD,∴∠BCE=∠DCE,∠DCF=∠GCF,∵EF//BC,∴∠BCE=∠FEC,∠EFC=∠GCF,∴∠DCE=∠FEC,∠EFC=∠DCF,∴OE=OC,OF=OC,∴OE=OF;(2)∵点O为CD的中点,∴OD=OC,又OE=OF,∵CE平分∠BCD、CF平分∠GCD,∴∠DCE=12∠BCD,∠DCF=12∠DCG,,即∠ECF=90°,∴四边形DECF是矩形.【解析】本题利用了角平分线的定义、平行线的性质、等角对等边、等量代换、平行四边形的判定、矩形的判定.(1)由于CE平分∠BCD,那么∠DCE=∠BCE,而EF//BC,于是∠FEC=∠BCE,等量代换∠FEC=∠DCE,那么OE=OC,同理OC=OF,等量代换有OE=OF;(2)由于O是CD中点,故OD=OC,而OE=OF,那么易证四边形DECF是平行四边形,又CE、CF是∠BCD、∠DCG的角平分线,∠BCD+∠DCG=180°那么易得∠ECF=90°,从而可证四边形DECF是矩形.13.【答案】(1)证明:∵点D,E分别是边BC,AB上的中点,∴DE//AC,AC=2DE,∵EF=2DE,∴EF//AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,AC=12AB=AE,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.【解析】(1)由三角形中位线定理得出DE//AC,AC=2DE,求出EF//AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;(2)由直角三角形的性质得出∠BAC=60°,AC=12AB=AE,证出△AEC是等边三角形,得出AC=CE,即可得出结论.本题考查了平行四边形的判定与性质、菱形的判定、三角形中位线定理、直角三角形斜边上的中线性质、等边三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形是等边三角形是解决问题的关键.14.【答案】(1)证明:∵四边形ABCD是正方形,BF⊥AG,DE⊥AG,∴DA=AB,∠BAF+∠DAE=∠DAE+∠ADE=90°,∴∠BAF=∠ADE,在△ABF和△DAE中,{∠BAF=∠ADE∠AFB=∠DEA=90°DA=AB,∴△ABF≌△DAE(AAS),∴BF=AE,(2)AF+EF=BF;∴DA=AB,∠BAF+∠DAE=∠DAE+∠ADE=90°,∴∠BAF=∠ADE,在△ABF和△DAE中,{∠BAF=∠ADE∠AFB=∠DEA=90°DA=AB,∴△ABF≌△DAE(AAS),∴BF=AE,AF=DE,∴AF+EF=BF.【解析】(1)根据正方形的四条边都相等可得DA=AB,再根据同角的余角相等求出∠BAF=∠ADE,然后利用“角角边”证明△ABF和△DAE全等,再根据全等三角形对应边相等可得BF=AE,AF=DE,然后根据图形列式整理即可得证;(2)根据题意作出图形,然后根据(1)的结论可得BF=AE,AF=DE,然后结合图形写出结论即可.本题考查了正方形的性质,全等三角形的判定与性质,勾股定理的应用,熟记正方形的四条边都相等,每一个角都是直角,然后求出三角形全等是解题的关键.15.【答案】(1)证明:∵AG//BD,BD=FG,∴四边形BGFD是平行四边形,∵CE⊥BD∴CE⊥AG,又∵BD为AC的中线,∴BD=DF=12AC,∴四边形BDFG是菱形;(2)解:∵四边形BDFG是菱形,∠ABC=90°,点D为AC的中点,∴GF=DF=12AC=5,∵CF⊥AG,∴AF=√AC2−CF2=√102−62=8,∴AG=AF+GF=8+5=13.【解析】(1)首先可判断四边形BDFG是平行四边形,再由直角三角形斜边中线等于斜边一半,可得BD=FD,则可判断四边形BDFG是菱形;(2)由菱形的性质求得GF=DF=12AC=5,由勾股定理得AF的长,继而求得AG的长.本题主要考查了菱形的判定与性质、直角三角形斜边的中线的性质以及勾股定理,注意掌握数形结合思想是解答此题的关键.16.【答案】①证明:∵四边形ABCD是正方形,∴OA=OB,AC⊥BD,∴∠BOE=∠AOF=90°,∴∠OEB+∠OBE=90°,∵AG⊥BE,∴∠AGE=90°,∴∠OEB+∠OAF=90°,∴∠OBE=∠OAF,在△BOE和△AOF中,{∠BOE=∠AOF OB=OA ∠OBE=∠OAF ,∴△BOE≌△AOF(ASA),∴OE=OF;②解:OE=OF还成立;理由如下:∵四边形ABCD是正方形,∴OA=OB,AC⊥BD,∴∠BOE=∠AOF=90°,∴∠OEB+∠OBE=90°,∵AG⊥BE,∴∠AGE=90°,∴∠OEB+∠OAF=90°,∴∠OBE=∠OAF,在△BOE和△AOF中,{∠BOE=∠AOF OB=OA ∠OBE=∠OAF ,∴△BOE≌△AOF(ASA),∴OE=OF.【解析】本题考查了正方形的性质、全等三角形的判定与性质有关知识.①由正方形的性质得出OA=OB,AC⊥BD,得出∠BOE=∠AOF=90°,由角的互余关系得出∠OBE=∠OAF,由ASA证明△BOE≌△AOF,得出对应边相等即可;②由正方形的性质得出OA=OB,AC⊥BD,得出∠BOE=∠AOF=90°,由角的互余关系得出∠OBE=∠OAF,由ASA证明△BOE≌△AOF,得出对应边相等即可.17.【答案】证明:(1)∵四边形ABCD是矩形,∴AB//DC、AD//BC,∴∠ABD=∠CDB,∵BE平分∠ABD、DF平分∠BDC,∴∠EBD=12∠ABD,∠FDB=12∠BDC,∴∠EBD=∠FDB,∴BE//DF,又∵AD//BC,∴四边形BEDF是平行四边形;(2)当∠ABE=30°时,四边形BEDF是菱形,∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°−∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,∴四边形BEDF是菱形.【解析】(1)由矩形可得∠ABD=∠CDB,结合BE平分∠ABD、DF平分∠BDC得∠EBD=∠FDB,即可知BE//DF,根据AD//BC即可得证;(2)当∠ABE=30°时,四边形BEDF是菱形,由角平分线知∠ABD=2∠ABE=60°、∠EBD=∠ABE=30°,结合∠A=90°可得∠EDB=∠EBD=30°,即EB=ED,即可得证.本题主要考查矩形的性质、平行四边形、菱形,熟练掌握矩形的性质、平行四边形的判定与菱形的判定是解题的关键.18.【答案】(1)证明:∵EF垂直平分BD,∴OB=OD,∵四边形ABCD为平行四边形,∴AD//BC,∴∠EDO=∠FBO,∠DOE=∠BOF,∴△DOE≌△BOF(ASA),∴OE=OF,∴四边形AFCE为菱形;(2)解:∵BD=8,∴OD=4且ED=5,∴EO=3,∴S菱形BFDE =12BD×EF=EO·BD=3×8=24.【解析】本题主要考查平行四边形的性质、垂直平分线的性质,全等三角形的判定与性质以及菱形的判定与性质.(1)先证明△DOE≌△BOF,得出OE=OF,再根据EF垂直平分BD,可得出四边形BFDE 为菱形;(2)根据勾股定理可得出OE的长,根据菱形的面积求解即可.19.【答案】(1)证明∵四边形ABCD是平行四边形(已知),∴BC//AD(平行四边形的对边相互平行),∴∠ADE=∠CBD,AD=BC又∵AM丄BC(已知),∴AM⊥AD;∵CN丄AD(已知),∴AM//CN,∴AE//CF;在△ADE和△CBF中,{∠DAE=∠BCF AD=CB∠ADF=∠CBE∴△ADE≌△CBF(ASA),∴AE=CF(全等三角形的对应边相等),∴四边形AECF为平行四边形(对边平行且相等的四边形是平行四边形);(2)如图,连接AC交BF于点0,当四边形AECF为菱形时,则AC与EF互相垂直平分,∵BO=OD(平行四边形的对角线相互平分),∴AC与BD互相垂直平分,∴▱ABCD是菱形(对角线相互垂直平分的平行四边形是菱形),∴AB=BC(菱形的邻边相等);∵M是BC的中点,AM丄BC(已知),∴AB=AC(等腰三角形的性质),∴△ABC为等边三角形,∴∠ABC=60°,∠CBD=30°.【解析】(1)根据平行四边形的性质、垂直的定义、平行线的判定定理可以推知AE//CF;然后由全等三角形的判定定理ASA推知△ADE≌△CBF;最后根据全等三角形的对应边相等知AE=CF,所以一组对边平行且相等的四边形是平行四边形;(2)根据M是BC的中点,AM丄BC(已知),可证明△ABC为等边三角形,然后根据三线合一定理即可求解.本题综合考查了全等三角形的判定与性质、菱形的判定与性质以及等边三角形的判定与性质等知识点.20.【答案】解:(1)∵四边形ABCD是矩形,∴AB//CD,∴∠DCE=∠CEB,∵EC平分∠DEB,∴∠DEC=∠CEB,∴∠DCE=∠DEC,∴DE=DC;(2)如图,连接DF,∵DE=DC,F为CE的中点,∴DF⊥EC,∴∠DFC=90°,在矩形ABCD中,AB=DC,∠ABC=90°,∴BF=CF=EF=12EC,∴∠ABF=∠CEB,∵∠DCE=∠CEB,∴∠ABF=∠DCF,在△ABF和△DCF中,{BF=CF∠ABF=∠DCF AB=DC,∴△ABF≌△DCF(SAS),∴∠AFB=∠DFC=90°,∴AF⊥BF;(3)CE=4√7.理由如下:∵AF⊥BF,∴∠BAF+∠ABF=90°,∵EH//BC,∠ABC=90°,∴∠BEH=90°,∴∠FEH+∠CEB=90°,∵∠ABF=∠CEB,∴∠BAF=∠FEH,∵∠EFG=∠AFE,∴△EFG∽△AFE,∴GFEF =EFAF,即EF2=AF⋅GF,∵AF⋅GF=28,∴EF=2√7,∴CE=2EF=4√7.【解析】(1)根据平行线的性质以及角平分线的定义,即可得到∠DCE=∠DEC,进而得出DE=DC;(2)连接DF,根据等腰三角形的性质得出∠DFC=90°,再根据直角三角形斜边上中线的性质得出BF=CF=EF=12EC,再根据SAS判定△ABF≌△DCF,即可得出∠AFB=∠DFC=90°,据此可得AF⊥BF;(3)根据等角的余角相等可得∠BAF=∠FEH,再根据公共角∠EFG=∠AFE,即可判定△EFG∽△AFE,进而得出EF2=AF⋅GF=28,求得EF=2√7,即可得到CE=2EF= 4√7.本题属于四边形综合题,主要考查了矩形的性质、全等三角形的判定与性质、相似三角形的判定与性质、等腰三角形的性质以及直角三角形的性质的综合应用,解决问题的关键是作辅助线,构造全等三角形.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.。

