数学分析21.6重积分的应用(含习题及参考答案)

合集下载

重积分的 计算 及应用

重积分的 计算 及应用
y2 = x
3 解:如图所示 D = D2 \ D , 1 1 O D1 D2 D A = ∫∫ dσ − ∫∫ dσ −2 D2 D 1 −4 1 3 12−y 2−y = ∫ dy∫ 2 d x − ∫ dy ∫ 2 d x
−4
y
−2
x
y
=[
12y − 1 y2计 ∫∫ 算
1(1). 设

确定 ,

x2 + y2 + z2 ≤ R2, x ≥ 0, y ≥ 0, z ≥ 0 所确定 , 则
C
上半球
(B)
∫∫∫Ω y dv = 4∫∫∫Ω
1
y dv
第一卦 限部分
2
z R
xyz dv
(D)
∫∫∫Ω xyz dv = 4∫∫∫Ω
1
Ω1 Ω2
O y
2
提示: 提示 利用对称性可知 , (A), (B), (D) 左边为 0 , 右边为正 , 显然不对 , 故选 ( C )
解答提示: 解答提示 P124 2 (3). 计算二重积分 其中D 为圆周 提示: 提示 利用极坐标 所围成的闭区域.
0 ≤ r ≤ Rcosθ
D:
原式
y O
− π ≤θ ≤ π 2 2
r = Rcosθ
D Rx
1 3 π 2 = R ∫ π (1− sin 3 θ ) dθ 3 −2 2 3 π 3 2 = R ∫ (1− sin θ ) d θ 0 3
∫∫D[ f
2
(x) + f ( y)]dxdy
2
a ≤ x ≤ b D: a ≤ y ≤ b
f 2 (x) dxdy = ∫∫D
b 2 f (x)dx a

《重积分计算习题》课件

《重积分计算习题》课件

重积分的几何意义
平面区域上的重积分
表示被积函数对应的曲面在平面区域 上所围成的体积。
空间区域上的重积分
表示被积函数对应的立体在空间区域 上所围成的体积。
02 重积分的基本计算方法
直角坐标系下的计算方法
直角坐标系下,重积分可以通过 将积分区域划分为若干个小矩形 ,然后分别对每个小矩形进行积
分,最后求和得到结果。
计算曲面的面积
重积分可以用来计算曲面 的面积,如球面、锥面等 。
确定空间点的位置
通过重积分可以确定空间 中某点的位置,如重心、 形心等。
在物理学中的应用
计算质量分布
在力学中,重积分可以用 来计算分布质量对物体运 动的影响。
计算引力场
在万有引力定律中,重积 分可以用来计算物体之间 的引力。
计算电场
在电动力学中,重积分可 以用来计算电荷分布产生 的电场。
如何提高重积分计算的准确性和效率
多做习题
通过大量的习题练习, 提高计算准确性和效率

细心审题
仔细阅读题目,确保理 解题意,避免因为理解
错误导致计算错误。
掌握计算技巧
掌握一些计算技巧,如 换元法、分部积分法等 ,可以提高计算效率。
利用数学软件
对于一些复杂积分,可 以利用数学软件进行计 算,提高计算准确性。
对于多重积分,可以按照积分次 序逐层积分,从外层到内层依次
积分。
在计算过程中,需要注意积分的 上下限,以及被积函数的定义域

极坐标系下的计算方法
在极坐标系下,重积分可以通过将积 分区域划分为若干个小圆环,然后分 别对每个小圆环进行积分,最后求和 得到结果。
在极坐标系下,需要注意极角和极径 的范围,以及被积函数的定义域。

数学分析第四版华东师大版21章_重积分

数学分析第四版华东师大版21章_重积分
| | n
f (i ,i ) i I .
i 1
则称f (x, y)在区域D上可积.
二重积分
当f (x, y) 0时,
二重积分D f (x, y)dxdy的几何意义是
以z f (x, y)为顶, D为底面的曲顶柱体的体积. 特别地,当f (x, y) 1时,
f (x, y)在D上的二重积分D f (x, y)d
解答
根据积分区域D的图形正确写出
D的平面直角坐标表示:
D {(x, y) : 0 x R,0 y R x}
由二重积分的计算公式,
R
Rx
| D | D1 dxdy 0 dx0 1 dy
R
0 (R
x)dx
R2 .
2
解答
根据积分区域D的图形也可以写出
D的平面直角坐标的另一种表示 :
D {(x, y) : 0 x R y,0 y R}
例题
试计算二重积分
D (x y)dxdy,
其中D [0,1][0,1].
解答
由二重积分转化成累次积分的公式,
D
(x
y)dxdy
11
0 dx0 (x
y)dy
1
0
(x
1 2
)dx
1.
例题
试计算二重积分
D y sin(xy)dxdy,
其中D [0, ][0,1].
解答
由二重积分转化成累次积分的公式,
二重积分的性质
3.(线性性质)设D为平面上可求面积的有界闭区域, f (x, y), g(x, y)在D上都可积, k1, k2为常数,则k1 f (x, y) k2 g(x, y) 在D上也可积, 且
D k1 f (x, y) k2g(x, y)d k1 D f (x, y)d k2 D g(x, y)d .

数学分析21.5三重积分(含习题及参考答案)

数学分析21.5三重积分(含习题及参考答案)

第二十一章 重积分5三重积分一、三重积分的概念引例:设一空间立体V 的密度函数为f(x,y,z),为求V 的质量M , 将V 分割成n 个小块V 1,V 2,…,V n . 每个小块V i 上任取一点(ξi ,ηi ,ζi ), 则 M=i ni i i i T V f ∆∑=→10),,(lim ζηξ, 其中△V i 是小块V i 的体积, T =}{max 1的直径i ni V ≤≤.概念:设f(x,y,z)是定义在三维空间可求体积有界区域V 上的有界函数. 用若干光滑曲面所组成的曲面网T 来分割V ,把V 分成n 个小区域 V 1,V 2,…,V n .记V i 的体积为△V i (i=1,2,…,n),T =}{max 1的直径i ni V ≤≤.在每个V i 中任取一点(ξi ,ηi ,ζi ), 作积分和i ni i i i V f ∆∑=1),,(ζηξ.定义1:设f(x,y,z)为定义在三维空间可求体积的有界闭区域V 上的函数,J 是一个确定的数. 若对任给的正数ε,总存在某一正数δ,使得对于V 的任何分割T ,只要T <δ,属于分割T 的所有积分和都有J V f i ni iii-∆∑=1),,(ζηξ<ε,则称f(x,y,z)在V 上可积,数J 称为函数f(x,y,z)在V 上的三重积分,记作J=⎰⎰⎰VdV z y x f ),,(或J=⎰⎰⎰Vdxdydz z y x f ),,(,其中f(x,y,z)称为被积函数,x, y, z 称为积分变量,V 称为积分区域.注:当f(x,y,z)=1时,⎰⎰⎰VdV 在几何上表示V 的体积.三积重分的条件与性质:1、有界闭域V 上的连续函数必可积;2、如界有界闭区域V 上的有界函数f(x,y,z)的间断点集中在有限多个零体积的曲面上,则f(x,y,z)在V 上必可积.二、化三重积分为累次积分定理21.15:若函数f(x,y,z)在长方体V=[a,b]×[c,d]×[e,h]上的三重积分存在,且对任意(x,y)∈D=[a,b]×[c,d], g(x,y)=⎰he dz z y xf ),,(存在,则积分⎰⎰Ddxdy y x g ),(也存在,且⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰Dhedz z y x f dxdy ),,(.证:用平行于坐标轴的直线作分割T ,把V 分成有限多个小长方体 V ijk =[x i-1,x i ]×[y j-1,y j ]×[z k-1,z k ].设M ijk , m ijk 分别是f(x,y,z)在V ijk 上的上确界和下确界,对任意(ξi ,ηj )∈[x i-1,x i ]×[y j-1,y j ], 有m ijk △z k ≤⎰-kk z z j i dz z f 1),,(ηξ≤M ijk △z k .现按下标k 相加,有∑⎰-kz z j i kk dz z f 1),,(ηξ=⎰he j i dz zf ),,(ηξ=g(ξi ,ηj ),以及∑∆∆∆kj i k j i ijkz y x m,,≤j i ji j i y x g ∆∆∑,),(ηξ≤∑∆∆∆kj i k j i ijk z y x M ,,.两边是分割T 的下和与上和. 由f(x,y,z)在V 上可积,当T →0时, 下和与上和具有相同的极限,∴g(x,y)在D 上可积,且⎰⎰⎰Dhedz z y x f dxdy ),,(=⎰⎰⎰Vdxdydz z y x f ),,(.推论:若V={(x,y,z)|(x,y)∈D, z 1(x,y)≤z ≤z 2(x,y)} ⊂[a,b]×[c,d]×[e,h]时,其中D 为V 在Oxy 平面上的投影,z 1(x,y), z 2(x,y)是D 上的连续函数,函数f(x,y,z)在V 上的三重积分存在,且对任意(x,y)∈D, G(x,y)=⎰),(),(21),,(y x z y x z dz z y x f 亦存在,则积分⎰⎰Ddxdy y x G ),(存在,且⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰D dxdy y x G ),(=⎰⎰⎰Dy x z y x z dz z y x f dxdy ),(),(21),,(.证:记F(x,y,z)=⎩⎨⎧∈∈V V z y x ,Vz y x ,z y x f \),,(0),,(),,(0 , 其中V 0=[a,b]×[c,d]×[e,h].对F(x,y,z)应用定理21.15,(如图)则有⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰0),,(V dxdydzz y x F=⎰⎰⎰⨯d][c,b][a,),,(hedz z y x F dxdy =⎰⎰⎰Dy x z y x z dz z y x f dxdy ),(),(21),,(.例1:计算⎰⎰⎰+Vy x dxdydz22,其中V 为由平面x=1, x=2, z=0, y=x 与z=y 所围区域(如图).解:设V 在xy 平面上投影为D ,则 V={(x,y,z)|z 1(x,y)≤z ≤z 2(x,y),(x,y)∈D},其中D={(x,y)|0≤y ≤x,1≤x ≤2}, z 1(x,y)=0, z 2(x,y)=y, 于是⎰⎰⎰+V y x dxdydz 22=⎰⎰⎰+D y y x dz dxdy 022=⎰⎰+D dxdy y x y 22=⎰⎰+21022x dy y x y dx=⎰212ln 21dx =2ln 21.例2:计算⎰⎰⎰++Vdxdydz z y x )(22,其中V 是由⎩⎨⎧==0x y z 绕z 轴旋转一周而成的曲面与z=1所围的区域.解:V={(x,y,z)|22y x +≤z ≤1,(x,y)∈D}, 其中D={(x,y)|x 2+y 2≤1},⎰⎰⎰++Vdxdydz z y x )(22=⎰⎰⎰+++Dyx dz z y x dxdy 12222)(=⎰⎰⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+-+Ddxdy y x y x 2121)(2222=⎰⎰⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-πθ201022121rdrr r d=⎰πθ20407d =207π.定理21.16:若函数f(x,y,z)在长方体V=[a,b]×[c,d]×[e,h]上的三重积分存在,且对任意x ∈[a,b], 二重积分I(x)=⎰⎰Ddydz z y x f ),,(存在,则积分⎰⎰⎰baDdydz z y x f dx ),,(也存在,且⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰baDdydz z y x f dx ),,(.证:用平行于坐标轴的直线作分割T ,把V 分成有限多个小长方体 V ijk =[x i-1,x i ]×[y j-1,y j ]×[z k-1,z k ], 记D jk =[y j-1,y j ]×[z k-1,z k ], 设M ijk , m ijk 分别是f(x,y,z)在V ijk 上的上确界和下确界, 对任意ξi ∈[x i-1,x i ], 有m ijk △D jk ≤⎰⎰jkD i dydz z y f ),,(ξ≤M ijk △D jk .现按下标j,k 相加,有∑⎰⎰k j D i jkdydz z y f ,),,(ξ=⎰⎰Di dydz z y f ),,(ξ=I(ξi ),以及∑∆∆∆kj i k j i ijkz y x m,,≤i ii x I ∆∑)(ξ≤∑∆∆∆kj i k j i ijk z y x M ,,.