中考数学四边形专题训练50题含参考答案

中考数学四边形专题训练50题含参考答案

中考数学四边形专题训练50题含答案(单选、填空、解答题)一、单选题1.如图,已知1234290∠+∠+∠+∠=︒,那么5∠的大小是( )A .60︒B .70︒C .80︒D .90︒ 2.在▱ABCD 中,∠A ,∠B 的度数之比为4∠5,则∠C 的度数为( )A .60°B .80°C .100°D .120° 3.如图,在菱形ABCD 中,60A ∠=︒,4AB =,O 为对角线BD 的中点,过O 作OE AB ⊥,垂足为E ,则BE 的长为( )A .1B .2C .3D .4 4.如图,四边形ABCD 和四边形AEFC 是两个矩形,点B 在EF 边上,若1AB =,2AC =,则矩形AEFC 的面积为( )A .2 BC .D .32 5.已知∠ABCD 相邻两个内角的比为2:3,则其中较大的内角是( ) A .60° B .72° C .120°D .108°6.如图,将长方形ABCD 沿对角线BD 折叠,使点C 落在点C ′处,BC ′交AD 于E ,AD =8,AB =4,则重叠部分(即BDE △)的面积为( )A .6B .7.5C .10D .207.如图,在矩形ABCD 中,6cm,8cm AB BC ==,点E 是BC 的中点,点F 是边CD 上一动点,当AEF △的周长最小时,则DF 的长为( )A .1B .2C .3D .48.如图,在四边形ABCD 中,110C ∠=︒,与BAD ∠,ABC ∠相邻的外角都是120°,则α∠的值为( )A .50°B .55°C .60°D .65° 9.如图,点E 为正方形ABCD 外一点,且ED CD =,连接AE ,交BD 于点F .若38CDE ∠=︒,则BFC ∠的度数为( )A .71︒B .72︒C .81︒D .82︒ 10.在平行四边形ABCD 中,点E 在DC 边上,连接AE ,交BD 于点F ,若DE ∠EC =3:2,则∠DEF 的面积与∠BAF 的面积之比为( )A.3:5B.9:4C.9:25D.3:211.如图,四边形ABCD是正方形,直线a、b、c分别经过A、D、C三点,且a b c∥∥.若a与b之间的距离是2,b与c之间的距离是3,则正方形ABCD的面积是()A.12B.13C.14D.1512.如图,在∠ABC中,点D在边BC上,过点D作DE∠AC,DF∠AB,分别交AB,AC于E,F两点.则下列说法不正确的是()A.四边形AEDF是平行四边形B.若∠B+∠C=90°,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若BD=AD=DC,则四边形AEDF是矩形13.小明在计算某多边形的内角和时,由于马虎漏掉了一个角,结果得到970°,则原多边形是一个()A.七边形B.八边形C.九边形D.十边形14.如图,在菱形ABCD中,对角线AC,BD相交于点O,AC=6,BD=8,点E是AD边的中点,连接OE,则OE的长为()A.10B.52C.5D.415.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形中满足条件的是()∠平行四边形;∠菱形;∠任意四边形;∠对角线互相垂直的四边形A.∠∠B.∠∠C.∠∠D.∠∠16.如图,已知点O为∠ABC的AC边上的中点,连接BO并延长到D,使得OD=OB,要使四边形ABCD为矩形,∠ABC中需添加的条件是()A.AB=BC B.∠ABC=90°C.∠BAC=45°D.∠BCA=45°17.如图,在矩形ABCD中,AB=10,BC=12,点M,N分别在AD,BC上,且=,3AM BN=,E为BC边上一动点,连接DE,将DCEAD AM∆沿DE所在直线折叠得到∠DC E',当C'点恰好落在线段MN上时,NE的长为()A.B.5C.3D.18.如图,菱形ABCD中,∠ABC=60°,AB=4,对角线AC、BD交于点O,E是线段BO上一动点,F是射线DC上一动点,若∠AEF=120°,则线段EF的长度的整数值的个数有()A.1个B.2个C.3个D.4个19.如图,正方形ABCD边长为4,E,F分别为线段AD,BC上一点,且1AE=,CF=,AC与DF相交于H,I为线段AH上一点(不与端点重合),J为线段DH上1+的最小值为()一点(不与端点重合),则EI IJA B C D二、填空题20.如图,已知点A的坐标是(-2),点B的坐标是(1-,,菱形ABCD的对角线交于坐标原点O,则点D的坐标是______.21.如图,在矩形ABCD中,对角线AC,BD交于点O,过点A作EA∠CA交DB的延长线于点E,若AB=3,BC=4,则OAAE的值为__________.22.如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,若∠E=20°,则∠ADB=______.23.如图,□ABCD的对角线交于点O,且AB=4,∠OCD的周长为13,则□ABCD的两条对角线长度之和为________.24.一个多边形的内角和等于它外角和的7倍,则这个多边形的边数为_________. 25.如图,在矩形ABCD 中,5AB =,7BC =,点E 为BC 上一动点,把ABE 沿AE 折叠,当点B 的对应点B '落在ADC ∠或DAB ∠的角平分线上时,则点B '到BC 的距离为______________.26.如图,在平行四边形ABDC 中,点M 是CD 的中点,AM 与BC 相交于点N ,那么:ACN S △S 四边形BDMN 等于_______.27.如图,在周长为16,面积为6的矩形纸片ABCD 中,E 是AD 的中点.F 是AB 上一动点,将AEF ∆沿直线EF 折叠,点A 落在点'A 处.在EF 上任取一点G ,连接'GA ,GC ,则'A G GC +的最小值为___________.28.如图,∠ABC 中∠ACB =90°,BC =2,AC =4,若正方形DEFG 的顶点D 在AB 上,顶点F 、G 都在AC 上,射线AE 交BC 边于点H ,则CH 长为___.29.如图,在矩形ABCD 中,AB =6,AD =10,H 是CD 边上一点,现将BCH ∆沿BH 折叠,点C 的对应点C '正好落在AD 边上,点E 、F 分别是AD 、BH 边上的动点,再将四边形ABHD 沿EF 折叠,若点A 的对应点A '正好落在线段BH 上,且4BA HA ''=,则线段AE 的长为______.30.如图,在矩形ABCD 中,6cm AB =,BC =,点P 从点A 出发沿AB 以2cm /s 的速度向点B 移动,若出发t 秒后,2PA PC =,则t =_________秒.31.如图,已知菱形ABCD 的对角线AC=2,∠BAD=60°,BD 边上有2013个不同的点122013,,,p p p ⋯,过(1,2,,2013)i p i =⋯作i i PE AB ⊥于i E ,i i PFAD ⊥于i F ,111122222013201320132013PE PF P E P F P E P F ++++⋯++的值为_______________32.“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”,图∠是由边长10cm 的正方形薄板分成7块制作成的“七巧板”图∠是用该“七巧板”拼成的一个“家”的图形,该“七巧板”中7块图形之一的正方形边长为_______cm (结果保留根号).33.在面积为15的平行四边形ABCD 中,过点A 作AE 垂直于直线BC 于点E ,作AF 垂直于直线CD 于点F ,若AB =5,BC =6,则CE +CF 的值为_________________. 34.在菱形ABCD 的纸板中画O ,随意向其投掷一枚飞镖.若4AB =,60A ∠=,则飞镖落在O 中的概率的最大值为______.35.如图,在ABC ∆中,D 为BC 边中点,P 为AC 边中点,E 为BC 上一点且27BE CE =,连接AE ,取中点Q 并连接QD ,取QD 中点G ,延长PG 与BC 边交于点H ,若9BC =,则HE =_________.36.如图所示,AE 是▱ABCD 的∠DAB 的平分线,且交BC 于点E ,EF ∠AB 交AD 于点F ,则四边形ABEF 一定是____________.37.如图,在矩形ABCD 中,点M 在AB 边上,把∠BCM 沿直线CM 折叠,使点B 落在AD 边上的点E 处,连接EC ,过点B 作BF ∠EC ,垂足为F ,若2CD =,4CF =,则线段AE 的长为______.38.如图,在矩形ABCD 中,3AB =,BC a =,点E 在边BC 上,且3.5BE a =连接AE ,将ABE 沿AE 折叠,若点B 的对应点B '落在矩形ABCD 的边上,则a 的值为______ .39.如图,Rt∠ABC ,AB =3,AC =4,点D 在以C 为圆心3为半径的圆上,F 是BD 的中点,则线段AF 的最大值是_____.三、解答题40.如图,四边形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别在线段OA ,OC 上,且OB OD =,12∠=∠,AE=CF .(1)证明;BEO DFO ≌;(2)证明:四边形ABCD 是平行四边形.41. 如图.在Rt ∠ABC 中,∠B =90°,AC =60cm ,∠A =60°,点D 从点A 出发沿AC 方向以4cm ∕秒的速度向点C 匀速运动,同时点E 从点B 出发沿BA 方向以2cm ∕秒的速度向点A 匀速运动,设点D 、E 运动的时间是t 秒(0<t <15),过点D 作DF ∠BC 于点F ,连接DE 、EF .(1)求证:四边形AEFD 是平行四边形;(2)当t 为何值时,动点D 恰好在AF 的垂直平分线上;(3)点D 、F 在运动过程中是否存在t 的值,使∠DEF 是直角三角形,若存在求出t 的值,若不存在,说明理由.42.如图,在Rt ABC 中,90ACB ∠=︒,D ,E 分别是AB ,AC 的中点,连接CD ,过点E 作EF ∥CD ,交BC 的延长线于点F .(1)求证:四边形DCFE 是平行四边形;(2)若四边形DCFE 的周长是18,AC 的长为6,求线段AB 、 BC 的长.43.知:如图,n 边形12345n A A A A A A .(1)求证:n 边形12345n A A A A A A 的内角和等于()2180n -⋅︒;(2)在一个各内角都相等的多边形中,每一个内角都比相邻的外角的3倍还大20°,求这个多边形的内角和;(3)粗心的小明在计算一个多边形的内角和时,误把一个外角也加进去了,得其和为1180°,这个多加的外角度数为 ,多边形的边数为 .44.如图,在ABCD 中,对角线AC ,BD 交于点O ,E 是AD 上任意一点,连接EO 并延长,交BC 于点F ,连接AF ,CE .(1)求证:四边形AFCE 是平行四边形;(2)若60DAC ︒∠=,15ADB ∠=°,4AC =.∠直接写出ABCD 的边BC 上的高h 的值;∠当点E 从点D 向点A 运动的过程中,下面关于四边形AFCE 的形状的变化的说法中,正确的是A .平行四边形→矩形→平行四边形→菱形→平行四边形B .平行四边形→矩形→平行四边形→正方形→平行四边形C .平行四边形→菱形→平行四边形→菱形→平行四边形D .平行四边形→菱形→平行四边形→矩形→平行四边形45.如图,在∠ABC 中,AB =AC ,D 为BC 中点.四边形ABDE 是平行四边形.求证:四边形ADCE 是矩形46.已知正方形OABC 在直角坐标系中(如图),A (1,﹣3),求点B 、C 的坐标.47.如图1,四边形ABCD 是正方形,G 是CD 边上的一个动点(点G 与C 、D 不重合),以CG 为一边在正方形ABCD 外作正方形CEFG ,连结BG ,DE .(正方形四条边都相等,四个角都是直角)1.我们探究下列图中线段BG 、线段DE 的长度关系及所在直线的位置关系:(1)猜想图1中线段BG 和线段DE 的长度和位置关系:______________.(2)将图1中的正方形CEFG 绕着点C 按顺时针(或逆时针)方向旋转任意角度a ,得到如图2.如图3情形.请你通过观察、测量等方法判断上述猜想是否仍然成立:_______(成立、不成立)若成立,请你选取图2或图3中的一种情况说明你的判断.48.在矩形ABCD 中,点P 是射线BC 上一动点,点B 关于直线AP 的对称点为E ,直线PE 与直线CD 交于点F .(1)如图1,当A ,C ,E 共线时,若30ACB ∠=︒,判断∠ACF 的形状,并证明;(2)若当点P 在线段BC 上的某个位置时(不与B ,C 重合),有45PAF ∠=︒,求证:当点P 在BC 延长线上任意位置时,都有45PAF ∠=︒.49.【教材呈现】下图是华师版数学教材的部分内容探索如图24.2.1,画Rt ABC ,并画出斜边AB 上的中线CD ,量一量,看看CD 与AB 有什么关系.相信你与你的伙伴一定会发现:CD 恰好是AB 的一半,下面让我们演绎推理证明这一猜想.已知:如图24.2.2,在Rt ABC ,90ACB ∠=,CD 是斜边AB 上的中线.求证:12CD AB =.【证明】请根据教材图24.2.2的提示,完成直角三角形的性质“直角三角形斜边中线等于斜边一半”的证明【延伸】如图∠,在四边形ABCD 中,90ADC ∠=︒,AB AC =,点E 、F 分别为AC ,BC 的中点,连结EF 、DE ,则线段DE 与EF 的数量关系是___________.【应用】(1)如图∠,在【延伸】的条件下,当AC 平分BAD ∠,90DEF ∠=时,则BAD ∠的大小为______.(2)如图∠,在【延伸】的条件下,当2AB =,四边形CDEF 是菱形时,直接写出四边形ABCD 的面积.参考答案:1.B【分析】根据多边形外角和为360︒度进行求解即可.【详解】解:∠1234290∠+∠+∠+∠=︒,12345360∠+∠+∠+∠+∠=︒,∠()5360123470=︒-∠+∠+∠+∠=︒∠,故选B .【点睛】本题主要考查了多边形外角和,熟知多边形外角和为360︒是解题的关键. 2.B【分析】根据平行四边形邻角互补,即可将角A 和角B 的度数求出,再利用对角相等即可求出角C.【详解】∠四边形ABCD 为平行四边形,∠∠A+∠B=180°,∠∠A ,∠B 的度数之比为4∠5 ∠∠A=180°49⨯=80°, 即∠C=80°,故选B.【点睛】本题考查了平行四边形的性质,属于简单题,熟悉平行四边形的性质是解题关键. 3.A【分析】先求出OB 的长和∠BOE 的度数,再根据30°角所对的直角边等于斜边的一半,即可求出BE 的值.【详解】解:在菱形ABCD 中,AB =AD ,60A ∠=︒,ABD ∴是等边三角形,4BD AB ∴==,O 为BD 的中点,122OB BD ∴==, 60OE AB ABD ⊥∠=︒,,30BOE ∴∠=︒,112BE OB ∴==. 故选A .【点睛】本题考查了等边三角形的判定和直角三角形30°角所对的直角边等于斜边的一半,熟练掌握等边三角形的判定和直角三角形30°角所对的直角边等于斜边的一半是解题的关键.4.B【分析】根据勾股定理可求出BC 的长度,再求解∠ACB 的度数,进而求出CF 的长度,最后用矩形面积公式求解即可.【详解】∠四边形ABCD 和四边形AEFC 是两个矩形,∠∠ABC =90°,在Rt ∠ABC 中,由勾股定理可得:BC连接BD 交AC 于点O ,∠四边形AEFC 是矩形,∠BD =AC =2,∠CO =DO =12BD =1, ∠CD =1,∠∠CDO 为等边三角形,∠∠ACD =60°,∠∠ACB =30°,∠四边形AEFC 是矩形,∠AC EF ∥,∠∠CBF =∠ACB =30°,∠CF =12BC∠矩形AEFC 的面积=AC ×CF故选:B 【点睛】本题主要考查了矩形的性质,含有30°角的直角三角形,等边三角形的判定与性质,以及勾股定理,熟练地掌握相关内容是解题的关键.5.D【分析】根据平行四边形邻角互补的性质及题意,可得出较大内角的度数.【详解】解:∠平行四边形ABCD∠相邻内角和为108o∠相邻内角的比为2:3∠较大内角度数是:3180=1085o o ⨯ 故答案是:D.【点睛】本题主要考查平行四边形邻角互补,准确应用平行四边形的性质是解题的关键. 6.C【分析】由折叠结合矩形的性质先证明,BE DE =设,BE DE x == 则8,AE x =- 再利用勾股定理求解,x 从而可得BDE △的面积. 【详解】解: 长方形ABCD ,8,4,AD AB ==//,AD BC ∴,ADB CBD ∴∠=∠由对折可得:,CBD C BD '∠=∠,ADB C BD '∴∠=∠,BE DE ∴=设,BE DE x == 则8,AE x =-由222,BE AB AE =+()22248,x x ∴=+-1680,x ∴=5,x ∴= 5,DE BE ∴==115410.22BDE S DE AB ∴==⨯⨯=故选:.C【点睛】本题考查的是矩形与折叠问题,勾股定理的应用,矩形的性质,掌握以上知识是解题的关键.7.D【分析】作点E 关于直线CD 的对称点E',连接AE'交CD 于点F ,再根据CE F BE A ∽即可求出CF 的长,进而得出DF 的长.【详解】解:如图所示:作点E 关于直线CD 的对称点E',连接AE'交CD 于点F ,此时,∠AEF 的周长最小, ∠在矩形ABCD 中,AB =6,BC = 8,点E 是BC 中点,∠'4BE CE CE ,∠CF AB ∥,∠CE F BE A ''∽, ∠CE CF BE AB ='' ,即4846CF , 解得:2CF =, ∠624DF CD CF ;故选:D .【点睛】本题考查的是轴对称最短路线问题及相似三角形的判定与性质,根据题意作出E 点关于直线CD 的对称点E',再根据轴对称的性质求出CE'的长,利用相似三角形的对应边成比例即可得出结论,熟练应用轴对称和相似的判定与性质相关知识解决问题是解题的关键.8.A【分析】先求出∠ABC =∠BAD =60°,再根据四边形的内角和等于360°,可得∠ADC =130°,即可求解.【详解】解:∠与BAD ∠,ABC ∠相邻的外角都是120°, ∠∠ABC =∠BAD =60°,∠∠ADC =360°-∠ABC -∠BAD -∠BCD =130°,∠18050ADC ∠=︒-∠=︒α.故选:A.【点睛】本题主要考查了四边形的内角和定理、邻补角,熟练掌握四边形的内角和等于360°是解题的关键.9.A【分析】根据正方形的性质,得AD CD =,90ADC ∠=︒,得45ADB CDB ∠=∠=︒;根据ED CD =,得AD DE =;根据等边对等角,38CDE ∠=︒,可求出DAE ∠;根据三角形的内角和,得AFD ∠;根据ADF △和CDF 全等,得AFD CFD ∠=∠,即可求出BFC ∠的角度.【详解】∠四边形ABCD 正方形∠AD CD =,90ADC ∠=︒∠45ADB CDB ∠=∠=︒∠ED CD =∠AD DE =∠DAE DEA ∠=∠∠38CDE ∠=︒∠9038128ADE ∠=︒+︒=︒∠26DAE DEA ∠=∠=︒∠在ADF △中,180DAF AFD ADF ∠+∠+∠=︒∠2645180AFD ︒+∠+︒=︒∠109AFD ∠=︒∠在ADF △和CDF 中AD CD ADF CDF DF DF =⎧⎪∠=∠⎨⎪=⎩∠ADF CDF ≅∠109AFD CFD ∠=∠=︒∠180180109BFC AFD ∠=︒-∠=︒-︒故选:A.【点睛】本题考查正方形和三角形的知识,解题的关键是掌握正方形的性质,全等三角形的性质和判定,等边对等角.10.C【分析】先判断∠DEF∠∠BAF,根据相似三角形的面积比等于相似比的平方计算即可.【详解】解:∠四边形ABCD是平行四边形,∠DC∠AB,DC=AB,∠∠DEF∠∠BAF,∠2DEFBAFS DES AB⎛⎫= ⎪⎝⎭.又∠DE:EC=3:2,∠3==5 DE DE DEAB DC DE EC=+,∠2239==525 DEFBAFS DES AB⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭△△.故选C.【点睛】本题考查平行四边形的性质、相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.11.B【分析】先作辅助线AE∠直线b于点E,CF∠直线b于点F,然后根据题目中的条件,可以证明△AED和△DFC全等,即可得到DF=AE,然后根据勾股定理,即可得到CD的长,从而可以得到正方形ABCD的面积.【详解】解:作AE∠直线b于点E,作CF∠直线b于点F,则AE=2,CF=3,∠四边形ABCD是正方形,∠AD =DC ,∠ADC =90°,∠∠ADE +∠CDF =90°,∠AE ∠直线b ,CF ∠直线b ,∠∠AED =∠DFC =90°,∠∠ADE +∠DAE =90°,∠∠DAE =∠CDF ,在△AED 和△DFC 中,AED DFC DAE CDF AD DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠AED ∠∠DFC (AAS ),∠AE =DF ,∠AE =2,CF =3,∠CFD =90°,∠DF =2,∠CD∠正方形ABCD13,故选:B .【点睛】本题考查正方形的性质、全等三角形的判定与性质、勾股定理,平行线之间的距离,解答本题的关键是明确题意,利用数形结合的思想解答.12.C【分析】根据平行四边形、矩形及菱形的判定方法分别判断后即可确定正确的选项.【详解】解:∠DE ∠AC ,DF ∠AB ,∠四边形AEDF 是平行四边形,故A 选项正确;∠四边形AEDF 是平行四边形,∠B +∠C =90°,∠∠BAC =90°,∠四边形AEDF 是矩形,故B 选项正确;若BD =CD ,则四边形AEDF 是平行四边形,不一定是菱形,故C 选项错误;∠BD =AD =DC ,∠∠DBA =∠DAB ,∠DAC =∠DCA ,∠∠DAB +∠DAC =90°,即∠BAC =90°,∠四边形AEDF 是矩形,故选C .【点睛】本题考查了命题与定理的知识,解题的关键是了解平行四边形、矩形及菱形的判定方法,难度不大.13.B【分析】根据n 边形的内角和是(n -2)•180°,少计算了一个内角,结果得970度.则内角和(n -2)•180°与970°的差大于0度,且(n -2)•180°小于970°+180°.因而可以解不等式()9702180970180n <-⨯<+,多边形的边数n 一定是最小的整数值即可.【详解】解:设多边形的边数是n ,依题意有:()9702180970180n <-⨯<+ 解得:77781818n <<, ∠则多边形的边数n =8;故选B .【点睛】本题主要考查了多边形的内角和定理,正确确定多边形的边数是解题的关键. 14.B【分析】根据菱形的性质得到OA =12AC =3,OD =12BD =4,AC ∠BD ,利用勾股定理求出AD ,再根据直角三角形斜边中线的性质求出OE 即可.【详解】∠四边形ABCD 为菱形,∠OA =12AC =3,OD =12BD =4,AC ∠BD ,∠AD 5,∠点E 是边AD 的中点,∠OE =12AD =52, 故选:B .【点睛】此题考查了菱形的性质,勾股定理,直角三角形斜边中线的性质,熟记菱形的性质是解题的关键.15.D【分析】根据中点四边形为平行四边形,当四边形的对角线互相垂直时则平行四边形为矩形,即可得到答案.【详解】解:顺次连接一个四边形的各边中点,得到的四边形是平行四边形,若四边形的对角线互相垂直,则所得平行四边形为矩形,则满足条件的是∠∠, 故选:D .【点睛】此题考查中点四边形的判定,矩形的判定,熟记判定定理是解题的关键. 16.B【分析】由题意可证四边形ABCD 是平行四边形,由矩形的判定可求解.【详解】解:∠点O 为∠ABC 的AC 边上的中点,∠AO =CO ,且OD =OB ,∠四边形ABCD 是平行四边形,∠有一个角为直角的平行四边形是矩形,对角线相等的平行四边形是矩形,∠添加条件为∠ABC =90°,故选B .【点睛】本题考查了矩形的判定,平行四边形的判定,熟练掌握矩形的判定是本题的关键.17.A【分析】设CE =x ,则C ′E =x ,证明四边形MNCD 是矩形,由矩形的性质得出∠DMN =∠MNC =90°,MN =CD =10,由折叠的性质得出C ′D =CD =10,求出6MC '=,则4NC '=,在Rt NEC '中,由勾股定理得出222(8)4x x --=,解方程可得出答案.【详解】解:设CE =x ,则C ′E =x ,∠矩形ABCD 中,AB =10,∠CD =AB =10,AD =BC =12,AD∥BC ,∠点M ,N 分别在AD ,BC 上,且3AM =AD ,BN =AM ,∠DM =CN =8,∠四边形CDMN 为平行四边形,∠∠NCD =90°,∠四边形MNCD 是矩形,∠∠DMN =∠MNC =90°,MN =CD =10,由折叠知,C ′D =CD ,10,∠6MC '==,∠1064CN '=-=,∠EN =CN -CE =8-x ,∠C ′E 2-NE 2=C ′N 2,∠222(8)4x x --=,解得,5x =,即853NE CN CE =-=-=.故选:C .【点睛】本题主要考查了矩形的性质与判定,勾股定理,一元一次方程的应用,折叠的性质,熟练掌握折叠的性质是解题的关键.18.C【分析】连结CE ,根据菱形的性质和全等三角形的判定可得∠ABE ∠∠CBE ,根据全等三角形的性质可得AE =CE ,设∠OCE =a ,∠OAE =a ,∠AEO =90°﹣a ,可得∠ECF =∠EFC ,根据等角对等边可得CE =EF ,从而得到AE =EF ,在Rt∠ABO 中,根据含30°的直角三角形的性质得到AO =2,可得2≤AE ≤4,从而得到EF 的长的整数值可能是2,3,4.【详解】解:如图,连结CE,∠在菱形ABCD 中,AB =BC ,∠ABE =∠CBE =30°,BE =BE ,∠∠ABE ∠∠CBE ,∠AE =CE ,设∠OCE =a ,∠OAE =a ,∠AEO =90°﹣a ,∠∠DEF =120°﹣(90°﹣a )=30°+a ,∠∠EFC =∠CDE +∠DEF =30°+30°+a =60°+a ,∠∠ECF=∠DCO+∠OCE=60°+a,∠∠ECF=∠EFC,∠CE=EF,∠AE=EF,∠AB=4,∠ABE=30°,∠在Rt∠ABO中,AO=2,∠OA≤AE≤AB,∠2≤AE≤4,∠AE的长的整数值可能是2,3,4,即EF的长的整数值可能是2,3,4.故选C.【点睛】考查了菱形的性质,全等三角形的判定与性质,等角对等边,根据含30°的直角三角形的性质,解题的关键是添加辅助线,证明∠ABE∠∠CBE.19.C有最小值,如下【分析】作点E关于AC的对称点K,EI+IJ=KI+KJ,当EJ∠DF时EI IJ图所示,延长KJ交DC于N点,过N作NM∠AD,得到∠KMN∠∠FCD,再由∠DJ0N∠∠DCF求出J0N,最后KN减去J0N即为所求.【详解】解:如图,作点E关于AC的对称点K,当EJ∠DF时EI+IJ有最小值为KJ0,此时设KN与DF、CD的交点分别为J0和N点,过N点作MN∠AD交AB于点M.∠∠KND+∠FDC=90°,∠DFC+∠FDC=90°∠∠KND=∠DFC又∠AB∠CD∠∠MKN=∠KND=∠DFC在∠MKN 和∠CFD 中90∠=∠⎧⎪∠=∠=⎨⎪=⎩MKN CFD KMN FCD MN DC ,∠∠MKN∠∠CFD(AAS)∠1,112=====+=KM CF KN DF DN AM ,又∠DJ 0N∠∠DCF ∠0=J N DN CF DF,代入数据:01J N,得0J∠00=-==KJ KN J N 故答案为:C.【点睛】本题考查了正方形的性质、相似三角形的性质和判定、线段最值问题等,两条折线段的最值问题一般通过平移、对称等转移到一条线段上去,然后再根据两点之间线段最短或点到直线的距离垂线段最短求解即可.20.(1【分析】根据菱形具有的平行四边形基本性质,对角线互相平分,且交点为坐标原点,则B ,D 关于原点对称, 因此在直角坐标系中两点的坐标关于原点对称,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数便可得.【详解】∠四边形ABCD 是菱形,对角线相交于坐标原点O∠根据平行四边形对角线互相平分的性质,A 和C ; B 和D 均关于原点O 对称 根据直角坐标系上一点(),x y 关于原点对称的点为()--x,y 可得已知点B的坐标是(-1, ,则点D的坐标是( .故答案为:(.【点睛】本题旨在考查菱形的基本性质及直角坐标系中关于原点对称点的坐标的知识点,熟练理解掌握该知识点为解题的关键.21.724 【分析】过点A 作AH BD ⊥于点H ,分别利用勾股定理和等面积法求出AH 和OH 的长度,从而可结合正切函数求出tan AOE ∠,进而结合题意可得出AE AO,即可得出结论.【详解】解:在Rt ABC 中,∠3,4AB BC ==,∠5AC =, ∠115222AO AC BD ===, 如解图,过点A 作AH BD ⊥于点H , ∠1122ABD S BD AH AB AD =⋅=⋅, ∠534AH =⨯, ∠125AH =,∠在Rt AOH 中,710OH ==, ∠tan 247AH OH AOE ==∠, 又∠EA CA ⊥,∠在Rt EAO △中,tan 247AE AO AOE ==∠, ∠724AO AE =, 故答案为:724.【点睛】本题考查矩形的性质,正切函数的定义等,理解矩形的基本性质,掌握正切函数的定义是解题关键.22.40°【分析】连接AC ,由矩形性质可得∠E =∠DAE 、BD =AC =CE ,知∠E =∠CAE ,而∠E =20°,可得∠ADB 度数.【详解】解:连接AC ,∠四边形ABCD是矩形,∠AD∠BE,AC=BD,且∠E=20°,∠∠E=∠DAE,又∠BD=CE,∠CE=CA,∠∠E=∠CAE,∠∠ADB=∠CAD=∠CAE+∠DAE=2∠E=40°,故答案为:40°.【点睛】本题主要考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.23.18【详解】由平行四边形的性质和已知条件计算即可,解题注意求平行四边形ABCD的两条对角线的和时要把两条对角线看作一个整体.解:∠四边形ABCD是平行四边形,∠AB=CD=4,∠∠OCD的周长是13,∠OD+OC=13-4=9,∠BD=2DO,AC=2OC,∠平行四边形的两条对角线的和=BD+AC=2(DO+OC)=18故选A.“点睛”本题主要考查了平行四边形的基本性质,并利用性质解题.平行四边形的基本性质:∠平行四边形两组对边分别平行;∠平行四边形两组对边分别相等;∠平行四边形的两种对角分别相等;∠平行四边形的对角线互相平分.24.16【详解】设多边形的边数为n,依题意,得:(n−2)⋅180°=7×360°,解得n=16,故答案为16.25.2或1或52- 【分析】过点B '作B M AD '⊥于M ,延长MB '交BC 于点H ,则MH BC ⊥于点H ,则MH BC ⊥,5MH AB ==,分点B 的对应点B '落在ADC ∠的角平分线上和点B 的对应点B '落在DAB ∠的角平分线两种情况,利用勾股定理列方程,即可求得答案. 【详解】解:四边形ABCD 是矩形,5,7,90,AB CD AD BC ADC AD BC ∥,过点B '作B M AD '⊥于M ,延长MB '交BC 于点H ,则MH BC ⊥于点H ,则MH BC ⊥,5MH AB ==,∠当点B 的对应点B '落在ADC ∠的角平分线上时,连接B D ',45,ADB MB D,DM B M∠设DM B M x '==,则7AM x =-,又由折叠的性质知5AB AB '==,∠在直角AMB '△中,由勾股定理得到:222AM AB B M ,即()22275x x -=-, 解得:1234,x x ==,则点B '到BC 的距离为532MH B M '-=-=或541MH B M '-=-=.∠当点B 的对应点B '落在DAB ∠的角平分线上时,45,B AMMB A ,AM B M∠设AM m B M '==,又由折叠的性质知5AB AB '==,∠在直角AMB '△中,由勾股定理得到:222AB AM B M ,即2225m m =+,解得:12m m ==(不合题意,舍去),则点B '到BC 的距离为5MH B M '-=-故答案为:2或1或5- 【点睛】本题考查的是翻折变换的性质、勾股定理、矩形的性质、解一元二次方程等知识点,掌握翻折变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.26.2:5【详解】试题分析:根据平行四边形的性质可得∠ABN∠∠MCN ,再结合点M 是CD 的中点,根据相似三角形的性质及三角形的面积公式求解即可.∠平行四边形ABDC∠∠ABN∠∠MCN∠点M 是CD 的中点∠AN=2MN∠∠CAN 的面积是∠MCN 的面积的2倍,∠BCD 的面积是∠MCN 的面积的6倍 ∠四边形BDMN 是∠MCN 的面积的5倍∠:ACN BDMN S S ∆四边形=2:5.考点:平行四边形的性质,相似三角形的判定和性质,三角形的面积公式点评:平行四边形的性质是初中数学的重点,贯穿于整个初中数学的学习,是中考常见题,一般难度不大,需熟练掌握.27.【分析】连接AC 交EF 于H ,连接A ′H ,当点G 与点H 重合时,此时A 'G +GC 的值最小,由勾股定理求出AC 的长,则可得出答案.【详解】解:连接AC 交EF 于H ,连接A ′H ,当点G 与点H 重合时,此时A 'G +GC 的值最小,设AB =x ,BC =y ,∠矩形ABCD 的周长为16,面积为6,∠2()166x y xy +=⎧⎨=⎩, ∠22x y +52=,∠AC ==∠A 'G +GC 的最小值为故答案为:【点睛】本题考查翻折变换,矩形的性质,轴对称最短问题等知识,解题的关键是学会用转化的思想思考问题.28.43【分析】根据题意可知1tan =2BC DG BAC AC AG ==∠,tan =EF CH HAC AF AC=∠再利用正方形的性质求解即可.【详解】解:∠四边形DEFG 是正方形,∠DG=G F =EF ,∠DGF =∠EF A =90°,∠∠DGA =90°, ∠tan =DG BAC AG ∠,tan =EF HAC AF ∠ ∠∠ACB =90°,BC =2,AC =4, ∠1tan ==2BC BAC AC ∠,tan =CH HAC AC ∠ ∠1tan =2BC DG BAC AC AG==∠, ∠2AG DG =,∠3=3AF DG EF = ∠1tan =3EF CH HAC AF AC ==∠, ∠433AC CH ==, 故答案为:43【点睛】本题主要考查了正方形的性质和解直角三角形,解题的关键在于能够熟练掌握解直角三角形的相关知识.29.16936【分析】过点A 作MN ∠BC ,分别交BC 于M ,交AD 于N ,则四边形ABMN 是矩形,AM =AN ,MN =AB =6,然后证明A MB HCB '△∽△,得到485AN BM BC ===,45A M HC '=,再由折叠的性质可得10BC BC '==,AE A E '=,CH C H '=,则可由勾股定理得到8AC '=,则2C D AD AC ''=-=,从而可以求得103CH =,得到8=3A M ',则10=3A N MN A M ''=-,设=AE A E y '=,则8EN y =-,由222A E A N EN ''=+,得到()2221083y y ⎛⎫=+- ⎪⎝⎭,解方程即可. 【详解】解:如图所示,过点A 作MN ∠BC ,分别交BC 于M ,交AD 于N ,∠四边形ABCD 是矩形,∠=90A ABM BMN C ∠=∠=∠=︒∠ ,CD ∠BC ,∠四边形ABMN 是矩形,∠AM =AN ,∠A M BC '⊥,CD BC ⊥,∠A M CH '∥,∠A MB HCB '△∽△, ∠BA BM A M BH BC HC''==, ∠4BA HA ''=,∠5BH HA '=, ∠4=5BA BM A M BH BC HC ''==,∠485AN BM BC ===,45A M HC '=, 由折叠的性质可得10BC BC '==,AE A E '=,CH C H '=,∠8AC '=,∠2C D AD AC ''=-=,设C H CH x '==,则6DH x =-,∠222C H DH C D ''=+,∠()2264x x =-+, 解得103x =, ∠103CH =, ∠8=3A M ', ∠10=3A N MN A M ''=-, 设=AE A E y '=,则8EN y =-,∠222A E A N EN ''=+, ∠()2221083y y ⎛⎫=+- ⎪⎝⎭, 解得16936y =, ∠16936AE =, 故答案为:16936.【点睛】本题主要考查了矩形的性质与判定,折叠的性质,勾股定理,解题的关键在于能够熟练掌握矩形的性质与判定.30.【分析】根据矩形的性质和勾股定理,用含t 的代数式表示出P A ,PC ,再列出方程,即可求解.【详解】解:∠在矩形ABCD 中,6cm AB =,BC =,点P 从点A 出发沿AB 以2cm /s 的速度向点B 移动,∠P A =2t ,PC ∠2PA PC =,∠2t =t 1t 2, 故答案是:【点睛】本题主要考查矩形的性质,勾股定理,二次根式,一元二次方程,用用含t 的代数式表示出P A ,PC ,是解题的关键.31.2013【详解】试题分析:在菱形ABCD 中,BD∠AC ,BD 与AC 互相平分,因为∠BAD=60°,所以∠BAC=30°,又因为AC=2,设BD 的一半为x ,则AB=2x ,根据勾股定理,得1AP ,因为i i PE AB ⊥于i E ,i i PF AD ⊥于i F ,利用等面积法,得12·AD·1P F +12·AB·1P E =12·BD·12AC 1P F +1P E )1P F +1P E =1,同理可得,111122222013201320132013PE PF P E P F P E P F ++++⋯++=2013×1=2013.考点:菱形的相关性质和等面积法的应用点评:该题主要考查学生对菱形性质的理解和掌握程度,同时要求学生提高对题目的观察能力,找出其中的规律.32.2【分析】由题目中第一个图可到小正方形的边长与小等腰三角形的直角边相等,与平行四边形的短边相等,所以大正方形的对角线长度为4倍小正方形边长,设出小正方形边长,利用大正方形面积列出方程,解出方程即可【详解】设小正方形边长为a ,由题目中第一个图可到小正方形的边长与小等腰三角形的直角边相等,与平行四边形的短边相等, 所以大正方形对角线长4a ,S 大正方形=442a a ⨯。