两边是分割T 的下和与上和. 由f(x,y,z)在V 上可积,当T →0时, 下和与上和具有相同的极限,∴I(x)在D 上可积,且⎰⎰⎰baDdydz z y x f dx ),,(=⎰⎰⎰Vdxdydz z y x f ),,(.推论:(如图)若V ⊂[a,b]×[c,d]×[e,h], 函数f(x,y,z)在V 上的三重积分存在,且对任意固定的z ∈[e,h], 积分φ(z)=⎰⎰zD dxdy z y x f ),,(存在,其中D z是截面{(x,y)|(x,y,z)∈V}, 则⎰he dz z )(ϕ存在,且⎰⎰⎰Vdxdydz z y x f ),,(=⎰h edz z )(ϕ=⎰⎰⎰heD zdxdy z y x f dz ),,(.证:证法与定理21.16证明过程同理.例3:计算I=⎰⎰⎰⎪⎪⎭⎫ ⎝⎛++V dxdydz c z b y a x 222222, 其中V 是椭球体222222c z b y a x ++≤1.解:I=⎰⎰⎰⎪⎪⎭⎫ ⎝⎛++V dxdydz c z b y a x 222222=⎰⎰⎰V dxdydz a x 22+⎰⎰⎰V dxdydz b y 22+⎰⎰⎰Vdxdydz c z 22.其中⎰⎰⎰V dxdydz a x 22=⎰⎰⎰-a a V xdydz dx a x 22,V x 表示椭圆面2222c z b y +≤1-22ax 或⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-2222222211a x c z a xb y ≤1. 它的面积为π⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-222211a x c a x b =πbc ⎪⎪⎭⎫⎝⎛-221a x. ∴⎰⎰⎰V dxdydz a x 22=⎰-⎪⎪⎭⎫ ⎝⎛-a a dx a x a bcx 22221π=154πabc. 同理可得:⎰⎰⎰V dxdydz b y 22=⎰⎰⎰V dxdydz cz 22=154πabc.∴I=3(154πabc)=54πabc.三、三重积分换元法规则:设变换T :x=x(u,v,w), y=y(u,v,w), z=z(u,v,w),把uvw 空间中的区域V ’一对一地映成xyz 空间中的区域V ,并设函数x=x(u,v,w), y=y(u,v,w), z=z(u,v,w)及它们的一阶偏导数在V ’内连续且函数行列式J(u,v,w)=wz v z uz w yv y u yw x v x u x ∂∂∂∂∂∂∂∂∂≠0, (u,v,w)∈V ’. 则当f(x,y,z)在V 上可积时,有 ⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰'V dudvdw w v u J w v u z w v u y w v u x f |),,(|)),,(),,,(),,,((.常用变换公式: 1、柱面坐标变换:T :⎪⎩⎪⎨⎧+∞<<∞-=≤≤=+∞<≤=z z ,z ,r y r ,r x πθθθ20sin 0cos , J(r,θ,z)=100cos sin 0sin cos θθθθr r -=r, 即有 ⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰'V dz rdrd z r r f θθθ),sin , cos (.V ’为V 在柱面坐标变换下的原象.注:(1)虽然柱面坐标变换并非是一对一的,且当r=0时,J(r,θ,z)=0,但结论仍成立.(2)柱面坐标系中r=常数, θ=常数, z=常数的平面分割V ’变换到xyz 直角坐标系中,r=常数是以z 轴为中心轴的圆柱面,θ=常数是过z 轴的半平面,z 的常数是垂直于z 轴的平面(如图).例4:计算⎰⎰⎰+Vdxdydz y x )(22, 其中V 是曲面2(x 2+y 2)=z 与z=4为界面的区域.解法一:V={(x,y,z)|2(x 2+y 2)≤z ≤4, (x,y)∈D}, D={(x,y)|x 2+y 2≤2}.⎰⎰⎰+Vdxdydz y x )(22=⎰⎰⎰++4)(22222)(y x Ddzy x dxdy=⎰⎰+-+Ddxdy y x y x )](24)[(2222=⎰⎰-202220)24(rdrr r d πθ=⎰-2053)2(4dr r r π=⎰-2053)2(4dr r r π=38π.解法二:V 在xy 平面上的投影区域D=x 2+y 2≤2. 按柱坐标变换得 V ’={(r,θ,z)|2r 2≤z ≤4, 0≤r ≤2, 0≤θ≤2π}.∴⎰⎰⎰+V dxdydz y x )(22=⎰⎰⎰'V dz drd r θ2=⎰⎰⎰42320202r dz r dr d πθ=38π.2、球坐标变换:T :⎪⎩⎪⎨⎧≤≤=≤≤=+∞<≤=πθϕπϕθϕθϕ20cos 0sin sin 0cos sin ,r z ,r y r ,r x ,J(r,φ,θ)=0sin cos sin sin cos sin sin sin sin cos cos cos sin ϕϕθϕθϕθϕθϕθϕθϕr co r r r r --=r 2sin φ≥0, 即有⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰'V d drd rr r r f θϕϕϕθϕθϕsin )cos ,sin sin , cos sin (2,V ’为V 在球坐标变换T 下的原象.注:(1)球坐标变换并不是一对一的,并且当r=0或φ=0或π时,J=0. 但结论仍成立.(2)球坐标系中r=常数, φ=常数, θ=常数的平面分割V ’变换到xyz 直角坐标系中,r=常数是以原点为中心的球面, φ=常数是以原点为顶点, z 轴为中心轴的 圆锥面,θ=常数是过z 轴的半平面(如图).例5:求由圆锥体z ≥22y x +cot β和球体x 2+y 2+(z-a)2≤a 2所确定的立体体积,其中β∈⎪⎭⎫⎝⎛2,0π和a(>0)为常数.解:球面方程x 2+y 2+(z-a)2=a 2可表示为r=2acos φ, 锥面方程z=22y x +cot β可表示为φ=β. ∴V ’={(r,φ,θ)|0≤r ≤2acos φ, 0≤φ≤β, 0≤θ≤2π}. ∴⎰⎰⎰VdV =⎰⎰⎰ϕβπϕϕθcos 202020sin a dr r d d =⎰βϕϕϕπ033sin cos 316d a =343a π(1-cos 4β).例6:求I=⎰⎰⎰Vzdxdydz , 其中V 为由222222c z b y a x ++≤1与z ≥0所围区域.解:作广义球坐标变换:T :⎪⎩⎪⎨⎧===ϕθϕθϕcos sin sin cos sin cr z br y ar x , 则J=abcr 2sin φ. V 的原象为V ’={(r,φ,θ)|0≤r ≤1, 0≤φ≤2π, 0≤θ≤2π} ∴⎰⎰⎰Vzdxdydz =⎰⎰⎰⋅1022020sin cos dr abcr cr d d ϕϕϕθππ=⎰2022sin 4πϕϕπd abc =42abc π.习题1、计算下列积分:(1)⎰⎰⎰+Vdxdydz z xy )(2, 其中V=[-2,5]×[-3,3]×[0,1];(2)⎰⎰⎰Vzdxdydz y x cos cos , 其中V=[0,1]×[0,2π]×[0,2π];(3)⎰⎰⎰+++Vz y x dxdydz3)1(, 其中V 是由x+y+z=1与三个坐标面所围成的区域; (4)⎰⎰⎰+Vdxdydz z x y )cos(, 其中V 由y=x , y=0, z=0及x+z=2π所围成.解:(1)⎰⎰⎰+VdV z xy )(2=⎰⎰⎰+--1023352)(dz z xy dy dx =⎰⎰--⎪⎭⎫⎝⎛+335231dy xy dx =⎰-522dx =14.(2)⎰⎰⎰VzdV y x cos cos =⎰⎰⎰202010cos cos ππzdz ydy xdx =21.(3)⎰⎰⎰+++Vz y x dxdydz 3)1(=⎰⎰⎰---+++y x x z y x dz dy dx 1031010)1(=⎰⎰-⎥⎦⎤⎢⎣⎡-++x dy y x dx 1021041)1(121=⎰⎪⎭⎫ ⎝⎛-+-+1041211121dx x x =1652ln 21-. (4)⎰⎰⎰+VdV z x y )cos(=⎰⎰⎰-+xxdz z x y dy dx 20020)cos(ππ=⎰⎰-xydydx x 020)sin 1(π=⎰-20)sin 1(21πdx x x =21162-π.2、试改变下列累次积分的顺序: (1)⎰⎰⎰+-yx xdz z y x f dy dx 01010),,(;(2)⎰⎰⎰+220110),,(y x dz z y x f dy dx .解:(1)积分区域V={(x,y,z)|0≤z ≤x+y, 0≤y ≤1-x, 0≤x ≤1}; ∵V 在xy 平面上的投影区域D xy ={(x,y)|0≤y ≤1-x, 0≤x ≤1} ∴I=⎰⎰⎰+-yx xdz z y x f dy dx 01010),,(=⎰⎰⎰+-yx ydz z y x f dx dy 01010),,(.∵V 在yz 平面上的投影区域D yz ={(y,z)|0≤y ≤1, 0≤z ≤1} ∴I=⎰⎰⎰-yydx z y x f dz dy 10010),,(+⎰⎰⎰--yy z y dx z y x f dz dy 1110),,(=⎰⎰⎰--yy z zdx z y x f dy dz 1010),,(+⎰⎰⎰-yz dx z y x f dy dz 10110),,(.∵V 在xz 平面上的投影区域D yz ={(x,z)|0≤x ≤1, 0≤z ≤1} ∴I=⎰⎰⎰-xxdy z y x f dz dx 10010),,(+⎰⎰⎰--xx z x dy z y x f dz dx 1110),,(=⎰⎰⎰--xx z zdy z y x f dx dz 1010),,(+⎰⎰⎰-xz dy z y x f dx dz 10110),,(.(2)积分区域V={(x,y,z)|0≤z ≤x 2+y 2, 0≤y ≤1, 0≤x ≤1};∵V 在xy 平面上的投影区域D xy ={(x,y)|0≤y ≤1, 0≤x ≤1}; 在yz 平面上的投影区域D yz ={(x,y)|0≤y ≤1, 0≤z ≤1+y 2}; 在xz 平面上的投影区域D yz ={(x,y)|0≤x ≤1, 0≤z ≤1+x 2}; ∴I=⎰⎰⎰+2201010),,(y x dz z y x f dy dx =⎰⎰⎰+220110),,(y x dz z y x f dx dy=⎰⎰⎰10010),,(2dx z y x f dz dy y +⎰⎰⎰-+1110222),,(y z y ydxz y x f dz dy=⎰⎰⎰10110),,(dx z y x f dy dz z +⎰⎰⎰--111212),,(yz z dx z y x f dy dz .=⎰⎰⎰10010),,(2dy z y x f dz dx x +⎰⎰⎰-+1110222),,(x z x x dyz y x f dz dx=⎰⎰⎰10110),,(dy z y x f dx dz z +⎰⎰⎰--111212),,(x z z dy z y x f dx dz .3、计算下列三重积分与累次积分:(1)⎰⎰⎰Vdxdydz z 2, 其中V 由x 2+y 2+z 2≤r 2和x 2+y 2+z 2≤2rz 所确定;(2)⎰⎰⎰--+-22222221010y x yx x dz z dy dx .解:(1) 由x 2+y 2+z 2≤2rz, 得S: x 2+y 2≤2rz-z 2, 0≤z ≤2r , 又由x 2+y 2+z 2≤r 2, 得Q: x 2+y 2≤r 2-z 2,2r≤z ≤r ∴⎰⎰⎰Vdxdydz z 2=⎰⎰⎰Sr dxdy z dz 220+⎰⎰⎰Qrr dxdyz dz 22=⎰-2022)2(r dz z rz z π+⎰-rr dz z r z 2222)(π=480595r π. (2)应用柱坐标变换:V ’={(r,θ,z)|r ≤z ≤22r -, 0≤r ≤1, 0≤θ≤2π}, ∴⎰⎰⎰--+-22222221010y x yx x dz z dy dx =⎰⎰⎰-2221020r rdz z rdr d πθ=⎰---1322]2)2[(6dr r r r r π.=⎰---10322]2)2[(6dr r r r r π=)122(15-π.4、利用适当的坐标变换,计算下列各曲面所围成的体积. (1)z=x 2+y 2, z=2(x 2+y 2), y=x, y=x 2;(2)2⎪⎭⎫ ⎝⎛+b y a x +2⎪⎭⎫ ⎝⎛c z =1 (x ≥0, y ≥0, z ≥0, a>0, b>0, c>0). 解:(1)V={(x,y,z)|x 2+y 2≤z ≤2(x 2+y 2), (x,y)∈D}, 其中D={(x,y)|0≤x ≤1, x 2≤y ≤x }. ∴⎰⎰⎰V dxdydz =⎰⎰+Ddxdy y x )(22=⎰⎰+xx dyy x dx 2)(2210=⎰⎥⎦⎤⎢⎣⎡-+-1063223)()(dx x x x x x =353. (2)令x=arsin 2φcos θ, y=brcos 2φcos θ, z=crsin θ, 则J=0cos sin cos cos sin 2sin cos cos cos cos cos sin 2sin sin cos sin 2222θθθϕϕθϕθϕθϕϕθϕθϕcr c br br b ar ar a ---=2abcr 2cos φsin φcos θ,又V ’={(r,φ,θ)|0≤r ≤1, 0≤φ≤2π, 0≤θ≤2π}. ∴⎰⎰⎰Vdxdydz =⎰⎰⎰1022020sin cos cos 2dr r d d abc ππϕϕϕθθ=3abc.5、设球体x 2+y 2+z 2≤2x 上各点的密度等于该点到坐标原点的距离,求这球体的质量.解:依题意,球体的质量M=⎰⎰⎰≤++++xz y x dV z y x 2222222,应用球面变换得V ’={(r,θ,φ)|-2π≤θ≤2π, 0≤φ≤π, 0≤r ≤2sin φcos θ}. ∴M=⎰⎰⎰-θϕπππϕϕθcos sin 203022sin dr r d d =⎰⎰-πππϕϕθθ05224sin cos 4d d =58π.6、证明定理21.16及其推论. 证:证明过程见定理21.16及其推论.7、设V=⎭⎬⎫⎩⎨⎧≤++1),,(222222c z b y a x z y x , 计算下列积分:(1)⎰⎰⎰---Vdxdydz c z b y a x 2222221;(2)⎰⎰⎰++Vc z by ax dxdydz e 222222.解:应用球面变换得V ’={(r,θ,φ)| 0≤θ≤2π, 0≤φ≤π, 0≤r ≤1}. (1)⎰⎰⎰---VdV cz b y a x 2222221=⎰⎰⎰-10220201sin dr r abcr d d ϕϕθππ =42πabc . (2)⎰⎰⎰++Vc z b y ax dV e222222=⎰⎰⎰12020sin dr e abcr d d r ϕϕθππ=)2(4-e abc π.。