四边形经典综合难题含答案

四边形经典综合难题含答案

四边形综合经典难题1.:在矩形ABCD中,AE⊥BD于E,∠DAE=3∠BAE ,求:∠EAC的度数。

2.:直角梯形ABCD中,BC=CD=a且∠BCD=60︒,E、F分别为梯形的腰AB、DC的中点,求:EF的长。

3、:在等腰梯形ABCD中,AB∥DC,AD=BC,E、F分别为AD、BC的中点,BD平分∠ABC交EF于G,EG=18,GF=10求:等腰梯形ABCD的周长。

4、:梯形ABCD中,AB∥CD,以AD,AC为邻边作平行四边形ACED,DC延长线交BE于F,求证:F是BE的中点。

5、:梯形ABCD中,AB∥CD,AC⊥CB,AC平分∠A,又∠B=60︒,梯形的周长是20cm, 求:AB的长。

6、从平行四边形四边形ABCD的各顶点作对角线的垂线AE、BF、CG、DH,垂足分别是E、F、G、H,求证:EF∥GH。

7、:梯形ABCD的对角线的交点为E假设在平行边的一边BC的延长线上取一点F,使SABC∆=SEBF∆,求证:DF∥AC。

_D_C_B_C_A_B_A_B_E_A_B_A_B_B8、在正方形ABCD 中,直线EF 平行于 对角线AC ,及边AB 、BC 的交点为E 、F , 在DA 的延长线上取一点G ,使AG=AD ,假设EG 及DF 的交点为H ,求证:AH 及正方形的边长相等。

9、假设以直角三角形ABC 的边AB 为边,在三角形ABC 的外部作正方形ABDE ,AF 是BC 边的高,延长FA 使AG=BC ,求证:BG=CD 。

10、正方形ABCD ,E 、F 分别是AB 、AD 延长线上的一点,且AE=AF=AC ,EF 交BC 于G ,交AC 于K ,交CD 于H ,求证:EG=GC=CH=HF 。

11、在正方形ABCD 的对角线BD 上,取BE=AB ,假设过E 作BD 的垂线EF 交CD 于F ,求证:CF=ED 。

12、平行四边形ABCD 中,∠A 、∠D 的平分线相交于E ,AE 、DE 及DC 、AB 延长线交于G 、F ,求证:AD=DG=GF=FA 。

2014年中考数学四边形专题复习:几何的三大变换 (3)

2014年中考数学四边形专题复习:几何的三大变换 (3)

第四讲:几何的三大变换---2014年中考数学四边形专题复习一、小练习1.将矩形纸片ABCD 按如图所示的方式折叠,AE 、EF 为折痕,∠BAE =30°,AB =折叠后,点C 落在AD 边上的C 1处,并且点B 落在1EC 边上的1B 处,则BC 的长为 .2.(2013•苏州)如图,在矩形ABCD 中,点E 是边CD 的中点,将△ADE 沿AE 折叠后得到△AFE ,且点F 在矩形ABCD 内部.将AF 延长交边BC 于点G .若1CG GB k=, 则ADAB= (用含k 的代数式表示).3.(2013• 淄博)如图,菱形纸片ABCD 中,∠A =60°,折叠菱形纸片ABCD ,使点C 落在DP (P 为AB 中点)所在的直线上,得到经过点D 的折痕DE .则∠DEC 的大小为 (A )78° (B )75° (C )60°(D )45°二、类型题解析例题1(2013•遵义)如图,将一张矩形纸片ABCD 沿直线MN 折叠,使点C 落在点A 处,点D 落在点E 处,直线MN 交BC 于点M ,交AD 于点N . (1)求证:CM =CN ;(2)若△CMN 的面积与△CDN 的面积比为3:1,求的值.1.(2013兰州)如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.例题2.(本题满分9分)如图,正方形OEFG绕着边长为12的正方形ABCD的对角线的交点O旋转,边OE、OG 分别交边AD、AB于点M、N.(1)求证:OM=ON;(2)设正方形OEFG的对角线OF与边AB相交于点P,连结PM.若PM=5,试求AM的长;(3)连接MN,求线段MN长度的最小值,并指出此时线段MN与线段BD的关系.2(2013•威海)操作发现:将一副直角三角板如图①摆放,能够发现等腰直角三角板ABC 的斜边与含30°角的直角三角板DEF 的长直角边DE 重合.问题解决:将图①中的等腰直角三角板ABC 绕点B 顺时针旋转30°,点C 落在BF 上,AC 与BD 交于点O ,连接CD ,如图②.(1)求证:△CDO 是等腰三角形; (2)若DF =8,求AD 的长.例题3.(2013•大兴安岭)如图,平面直角坐标系中,矩形OABC 的对角线AC =12,tan ∠ACO =33, (1) 求B 、C 两点的坐标;(2) 把矩形沿直线DE 对折使点C 落在点A 处,DE 与AC 相交于点F ,求直线DE 的解析式; 若点M 在直线DE 上,平面内是否存在点N ,使以O 、F 、M 、N 为顶点的四边形是菱形,若存在,请直接写出点N 的坐标;若不存在,请说明理由.A BCDEFG3(2013• 枣庄)如图,在平面直角坐标中,直角梯形OABC 的边OCOA 、分别在x 轴、y 轴上,9045AB OC AOC BCO BC ===∥,∠°,∠°,C 的坐标为()180.-,(1)求点B 的坐标;(2)若直线DE 交梯形对角线BO 于点D ,交y 轴于点E , 且42OE OD BD ==,,求直线DE 的解析式.例题4 (2013•宿迁)如图,在梯形ABCD 中,AB ∥DC ,90B ∠=,且10AB =,6BC =,2CD =.点E 从点B 出发沿BC 方向运动,过点E 作EF ∥AD 交边AB 于点F .将△BEF 沿EF 所在的直线折叠得到△GEF ,直线FG 、EG 分别交AD 于点M 、N ,当EG 过点D 时,点E 即停止运动.设BE x =,△GEF 与梯形ABCD 的重叠部分的面积为y .(1)证明△AMF 是等腰三角形;(2)当EG 过点D 时(如图(3)),求x 的值; (3)将y 表示成x 的函数,并求y 的最大值.相应练习四4.(本题10分)将□ABCD 纸片沿EF 折叠,使点C 与点A 重合,点D 落在点G 处. (1)求证:△ABE ≌△AGF .(2)连结AC ,若□ABCD 的面积等于8,x BCEC=,y EF AC =∙, 试求y 与x 之间的函数关系式.第28题图(1)EF第28题图(2)EF第28题图(3)。

2014年中考数学分类汇编:与特殊四边形有关的压轴题(全国120份)

2014年中考数学分类汇编:与特殊四边形有关的压轴题(全国120份)

与特殊四边形有关的压轴题一、选择题1.在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.分析:分别构造出平行四边形和三角形,根据平行四边形的性质和全等三角形的性质进行比较,即可判断.解:A选项延长AC、BE交于S,∵∠CAE=∠EDB=45°,∴AS∥ED,则SC∥DE.同理SE∥CD,∴四边形SCDE是平行四边形,∴SE=CD,DE=CS,即乙走的路线长是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS;B选项延长AF、BH交于S,作FK∥GH,1∵∠SAB=∠S1AB=45°,∠SBA=∠S1BA=70°,AB=AB,∴△SAB≌△S1AB,∴AS=AS1,BS=BS1,∵∠FGH=67°=∠GHB,∴FG∥KH,∵FK∥GH,∴四边形FGHK是平行四边形,∴FK=GH,FG=KH,∴AF+FG+GH+HB=AF+FK+KH+HB,∵FS1+S1K>FK,∴AS+BS>AF+FK+KH+HB,即AC+CD+DE+EB>AF+FG+GH+HB,同理可证得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB,又∵AS+BS<AS2+BS2,故选D.点评:本题考查了平行线的判定,平行四边形的性质和判定的应用,注意:两组对边分别平行的四边形是平行四边形,平行四边形的对边相等.2.如图,在▱ABCD中,点E是AD的中点,延长BC到点F,使CF:BC=1:2,连接DF,E C.若AB=5,AD=8,sinB=,则DF的长等于()A.B.C. D.2考点:平行四边形的判定与性质;勾股定理;解直角三角形..分析:由“平行四边形的对边平行且相等”的性质推知AD∥BC,且AD=BC;然后根据中点的定义、结合已知条件推知四边形CFDE的对边平行且相等(DE=CF,且DE∥CF),即四边形CFDE是平行四边形.如图,过点C作CH⊥AD于点H.利用平行四边形的性质、锐角三角函数定义和勾股定理求得CH=4,DH=1,则在直角△EHC中利用勾股定理求得CE的长度,即DF的长度.解答:证明:如图,在▱ABCD中,∠B=∠D,AB=CD=5,AD∥BC,且AD=BC=8.∵E是AD的中点,∴DE=A D.又∵CF:BC=1:2,∴DE=CF,且DE∥CF,∴四边形CFDE是平行四边形.∴CE=DF.过点C作CH⊥AD于点H.又∵sinB =,∴sinD ===,∴CH=4.在Rt△CDH中,由勾股定理得到:DH ==3,则EH=4﹣3=1,∴在Rt△CEH中,由勾股定理得到:EC ===,则DF=EC =.故选:C.点评:本题考查了平行四边形的判定与性质、勾股定理和解直角三角形.凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明,应直接运用平行四边形的性质和判定去解决问题.3.如图,在矩形ABCD中,AB=8,BC=16,将矩形ABCD沿EF折叠,使点C与点A 重合,则折痕EF的长为()A. 6 B.12 C.2D.4考点:翻折变换(折叠问题).分析:设BE=x,表示出CE=16﹣x,根据翻折的性质可得AE=CE,然后在Rt△ABE 中,利用勾股定理列出方程求出x,再根据翻折的性质可得∠AEF=∠CEF,根据两直线平行,内错角相等可得∠AFE=∠CEF,然后求出∠AEF=∠AFE,根据等角对等边可得AE=AF,过点E作EH⊥AD于H,可得四边形ABEH是矩形,根据矩形的性质求出EH、AH,然后求出FH,再利用勾股定理列式计算即可得解.解答:解:设BE=x,则CE=BC﹣BE=16﹣x,∵沿EF翻折后点C与点A重合,∴AE=CE=16﹣x,在Rt△ABE中,AB2+BE2=AE2,即82+x2=(16﹣x)2,解得x=6,∴AE=16﹣6=10,3由翻折的性质得,∠AEF=∠CEF,∵矩形ABCD的对边AD∥BC,∴∠AFE=∠CEF,∴∠AEF=∠AFE,∴AE=AF=10,过点E作EH⊥AD于H,则四边形ABEH是矩形,∴EH=AB=8,AH=BE=6,∴FH=AF﹣AH=10﹣6=4,在Rt△EFH中,EF===4.故选D.点评:本题考查了翻折变换的性质,矩形的判定与性质,勾股定理,熟记各性质并作利用勾股定理列方程求出BE的长度是解题的关键,也是本题的突破口.4.如图,边长为2的正方形ABCD中,P是CD的中点,连接AP并延长交BC的延长线于点F,作△CPF的外接圆⊙O,连接BP并延长交⊙O于点E,连接EF,则EF的长为()A.B.C.D.考点:相似三角形的判定与性质;正方形的性质;圆周角定理分析:先求出CP、BF长,根据勾股定理求出BP,根据相似得出比例式,即可求出答案.解答:解:∵四边形ABCD是正方形,∴∠ABC=∠PCF=90°,CD∥AB,∵F为CD的中点,CD=AB=BC=2,∴CP=1,∵PC∥AB,∴△FCP∽△FBA,∴==,∴BF=4,5∴CF=4﹣2=2, 由勾股定理得:BP==,∵四边形ABCD 是正方形, ∴∠BCP=∠PCF=90°, ∴PF 是直径,∴∠E=90°=∠BCP , ∵∠PBC=∠EBF , ∴△BCP ∽△BEF , ∴=, ∴=,∴EF=, 故选D .点评: 本题考查了正方形的性质,圆周角定理,相似三角形的性质和判定的应用,主要考查学生的推理能力和计算能力,题目比较好,难度适中.5.如图,ABCD 是正方形场地,点E 在DC 的延长线上,AE 与BC 相交于点F .有甲、乙、丙三名同学同时从点A 出发,甲沿着A ﹣B ﹣F ﹣C 的路径行走至C ,乙沿着A ﹣F ﹣E ﹣C ﹣D 的路径行走至D ,丙沿着A ﹣F ﹣C ﹣D 的路径行走至D .若三名同学行走的速度都相同,则他们到达各自的目的地的先后顺序(由先至后)是( )A . 甲乙丙B .甲丙乙C .乙丙甲D . 丙甲乙考点: 正方形的性质;线段的性质:两点之间线段最短;比较线段的长短. 分析: 根据正方形的性质得出AB=BC=CD=AD ,∠B=∠ECF,根据直角三角形得出AF >AB ,EF >CF ,分别求出甲、乙、丙行走的距离,再比较即可. 解答: 解:∵四边形ABCD 是正方形, ∴AB=BC=CD=AD,∠B=90°,甲行走的距离是AB+BF+CF=AB+BC=2AB ; 乙行走的距离是AF+EF+EC+CD ; 丙行走的距离是AF+FC+CD , ∵∠B=∠ECF=90°, ∴AF>AB ,EF >CF ,∴AF+FC+CD>2AB ,AF+FC+CD <AF+EF+EC+CD , ∴甲比丙先到,丙比乙先到,即顺序是甲丙乙,故选B.点评:本题考查了正方形的性质,直角三角形的性质的应用,题目比较典型,难度适中.6如图3,四边形、都是正方形,点在线段上,连接,和相交于点.设,().下列结论:①;②;③;④.其中结论正确的个数是().(A)4个(B)3个(C)2个(D)1个【考点】三角形全等、相似三角形【分析】①由可证,故①正确;②延长BG交DE于点H,由①可得,(对顶角)∴=90°,故②正确;③由可得,故③不正确;④,等于相似比的平方,即,∴,故④正确.【答案】B7.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A.①②B.②③C.①③D.①④分析:求出BE=2AE,根据翻折的性质可得PE=BE,再根据直角三角形30°角所对的直角边等于斜边的一半求出∠APE=30°,然后求出∠AEP=60°,再根据翻折的性质求出∠BEF=60°,根据直角三角形两锐角互余求出∠EFB=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半可得EF=2BE,判断出①正确;利用30°角的正切值求出PF=PE,判断出②错误;求出BE=2EQ,EF=2BE,然后求出FQ=3EQ,判断出③错误;求出∠PBF=∠PFB=60°,然后得到△PBF是等边三角形,判断出④正确.解答:解:∵AE=AB,∴BE=2AE,由翻折的性质得,PE=BE,∴∠APE=30°,∴∠AEP=90°﹣30°=60°,∴∠BEF=(180°﹣∠AEP)=(180°﹣60°)=60°,∴∠EFB=90°﹣60°=30°,∴EF=2BE,故①正确;∵BE=PE,∴EF=2PE,∵EF>PF,∴PF>2PE,故②错误;由翻折可知EF⊥PB,∴∠EBQ=∠EFB=30°,∴BE=2EQ,EF=2BE,∴FQ=3EQ,故③错误;由翻折的性质,∠EFB=∠BFP=30°,∴∠BFP=30°+30°=60°,∵∠PBF=90°﹣∠EBQ=90°﹣30°=60°,∴∠PBF=∠PFB=60°,∴△PBF是等边三角形,故④正确;综上所述,结论正确的是①④.7故选D .点评: 本题考查了翻折变换的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,直角三角形两锐角互余的性质,等边三角形的判定,熟记各性质并准确识图是解题的关键.8.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点D (5,3)在边AB 上,以C 为中心,把△CDB 旋转90°,则旋转后点D 的对应点D ′的坐标是( )A . (2,10)B . (﹣2,0)C . (2,10)或(﹣2,0)D . (10,2)或(﹣2,0)分析: 分顺时针旋转和逆时针旋转两种情况讨论解答即可.解答: 解:∵点D (5,3)在边AB 上,∴BC =5,BD =5﹣3=2,①若顺时针旋转,则点D ′在x 轴上,OD ′=2, 所以,D ′(﹣2,0),②若逆时针旋转,则点D ′到x 轴的距离为10,到y 轴的距离为2, 所以,D ′(2,10),综上所述,点D ′的坐标为(2,10)或(﹣2,0). 故选C .9.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC =1,CE =3,H 是AF 的中点,那么CH 的长是( )A.2.5 B.C.D.2分析:连接AC、CF,根据正方形性质求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.解答:解:如图,连接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF===2,∵H是AF的中点,∴CH=AF=×2=.故选B.点评:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.910.如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是()(第3题图)A.(,3)、(﹣,4)B.(,3)、(﹣,4)C.(,)、(﹣,4)D.(,)、(﹣,4)考点:矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质。