(完整版)重积分习题及答案

(完整版)重积分习题及答案

第九章 重积分(A)1.填空题(1) 设()y x y x P 2,=,()23,y x y x Q =,定义于:D 10<<x ,10<<y ,则()σd y x P D⎰⎰, ()⎰⎰Dd y x Q σ,(2) 设曲顶柱体的顶面是()y x f z ,=,()D y x ∈,,侧面是母线平行于z 轴,准线为D的边界线的柱面,则此曲顶柱体的体积用重积分可表示为=V 。

(3) 在极坐标系中,面积元素为 。

2.利用二重积分的性质,比较下列积分大小(1) ()⎰⎰+Dd y x σ2与()⎰⎰+Dd y x σ3,其中积分区域D 由x 轴,y 轴以及直线1=+y x 所 围成。

(2) ()⎰⎰+D d y x σ2与()⎰⎰+Dd y x σ3,其中积分区域D 是由圆周()()21222=-+-y x 所围成。

3.利用二重积分性质,估计积分()⎰⎰++=Dd y x I σ92222的值,其中D 是圆形闭区域422≤+y x 。

4.交换积分()⎰⎰--a ax ax xa dy y x f dx 2222,的积分次序。

5.交换积分()⎰⎰-2120,ydx y x f dy 的积分次序。

6.交换二次积分()⎰⎰+-aa y y a y x f dy 022,的积分次序。

7.计算()⎰⎰+Dd y x σ23,其中D 是由两坐标轴及直线2=+y x 所围成的闭区域。

8.计算()⎰⎰+Dd y x x σcos ,其中D 是顶点分别为()0,0,()0,π和()ππ,的三角形区域。

9.计算()⎰⎰+Dyd x σsin 1,其中D 是顶点分别为()0,0,()0,1,()2,1和()1,0的梯形闭区域。

10.计算二重积分⎰⎰Ddxdy ,其中区域D 由曲线21x y -=与12-=x y 围成。

11.计算二重积分⎰⎰Dd xy σ2,其中D 是由圆周422=+y x 及y 轴所围成的右半闭区域。

数学分析21.6重积分的应用(含习题及参考答案)

数学分析21.6重积分的应用(含习题及参考答案)