全国各地2014年中考数学真题分类解析汇编 24多边形与平行四边形

全国各地2014年中考数学真题分类解析汇编 24多边形与平行四边形

多边形与平行四边形一、选择题1. (2014•福建泉州,第4题3分)七边形外角和为()2. (2014•广东,第5题3分)一个多边形的内角和是900°,这个多边形的边数是()A.4B.5C.6D.7考点:多边形内角与外角.分析:根据多边形的外角和公式(n﹣2)•180°,列式求解即可.解答:解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=900°,解得n=7.故选D.点评:本题主要考查了多边形的内角和公式,熟记公式是解题的关键.3. (2014•广东,第7题3分)如图,▱ABCD中,下列说法一定正确的是()A.A C=BD B.A C⊥BD C.A B=CD D.A B=BC考点:平行四边形的性质.分析:根据平行四边形的性质分别判断各选项即可.解答:解:A、AC≠BD,故此选项错误;B、AC不垂直BD,故此选项错误;C、AB=CD,利用平行四边形的对边相等,故此选项正确;D、AB≠BC,故此选项错误;故选:C.点评:此题主要考查了平行四边形的性质,正确把握其性质是解题关键.4.(2014•新疆,第4题5分)四边形ABCD中,对角线AC与BD交于点O,下列条件不能判定这个四边形是平行四边形的是()5.(2014•毕节地区,第9题3分)如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()6.(2014·台湾,第24题3分)下列选项中的四边形只有一个为平行四边形,根据图中所给的边长长度及角度,判断哪一个为平行四边形?( )A.B.C.D.分析:利用平行四边形的判定定理、等腰梯形的判定及梯形的判定方法分别对每个选项判断后即可确定答案.解:A.上、下这一组对边平行,可能为等腰梯形;B.上、下这一组对边平行,可能为等腰梯形,但此等腰梯形底角为90°,所以为平行四边形;C .上、下这一组对边平行,可能为梯形;D .上、下这一组对边平行,可能为梯形; 故选B .点评:本题考查了平行四边形的判定定理、等腰梯形的判定及梯形的判定方法,掌握这些特殊的四边形的判定方法是解答本题的关键.7.(2014·云南昆明,第7题3分)如图,在四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能..判定四边形ABCD 为平行四边形的是A . AB ∥CD ,AD ∥BC B . OA =OC ,OB =OD C . AD =BC ,AB ∥CD D . AB =CD ,AD =BC8.(2014•浙江湖州,第10题3分)在连接A 地与B 地的线段上有四个不同的点D 、G 、K 、Q ,下列四幅图中的实线分别表示某人从A 地到B 地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是( )A .B .ODCBAC.D.分析:分别构造出平行四边形和三角形,根据平行四边形的性质和全等三角形的性质进行比较,即可判断.解:A选项延长AC、BE交于S,∵∠CAE=∠EDB=45°,∴AS∥ED,则SC∥DE.同理SE∥CD,∴四边形SCDE是平行四边形,∴SE=CD,DE=CS,即乙走的路线长是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS;B选项延长AF、BH交于S1,作FK∥GH,∵∠SAB=∠S1AB=45°,∠SBA=∠S1BA=70°,AB=AB,∴△SAB≌△S1AB,∴AS=AS1,BS=BS1,∵∠FGH=67°=∠GHB,∴FG∥KH,∵FK∥GH,∴四边形FGHK是平行四边形,∴FK=GH,FG=KH,∴AF+FG+GH+HB=AF+FK+KH+HB,∵FS1+S1K>FK,∴AS+BS>AF+FK+KH+HB,即AC+CD+DE+EB>AF+FG+GH+HB,同理可证得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB,又∵AS+BS<AS2+BS2,故选D.点评:本题考查了平行线的判定,平行四边形的性质和判定的应用,注意:两组对边分别平行的四边形是平行四边形,平行四边形的对边相等.8. (2014•湘潭,第7题,3分)以下四个命题正确的是()9. (2014•益阳,第7题,4分)如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件是()(第2题图)10. (2014•株洲,第7题,3分)已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()11.(2014•孝感,第8题3分)如图,在▱ABCD中,对角线AC、BD相交成的锐角为α,若AC=a,BD=b,则▱ABCD的面积是()absinαabcosα,==×asin absinabsin absin二.填空题1. (2014•安徽省,第14题5分)如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是①②④.(把所有正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.考点:平行四边形的性质;全等三角形的判定与性质;直角三角形斜边上的中线.分析:分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF (ASA),得出对应线段之间关系进而得出答案.解答:解:①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故此选项正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDE,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故此选项正确.故答案为:①②④.点评:此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△AEF≌△DME是解题关键.2. ( 2014•广东,第13题4分)如图,在△ABC中,D,E分别是边AB,AC的中点,若BC=6,则DE= 3 .考点:三角形中位线定理.分析:由D、E分别是AB、AC的中点可知,DE是△ABC的中位线,利用三角形中位线定理可求出DE.解答:解:∵D、E是AB、AC中点,∴DE为△ABC的中位线,∴ED=BC=3.故答案为3.点评:本题用到的知识点为:三角形的中位线等于三角形第三边的一半.3.(2014•毕节地区,第19题5分)将四根木条钉成的长方形木框变形为平行四边形ABCD 的形状,并使其面积为长方形面积的一半(木条宽度忽略不计),则这个平行四边形的最小内角为 30 度.==AB4.(2014•襄阳,第17题3分)在▱ABCD中,BC边上的高为4,AB=5,AC=2,则▱ABCD的周长等于12或20 .=2==3=2==35.(2014•四川自贡,第13题4分)一个多边形的内角和比外角和的3倍多180°,则它的边数是9 .6. (2014•泰州,第9题,3分)任意五边形的内角和为540°.7. (2014•扬州,第13题,3分)如图,若该图案是由8个全等的等腰梯形拼成的,则图中的∠1=67.5°.(第2题图)×135°=67.5°.三.解答题1. (2014•安徽省,第23题14分)如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.(1)①∠MPN= 60°;②求证:PM+PN=3a;(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;(3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.考点:四边形综合题.分析:(1)①运用∠MPN=180°﹣∠BPM﹣∠NPC求解,②作AG⊥MP交MP于点G,BH⊥MP 于点H,CL⊥PN于点L,DK⊥PN于点K,利用MP+PN=MG+GH+HP+PL+LK+KN求解,(2)连接OE,由△OMA≌△ONE证明,(3)连接OE,由△OMA≌△ONE,再证出△GOE≌△NOD,由△ONG是等边三角形和△MOG是等边三角形求出四边形MONG是菱形.,解答:解:(1)①∵四边形ABCDEF是正六边形,∴∠A=∠B=∠C=∠D=∠E=∠F=120°又∴PM∥AB,PN∥CD,∴∠BPM=60°,∠NPC=60°,∴∠MPN=180°﹣∠BPM﹣∠NPC=180°﹣60°﹣60°=60°,故答案为;60°.②如图1,作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,MP+PN=MG+GH+HP+PL+LK+KN∵正六边形ABCDEF中,PM∥AB,作PN∥CD,∵∠AMG=∠BPH=∠CPL=∠DNK=60°,∴GM=AM,HL=BP,PL=PM,NK=ND,∵AM=BP,PC=DN,∴MG+HP+PL+KN=a,GH=LK=a,∴MP+PN=MG+GH+HP+PL+LK+KN=3A.(2)如图2,连接OE,∵四边形ABCDEF是正六边形,AB∥MP,PN∥DC,∴AM=BP=EN,又∵∠MAO=∠NOE=60°,OA=OE,在△ONE和△OMA中,∴△OMA≌△ONE(SAS)∴OM=ON.(3)如图3,连接OE,由(2)得,△OMA≌△ONE∴∠MOA=∠EON,∵EF∥AO,AF∥OE,∴四边形AOEF是平行四边形,∴∠AFE=∠AOE=120°,∴∠MON=120°,∴∠GON=60°,∵∠GON=60°﹣∠EON,∠DON=60°﹣∠EON,∴∠GOE=∠DON,∵OD=OE,∠ODN=∠OEG,在△GOE和∠DON中,∴△GOE≌△NOD(ASA),∴ON=OG,又∵∠GON=60°,∴△ONG是等边三角形,∴ON=NG,又∵OM=ON,∠MOG=60°,∴△MOG是等边三角形,∴MG=GO=MO,∴MO=ON=NG=MG,∴四边形MONG是菱形.点评:本题主要考查了四边形的综合题,解题的关键是恰当的作出辅助线,根据三角形全等找出相等的线段.2. (2014•广西贺州,第21题7分)如图,四边形ABCD是平行四边形,E、F是对角线BD 上的点,∠1=∠2.(1)求证:BE=DF;(2)求证:AF∥CE.考点:平行四边形的判定与性质;全等三角形的判定与性质.专题:证明题.分析:(1)利用平行四边形的性质得出∠5=∠3,∠AEB=∠4,进而利用全等三角形的判定得出即可;(2)利用全等三角形的性质得出AE=CF,进而得出四边形AECF是平行四边形,即可得出答案.解答:证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠5=∠3,∵∠1=∠2,∴∠AEB=∠4,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴BE=DF;(2)由(1)得△ABE≌△CDF,∴AE=CF,∵∠1=∠2,∴AE∥CF,∴四边形AECF是平行四边形,∴AF∥CE.点评:此题主要考查了平行四边形的判定与性质以及全等三角形的判定与性质等知识,得出△ABE≌△CDF是解题关键.3.(2014年云南省,第22题7分)如图,在平行四边形ABCD中,∠C=60°,M、N分别是AD、BC的中点,BC=2C D.(1)求证:四边形MNCD是平行四边形;(2)求证:BD=MN.考点:平行四边形的判定与性质专题:证明题.分析:(1)根据平行四边形的性质,可得AD与BC的关系,根据MD与NC的关系,可得证明结论;(2)根据根据等边三角形的判定与性质,可得∠DNC的度数,根据三角形外角的性质,可得∠DBC的度数,根据正切函数,可得答案.解答:证明:(1)∵ABCD是平行四边形,∴AD=BC,AD∥BC,∵M、N分别是AD、BC的中点,∴MD=NC,MD∥NC,∴MNCD是平行四边形;(2)如图:连接ND,∵MNCD是平行四边形,∴MN=D C.∵N是BC的中点,∴BN=CN,∵BC=2CD,∠C=60°,∴△NVD是等边三角形.∴ND=NC,∠DNC=60°.∵∠DNC是△BND的外角,∴∠NBD+∠NDB=∠DNC,∵DN=NC=NB,∴∠DBN=∠BDN=∠DNC=30°,∴∠BDC=90°.∵tan,∴DB=DC=MN.点评:本题考查了平行四边形的判定与性质,利用了一组对边平行且相等的四边形是平行四边形,等边三角形的判定与性质,正切函数.4.(2014•温州,第24题14分)如图,在平面直角坐标系中国,点A,B的坐标分别为(﹣3,0),(0,6).动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从B出发,沿射线BO方向以每秒2个单位的速度运动,以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.(1)当点C运动到线段OB的中点时,求t的值及点E的坐标.(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形.(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N分别在一,四象限,在运动过程中▱PCOD的面积为S.①当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;②若点M,N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时,直接写出S的取值范围.时和当<OB,+3=,(=,即==,,==,==<或<<),在范围内,<,<),<5.(2014•舟山,第23题10分)类比梯形的定义,我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度数.(2)在探究“等对角四边形”性质时:①小红画了一个“等对角四边形”ABCD(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论;②由此小红猜想:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等”.你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例.(3)已知:在“等对角四边形“ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求对角线AC的长.解答:,==2,,+2=3==26.(2014年广东汕尾,第20题9分)如图,在平行四边形ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F.(1)证明:FD=AB;(2)当平行四边形ABCD的面积为8时,求△FED的面积.分析:(1)利用已知得出△ABE≌△DFE(AAS),进而求出即可;(2)首先得出△FED∽△FBC,进而得出=,进而求出即可.(1)证明:∵在平行四边形ABCD中,E是AD边上的中点,∴AE=ED,∠ABE=∠F,在△ABE和△DFE中,∴△ABE≌△DFE(AAS),∴FD=AB;(2)解:∵DE∥BC,∴△FED∽△FBC,∵△ABE≌△DFE,∴BE=EF,S△FDE=S平行四边形ABCD,∴=,∴=,∴=,∴△FED的面积为:2.点评:此题主要考查了全等三角形的判定与性质以及平行四边形的性质以及相似三角形的判定与性质等知识,得出S△FDE=S平行四边形ABCD是解题关键.7.(2014•泰州,第23题,10分)如图,BD是△ABC的角平分线,点E,F分别在BC、AB 上,且DE∥AB,EF∥A C.(1)求证:BE=AF;(2)若∠ABC=60°,BD=6,求四边形ADEF的面积.(第1题图)BD×6=3,==2,=2=6。