第二十一章 重积分 6重积分的应用一、曲面的面积问题:设D 为可求面积的平面有界区域,函数f(x,y)在D 上具有连续的一阶偏导数,讨论由方程z=f(x,y), (x,y)∈D 所确定的曲面S 的面积.分析:对区域D 作分割T ,把D 分成n 个小区域σi (i=1,2,…,n). 曲面S 同时也被分割成相应的n 个小曲面片S i (i=1,2,…,n). 在每个S i 上任取一点M i , 作曲面在这一点的切平面πi , 并 在πi 上取出一小块A i , 使得A i 与S i 在xy 平面上的投影都是σi . 现在M i 附近,用切平面A i 代替小曲面片S i . 则当T 充分小时,有 △S=∑=∆ni i S 1≈∑=∆ni i A 1, 这里的△S, △S i , △A i 分别表示S, S i 和A i 的面积.∴当T →0时,可用和式∑=∆ni i A 1的极限作为S 的面积.建立曲面面积计算公式:∵切平面πi 的法向量就是曲面S 在点M i (ξi ,ηi ,ζi )处的法向量, 记其与z 轴的夹角为γi , 则|cos γi |=),(),(1122i i yi i xf f ηξηξ++.∵A i 在xy 平面上投影为σi , ∴△A i =iiγσcos ∆=i i i y i i x f f σηξηξ∆++),(),(122. 又和数∑=∆ni i A 1=∑=∆++ni i i i y i i x f f 122),(),(1σηξηξ是连续函数),(),(122y x f y x f y x ++在有界闭区域D 上的积分和,∴当T →0时,有△S=∑=→∆++ni i i i y i i x T f f 1220),(),(1lim σηξηξ=⎰⎰++Dy x dxdy y x f y x f ),(),(122, 或△S=∑=→∆ni i iT 1cos limγσ=⎰⎰∧Dz n dxdy ),cos(,其中),cos(∧z n 为曲面的法向量与z 轴正向夹角的余弦.例1:求圆锥z=22y x +在圆柱体x 2+y 2≤x 内那一部分的面积. 解:由x 2+y 2≤x, 得D={(r,θ)|0≤r ≤21, 0≤θ≤2π}, 又z x =22y x x +=r r θcos =cos θ, z y =22yx y+=r r θsin =sin θ, ∴△S=⎰⎰++Dyxdxdy z z 221=⎰⎰πθ202102rdr d =π42.例2:设平面光滑曲线的方程为y=f(x), x ∈[a,b] (f(x)>0). 求证:此曲线绕x 轴旋转一周得到的旋转曲面的面积为: S=⎰'+ba dx x f x f )(1)(22π.证:由上半旋转面方程为z=22)(y x f -, 得 z x =22)()()(yx f x f x f -', z y =22)(yx f y --. 即有221yxz z ++=2222222)()()()(1yx f y y x f x f x f -+-'+=2222)())(1)((yx f x f x f -'+. ∴S=⎰⎰--'+b a x f x f dy y x f x f x f dx )()(222)()(1)(2=⎰⎰-'+b a x f dyy x f dx x f x f )(0222)(1)(1)(4=⎰⎰---'+ba x f x yf d x f y dx x f x f )(01222))(()(11)(1)(4=⎰⎰-'+b a dt tdx x f x f 102211)(1)(4=⎰'+b adx x f x f )(1)(22π.注:若空间曲面S 由参量方程:x=x(u,v),y=y(u,v),z=z(u,v),(u,v)∈D 确定, 其中x(u,v), y(u,v), z(u,v)在D 上具有连续一阶偏导数,且),(),(v u u y x ∂,),(),(v u u z y ∂,),(),(v u u x z ∂中至少有一个不等于0,则 曲面S 在点(x,y,z)的法线方向数为⎝⎛∂),(),(v u u z y ,),(),(v u u x z ∂,⎪⎪⎭⎫∂),(),(v u u y x , 则 它与z 轴的夹角的余弦的绝对值为:),cos(∧z n =222),(),(),(),(),(),(),(),(⎪⎪⎭⎫ ⎝⎛∂+⎪⎪⎭⎫ ⎝⎛∂+⎪⎪⎭⎫ ⎝⎛∂∂v u u y x v u u x z v u u z y v u u y x=2222222)())((),(),(v u v u v u vvvuuuz z y y x x z y x z y x v u u y x ++-++++∂=21),(),(FEG v u u y x -∂,其中E=222u u u z y x ++,G=222v v v z y x ++,F=v u v u v u z z y y x x ++.当),(),(v u u y x ∂≠0,则有△S=⎰⎰∧Dz n dxdy ),cos(=dudv z n v u u y x D ⎰⎰'∧∂),cos(),(),(=dudv F EG D ⎰⎰'-2.例3:求球面上两条纬线和两条经线之间 的曲面的面积(图中阴影部分). 解:设球面方程为:(R 为球的半径). x=Rcos ψcos φ,y=Rcos ψsin φ, z=Rsin ψ.由E=222ψψψz y x ++=R 2, G=222ϕϕϕz y x ++=R 2cos 2ψ, F=ϕψϕψϕψz z y y x x ++=0, 得2F EG -=R 2cos ψ. ∴△S=⎰⎰2121cos 2ψψϕϕψψϕd R d =R 2(φ2-φ1)(sin ψ2-sin ψ1).二、质心引例:设V 是密度函数为ρ(x,y,z)的空间物体,ρ(x,y,z)在V 上连续. 为求得V 的质心坐标公式,先对V 作分割T ,在属于T 的每一小块v i 上任取一点(ξi ,ηi ,ζi ),则小块v i 的质量可用ρ(ξi ,ηi ,ζi )△v i 近似代替. 若把每一小块看作质量集中在(ξi ,ηi ,ζi )的质点时,整个物体就可用这n 个质点的质点系来近似代替. 