初中数学四边形专题训练50题含答案

初中数学四边形专题训练50题含答案

中考数学四边形专题训练50题含答案(单选、填空、解答题)一、单选题1.平行四边形不一定具有的性质是( )A .对角线互相垂直B .对边平行且相等C .对角线互相平分D .对角相等 2.如图,在MON ∠的两边.上分别截取,OA OB ,使OA OB =;分别以点A ,B 为圆心,OA 长为半径作弧,两弧交于点C ;连接,,,AC BC AB OC .若2AB =,四边形OACB 的面积为4.则OC 的长为( )A .2B .3C .4D .5 3.在ABCD 中,下列结论错误的是( )A .//AB CD B .B D ∠=∠C .AC BD =D .180C D ∠+∠=︒ 4.如图,在平行四边形ABCD 中,E 是AB 延长线上的一点,若∠A=60°,则∠1的度数为( )A .120°B .60°C .45°D .30° 5.若平行四边形中两个内角的度数比为1∠2,则其中较大的内角是( ) A .100° B .60° C .120° D .90° 6.如图,正方形OABC 与正方形ODEF 是位似图形,点O 为位似中心,位似比为2:3,点B 、E 在第一象限.若点A 的坐标为()1,0,则点E 的坐标是( )A .0)B .33,22⎛⎫ ⎪⎝⎭C .D .(2,2) 7.四边形ABCD 中,对角线AC ,BD 交于点O ,AD//BC ,为了判定四边形是平行四边形,还需一个条件,其中错误..的是( ) A .AB//CD B .∠A=∠C C .AB=CD D .AO=CO 8.一个多边形的内角和等于外角和,则这个多边形的边数为( )A .10B .8C .6D .49.顺次连接等腰梯形各边中点所围成的四边形是( )A .平行四边形B .矩形C .菱形D .正方形 10.已知平行四边形ABCD 的周长为32,AB =4,则BC 的长为( )A .4B .12C .24D .48 11.如图,四边形ABCD 是矩形,,把矩形沿直线AC 折叠,点B 落在点E处,连结DE,则的值是( )A .B .C .8D .7:25 12.如图,在平行四边形ABCD 中,AB=4,CE 平分∠BCD 交AD 边于点E ,且AE=3,则BC 的长为( )A .4B .6C .7D .813.如图,在矩形ABCD ,对角线AC 与BD 相交于点O ,EO AC ⊥于点O ,交BC 于点E ,若ABE ∆的周长为8,3AB =,则AD 的长为 ( )A .2B .5.5C .5D .414.如图,矩形ABCD 中,4AB =,2BC =.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则BE 的长是( )A .B C .2.5 D .1.5 15.如图,在平行四边形ABCD 中,过点P 作直线EF 、GH 分别平行于AB 、BC ,那么图中共有( )平行四边形.A .4个B .5个C .8个D .9个 16.如图,已知直线PQ CD ⊥于点P ,B 是CPQ ∠内部一点,过点B 作BA PQ ⊥于点A ,BC CD ⊥于点C ,四边形PABC 是边长为8cm 的正方形,N 是AB 的中点,动点M 从点P 出发,以2cm/s 的速度,沿P A B C →→→方向运动,到达点C 停止运动,设运动时间为()s t ,当CM PN =时,t 等于( )A .2B .4C .2或4D .2或617.如图,在菱形中,,,是的中点.过点作,垂足为.将沿点到点的方向平移,得到.设、分别是、的中点,当点与点重合时,四边形的面积为A .B .C .D . 18.如图,点EF 、分别是菱形ABCD 的边AD 、DC 的中点,如果阴影部分的面积和是10,则菱形对角线AC 与BD 的乘积AC BD ⋅等于( )A .10B .32C .20D .1619.如图,在正方形1ABCB 中,AB =AB 与直线l 所夹锐角为60,延长1CB 交直线l 于点1A ,作正方形1112A B C B ,延长12C B 交直线l 于点2A ,作正方形2223A B C B ,延长23C B 交直线l 于点3A ,作正方形3334A B C B ⋯,依次规律,则线段20212022A A =( )A .20192⨯⎝⎭B .20202⨯⎝⎭C .20212⨯⎝⎭D .20222⨯⎝⎭20.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,添加一个条件使平行四边形ABCD 为矩形的是( )A .AD AB = B .AB AD ⊥C .AB AC =D .CA BD ⊥二、填空题21.如图,这个图案是用形状、大小完全相同的等腰梯形密铺而成的,则这个图案中的等腰梯形的底角(指锐角)是_________度.22.如图,点E 在矩形ABCD 的对角线BD 上,EF BC ⊥于点F ,连接AF ,若5BC =,2EF =,则ABF △的面积为_________.23.已知菱形的两条对角线长分别为3和4,则菱形的面积为______.24.有一个边长为50cm 的正方形洞口,要用一个圆盖去盖住这个洞口,那么圆盖的直径至少应为_____.25.如图,Rt ABC 中,90C BC AC ∠=︒>,,以AB BC AC ,,三边为边长的三个正方形面积分别为1S ,2S ,3S .若ABC 的面积为7,140S =,则32S S -的值等于______.26.如图,将长方形ABCD沿AE折叠,已知50∠=︒,则BADCED'∠'的大小是_____27.如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为CC',则图中阴影部分的面积为__.28.用直角边分别为3和4的两个直角三角形拼成一个平行四边形(非矩形),所得的平行四边形的周长是______.29.如图,菱形ABCD中,点O为对角线AC的三等分点且AO=2OC,连接OB,OD,OB=OC=OD,已知AC=3,那么菱形的边长为_____.30.如图,将四边形ABCD沿BD、AC剪开,得到四个全等的直角三角形,已知,OA =4,OB=3,AB=5将这四个直角三角形拼为一个没有重叠和缝隙的四边形,则重新拼成的四边形的周长为_____.31.在长方形ABCD中,10AB=,将长方形ABCD折叠,折痕为EF.AD=,8(1)如图1,当A'与B重合时,EF=_______;(2)如图1,当直线EF过点D时,点A的对应点A'落在线段BC上,则线段EF的长为______.32.如图,P 是▱ABCD 内的任意一点,连接P A 、PB 、PC 、PD ,得到△P AB 、△PBC 、△PCD 、△PDA ,设它们的面积分别是S 1、S 2、S 3、S 4,给出如下结论:∠S 1+S 3=S 2+S 4,∠若S 3=2S 1,则S 2=2S 4,∠若S 1+S 3=5,则ABCD 的面积为10;∠S 1+S 2=S 3+S 4.其中正确的结论的序号是____________(把所有正确结论的序号都填在横线上).33.如图, 直线l 是四边形ABCD 的对称轴,若AB CD =,有下面的结论:∠AB BC ⊥;∠AC BD ⊥;∠//AB CD ;∠AO OC =.其中正确的结论有__.34.如图1是三国时期的数学家赵爽创制的一幅“勾股圆方图”.将图2的矩形分割成四个全等三角形和一个正方形,恰好能拼成这样一个“勾股圆方图”,则该矩形与拼成的正方形的周长之比为________.35.如图,平行四边形ABCD 中,45B ∠=︒,7BC =,CD =E ,F 分别是边AB ,BC 的中点,连接CE ,DF ,取CE ,DF 的中点G ,H ,连接GH ,则GH 的长度为__________.36.如图,正方形ABCD的边长为1,AC,BD是对角线,将∠DCB绕着点D顺时针旋转45°得到∠DGH,HG交AB于点E,连接DE交AC于点F,连接FG,则下列结论:∠DE平分∠ADB;∠BE∠四边形AEGF是菱形;∠BC+FG=1.5.其中结论正确的序号是_______.37.如图,点E、F是平行四边形ABCD的边AB、DC上的点,F与DE相交于点P,BF与CE相交于点Q若S△APD=14cm2,S△BCQ=16cm2,四边形PEQF的面积为______.38.如图,在正方形ABCD中,AB=4,G是BC的中点,点E是正方形内一个动点,且EG=2,连接DE,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,则线段CF长的最小值为_____.39.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为__________.三、解答题40.□ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别交于E 、F ,四边形AFCE 是否是菱形?为什么?41.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,延长CD 到E ,使DE CD =,连接AE .(1)求证:四边形ABDE 是平行四边形;(2)连接OE ,若60ABC ∠=︒,且8AD DE ==,求OE 的长.42.如图,点E 、F 分别在ABCD 的边AB 、CD 的延长线上,且BE =DF ,连接AC 、EF 、AF 、CE ,AC 与EF 交于点O .(1)求证:AC 、EF 互相平分;(2)若EF 平分∠AEC ,判断四边形AECF 的形状并证明.43.正方形ABCD 的对角线交点为O ,连AE 交BC 于E ,交OB 于F ,2EC FO =,求证:AE 平分BAC ∠.44.如图,在三角形ABC 中,90C ∠=︒,四边形DEFC 是边长为4的正方形,且D 、E 、F 分别在边AC AB BC 、、上.把三角形ADE 绕点E 逆时针旋转一定的角度.(1)当点D 与点F 重合时,点A 的对应点G 落在边BC 上,此时四边形ACGE 的面积为___________;(2)当点D 的对应点1D 落在线段BE 上时,点A 的对应点为点1A ,在旋转过程中点A 经过的路程为1l ,点D 经过的路程为2l ,且12:3:2l l =,求线段1AD 的长. 45.如图所示,已知四边形ABCD 是平行四边形,在AB 的延长线上截取BE=AB ,BF=BD ,连接CE ,DF ,相交于点M .求证:CD=CM .46.如图,在直角梯形ABCD 中,AD ∠BC ,AD ∠CD ,M 为腰AB 上一动点,联结MC 、MD ,AD =10,BC =15,cot B 512=.(1)求线段CD 的长.(2)设线段BM 的长为x ,∠CDM 的面积为y ,求y 关于x 的函数解析式,并写出它的定义域.47.在Rt ABC 与Rt BDE 中,90ABC DBE ∠=∠=︒,AB BC =,BD BE =.(1)如图1,若点D ,B ,C 在同一直线上,连接AD ,CE ,则AD 与CE 的关系为_________;(2)如果将图1中的BDE △绕点B 在平面内顺时针旋转到如图2的位置,那么请你判断AD 与CE 的关系,并说明理由;(3)如图3,若6AB =,2BD =,连接AE ,分别取DE ,AE ,AC 的中点M ,P ,N ,连接MP ,NP ,MN ,将BDE △绕点B 在平面内顺时针旋转一周,请直接写出旋转过程中MPN△面积的最小值和最大值.48.如图,在矩形ABCD中,AD=4,CD=3,点E为AD的中点.连接CE,将∠CDE 沿CE折叠得∠CFE,CE交BD于点G,交BA的延长线于点M,延长CF交AB于点N.(1)求DG的长;(2)求MN的长.49.如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.(1)求抛物线的解析式.(2)Q是抛物线上除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标.(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED 的边长;如果不存在,请说明理由.参考答案:1.A【分析】结合平行四边形的性质即可判定.【详解】结合平行四边形的性质可知选项B、C、D均正确,但平行四边形的对角线不垂直,则A不正确.故选A.【点睛】本题考查了平行四边形的性质,熟练掌握平行四边形的性质是正确解题的关键.2.C【分析】根据作法判定出四边形OACB是菱形,再根据菱形的面积等于对角线乘积的一半列式计算即可得解.【详解】解:根据作图,AC=BC=OA,∠OA=OB,∠OA=OB=BC=AC,∠四边形OACB是菱形,∠AB=2,四边形OACB的面积为4,∠12AB•OC=12×2×OC=4,解得OC=4.故选:C.【点睛】本题主要考查菱形的性质与判定,熟练掌握菱形的性质与判定是解题的关键.3.C【分析】根据平行四边形的性质逐项判断即可.【详解】解:A、由平行四边形行两组对边分别平行可得//AB CD,故A正确;B、由平行四边形对角相等可得B D∠=∠,故B正确;C、AC、BD为平行四边形对角线,平行四边形对角线互相平分,但不一定相等,故C错误;D、由平行四边形行两组对边分别平行可得//AD BC,两直线平行同旁内角互补,可得180C D∠+∠=︒,故D正确.故选:C.【点睛】本题主要考查平行四边形的性质及其推论,熟练掌握平行四边形的性质是解题关键.4.B【详解】解:∠四边形ABCD 是平行四边形,∠AD∠BC ,∠∠1=∠A=60°.故选B .5.C【分析】据平行四边形的性质得出AB //CD ,推出∠B +∠C =180°,根据∠B :∠C =1:2,求出∠C 即可.【详解】解:∠四边形ABCD 是平行四边形∠AB //CD ,∠∠B +∠C =180°,∠∠B :∠C =1:2,∠∠C =23×180°=120°,故选:C .【点睛】本题考查了平行线的性质和平行四边形的性质的应用,能熟练地运用性质进行计算是解此题的关键,题目比较典型,难度不大.6.B【分析】由题意可得:2:3OA OD =,又由点A 的坐标为()1,0,即可求得OD 的长,又由正方形的性质,即可求得E 点的坐标.【详解】解:∠正方形OABC 与正方形ODEF 是位似图形,O 为位似中心,相似比为2:3, ∠:2:3OA OD =,∠点A 的坐标为()1,0,即1OA =, ∠32OD =, ∠四边形ODEF 是正方形,∠32 DE OD==.∠E点的坐标为:33,22⎛⎫ ⎪⎝⎭.故选:B.【点睛】此题考查了位似变换的性质与正方形的性质.此题比较简单,注意理解位似变换与相似比的定义是解此题的关键.7.C【分析】根据平行四边形的判定定理逐项判断即可.【详解】解:A.根据两组对边分别平行可判定是平行四边形,不符合题意;B.根据平行线性质可得另一对内角相等,根据两组对角分别相等可判定是平行四边形,不符合题意;C.不能判定是平行四边形,可能是等腰梯形,符合题意;D.可通过全等证对角线互相平分,能判定是平行四边形,不符合题意;故选:C.【点睛】本题考查了平行四边形的判定,解题关键是熟知平行四边形的判定定理,准确进行判断.8.D【分析】设这个多边形的边数为n,根据内角和等于外角和列方程解答即可.【详解】解:设这个多边形的边数为n,则()2180360n-⨯︒=︒,解得4n=,故选:D.【点睛】此题考查了多边形内角和与外角和的计算,熟练掌握多边形内角和公式及外角和是解题的关键.9.C【分析】由E、F、G、H分别为AB、BC、CD、DA的中点,得出EF,HG,FG,EH是中位线,再得出四条边相等,根据“四条边都相等的四边形是菱形”进行证明.【详解】解:如图所示,因为E、F、G、H分别为AB、BC、CD、DA的中点,连接AC、BD,因为E、F分别是AB、BC的中点,所以EF=12AC ,且EF∠AC同理可得HG=12AC ,且HG∠AC , FG=12BD ,且FG∠BD , EH=12BD ,且EH∠BD , ∠EF∠HG ,HE ∠FG ,∠四边形EFGH 是平行四边形,又因为等腰梯形的对角线相等,即AC=BD ,因此有EF=FG=GH=HE ,所以连接等腰梯形各中点所得四边形为菱形.故选:C【点睛】此题考查三角形中位线的性质,解题的关键是掌握三角形的中位线定理及菱形的判定.10.B【详解】由题意得:2()32,4,12AB BC AB BC +===得: .故选B.11.D【详解】试题分析:从D,E 处向AC 作高DF,EH .设AB=4k,AD=3k,则AC=5k .由∠AEC的面积=4k×3k=5k×EH,得EH=95k k;根据勾股定理得CH=,∠四边形ACED是等腰梯形,∠CH=AF=95 k,所以DE=5k﹣95k×2=75k.所以DE:AC=75k:5k=7:25.故选D.考点:翻折变换.12.C【分析】由平行四边形的性质可得AD∠BC,且AD=BC,结合角平分线的性质可求得DE=DC=AB=4,则可求得AD的长,可求得答案.【详解】解:∠四边形ABCD为平行四边形,∠AB=CD=4,AD∠BC,AD=BC,∠∠DEC=∠BCE.∠CE平分∠BCD,∠∠DCE=∠BCE,∠∠DEC=∠DCE,∠DE=DC=4.∠AE=3,∠AD=BC=3+4=7.故选C.【点睛】本题主要考查平行四边形的性质,利用平行线的性质及角平分线的性质求得DE=DC是解题的关键.13.C【分析】由矩形的性质可得AO=CO,由线段垂直平分线的性质可得AE=EC,即可求解.【详解】解:∵四边形ABCD是矩形,∴AO=CO,BC=AD,∵EO⊥AC,∴AE=EC,∵△ABE的周长为8,∴AB+AE+BE=8,∴3+BC=8,∴AD =BC =5,故选:C .【点睛】本题考查了矩形的性质,线段垂直平分线的性质,掌握矩形的性质是本题的关键.14.D【分析】由矩形ABCD 中,四边形EGFH 是菱形,易证得()COF AOE AAS ≌,即可得OA OC =,然后由勾股定理求得AC 的长,继而求得OA 的长,又由AOE ABC ∽△△,利用相似三角形的对应边成比例,即可求得答案.【详解】解:如图,连接EF ,交AC 于O ,∠四边形EHFG 是菱形,EF AC OE OF ∴⊥=,,∠四边形ABCD 是矩形,90B D ∴∠=∠=︒,AB CD ∥,ACD CAB ∴∠=∠,在COF 与AOE △中,FCO OAE FOC AOE OF OE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()COF AOE AAS ∴≌,AO CO ∴=,AC AB ==12AO AC ∴==, 90CAB CAB AOE B ∠=∠∠=∠=︒,,AOE ABC ∴∽,∠AO AE AB AC=,=, 2.5AE ∴=,1.5BE ∴=,故选:D .【点睛】本题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质,准确作出辅助线是解此题的关键.15.D【详解】∠AD∠BC 、AB∠CD ,EF∠AB ,GH∠BC ,∠AB∠EF∠DC ,AD∠GH∠BC ,∠共有9个平行四边形,如平行四边形AGPE ,平行四边形BGPF ,平行四边形PEDH ,平行四边形PFCH ,平行四边形ABFE ,平行四边形EFCD ,平行四边形AGHD ,平行四边形BGHC ,平行四边形ABCD ,故选D.16.D【分析】分点M 是AP 的中点和点M 与点N 重合两种情况讨论,由全等三角形的性质和正方形的性质即可求解.【详解】解:当点M 是AP 的中点时,∵四边形P ABC 是正方形,∴PC =P A =AB ,∠CP A =∠P AN =90°,∵N 是AB 的中点,点M 是AP 的中点,∴PM =AN =4,在△CPM 和△P AN 中,PA CP CPA PAN PM AN =⎧⎪∠=∠⎨⎪=⎩∴△CPM ≌△P AN (SAS ),∴PN =CM ,∴t 42==2, 当点M 与点N 重合时,由正方形的对称性可得PN =CM ,∴t842+==6,故选:D【点睛】本题考查了正方形的性质,全等三角形的性质,利用分类讨论思想解决问题是解题的关键.17.A【详解】试题分析:作在菱形中,,,是的中点是的中点,故答案选A.考点:平行四边形的面积,三角函数.18.B【分析】设EF交BD于G,AC交BD于O,由三角形中位线的性质可得EF=12AC,EF//AC,可得EG为∠AOD的中位线,可得DG=12OD,根据菱形的性质可得BG=34BD,根据菱形的面积公式列方程即可得答案.【详解】设EF交BD于G,AC交BD于O,∠点E F 、分别是菱形ABCD 的边AD 、DC 的中点, ∠EF=12AC ,EF//AC ,∠EG 为∠AOD 的中位线, ∠OG=12OD ,∠四边形ABCD 是菱形, ∠OD=OB=12BD ,BD∠AC , ∠BG=34BD ,BG∠EF , ∠S 菱形ABCD =S 阴影+S △BEF ,阴影部分的面积和是10, ∠12AC·BD=10+12EF·BG=10+12·12AC·34BD , 解得:AC·BD=32.故选:B【点睛】本题考查菱形的性质、三角形中位线的性质及菱形的面积公式,菱形的对角线互相垂直且平分;菱形的面积等于两条对角线乘积的一半;三角形的中位线平行于第三边且等于第三边的一半;熟练掌握相关性质及公式是解题关键.19.C【分析】利用特殊角的三角函数值分别求出11A B 、22A B 、33A B ,以此类推找到规律求出20222022A B ,最后根据202120222022Rt A A B 中20212022202290A B A ∠=︒,20222021202230A A B ∠=︒,即可求解.【详解】解:∠AB 与直线l 所夹锐角为60︒,且1BAB ∠是正方形1ABCB 的一个顶角, ∠11180609030B AA ∠=︒-︒-︒=︒,又∠1190AB A ∠=︒,∠在11Rt AB A △中,11111tan A B AB A AB =⨯∠,∠正方形1ABCB 的边长AB∠11111tan A B AB A AB =⨯∠同理可求得: 222A B =⎝⎭,333A B =⎝⎭,以此类推可知: 20222021202120222022A B ===⎝⎭⎝⎭⎝⎭,∠202120222022Rt A A B 中20212022202290A B A ∠=︒,20222021202230A A B ∠=︒,∠2021202120222022202222A A A B ==⨯⎝⎭,故C 正确.故选:C . 【点睛】本题主要考查了正方形的性质、含特殊角的锐角三角函数等知识,含30°的直角三角形的性质.利用从特殊到一般寻找规律是解题的关键.20.B【分析】根据矩形的判定和平行四边形的性质分别对各个选项进行判断即可.【详解】解: A 、AD AB =时,平行四边形ABCD 是菱形,故选项A 不符合题意; B 、AB AD ⊥时,∠BAD =90°,则平行四边形ABCD 是矩形,故选项B 符合题意; C 、AB AC =时,平行四边形ABCD 不一定是矩形,故选项C 不符合题意;D 、CA BD ⊥时,平行四边形ABCD 是菱形,故选项D 不符合题意;故选:B .【点睛】此题考查的是平行四边形的性质、矩形的判定以及等腰三角形的判定等知识;熟练掌握矩形的判定和平行四边形的性质是解答此题的关键.21.60°【分析】根据图案的特点,可知密铺的一个顶点处的周角,由3个完全相同的等腰梯形的较大内角组成,即可求出等腰梯形的较大内角的度数,进而即可得到答案.【详解】由图案可知:密铺的一个顶点处的周角,由3个完全相同的等腰梯形的较大内角组成,∠等腰梯形的较大内角为360°÷3=120°,∠等腰梯形的两底平行,∠等腰梯形的底角(指锐角)是:180°-120°=60°.故答案是:60°.【点睛】本题主要考查等腰梯形的性质以及平面镶嵌,掌握平面镶嵌的性质是解题的关键.22.5【分析】证明∠BEF∠∠BCD,由相似三角形的性质求得BF•CD,即求得BF•AB,进而由三角形的面积公式求得结果.【详解】解:∠四边形ABCD是矩形,∠AB=CD,∠ABC=∠BCD=90°,∠EF∠BC,∠EF∠CD,∠∠BEF∠∠BDC,∠BF EF BC CD=,∠BC=5,EF=2,∠BF•CD=BC•EF=5×2=10,∠BF•AB=10,∠∠ABF的面积=12BF•AB=5,故答案为:5.【点睛】本题主要考查了矩形的性质,相似三角形的判定与性质,三角形的面积计算,关键是由相似三角形求得BF•AB的值.23.6【分析】根据菱形的面积等于对角线乘积的一半列式进行计算即可得解.【详解】解:∠菱形的两条对角线长分别为3和4,∠菱形的面积为134=6 2⨯⨯故答案为:6【点睛】本题考查了菱形的性质,菱形的面积通常有两种求法,可以用底乘以高,也可以用对角线乘积的一半求解,计算时要根据具体情况灵活运用.24.【分析】根据圆与其内切正方形的关系,易得圆盖的直径至少应为正方形的对角线的长,已知正方形边长为50cm,进而由勾股定理可得答案.【详解】解:根据题意,知圆盖的直径至少应为正方形的对角线的长;再根据勾股定理,50故答案为:.【点睛】题主要考查正多边形和圆的相关知识;注意:熟记等腰直角三角形的斜边是直角边的 倍,可以给解决此题带来方便.25.【分析】结合正方形面积公式,平方差公式,勾股定理,三角形面积公式,可知()()2223S S BC AC BC AC BC AC -=-=+-,2240BC AC +=,14BC AC ⋅=,然后运用完全平方公式()2222a b a b ab ±=+±求解即可.【详解】解:根据题意,2140S AB ==,22S BC =,23S AC = ∠()()2223S S BC AC BC AC BC AC -=-=+-在Rt ABC 中,根据勾股定理,222BC AC AB +=∠2240BC AC +=∠7Rt ABC S = ∠172BC AC ⋅⋅= ∠14BC AC ⋅=∠BC AC +==BC AC -====∠()()BC AC BC AC +-==即23S S -=故答案为:【点睛】本题考查勾股定理与三角形、正方形的面积,完全平方公式与平方差公式的灵活应用,掌握并熟练应用勾股定理和各类公式是解题的关键.26.40【详解】试题分析:先根据折叠的性质求得、的度数,即可求得、的度数,再根据长方形的性质求解即可.∠50CED ∠='︒,AE 为折痕∠∠∠BAD ∠'. 考点:折叠的性质点评:折叠的性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.27.342π+【分析】根据菱形的性质以及旋转角为30°,连接CD ′和BC ',可得A 、D′、C 及A 、B 、C′分别共线,求出扇形的面积,再根据AAS 证得两个小三角形全等,求得面积,最后根据扇形ACC '的面积-两个小的三角形的面积即可.【详解】解:连接CD ′和BC '∠∠DAB =60°∠30DAC CAB ∠=∠=︒∠30C AB ∠''=︒∠A 、D′、C 及A 、B 、C′分别共线∠AC =∠扇形ACC′的面积为:2303604ππ⨯=∠AC =AC ′,AD′=AB在OCD OC B ''和中CD BC ACD AC D COD C OB '='⎧⎪∠=∠''⎨⎪∠'=∠'⎩∠()OCD OC B AAS ''≌∠OB =OD′,CO =C′O又∠60,30CBC BC O ︒∠'∠=='︒∠90BOC ∠'=︒在Rt BOC '中,())22211BO BO +-=解得13,22BO C O ='=∠S △OCB=12BO C O '⨯⨯=,∠322442C B AC OC S S Sππ''=-=-=+阴影扇形 故答案为:342π+ 【点睛】本题考查了旋转的性质,菱形的性质,扇形的面积公式,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.28.18或16【分析】首先由直角边分别为3和4,求得其斜边,然后分别从以边长为3,4,5的边为对角线拼成一个平行四边形(非矩形),去分析求解即可求得答案. 【详解】解:直角边分别为3和4,∴5=,若以边长为3的边为对角线,则所得的平行四边形的周长是:2(54)18⨯+=; 若以边长为4的边为对角线,则所得的平行四边形的周长是:2(53)16⨯+=;若以边长为5的边为对角线,则所得的平行四边形的周长是:2(34)14⨯+=(此时是矩形,舍去);综上可得:所得的平行四边形的周长是:16或18.故答案为:16或18.【点睛】此题考查了平行四边形的性质以及勾股定理.注意掌握分类讨论思想的应用是解此题的关键.29【分析】如图,连接BD交AC于E,由四边形ABCD是菱形,推出AC∠BD,AE=EC,在Rt△EOD中,利用勾股定理求出DE,在Rt△ADE中利用勾股定理求出AD即可.【详解】如图,连接BD交AC于E.∠四边形ABCD是菱形,∠AC∠BD,AE=EC,∠OA=2OC,AC=3,∠CO=DO=2EO=1,AE=32,∠EO=12,DE=EB==,∠AD=【点睛】本题考查菱形的性质、勾股定理等知识,解题的关键是灵活应用勾股定理解决问题.30.20,22,26,28【分析】以直角三角形边长相等的边为公共边,拼接四边形,再计算周长;【详解】解:∠如图周长=20;∠如图周长=22;∠如图周长=26;∠如图周长=28;∠如图周长=22;∠四边形的周长为:20,22,26,28;故答案为:20,22,26,28.【点睛】本题考查了图形的拼接,四边形的周长;作出拼接图形是解题关键.31.10【分析】(1)根据题意结合图形直接写出答案即可解决问题;(2)根据勾股定理首先求出A C'的长度;再次利用勾股定理求出AE的长度,即可解决问题.【详解】解:(1)如图1,当A'与B重合时,EF=10;(2)如图2,设AE=x,则BE=8-x;∠四边形ABCD为矩形,∠BC=AD=10,DC=AB=8;∠B=∠C=90°;由题意得:=A D AD '=10;由勾股定理得:222A C A D DC 1006436''=-=-=∠A C 6BA 1064''==-=, ,在Rt∠A BE '中,由勾股定理得:222(8)4x x =-+解得:x=5,由勾股定理得:222EF =10+5=125∠EF =【点睛】该命题主要考查了翻折变换及其应用问题;能根据翻折变换的性质准确找出命题图形中隐含的等量关系是解题的关键.32.∠∠【分析】根据平行四边形的的性质可以得到AB =CD ,AD =BC ,设点P 到AB 、BC 、CD 、DA 的距离分别为h 1、h 2、h 3、h 4,然后利用三角形的面积公式列式整理判断即可得到答案.【详解】解:∠四边形ABCD 是平行四边形,∠AB =CD ,AD =BC ,设点P 到AB 、BC 、CD 、DA 的距离分别为h 1、h 2、h 3、h 4,hAB 、hBC 分别为平行四边形的AB 边和BC 边的高则S 1=12AB •h 1,S 2=12BC •h 2,S 3=12CD •h 3,S 4=12AD •h 4,hAB = h 1+h 3,hBC =h 2+h 4 ∠12AB •h 1+12CD •h 3=12AB •hAB ,12BC •h 2+12AD •h 4=12BC •hBC ,又∠S 平行四边形ABCD =AB •hAB =BC •hBC ,∠S 2+S 4=S 1+S 3,故∠正确;根据S 3=2S 1只能判断h 3=2h 1,不能判断h 2=2h 4,即不能得出S 2=2S 4,故∠错误; 根据S 1+S 3=S 2+S 4,S 1+S 3=5,能得出ABCD 的面积为5×2=10,故∠正确;由题意只能得到S 2+S 4=S 1+S 3无法得到S 1+S 2=S 3+S 4,故∠错误;故答案为:∠∠.【点睛】本题主要考查了平行四边形的性质,三角形的面积,用平行四边形的面积表示出相对的两个三角形的面积是解题的关键.33.∠∠∠【分析】根据轴对称的性质得到直线l 垂直平分BD ,则根据线段垂直平分线的性质得AB AD =,CD CB =,由于AB=CD ,则AB BC CD BC ===,于是可判断四边形ABCD 为菱形,然后根据菱形的性质对4个结论进行判断.【详解】证明:∠直线l 是四边形ABCD 的对称轴,∴直线l 垂直平分BD ,AB AD ∴=,CD CB =,AB CD =,AB BC CD BC ∴===,∴四边形ABCD 为菱形,AC BD ∴⊥,//AB CD ,OA OC =,所以∠∠∠正确 .故答案为∠∠∠.【点睛】本题考查了轴对称的性质:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.也考查了菱形的判定与性质.34.35)【分析】设图2的矩形分割成四个全等三角形的两直角边为a 、b (a >b ),由图1与图2的两个小正方形相同,得出a 与b 的关系,再求出矩形的边长和大正方形的边长,应用周长公式求得其周长,最后便可求得其比值.【详解】解:设图2的矩形分割成四个全等三角形的两直角边为a 、b (a >b ),小正方形的边长为a-b ,矩形的长为2a+a-b=3a-b ,宽为b ,∠矩形的周长为:2(3a-b+b )=6a ,由图2知,中间小正方形的边长为b ,∠a-b=b ,∠a=2b ,∠大正方形的周长为,==∠该矩形与拼成的正方形的周长之比:=故答案为:3:5).【点睛】本题主要考查了勾股定理,矩形的性质,正方形的性质,关键是根据图形求得全等直角三角形的两直角边与矩形和大正方形的边长的关系.35.134【分析】连接DG 并延长,交于AB 延长线于点M ,过点M 作MN ∠CB ,交于CB 延长线于点N ,首先根据平行四边形的性质证明(),CGD EGM AAS ≅得出,DG GM =即可得出1,2HG FM =再利用勾股定理求出FM ,即可求得答案. 【详解】连接DG 并延长,交于AB 延长线于点M ,过点M 作MN ∠CB ,交于CB 延长线于点N ,如图,∠四边形ABCD 为平行四边形,∠CD ∠AB,AB CD ==∠CDG EMG ∠=∠又∠G 为CE 中点,∠,CG GE =在CGD △和EGM 中∠CDG EMG DGC MGE CG GE ∠=∠⎧⎪∠=∠⎨⎪=⎩∠(),CGD EGM AAS ≅∠,DG GM = ,CD EM = ∠1,2HG FM = AB EM =, ∠,AE BM =∠点E 为AB 的中点,∠1,2AE EB AB ==∠12EB BM AB ===, 又∠45,B ∠=︒∠45,MBN ∠=︒∠,BN MN =设,BN MN x ==在Rt BMN 中,∠222,BN MN BM +=∠222x x +=, 解得,5,2x = 即5,2BN MN == ∠点F 为BC 的中点, ∠17,22BF BC == ∠75622FN BF BN =+=+=, 在Rt MNF △中,∠222,NF MN MF +=∠13,2MF = ∠113,24HG FM == 故填:134. 【点睛】本题考查平行四边形的性质,全等三角形的判定与性质,三角形中位线定理,勾股定理,解题关键是熟练掌握平行四边形的性质和三角形中位线定理.36.∠∠∠【分析】根据旋转的性质可知,∠DGH ∠∠DCB ,进而得知DH =DB ,∠H =∠CBD =45°,∠DGH =∠DCB =90°,DG =DC =AD ,之后可证∠ADF ∠∠GDF ,四边形AEGF 是菱形,再根据勾股定理可知AE 的长度,进而可以一一判断选出答案.【详解】解:根据旋转的性质可知,∠DGH ∠∠DCB ,∠DH =DB ,∠H =∠CBD =45°,∠DGH =∠DCB =90°,DG =DC =AD ,在Rt ∠AED 与Rt ∠GED 中,AD =DG ,ED =ED∠Rt ∠AED ∠Rt ∠GED (HL )∠∠ADE =∠GDE ,即DE 平分∠ADB ,故∠正确;在∠ADF 和∠GDF 中,AD =DG ,∠ADF =∠GDF ,DF =DF ,∠∠ADF ∠∠GDF (SAS )∠AF =GF ,∠DAF =∠DGF =45°又∠∠ABD =45°∠FG ∠AE∠∠DAC =45°,∠∠DAC =∠H ,∠AF ∠EG∠四边形AEGF 是平行四边形,又∠AF =GF∠平行四边形AEGF 是菱形,故∠正确;∠∠H =45°,∠HAE =90°∠AE =AH∠AE =AF =HD -AD =BD -AD∠正方形ABCD 的边长为1,根据勾股定理可知BD ==即HD∠AE 1∠BE =)11=2-∠正确; ∠四边形AEGF 是菱形∠FG =AE 1∠BC +FG =1∠错误;综上答案为:∠∠∠.【点睛】本题考查的是正方形的性质,菱形的判定与性质,勾股定理和直角三角形的性质,是一道综合性较强的题,能够充分调动所学知识是解题的关键.37.30cm 2。

2014年北京市各城区中考二模数学——四边形的证明与计算题19题汇总

2014年北京市各城区中考二模数学——四边形的证明与计算题19题汇总

DCBA2014年北京市各城区中考二模数学——四边形的证明与计算题19题汇总1、(2014年门头沟二模)19. 如图,在平行四边形ABCD中,点E,F分别是AB,CD的中点.(1)求证:四边形AEFD是平行四边形;(2)若∠A=60°,AB=6,AD=4,求BD的长.2、(2014年丰台二模)19.如图,在四边形ABCD中,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,求AC的长.3、(2014年平谷二模)19.如图,在四边形ABCD中,对角线BD平分∠ABC,∠A=120°,∠C=60°,AB=5,AD=3.(1)求证:AD=DC;(2)求四边形ABCD的周长.4、(2014年顺义二模) 19.如图,在ABC△中,D、E分别是AB、AC的中点,BE=2DE,过点C作CF∥BE交DE的延长线于F.(1)求证:四边形BCFE是菱形;(2)若4CE=,120BCF∠=°,求菱形BCFE的面积.5、(2014年石景山二模)19.如图1,在△OAB中,∠OAB=90°,∠AOB=30°,BA=2.以OB为边,向外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG 的长.FEDCBAC6、(2014年海淀二模)19.如图,在△ABC 中,点D 、E 分别是边BC 、AC 的中点,过点A 作AF ∥BC 交DE 的延长线于F 点,连接CF . (1)求证:四边形ABDF 是平行四边形;(2)若∠CAF =45°,BC=4,CAF 的面积. 7、(2014年西城二模)19.如图,在四边形ABCD 中,AB ∥DC , DB 平分∠ADC , E 是CD 的延长线上一点,且12AEC ADC ∠=∠. (1)求证:四边形ABDE 是平行四边形.(2)若DB ⊥CB ,∠BCD =60°,CD =12,作AH ⊥BD 于H ,求四边形AEDH 的周长.8、(2014年通州二模)20.如图,在平行四边形ABCD 中,E 为BC 边上的一点,连接AE 、BD 交于点F ,AE =AB .(1)若∠AEB =2∠ADB ,求证:四边形ABCD 是菱形. (2)若AB =10,BE =2EC ,求EF 的长.EADCBBGDC BAE9、(2014年东城二模)19.在平行四边形ABCD 中,AB =6,AD =9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE 于点G,BG 求EFC V 的周长.10、(2014年朝阳二模)19.如图,在四边形ABCD 中,AB =34,∠DAB =90°,∠B =60°,AC ⊥BC .(1)求AC 的长.(2)若AD=2,求CD 的长.11、(2014年密云二模)19.如图,在平行四边形ABCD 中,AB=4,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F,且点F 为边DC 的中点,DG ⊥AE ,垂足为G ,若DG=1,求AE 的长.12、(2014年延庆二模)13、(2014年房山二模) 19. 已知:如图,梯形ABCD 中,AD=BC ,F 为BC 的中点,AB=2,∠A =120°,过点F 作EF ⊥BC 交DC 于点E ,且EF = 3 ,求DC 的长.14、(2014年昌平二模)18.如图,已知□ABCD ,E ,F 是对角线BD 上的两点,且BE =DF .(1)求证:四边形AECF 是平行四边形;(2)当AE 垂直平分BC 且四边形AECF 为菱形时,直接写出AE ∶AB 的值.15、(2014年怀柔二模)19.如图,已知△ABC 是等边三角形,点D 、F 分别在线段BC 、AB 上,∠EFB=60°,DC=EF .(1)求证:四边形EFCD 是平行四边形;FE DCBA(2)若BF=EF ,求证:AE=AD .16、(2014年大兴二模)19.已知: 如图,在平行四边形ABCD 中,点E 、F 分别是AB 、CD 的中点 .(1)求证:四边形AEFD 是平行四边形; (2)若∠A =60°,AB=8,AD=4,求BD 的长 . 17、(2014年燕山二模)19. 如图,在四边形ABCD 中,BC AD //,25=AB ,4=BC ,连接BD ,BAD ∠的平分线交BD 于点E ,且CD AE //. (1)求AD 的长; (2)若︒=∠30C ,求四边形ABCD 的周长.ED CBA。