由于质点系的质心坐标公式为:∑∑==∆∆=ni iiiini iiiiin v v x 11),,(),,(ζηξρζηξρξ, ∑∑==∆∆=ni iiiini iiiiin v v y 11),,(),,(ζηξρζηξρη, ∑∑==∆∆=n i iiiini ii i i in v v z 11),,(),,(ζηξρζηξρζ.当T →0时,n x , n y , n z 的极限x , y , z 就定义为V 的质心坐标,即⎰⎰⎰⎰⎰⎰=VVdVz y x dVz y x x x ),,(),,(ρρ, ⎰⎰⎰⎰⎰⎰=VVdVz y x dVz y x y y ),,(),,(ρρ, ⎰⎰⎰⎰⎰⎰=VVdVz y x dVz y x z z ),,(),,(ρρ.当物体V 的密度均匀即ρ为常数时,则有⎰⎰⎰∆=VxdV Vx 1, ⎰⎰⎰∆=VydV Vy 1, ⎰⎰⎰∆=VzdV Vz 1, 这里△V 为V 的体积.又密度分布为ρ(x,y)的平面薄板D 的质心坐标为:⎰⎰⎰⎰=DDd y x d y x x x σρσρ),(),(, ⎰⎰⎰⎰=DDd y x d y x y y σρσρ),(),(. 当平面薄板的密度均匀时,即ρ为常数时,则有⎰⎰∆=Dxd D x σ1, ⎰⎰∆=D yd D y σ1, △D 为薄板D 的面积.例4:求密度均匀的上半椭球体的质心.解:设椭球体由不等式a x 2+by 2+c z 2≤1表示.由对称性知x =0, y =0, 又由ρ为常数,得z =⎰⎰⎰⎰⎰⎰VVdVdVz ρρ=abc abc ππ3242=83c .三、转动惯量质点A 对于轴l 的转动惯量J 是质点A 的质量m 和A 与转动轴l 的距离r 的平方的乘积,即J=mr 2.设ρ(x,y,z)为空间物体V 的密度分布函数,它在V 上连续. 对V 作分割T ,在属于T 的每一小块v i 上任取一点(ξi ,ηi ,ζi ),则v i 的质量可用ρ(ξi ,ηi ,ζi )△v i 近似代替. 当以质点系{(ξi ,ηi ,ζi ), i=1,2,…, n}近似替代V 时,质点系对于x 轴的转动惯量为:i i i i ni i i x v J n∆+=∑=),,()(122ζηξρζη.当T →0时,上述积分和的极限就是物体V 对于x 轴的转动惯量 J x =⎰⎰⎰+VdV z y x z y ),,()(22ρ. 类似地,V 对于y 轴与z 轴的转动惯量分别为:J y =⎰⎰⎰+VdV z y x x z ),,()(22ρ, J z =⎰⎰⎰+VdV z y x y x ),,()(22ρ.同理,V 对于坐标平面的转动惯量分别为:J xy =⎰⎰⎰VdV z y x z ),,(2ρ, J yz =⎰⎰⎰VdV z y x x ),,(2ρ, J xz =⎰⎰⎰VdV z y x y ),,(2ρ.平面薄板对于坐标轴的转动惯量分别为:J x =⎰⎰Dd y x y σρ),(2, J y =⎰⎰Dd y x x σρ),(2. 以及有J l =⎰⎰Dd y x y x r σρ),(),(2,其中l 为转动轴, r(x,y)为D 中点(x,y)到l 的距离函数.例5:求密度均匀的圆环D 对于垂直于圆环面中心轴的转动惯量. 解:设圆环D 为R 12≤x 2+y 2≤R 22, 密度为ρ, 则D 中任一点(x,y)与转轴的距离平方为x 2+y 2, 于是转动惯量为:J=⎰⎰+Dd y x σρ)(22=⎰⎰21320R R dr r d πθρ=2πρ(R 24-R 14)=例6:求均匀圆盘D 对于其直径的转动惯量.解:设D 为x 2+y 2≤R 2, 密度为ρ, D 内任一点(x,y)与y 轴的距离为|x|, 于是转动惯量为:(m 为圆盘质量) J=⎰⎰Dd x σρ2=⎰⎰Rdr r d 02320cos θθρπ=⎰πθθρ2024cos 4d R =44R ρπ=42mR .例7:设某球体的密度与球心的距离成正比,求它对于切平面的转动惯量.解:设球体由x 2+y 2+z 2≤R 2表示,密度为k 222z y x ++, k 为比便常数. 切平面方程为x=R, 则球体对于平面x=R 的转动惯量为: J=k ⎰⎰⎰-++VdV x R z y x 2222)(=k ⎰⎰⎰-ππϕθϕϕθ003220sin )cos sin (Rdr r r R d d=kR 6⎰⎰⎪⎭⎫ ⎝⎛+-ππϕθϕθϕθ023220cos sin 61cos sin 5241d d =⎰πθθ2026cos 911d kR =911k πR 6.四、引力求密度为ρ(x,y,z)的立体对立体外质量为1的质点A 的引力.设A 的坐标为(ξi ,ηi ,ζi ),V 中点的坐标用(x,y,z)表示. V 中质量微元dm=ρdV 对A 的引力在坐标轴上的投影为 dF xyz其中K 为引力系数, r=222)()()(ζηξ-+-+-z y x 是A 到dV 的距离,于是 力F 在三个坐标轴上的投影分别为: F x =K ⎰⎰⎰-VdV r x ρξ3, F y =K ⎰⎰⎰-V dV r y ρη3, F z =K ⎰⎰⎰-VdV r z ρζ3, 所以F=F x i+F y j+F z k.例8:设球体V 具有均匀的密度ρ, 求V 对球外一点A(质量为1)的引力(引力系数为k).解:设球体为x 2+y 2+z 2≤R 2,球外一点坐标为(0,0,a) (R<a). 则F x =F y =0,F z =k ⎰⎰⎰-++-V dV a z y x a z ρ2/3222])([=k ρ⎰⎰⎰-++--zD R R a z y x dxdydz a z 2/3222])([)(, 其中D z ={(x,y)|x2+y2≤R 2-z 2}. 