初中数学四边形专题训练50题含参考答案

初中数学四边形专题训练50题含参考答案

初中数学四边形专题训练50题含答案(单选、填空、解答题)一、单选题1.如果从某个多边形的一个顶点出发,可以作2条对角线,则这个多边形的边数是( )A .4B .5C .6D .7 2.如图,用一根绳子检查一平行四边形书架的侧边是否和上、下底都垂直,只需要用绳子分别测量比较书架的两条对角线AC ,BD 就可以判断,其推理依据是( )A .矩形的对角线相等B .矩形的四个角是直角C .对角线相等的四边形是矩形D .对角线相等的平行四边形是矩形3.在Rt ABC 中,90,30,4,C A BC D E ∠=︒∠=︒=、分别为AC AB 、边上的中点,连接DE 到F ,使得2EF ED =,连接BF ,则BF 长为( )A .2B .C .4D .4.一个多边形的内角和是外角和的5倍,这个多边形边数为( ) A .14 B .12 C .10 D .8 5.在平面直角坐标系中,矩形ABCD 的位置如图所示,其中(1,1)B --,点A 在第二象限,//AB y 轴,3,4AB BC ==,则顶点D 的坐标为( )A.(3,2)B.(2,2)C.(3,3)D.(2,3)6.下列选项中,能判定四边形ABCD是平行四边形的是()A.AB//CD,AD=BC B.∠A=∠D,∠B=∠CC.AB//CD,∠A+∠B=180°D.∠A=∠C,∠B+∠D=180°7.下列命题正确的是()A.同一边上两个角相等的梯形是等腰梯形B.一组对边平行,一组对边相等的四边形是平行四边形C.如果顺次连接一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形D.对角线互相垂直的四边形面积等于对角线乘积的一半8.下列命题中,正确的是()A.梯形的对角线相等B.菱形的对角线不相等C.矩形的对角线不能互相垂直D.平行四边形的对角线可以互相垂直9.如图,已知点D、E分别是△ABC的边AB、CB的中点,若AB=8,CE=6,AC=10,则△BDE的周长为()A.12B.15C.19D.2410.一个正多边形的每个外角都等于36°,那么它是()A.正五边形B.正六边形C.正八边形D.正十边形11.如图,将一边长AB为4的矩形纸片折叠,使点D与点B重合,折痕为EF,若EF=)A .32B .28C .30D .36 12.将如图甲所示的长方形沿着虚线剪开得到两个全等三角形,现拼成如图乙所示的图形,取BC 的中点O ,连接OA ,OD ,AD ,若22.5ACB ∠=︒,4BC =,则AOD △的周长是( )A .4B .C .4D .4+13.如图,ABD △是等边三角形,CBD △是等腰三角形,且BC DC =,点E 是边AD 上的一点,满足//CE AB ,如果8AB =,6CE =,那么BC 的长是( )A .6B .CD .14.如图,在矩形ABCD 中,3AB =,6BC =,点O 为对角线AC 和BD 的交点,延长BA 至E ,使AE AB =,以AE 为边向右侧作矩形AEFG ,点G 在AD 上,若4AG =,过点O 的一条直线平分该组合图形的面积,并分别交EF 、BC 于点P 、Q ,则2PQ 的值为( )A .39B .40C .41D .42 15.凸n 边形恰好只有三个内角是钝角,这样的多边形边数n 的最大值是( ) A .7 B .6 C .5 D .4 16.如图,点E 为菱形ABCD 边上的一个动点,并沿A →B →C →D 的路径移动,设点E 经过的路径长为x ,∠ADE 的面积为y ,则下列图象能大致反映y 与x 的函数关系的是( )A .B .C .D .17.如图,AB CD =,AD BC =,4=AD ,6BE =,DCE △的面积为3,则四边形ABCD 的面积为( )A .10B .12C .15D .2018.如图,在矩形纸片ABCD 中,5AB =,3BC =,将BCD △沿BD 折叠到BED 位置,DE 交AB 于点F ,则cos ADF ∠的值为( )A .817B .715C .1517D .815 19.如图,矩形ABCD 中,2AB =,4BC =.点E ,G 分别在边BC ,AD 上,点F ,H 在对角线AC 上.若四边形EFGH 是菱形,则AG 的长是( )A .2BC .52D 20.如图,矩形ABCD 中,6,8AB BC ==.点E 、F 分别为边BC 、AD 上一点,连接EF ,将矩形ABCD 沿着EF 折叠,使得点A 落到边CD 上的点A '处,且2DA A C '=',则折痕EF 的长度为( )A .B .C D二、填空题21.▱ABCD 中,AC 、BD 交于点O ,已知6AB =,8AC =,10BD =,则DOC 的周长为______.22.如图,平行四边形OABC 的边OA 在x 轴上,顶点C 在反比例函数y =k x的图象上,BC 与y 轴相交于点D ,且D 为BC 的中点,若平行四边形OABC 的面积为6,则k =_____.23.四边形具有不稳定性.如图,矩形ABCD 按箭头方向变形成平行四边形A B C D '''',当变形后图形面积是原图形面积的一半时,则A '∠=________.24.如图,ABCD 的对角线交于点O .点M ,N ,P ,Q 分别是ABCD 四条边上不重合的点.下列条件能判定四边形MNPQ 是平行四边形的有_____(填序号). ∠,AQ CN AM CP ==;∠,MP NQ 均经过点O :∠NQ 经过点O ,AQ CN =.25.如图,DE 为ABC ∆的中位线,点F 在DE 上,且AFC ∠为直角,若6AC cm =,8BC cm =,则DF 的长为__________cm .26.在ABCD 中,3AD =,2AB =,则ABCD 的周长是______.27.如图,在▱ABCD 中,对角线 AC 、BD 相交于 O ,E 为 DC 边的中点,如果▱ABCD 的周长为 24, 且12AB BC =,则 OE 的长为_______.28.矩形纸片ABCD ,长8cm AD =,宽4cm AB =,折叠纸片,使折痕经过点B ,交AD 边于点E ,点A 落在点A '处,展平后得到折痕BE ,同时得到线段BA ',EA ',不再添加其它线段,当图中存在30角时,AE 的长为__________厘米.29.如图,将边长为4的正方形ABCD 沿着折痕EF 折叠,使点B 落在边AD 的中点G 处,则BE 的长为________.30.各角都相等的十五边形的每个内角的度数是_____度.31.如图,在Rt ABC 中,90ACB ∠=︒,以斜边AB 为边向下作正方形ADEB ,过点E 作EF BC ∥交AC 于点F ,过点C 作CG BE ∥交EF 于点G ,连接DG ,若3AF =,15DE =,则四边形CGEB 的面积为______.32.如图,矩形ABCD的两条对角线相交于点O,CD=A为圆心,AD长为半径画弧,此弧恰好经过点O,并与AB交于点E,则图中阴影部分的面积为_____.33.如图,在平行四边形ABCD中,AD=5,AB=3,BE平分∠ABC,则DE=_____.34.在平面直角坐标系中,直线y=﹣x+3与x轴、y轴分别交于A、B,在AOB内部作正方形,使正方形的四个顶点都落在该三角形的边上,则此正方形落在x轴正半轴的顶点坐标为_____.35.如图,在矩形ABCD中,点E在BC上,连接AE、DE,若2==,AD DE∠=︒,则CE的长为______________.BAE15AE=,四边形ABCD是平行四边形,且顶点A、B、36.如图,在半圆O中,直径10C在半圆上,点D在直径AE上,连接CE,若8AD=,则CE长为________.37.如图,正方形ABCD内接于圆O,点E为BC上一点,连接BE,若15∠=,CBE5BE =,则正方形ABCD 的边长为________,BE 的长为________.38.如图,ABCD 的顶点A 、B 的坐标分别是()1,0-、()0,2-,顶点C 、D 均在函数(0,0)k y k x x =>>的图象上,AD 交y 轴于点E ,若612ABE ABCD S S ==四边形,则k 的值为_____________.39.如图,将边长为4的正方形ABCD 纸片沿EF 折叠,点C 落在AB 边上的点G 处,点D 与点H 重合, CG 与EF 交于点P ,取GH 的中点Q ,连接PQ ,则GPQ 的周长最小值是__________.40.在ABC 中,已知45ABC ∠=,BD AC ⊥于D ,2CD =,3AD =,则BD 的长为________.三、解答题41.如图,二次函数2y x bx c =-++的图像经过()0A 1,,()03B -,两点.(1)求这个抛物线的解析式及顶点坐标;(2)在抛物线的对称轴上是否存在一点P ,使得O 、B 、C 、P 四点为顶点的四边形是平行四边形?若存在,请直接写出P 点坐标;若不存在,请说明理由.42.如图,点A 在双曲线y=(x >0)上,点B 在双曲线y=﹣(x <0)上,且AB 平行于x 轴,BC∠AO 交x 轴于点C ,交双曲线y=﹣(x <0)于点D ,连接AD . (1)设点A 的纵坐标为n ,用n 表示AB 的长为_________;(2)当OC=3时,求点D 的坐标.43.已知:如图,四边形DEBF 是平行四边形,且AE CF =.求证:四边形ABCD 是平行四边形.44.已知:点D 是ABC ∆的边BC 的中点,DE AB ⊥,DF AC ⊥,垂足分别为E 、F ,且BE CF =.(1)如图1,求证:AE AF =;(2)如图2,若90BAC ︒∠=,连接AD 交EF 于M ,连接BM 、CM ,在不添加任何辅助线的情况下,直接写出图中所有与AEF ∆面积相等的等腰三角形.45.已知:如图,已知∠O 的半径为1,菱形ABCD 的三个顶点A 、B 、D 在∠O 上,且CD 与∠O 相切.(1)求证:BC 与∠O 相切;(2)求阴影部分面积.46.在综合与实践课上,老师组织同学们以“矩形的折叠”为主题开展数学活动.【动手操作】某数学小组对图1的矩形纸片ABCD 进行如下折叠操作:第一步:如图2,把矩形纸片ABCD 对折,使AD 与BC 重合,得到折痕MN ,然后把纸片展开;第二步:如图3,将图2中的矩形纸片沿过点B 的直线折叠,使得点A 落在MN 上的点A '处,折痕与AD 交于点E ,然后展开纸片,连接AA ',BA ',EA .【问题解决】(1)观察猜想:A BC '∠=______度(2)请判断图3中ABA '△的形状,并说明理由;(3)如图4,折痕BE 与MN 交于点F ,BA '的延长线交直线CD 于点P ,若1MF =,7BC =,请求出PD 的长.47.如图,在矩形ABCD 中,E 是对角线AC 上一点(不与A 、C 重合),过点E 作EF //CD ,且EF =DC ,连接DE 、BF 、CF .(1)如图1,若AE=AB,求证:四边形ABFE是菱形.DE∠AC时,求线段BF的长.(2)如图2,若AB=2,BC48.已知:ABCD的对角线AC、BD相交于点O,E,F分别是OA,OC的中点.(1)如图∠,求证:DF=BE;(2)如图∠,连接DE、BF,求证:四边形DEBF是平行四边形.49.如图,在菱形ABCD中,M,N分别是边AB,BC的中点,MP∠AB交边CD于点P,连接NM,NP.(1)若∠B=60°,这时点P与点C重合,则∠NMP= 度;(2)求证:NM=NP;(3)当∠NPC为等腰三角形时,求∠B的度数.参考答案:1.B【分析】根据n 边形从一个顶点出发可引出()3n -条对角线,得出32n -=,求出n 即可.【详解】解:设这个多边形的边数是n ,由题意得32n -=,解得5n =.故选:B .【点睛】本题考查了多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.掌握n 边形从一个顶点出发可引出()3n -条对角线是解题的关键.2.D【分析】根据矩形的判定定理:对角线相等的平行四边形是矩形即可判定.【详解】解:这种做法的依据是对角线相等的平行四边形为矩形,故选D .【点睛】本题主要考查对矩形的性质和判定的理解和掌握,能熟练地运用矩形的性质解决实际问题是解此题的关键.3.C【分析】根据直角三角形的性质求出AB ,进而求出AE 、EB ,根据三角形中位线定理得到DE ∠BC ,得到∠AED =∠AED =60°,根据等边三角形的判定定理和性质定理解答即可.【详解】解:在Rt ∠ABC 中,∠C =90°,∠A =30°,BC =4,∠AB =2BC =8,∠ABC =60°,∠E 为AB 边上的中点,∠AE =EB =4,∠D 、E 分别为A C 、AB 边上的中点,∠DE ∠BC ,∠∠AED =∠AED =60°,∠∠BEF =∠ABC =60°,在Rt ∠AED 中,∠A =30°,∠AE =2DE ,∠EF =2DE ,∠AE =EF ,∠∠BEF 为等边三角形,∠BF =BE =4,故选:C .【点睛】本题考查的是三角形中位线定理、等边三角形的判定和性质、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键. 4.B【分析】设这个多边形有n 条边,根据内角和是它的外角和的5倍,列出方程,然后解方程即可.【详解】解:设这个多边形有n 条边.由题意得:(2)1803605n -⨯︒=︒⨯,解得n =12.故这个多边形的边数是12.故选B【点睛】此题主要考查了多边形的外角和,内角和公式,做题的关键是正确把握多边形的内角和公式为:2180()n -⨯︒,外角和为360°.5.A【分析】由矩形的性质可得3AB CD ==,4CB AD ==,////AD BC x 轴,////AB CD y 轴,则可求点D 坐标. 【详解】解:四边形ABCD 是矩形3AB CD ∴==,4CB AD ==,//AD BC ,//AB CD ,且//AB y 轴,////AD BC x ∴轴,////AB CD y 轴,(1,1)B --,3AB =,4BC =,∴点C 横坐标为3,点A 纵坐标为2,∴点D 坐标为(3,2),故选:A .【点睛】本题考查了矩形的性质,坐标与图形性质,熟练运用矩形的性质是本题的关键. 6.C【分析】平行四边形的判定定理:(1)两组对边分别平行的四边形是平行四边形(2)两组对边分别相等的四边形是平行四边形(3)一组对边平行且相等的四边形是平行四边形(4)两组对角分别相等的四边形是平行四边形(5)对角线互相平分的四边形是平行四边形.根据平行四边形的判定定理逐个分析即可解答.【详解】解:A、AB//CD,AD=BC不能判定四边形ABCD是平行四边形,故此选项错误;B、∠A=∠D,∠B=∠C不能判定四边形ABCD是平行四边形,故此选项错误;C、因为∠A+∠B=180°,所以AD//BC,又因为AB//CD,所以四边形ABCD是平行四边形,故此选项正确;D、∠A=∠C,∠B+∠D=180°不能判定四边形ABCD是平行四边形,故此选项错误;故选C.【点睛】本题主要考查平行四边形的判定定理,解决本题的关键是要熟练掌握平行四边形的判定定理.7.D【详解】试题分析:A、同一底上两个角相等的梯形可能是等腰梯形也可能是直角梯形,故A选项错误;B、一组对边平行且相等的四边形不一定是平行四边形,故B选项错误;C、如果顺次连接一个四边形各边中点得到的是一个正方形,那么原四边形对角线相等且互相垂直,不是任意的四边形,故C选项错误;D、对角线互相垂直的四边形面积等于对角线乘积的一半,故D选项正确.故选D.考点:1.等腰梯形的判定;2.平行四边形的判定;3.正方形的判定.8.D【详解】试题分析:根据特殊四边形的性质逐一作出判断:A .梯形的对角线不一定相等,命题错误;B.当菱形满足一个角是直角,即为正方形时,菱形的对角线相等,命题错误;C.当矩形满足一组邻边相等,即为正方形时,矩形的对角线互相垂直,命题错误;D.当平行四边形满足一组邻边相等,即为菱形时,平行四边形的对角线可以互相垂直,命题正确.故选D.考点:特殊四边形的性质.9.B【分析】根据三角形中位线定理得到DE=12AC=5,根据中点定义可得BE=CE=6,BD=12AB=4,再根据三角形的周长公式得到BD+BE+DE,计算即可.【详解】解:∠点D、E分别是△ABC的边AB、CB的中点,∠DE=12AC=5,BE=CE=6,BD=12AB=4,∠△BDE的周长=BD+BE+DE=4+6+5=15,故选:B.【点睛】本题考查三角形中位线性质,熟练掌握三角形中位线性质是解题的关键.10.D【详解】试题分析:正多边形的边数=外角和÷每个外角的度数.考点:多边形的外角11.A【分析】连接BD交EF于O,由折叠的性质可推出BD∠EF,BO=DO,然后证明∠EDO∠∠FBO,得到OE=OF,设BC=x,利用勾股定理求BO,再根据∠BOF∠∠BCD,列出比例式求出x,即可求矩形面积.【详解】解:连接BD交EF于O,如图所示:∠折叠纸片使点D与点B重合,折痕为EF,∠BD∠EF,BO=DO,∠四边形ABCD是矩形,∠AD∠BC∠∠EDO=∠FBO在∠EDO和∠FBO中,∠∠EDO=∠FBO,DO=BO,∠EOD=∠FOB=90°∠∠EDO∠∠FBO(ASA)∠OE =OF =12EF ∠四边形ABCD 是矩形,∠AB =CD =4,∠BCD =90°,设BC =x ,BD∠BO , ∠∠BOF =∠C =90°,∠CBD =∠OBF ,∠∠BOF ∠∠BCD , ∠OB BC =OF CD,即:2x 解得:x =8,∠BC =8,∠S 矩形ABCD =AB •BC =4×8=32,故选:A .【点睛】本题考查矩形的折叠问题,熟练掌握折叠的性质,全等三角形的判定,以及相似三角形的判定与性质是解题的关键.12.D【分析】根据直角三角形斜边的中线等于斜边的一半可得AOC 和BOD 均为等腰三角形,由22.5ACB ∠=︒,可得:45AOB DOC ∠=∠=︒,证得AOD △为等腰直角三角形,根据勾股定理求得AD =【详解】解:由题意可知ABC 与DBC △全等,且都为直角三角形,∠点O 是BC 的中点, ∠122OA OD BC BO CO =====, ∠AOC 和BOD 均为等腰三角形,∠22.5ACB ∠=︒,∠22.5OAC ∠=︒,∠45AOB OAC ACB ∠=∠+∠=︒,同理可得:45DOC ∠=︒,∠18090AOD AOB COD ∠=︒-∠-∠=︒,在Rt AOD 中,AD∠AOD △的周长是224AD OA OD ++=+=+故选:D .【点睛】本题考查了矩形的性质,全等三角形的性质,直角三角形斜边的中线,勾股定理等知识,根据题意证出AOD △为等腰直角三角形是解题的关键.13.B【分析】连结AC ,过E 作EF ∠AB 于F ,过C 作CG ∠AB 于G ,先确定AC 为对称轴,得到∠BAC =∠DAC ,∠ACB =∠ACD ,由CE∥AB ,可得∠ECA =∠BAC =∠EAC ,得等腰三角形AE =CE =6,求出AF =AE cos60°=3,EF =AE sin60°=EFGC 为矩形,求出GB = AF +FG -AB =1,在Rt △BCG 中,由勾股定理BC【详解】解:连结AC ,过E 作EF ∠AB 于F ,过C 作CG ∠AB 于G ,∠△ABC 为等边三角形,△BCD 为等腰三角形,AC 为对称轴,∠∠BAC =∠DAC ,∠ACB =∠ACD ,∠CE∥AB ,∠∠ECA =∠BAC =∠EAC ,∠AE =CE =6,∠AF =AE cos60°=61=32⨯,∠EF =AE sin60°=6 ∠CE∥AB ,EF ∠AB , CG ∠AB ,∠FE ∠EC ,CG ∠EC ,∠∠EFG =∠FEC =∠CGF =90°∠四边形EFGC 为矩形,∠EF =CG CE =FG =6,∠GB = AF +FG -AB =3+6-8=1,在Rt ∠BCG 中,由勾股定理BC =故选择:B .【点睛】本题考查等边三角形性质,等腰三角形判定与性质,锐角三角函数,矩形判定与性质,勾股定理,掌握等边三角形性质,等腰三角形判定与性质,锐角三角函数,矩形判定与性质,勾股定理是解题关键.14.B【分析】根据题意可得PQ 必过矩形EFGA 的对角线交点,连接AF ,EG 交于点H ,取AE 的中点M ,AB 的中点N ,连接HM ,ON ,过点H 作HT ∠ON 于T ,设PQ 与AD 的交点为S ,根据三角形中位线定理可得133,22ON BC AN ===,∠ANO =∠ABC =90°,32,2NH AM ==,∠AMH =90°,再由勾股定理可得OH 的长,再证明∠ASO ∠∠CQO ,可得SO =OQ ,即可求解.【详解】解:∠过点O 的一条直线平分该组合图形的面积,∠PQ 必过矩形EFGA 的对角线交点,连接AF ,EG 交于点H ,取AE 的中点M ,AB 的中点N ,连接HM ,ON ,过点H 作HT ∠ON 于T ,设PQ 与AD 的交点为S ,∠四边形ABCD 是矩形,∠AO =CO ,又∠点N 是AB 的中点,∠133,22ON BC AN ===,ON ∠BC , ∠∠ANO =∠ABC =90°,同理:32,2NH AM ==,∠AMH =90°,∠HT∠NO,∠四边形MHTN为矩形,∠MH=NT=2,MT=MN=3,∠TO=1,∠HO=∠AD∠BC,∠∠DAC=∠BCA,∠ASO=∠CQO,在∠ASO和∠CQO中,∠DAC ACBASO CQOAO CO∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠ASO∠∠CQO(AAS),∠SO=OQ,同理PH=SH,∠2PQ HO==∠240PQ=.故选:B【点睛】本题考查了矩形的性质,三角形中位线定理,全等三角形的判定和性质,勾股定理,灵活运用这些性质解决问题是本题的关键.15.B【分析】由题意知在n边形的外角中恰好有3个锐角,则其余(n-3)个外角是直角或钝角,而n个外角中最多只能有4个直角或3个钝角,而4个直角已不可能,所以n-3≤3,由此即得答案.【详解】解:因为n 边形恰好只有三个内角是钝角,所以在n 边形的外角中恰好有3个锐角,所以其余(n -3)个外角是直角或钝角,又由于n 边形的外角和是360°,其n 个外角中最多只能有4个直角或3个钝角,而4个直角显然已不可能,所以n -3≤3,解得n ≤6,即n 的最大值为6.故选B.【点睛】本题考查了多边形的内角、外角的概念与外角和,从多边形的外角的角度入手分析是解题的关键.16.D【分析】分三段来考虑点E 沿A→B 运动,∠ADE 的面积逐渐变大;点E 沿B→C 移动,∠ADE 的面积不变;点E 沿C→D 的路径移动,∠ADE 的面积逐渐减小,据此选择即可.【详解】解:点E 沿A →B 运动,∠ADE 的面积逐渐变大,设菱形的边长为a ,∠A =β, ∠AE 边上的高为AB sinβ=a •sinβ,∠y =12•a •sinβ,点E 沿B →C 移动,∠ADE 的面积不变;点E 沿C →D 的路径移动,y =12(3a ﹣x )•sinβ,∠ADE 的面积逐渐减小.故选:D .【点睛】本题考查了动点问题的函数图像,分析判断几何动点问题的函数图象的题目一般有两种类型:(1)观察型(函数的图象有明显的增减性差异):根据题目描述,只需确定函数值在每段函数图象上随自变量的增减情况或变化的快慢即可得解.(2)计算型:先根据自变量的取值范围对函数进行分段,再求出每段函数的解析式,最后由每段函数的解析式确定每段函数的图象.17.B【分析】根据两组对边分别相等的四边形是平行四边形证明四边形ABCD 是平行四边形,再根据DCE △的面积为3计算出DH ,最后根据平行四边形的面积公式即可得到答案.【详解】解:过点D 作DH CE ⊥,垂足为H ,∠AB CD =,AD BC =,∠四边形ABCD 是平行四边形,∠2CE BE BC BE AD =-=-=, ∠112322DCE S CE DH DH =⨯=⨯⨯=, ∠3DH =,∠4312ABCD S BC DH =⨯=⨯=,故选:B .【点睛】本题考查平行四边形的判断,解题的关键是熟知两组对边分别相等的四边形是平行四边形.18.C【分析】先根据矩形的性质和折叠的性质,利用“AAS”证明AFD EFB ∆∆≌,得出AF EF =,DF BF =,设AF EF x ==,则5BF x =-,根据勾股定理列出关于x 的方程,解方程得出x 的值,最后根据余弦函数的定义求出结果即可.【详解】解:∠四边形ABCD 为矩形,∠CD =AB =5,AB =BC =3,90A C ∠=∠=︒,根据折叠可知,3BE BC ==,5DE DE ==,90∠=∠=︒E C ,∠在∠AFD 和∠EFB 中903A E AFD EFB AD BE ∠=∠=︒⎧⎪∠=∠⎨⎪==⎩,∠AFD EFB ∆∆≌(AAS ),∠AF EF =,DF BF =,设AF EF x ==,则5BF x =-,在Rt BEF ∆中,222BF EF BE =+,即()22253x x -=+, 解得:85x =,则817555DF BF ==-=, ∠315cos 17175AD ADF DF ∠===,故C 正确.故选:C .【点睛】本题主要考查了矩形的折叠问题,三角形全等的判定和性质,勾股定理,三角函数的定义,根据题意证明AFD EFB ∆∆≌,是解题的关键.【分析】连接EG 交AC 于O ,根据菱形和矩形的性质证明∠CEO ∠∠AGO ,推出AO=CO ,由勾股定理求出AC 得到AO ,再证明∠AOG ∠∠ADC ,得到AG AO AC AD=,代入数值即可求出AG .【详解】解:连接EG 交AC 于O ,∠四边形EFGH 是菱形,∠EG ∠FH ,OE=OG ,∠四边形ABCD 是矩形,∠∠B =∠D =90°,AD BC ∥,∠∠ACB =∠CAD ,∠∠CEO ∠∠AGO ,∠AO=CO ,∠AC ==∠12AO AC == ∠∠AOG =∠D =90°,∠OAG =∠CAD ,∠∠AOG ∠∠ADC , ∠AG AO AC AD=,=, ∠AG =52故选:C .【点睛】此题考查了菱形的性质,矩形的性质,勾股定理,全等三角形的判定及性质,相似三角形的判定及性质,是图形类的综合题,熟练掌握各知识点是解题的关键.【分析】由2DA A C '=',6DC =,可求出DA ',A C '的长,再根据折叠和勾股定理可求出DF 和FA ',依据三角形相似可求出NC 、NA ',进而求出MF ,最后根据勾股定理求出EF .【详解】解:如图,过点E 作EM AD ⊥,垂足为M ,2DA A C ''=,6DC =, 243DA DC '==,123A C DC '==, 由折叠得,AF FA =',6AB A B =''=,设DF x =,则8FA FA x ='=-,在Rt DFA ∆'中,由勾股定理得,2224(8)x x +=-,解得3x =,即3DF =,835FA FA ∴='=-=,1809090NAC DA F ∠'+∠'=︒-︒=︒,90NAC A NC ∠'+∠'=︒,DA F A NC ∴∠'=∠',90C D ∴∠=∠=︒,∴∠A NC '∽∠FA D ',∴A C NC A N FD A D FA ''=='',即2345NC A N '==, 解得83NC =,103A N '=, 108633B N A B A N NC ∴'=''-'=-==, ∴∠()A CN ENB AAS '≅∆',103EN A N ∴='=, 108633EC EN NC MD ∴=+=+==, 633MF ∴=-=,在Rt EFM ∆中,EF故选:A .【点睛】本题考查矩形的性质、折叠轴对称、相似三角形、全等三角形以及勾股定理等知识,掌握折叠的性质和直角三角形的边角关系是得出答案的前提,建立图形中线段之间的关系是解决问题的关键.21.15【分析】根据平行四边形的对角线互相平分,求得OC 与OD 的长,继而可求得答案. 【详解】解:四边形ABCD 是平行四边形,142OC AC ∴==,152OD BD ==,6CD AB ==, OCD ∴△的周长为:64515CD OC OD ++=++=.故答案为:15.【点睛】本题重点考查了平行四边形的性质,并利用性质解题.平行四边形基本性质:∠平行四边形两组对边分别平行;∠平行四边形的两组对边分别相等;∠平行四边形的两组对角分别相等;∠平行四边形的对角线互相平分.22.3-【分析】由D 为BC 的中点,平行四边形OABC 的面积为6,可得∠OCD 的面积为平行四边形OABC 的面积的14,再根据反比例函数系数k 的几何意义即可求出答案. 【详解】解:∠D 为BC 的中点,平行四边形OABC 的面积为6,∠∠OCD 的面积为6×14=1.5, ∠12|k |=1.5, ∠k <0,∠3k =-.故答案为:3-.【点睛】本题考查了反比例函数k 的几何意义,平行四边形的性质,求得∠OCD 的面积是解题的关键.23.30︒【分析】根据矩形和平行四边形的面积公式可知,平行四边形A 'B 'C 'D '的底边A D ''边上的高等于A B ''的一半,据此可得∠A '为30°.【详解】解:如图,过点B '作B E A D '⊥''于点E .设矩形ABCD 的边AD 长为a ,AB 长为b ,B E '长为c ,则ABCD S ab =矩形,A B C D Sac ''''=. ∠12A B C D ABCDS S ''''=矩形, ∠12ac ab =, ∠12c b =, ∠sin A '12c b ==, ∠30A ∠'=︒.【点睛】本题主要考查了四边形的不稳定性、矩形与平行四边形的面积公式、解直角三角形等相关知识,熟记特殊角的三角函数值是解答本题的关键.24.∠∠##∠∠【分析】∠根据平行四边形的性质结合已知条件,证明AMQ CPN ≌,DQP BNM ≌,可得MQ NP =,MN PQ =,根据两组对边相等的四边形是平行四边形,即可判断∠,∠根据平行四边形是中心对称图形,即可判断∠,根据已知条件不能判断∠.【详解】解:∠四边形ABCD 是平行四边形A C ∴∠=∠,B D ∠=∠,,AD BC AB CD == ∠,AQ CN AM CP ==∠AMQ CPN ≌∠MQ NP =,AQ CN AM CP ==∴,DQ BN DP BM ==又B D ∠=∠DQP BNM ∴≌MN PQ ∴=∴四边形MNPQ 是平行四边形故∠正确 ∠四边形ABCD 的对角线交于点O ,,MP NQ 均经过点O :,OQ ON OM OP ∴==∴四边形MNPQ 是平行四边形故∠正确∠NQ 经过点O ,AQ CN =,,M P 的位置未知,不能判断四边形MNPQ 是平行四边形 故∠不正确故答案为:∠∠【点睛】本题考查了平行四边形的性质与判定,掌握平行四边形的性质与判定是解题的关键.25.1【分析】根据三角形中位线定理求出DE ,根据直角三角形的性质求出EF ,结合图形计算即可.【详解】∠DE 为△ABC 的中位线, ∠DE=12BC=4(cm), ∠∠AFC 为直角,E 为AC 的中点, ∠FE=12AC=3(cm),∠DF=DE−FE=1(cm),故答案为1cm.【点睛】此题考查三角形中位线定理,解题关键在于掌握其性质定义.26.10【分析】平行四边形的两组对边相等,以此便可求解.【详解】解:如图:平行四边形ABCD 的周长为:2()2(32)10AD AB +=⨯+=.故答案是:10.【点睛】本题考查平行四边形两组对边相等的性质,解题的关键是掌握其性质. 27.4【分析】直接利用三角形中位线的性质,证明EO =AB ,然后根据平行四边形的性质列方程得出答案.【详解】解:∠四边形ABCD 是平行四边形,∠AB =DC ,BO =DO ,又∠E 为DC 边的中点,∠EO 是△DBC 的中位线,∠EO =12BC , ∠EO =AB∠▱ABCD 的周长为24,∠设AB =x ,则BC =2x ,则2(x +2x )=24,解得:x =4,故EO =4.故答案为4.【点睛】此题主要考查了平行四边形的性质、三角形中位线的性质等,正确得出EO 是△DBC 的中位线是解题关键.28 8-【分析】分∠ABE=30°或∠AEB=30°或∠ABA′=30°时三种情况,利用锐角三角函数进行求解即可.【详解】解:当∠ABE=30°时,∠AB=4cm ,∠A=90°,; 当∠AEB=30°时,则∠ABE=60°,∠AB=4cm ,∠A=90°,∠AE=AB·tan60°=;当∠ABE=15°时,∠ABA′=30°,延长BA′交AD 于F ,如下图所示,设AE=x ,则EA′=x ,sin 60x EF ==︒∠x +=∠8x =-∠8AE =-cm .8- 【点睛】本题考查了矩形与折叠,以及分类讨论的数学思想,分类讨论是解答本题的关键.29.2.5【分析】由折叠的性质可得CF=HF ,BE=GE ,设BE=GE=x ,则AE=4-x ,在Rt △AEG 中利用勾股定理求出x 的值.【详解】解:由题意,点C 与点H ,点B 与点G 分别关于直线EF 对称,∠CF=HF ,BE=GE ,设BE=GE=x ,则AE=4-x ,∠四边形ABCD 是正方形,∠∠A=90°,∠AE 2+AG 2=EG 2,∠B 落在边AD 的中点G 处,∠AG=2,∠(4-x )2+22=x 2,解得:x=2.5,∠BE=2.5.故答案为:2.5.【点睛】本题考查了折叠问题与勾股定理以及正方形的性质,掌握翻折的性质是解题的关键.30.156【分析】根据多边形的内角和公式即可得出结果.【详解】解:∠十五边形的内角和=(15﹣2)•180°=2340°,又∠十五边形的每个内角都相等,∠每个内角的度数=2340°÷15=156°.故答案为156.【点睛】本题考查了多边形的内角和计算公式.多边形内角和定理:多边形内角和等于(n ﹣2)•180°.31.81【分析】先证明四边形CGBE 是平行四边形, 然后证明CGF BAC ≌,再解直角三角形即可求得BH 的长度,进而根据BE BH ⨯即可求得答案.【详解】如图,设,AB CG 交于点H ,四边形ADEB 是正方形,15AB BE ∴==,EF BC ∥,CG BE ∥,∴四边形CGBE 是平行四边形,15CG BE AB ∴===,BE AB ⊥,CG AB ∴⊥,90ABC HCB ∴∠+∠=︒,90ACB ∠=︒,∴90ABC CAB ∠+∠=︒,HCB CAB ∴∠=∠,EF BC ∥,HCB CGF ∴∠=∠,90GFC ACB ∠=∠=︒,CGF BAC ∴∠=∠,∴CGF BAC ≌,CB FC ∴=,设CB x =,则3AC AF FC x =+=+,Rt ABC 中,222AB AC BC =+,即()222153x x =++,解得9x =或12x =-(舍), 9312,9AC BC ∴=+==,93cos 155BC CBA AB ∴∠===, 327cos 955HB BC CBA ∴=⋅∠=⨯=, ∴平行四边形CGEB 的面积为BE BH ⨯2715815BE BH =⨯=⨯=, 故答案为:81.【点睛】本题考查了正方形的性质,平行四边形的判定,全等三角形的性质与判定,勾股定理,解直角三角形等知识,熟练掌握知识间的联系,是解答本题的关键.32.43π 【分析】根据题意得到ADO ∆是等边三角形,从而得到角度,再结合特殊角的直角三角形三边关系得到4=AD ,8AC =,分别求出ACD S ∆=83AOD S π=扇形,43AOE S π=扇形,最后根据图形得到=ACD AOD AOE S S S S ∆-+阴影扇形扇形,代值求解即可. 【详解】解:矩形ABCD 的两条对角线相交于点O ,OA OB OC OD ∴===,以点A 为圆心,AD 长为半径画弧,此弧恰好经过点O ,AO AD OD ∴==,即ADO ∆是等边三角形,60DAO ∴∠=︒,30OAE ∠=︒,在Rt ACD ∆中,30ACD OAE ∠=∠=︒,90ADC ∠=︒,CD =4=AD ,8AC =, 11422ACD S AD CD ∆∴==⨯⨯ 260843603AOD S ππ︒=⨯⨯=︒扇形, 230443603AOE S ππ︒=⨯⨯=︒扇形, 844=333ACD AOD AOE S S S S πππ∆∴-+=+=阴影扇形扇形,故答案为:43π 【点睛】本题考查阴影图形面积,对于不规则图形面积求解,我们要根据题中图形转化为规则图形面积间接表示出来,在求解此题过程中涉及到矩形的性质、等边三角形的判定与性质、特殊角度的直角三角形三边关系、三角形面积公式和扇形面积公式,将阴影部分面积转化为常见图形面积来间接求解是解决问题的关键.33.2【分析】根据平行四边形性质求出AD∠BC ,由平行线的性质可得∠AEB=∠CBE ,然后由角平分线的定义知∠ABE=∠AEB ,所以∠ABE=∠AEB ,即可得AB=AE ,由此即可求出DE 的长.【详解】∠四边形ABCD 是平行四边形,∠AD∠BC ,∠∠AEB=∠CBE .∠BE 平分∠ABC ,∠∠ABE=∠CBE ,∠∠ABE=∠AEB ,∠AB=AE=3,∠DE=AD-AE=5-3=2.故答案是:2.【点睛】本题考查了平行四边形性质、三角形的角平分线的定义,平行线的性质的应用,证得AB=AE 是解题的关键.34.(1.5,0)或(1,0).。

四边形练习题(含答案)

四边形练习题(含答案)

四边形练习题(含答案)1、阅读下面材料,再回答问题:有一些几何图形可以被某条直线分成面积相等的两部分,我们将“把一个几何图形分成面积相等的两部分的直线叫做该图形的二分线”,如:圆的直径所在的直线是圆的“二分线”,正方形的对角线所在的直线是正方形的“二分线”。

解决下列问题:(1)菱形的“二分线”可以是。

(2)三角形的“二分线”可以是。

(3)在下图中,试用两种不同的方法分别画出等腰梯形ABCD的“二分线”.2、用配方法解方程时,原方程可变形为()A. B.C. D.3、用两块边长为a的等边三角形纸片拼成的四边形是【】A.等腰梯形 B.菱形 C.矩形 D.正方形4、在下面图形中,每个大正方形网格都是由边长为1的小正方形组成,则图中阴影部分面积最大的是()5、下列命题中错误的是()A.两组对边分别相等的四边形是平行四边形B.对角线相等的平行四边形是矩形C.一组邻边相等的平行四边形是菱形D.一组对边平行的四边形是梯形6、如图,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方形,那么新正方形的边长是( )A. B.2 C. D.7、将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形.将纸片展开,得到的图形是()8、如下图1,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A停止.设点P运动的路程为x,△ABP 的面积为y,如果y关于x的函数图象如图2所示,则△ABC的面积是A.10 B.16 C.18 D.209、如图,在梯形ABCD中,AD//BC,AD=2,AB=3,BC=6,沿AE翻折梯形ABCD,使点B落在AD的延长线上,记为B′,连接B′E交CD于F,则的值为( )A. B. C. D.10、用任意两个全等的直角三角形拼下列图形:①平行四边形②矩形③菱形④正方形⑤等腰三角形⑥等边三角形其中一定能够拼成的图形是_______(只填题号).11、某陶瓷市场现出售的有边长相等的正三角形、正方形、正五边形的地板砖,某顾客想买其中的镶嵌着铺地板,则他可以选择的是.12、在一张三角形纸片中,剪去其中一个50°的角,得到如图所示的四边形,则图中∠1+∠2的度数为______________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年几何难题专题训练四边形一.选择题(共7小题)1.如图,ABCD、CEFG是正方形,E在CD上且BE平分∠DBC,O是BD中点,直线BE、DG交于H.BD,AH交于M,连接OH,下列四个结论:①BE⊥GD;②OH=1/2BG;③∠AHD=45°;④GD=√2AM,其中正确的结论个数有()A.1个B.2个C.3个D.4个2.如图,E是▱ABCD内一点,已知DE⊥AD,∠CBE=∠CDE,∠BCE=45°,CE的延长线交AD于F,连接BF,下列结论:①BE⊥AB;②BE=CD;③四边形BCDF为等腰梯形;④AF=√2CE,其中正确的是()A.只有③④B.只有①②③C.只有①②④D.①②③④3.如图,正方形ABCD中,E、F分别为边AD、DC上的点,且AE=FC,过F作FH⊥BE,交AB于G,过H作HM⊥AB于M,若AB=6,AE=2,则下列结论中:①∠BGF=∠CFB;②√2DH=EH+FH;③HM/BC=1/4,其中结论正确的是()A.只有①②B.只有①③C.只有②③D.①②③4.如图,在正五边形ABCDE中,对角线AD,AC与EB分别相交于点M,N.有下列结论①四边形EDCN是菱形②四边形MNCD是等腰梯形③△AEM与△CBN相似④△AEN与△EDM全等其中正确的有()个.A.1个B.2个C.3个D.4个5.如图,点F为正方形ABCD的边CD的中点,E为BC上一点,M为EF上一点,且D、M关于AF对称,B、M关于AE对称,∠CFE的平分线交AE的延长线于G,交BC于N,连CG,下列结论:①△AFG为等腰直角三角形;②CG=2√2CN;③S△CEF=S△ABE,其中正确的有()A.只有①B.只有②C.①②D.①②③6.如图,如图正方形ABCD内一点E,满足△CDE为正三角形,直线AE交BC于F点,过E点的直线GH⊥AF,交AB于点G,交CD于点H.以下结论:①∠AFC=105°;②GH=2EF;③√2CE=EF+EH;④AE/EH=2/3其中正确的有()A.①②③B.①③④C.①④D.①②③④7.如图,四边形ABDM中,AB=BD,AB⊥BD,∠AMD=60°,以AB为边作等边△ABC,BE平分∠ABD交CD于E,连ME;下列结论:①∠BEC=60°;②MA+MD=√2ME;③若BD=√6,则EC=√3−1.其中正确的结论()A.只有①②B.只有②③C.只有①③D.①②③二.填空题(共4小题)8.如图,Rt△ABC中,∠C=90°,BC=3cm,AB=5cm.点P从点A出发沿AC以1.5cm/s的速度向点C匀速运动,到达点C后立刻以原来的速度沿CA返回;点Q从点B出发沿BA以1cm/s的速度向点A匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线PC-CB-BQ于点E.点P、Q同时出发,当点Q到达点A时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0),则当t=_________秒时,四边形BQDE为直角梯形.9.如图,直角梯形OABC的直角顶点是坐标原点,边OA,OC分别在X轴,y轴的正半轴上.OA∥BC,D是BC上一点,BD=1/4,OA=√2,AB=3,∠OAB=45°,E,F分别是线段OA,AB上的两个动点,且始终保持∠DEF=45°,如果△AEF是等腰三角形时.将△AEF沿EF对折得△A′EF与五边形OEFBC重叠部分的面积为_________.10.如图,在梯形ABCD中,BC∥AD,∠A+∠D=90°,tanA=2,过点B 作BH⊥AD于H,BC=BH=2,动点F从点D出发,以每秒1个单位的速度沿DH运动到点H停止,在运动过程中,过点F作EF⊥AD交折线D→C→B于点E,将纸片沿直线EF折叠,点C、D的对应点分别是点CD1,设运动时间是x秒(x>0).1、(1)当点E和点C重合时,运动时间x的值为_________秒;x为_________秒.(2)当△BCD1是等腰三角形时,此刻11.如图,四边形ABCD为一梯形纸片,AB∥CD,AD=BC,翻折纸片ABCD,使点A与点C重合,折痕为EF.连接CE、CF、BD,AC、BD 的交点为点O,AC、EF的交点为点G.如果CE⊥AB,AB=7,CD=3.下列结论中,正确的序号是_________.①EF⊥AC;②BD∥EF;③连接FO,则FO∥AB;④S四边形AECF=AC•EF;⑤EF=(25√2/7).三.解答题(共19小题)12.在一个边长为a(单位:cm)的正方形ABCD中,点E、M分别是线段AC,CD上的动点,连结DE并延长交正方形的边于点F,过点M作MN⊥DF于H,交AD于N.(1)如图1,当点M与点C重合,求证:DF=MN;(2)如图2,假设点M从点C出发,以1cm/s的速度沿CD向点D运动,点E同时从点A出发,以√2cm/s速度沿AC向点C运动,运动时间为t (t>0);①判断命题“当点F是边AB中点时,则点M是边CD的三等分点”的真假,并说明理由.②连结FM、FN,△MNF能否为等腰三角形?若能,请写出a,t之间的关系;若不能,请说明理由.13.某数学兴趣小组开展了一次课外活动,过程如下:如图1,正方形ABCD 中,AB=6,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合.三角板的一边交AB于点P,另一边交BC的延长线于点Q.(1)求证:DP=DQ;(2)如图2,小明在图1的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并予以证明;(3)如图3,固定三角板直角顶点在D点不动,转动三角板,使三角板的一边交AB的延长线于点P,另一边交BC的延长线于点Q,仍作∠PDQ 的平分线DE交BC延长线于点E,连接PE,若AB:AP=3:4,请帮小明算出△DEP的面积.14.如图1,△ABC为等腰直角三角形,∠ACB=90°,F是AC边上的一个动点(点F与A、C不重合),以CF为一边在等腰直角三角形外作正方形CDEF,连接BF、AD.(1)①猜想图1中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论;②将图1中的正方形CDEF,绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2、图3的情形.图2中BF交AC于点H,交AD于点O,请你判断①中得到的结论是否仍然成立,并选取图2证明你的判断.(2)将原题中的等腰直角三角形ABC改为直角三角形ABC,∠ACB=90°,正方形CDEF改为矩形CDEF,如图4,且AC=4,BC=3,CD=4/3,CF=1,BF交AC于点H,交AD于点O,连接BD、AF,求BD2+AF2的值.15.已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边作正方形ADEF,连接CF (1)如图1,当点D在线段BC上时.求证:CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为2√2,对角线AE,DF相交于点O,连接OC.求OC的长度.16.定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.理解:如图①,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD 是“友好三角形”,并且S△ACD=S△BCD.应用:如图②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF与BE交于点O.(1)求证:△AOB和△AOE是“友好三角形”;(2)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF的面积.探究:在△ABC中,∠A=30°,AB=4,点D在线段AB上,连接CD,△ACD和△BCD是“友好三角形”,将△ACD沿CD所在直线翻折,得到△A′CD,若△A′CD与△ABC重合部分的面积等于△ABC面积的1/4,请直接写出△ABC的面积.17.在矩形ABCD中,点P是边AD上的动点,连接BP,线段BP的垂直平分线交边BC于点Q,垂足为点M,联结QP(如图).已知AD=13,AB=5,设AP=x,BQ=y.(1)求y关于x的函数解析式,并写出x的取值范围;(2)当以AP长为半径的⊙P和以QC长为半径的⊙Q外切时,求x的值;(3)点E在边CD上,过点E作直线QP的垂线,垂足为F,如果EF=EC=4,求x的值.18.问题探究:(1)请在图①中作出两条直线,使它们将圆面四等分;(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M)使它们将正方形ABCD的面积四等分,并说明理由.问题解决:(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由.19.在矩形ABCD中,点E在BC边上,过E作EF⊥AC于F,G为线段AE的中点,连接BF、FG、GB.设AE/BC=k.(1)证明:△BGF是等腰三角形;(2)当k为何值时,△BGF是等边三角形?(3)我们知道:在一个三角形中,等边所对的角相等;反过来,等角所对的边也相等.事实上,在一个三角形中,较大的边所对的角也较大;反之也成立.利用上述结论,探究:当△BGF分别为锐角、直角、钝角三角形时,k的取值范围.20.小明在一次数学兴趣小组活动中,对一个数学问题作如下探究:问题情境:如图1,四边形ABCD中,AD∥BC,点E为DC边的中点,连接AE并延长交BC的延长线于点F,求证:S四边形ABCD=S△ABF(S表示面积)问题迁移:如图2:在已知锐角∠AOB内有一个定点P.过点P任意作一条直线MN,分别交射线OA、OB于点M、N.小明将直线MN绕着点P 旋转的过程中发现,△MON的面积存在最小值,请问当直线MN在什么位置时,△MON的面积最小,并说明理由.实际应用:如图3,若在道路OA、OB之间有一村庄Q发生疫情,防疫部门计划以公路OA、OB和经过防疫站P的一条直线MN为隔离线,建立一个面积最小的三角形隔离区△MON.若测得∠AOB=66°,∠POB=30°,OP=4km,试求△MON的面积.(结果精确到0.1km2)(参考数据:sin66°≈0.91,tan66°≈2.25,√3≈1.73)拓展延伸:如图4,在平面直角坐标系中,O为坐标原点,点A、B、C、P的坐标分别为(6,0)(6,3)(4.5,4.5)、(4、2),过点p的直线l与四边形OABC一组对边相交,将四边形OABC分成两个四边形,求其中以点O为顶点的四边形面积的最大值.21.如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF.(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;(2)在图1中,过点A作AM⊥EF于点M,请直接写出AM和AB的数量关系;(3)如图2,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E,F分别是BC,CD边上的点,∠EAF=1/2∠BAD,连接EF,过点A作AM⊥EF于点M,试猜想AM与AB之间的数量关系.并证明你的猜想.22.如图,已知正方形ABCD的边长为4,对称中心为点P,点F为BC边上一个动点,点E在AB边上,且满足条件∠EPF=45°,图中两块阴影部分图形关于直线AC成轴对称,设它们的面积和为S1.(1)求证:∠APE=∠CFP;CF=x,y=(2)设四边形CMPF的面积为S2,S1/S2①求y关于x的函数解析式和自变量x的取值范围,并求出y的最大值;②当图中两块阴影部分图形关于点P成中心对称时,求y的值.23.阅读下面材料:小明遇到这样一个问题:如图1,在边长为a(a>2)的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求正方形MNPQ的面积.小明发现,分别延长QE,MF,NG,PH交FA,GB,HC,ED的延长线于点R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四个全等的等腰直角三角形(如图2)请回答:(1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙不重叠),则这个新正方形的边长为a;(2)求正方形MNPQ的面积.(3)参考小明思考问题的方法,解决问题:如图3,在等边△ABC各边上分别截取AD=BE=CF,再分别过点D,E,F作BC,AC,AB的垂线,得到等边△RPQ.若S△RPQ=√3/3,则AD的长为2/3.24.我们把由不平行于底边的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD即为“准等腰梯形”.其中∠B=∠C.(1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可);(2)如图2,在“准等腰梯形”ABCD中∠B=∠C.E为边BC上一点,若AB∥DE,AE∥DC,求证:AE/DC=BE/EC;(3)在由不平行于BC的直线AD截△PBC所得的四边形ABCD中,∠BAD与∠ADC的平分线交于点E.若EB=EC,请问当点E在四边形ABCD 内部时(即图3所示情形),四边形ABCD是不是“准等腰梯形”,为什么?若点E不在四边形ABCD内部时,情况又将如何?写出你的结论.(不必说明理由)25.【观察发现】如图1,F,E分别是正方形ABCD的边CD、DA上两个动点(不与C、D、A重合),满足DF=AE.直线BE、AF相交于点G,猜想线段BE与AF 的数量关系,以及直线BE与直线AF 的位置关系.(只要求写出结论,不必说出理由)【类比探究】如图2,F,E分别是正方形ABCD的边CD、DA延长线上的两个动点(不与D、A重合),其他条件与【观察发现】中的条件相同,【观察发现】中的结论是否还成立?请根据图2加以说明.【深入探究】若在上述的图1与图2中正方形ABCD的边长为4,随着动点F、E的移动,线段DG的长也随之变化.在变化过程中,线段DG的长是否存在最大值或最小值,若存在,求出这个最大值或最小值,若不存在,请说明理由.(要求:分别就图1、图2直接写出结论,再选择其中一个图形说明理由)26.如图1,正方形OABC与正方形ODEF放置在直线l上,连结AD、CF,此时AD=CF.AD⊥CF成立.(1)正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD 与CF还相等吗?若成立,请证明;若不成立,请说明理由.(2)正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,求证:AD⊥CF.(3)在(2)小题的条件下,AD与OC的交点为G,当AO=3,OD=√2时,求线段CG的长.27.在矩形ABCD中,AB=4,AD=6,M是AD边的中点,P是AB边上的一个动点(不与A、B重合),PM的延长线交射线CD于Q点,MN ⊥PQ交射线BC于N点.(1)若点N在BC边上时,如图1.①求证:PN=QN;②请问PM/PN是否为定值?若是定值,求出该定值;若不是,请举反例说明;(2)当△PBN与△NCQ的面积相等时,求AP的值.28.已知正方形ABCD的对角线AC和BD相交于点O,点M、N分别在射线AC、BD上)点M、N与A、B、C、D、O各点均不重合)且MN∥AD,连接DM、CN.(1)如图1,当点M、N分别在线段AO、DO上时,探究:线段DM和CN之间的数量关系为_________;(直接写出结论,不必证明)(2)如图2,当点M、N分别在线段OC、OB上时,判断(1)中的结论是否成立?若成立给出证明;若不成立说明理由;(3)如图3,当点M.N分别在线段OC、OB的延长线上时,请在图3中画出符合题意的图形,并判断(1)中的结论是否成立,不必说明理由.29.如图,四边形ABCD、A1B1C1D1是两个边长分别为5和1且中心重合C1D1可以绕中心O旋转,正方形ABCD静的正方形.其中,正方形A1B1止不动.B1、B四点共线时,四边形DCC1D1的面积为(1)如图1,当D、D1、_________;A1三点共线时,请直接写出CD1/DD1(2)如图2,当D、D1、=_________;(3)在正方形AC1D1绕中心O旋转的过程中,直线CC1与直线DD1的1B1位置关系是_________,请借助图3证明你的猜想.30.已知,AC是正方形ABCD的对角线,一个直角三角尺按如图所示方式放置,该三角尺的直角顶点E始终在AC上,一条直角边与AD相交于点F,另一条直角边与CD交于点G.(1)如图1,当点E是AC的中点时,猜想EF与EG的数量关系并说明理由.(2)①如图2,把(1)中的三角尺沿CA方向平移,当点E是AC的三等分点时,猜想EF与EG的数量关系并说明理由.②图2中的正方形改为矩形,如图3,其他条件不变.①中的结论还成立吗?如果成立,请证明.如果不成立,请直接写出当∠ACD=30°时,EF与EG的数量关系.。

相关文档
最新文档