运用极坐标计算得: F z =k ρdr a z r rd dz a z z R RR ⎰⎰⎰---+-2202/32220])([)(πθ =2πk ρ⎰-+----R R dz aaz R a z )21(22=2πk ρ⎪⎪⎭⎫⎝⎛+--++-+-⎰-R R dz a az R R a a az R a R 22222222212= 2πk ρ⎥⎦⎤⎢⎣⎡-+----+---⎰⎰--RRRRaz d a az R a R a az d a az R a R )2(214)2(241222222222=2πk ρ⎥⎦⎤⎢⎣⎡+---+-----RRRRa az R a R a a az R a R 22222322222)2(612 =2πk ρ⎥⎦⎤⎢⎣⎡-++----222233)(6)()(2a R a R a a R R a R=2πk ρ⎪⎪⎭⎫⎝⎛-+++-232332a R R a R R R =2334a R k ρπ-. (注:z ≤R<a)习题1、求曲面az=xy 包含在圆柱x 2+y 2=a 2内那部分的面积.解:∵z x =a y, z y =ax , D={(r,θ)|0≤r ≤a, 0≤θ≤2π}, ∴曲面面积为: S=⎰⎰⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+Ddxdy a x a y 221=⎰⎰+a dr a r r d 022201πθ=)122(322-a π.2、求锥面z=22y x +被柱面z 2=2x 所截部分的曲面面积. 解:且面在xy 平面的投影区域为:D={(r,θ)|0≤r ≤1, 0≤θ≤2π}, 且z x =22yx x +, z y =22yx y +, ∴曲面面积为:S=⎰⎰⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛++Ddxdy y x y y x x 2222221=⎰⎰10202rdr d πθ=π2.3、求下列均匀密度的平面薄板质心:(1)半椭圆2222by a x +≤1, y ≥0;(2)高为h, 底分别为a 和b 的等腰梯形.解:(1)设质心位置为(x ,y ), 由对称性得x =0.y =⎰⎰⎰⎰DDd yd σρσρ=⎰⎰⎰⎰DDd yd σσ=⎰⎰Dyd ab σπ2=dr r ab d ab ⎰⎰πθθπ122sin 2=π34b . (2)不妨设a 为下底,以下底中点为原点建立直角坐标系,则 D={(x,y)|l 1(y)≤x ≤l 2(y),0≤y ≤h}.设质心位置为(x ,y ), 由对称性得x =0.又等腰三角形的面积为2)(hb a +, ∴y =⎰⎰+D yd h b a σ)(2=⎰⎰+h y l y l dx ydy h b a 0)()(21)(2=⎰⎥⎦⎤⎢⎣⎡+---+--+h ydy a h y h a b a h y h b a h b a 02)(22)(2)(2=⎰⎥⎦⎤⎢⎣⎡+--+h ydy a h y h b a h b a 0)()(2=⎰⎪⎭⎫ ⎝⎛+-+h dy by y h b a h b a 02)(2=h b a a b )(32++. 其中:l 1(y): x=2)(2a h y h a b ---; l 2(y): x=2)(2ah y h b a +--.4、求下列均匀密度物体的质心.(1)z ≤1-x 2-y 2, z ≥0;(2)由坐标面及平面x+2y-z=1所围的四面体. 解:(1)设质心为(x ,y ,z ), 由对称性x =y =0, 应用柱面坐标变换有,z =⎰⎰⎰⎰⎰⎰VVdV dV z ρρ=⎰⎰⎰⎰⎰⎰--221020110201r r dz r d r d zdz r d r d ππθθ=dr r r dr r r )1()1(212102210--⎰⎰=31. (2)设质心为(x ,y ,z ),∵V=⎰⎰⎰VdV =121, ∴x =⎰⎰⎰--+21001211x y x dz dy xdx V =⎰⎰---2101)21(12x dy y x xdx =⎰-1024)1(12dx x x =41. y =⎰⎰⎰--+yy x dz dx ydy V 210122101=⎰⎰---ydx x y ydy 210210)21(12=⎰-21022)21(12dy y y =81. z =⎰⎰⎰--+yy x zdz dx dy V21012211=⎰⎰--+-ydx y x dy 2102210)12(6=⎰--21033)21(6dy y =41-.5、求下列均匀密度的平面薄板的转动惯量: (1)半径为R 的圆关于其切线的转动惯量;(2)边长为a 和b, 且夹角为φ的平行四边形,关于底边b 的转动惯量.解:(1)设切线为x=R, 密度为ρ.则对任一点P(x,y)∈D, P 到x=R 的距离为R-x ,从而转动惯量 J=ρ⎰⎰-Dd x R σ2)(=ρ⎰⎰+-Rdr r Rr R r d 022220)cos cos 2(θθθπ=ρ⎰+-πθθθ2024)cos 41cos 3221(d R= R 4. (2)设密度为ρ. 以底边为x 轴,左端点为原点,则转动惯量 J=⎰⎰Dd y σ2=ρ⎰⎰+by y a dx dy y ϕϕϕcot cot sin 02=3sin 33ϕρb a .6、计算下列引力:(1)均匀薄片x 2+y 2≤R 2, z=0对于轴上一点(0,0,c) (c>0)处的单位质量的引力;(2)均匀柱体x 2+y 2≤a 2, 0≤z ≤h 对于点P(0,0,c) (c>h)处的单位质量的引力;(3)均匀密度的正圆锥体(高h, 底半径R)对于在它的顶点处质量为m 的质点的引力.解:(1)根据对称性知引力方向在z 轴上,∴F z =0, F y =0.F z =k ρ⎰⎰++Ddxdy c y x c 2/3222)(=kc ρ⎰⎰+R dr c r r d 02/32220)(πθ=2k .∴F={0,0,2k }.(2)根据对称性知引力方向在z 轴上,∴F z =0, F y =0. F z =k ρ⎰⎰⎰-++-VdV c z y x c z 2/3222])([=k ρ⎰⎰⎰-+-a h dr c z r rd dz c z 02/322200])([)(πθ=-2k πρdz c z a c z h⎰⎥⎥⎦⎤⎢⎢⎣⎡-+-+022)(1=2k πρ[]h c h a c a --+-+2222)(. ∴F={0,0,2k πρ[]h c h a c a --+-+2222)(}.(3)以圆锥体的顶点为原点, 对称轴为z 轴建立xyz 三维直角坐标系. 根据对称性知引力方向在z 轴上,∴F z =0, F y =0.F z =k ρm ⎰⎰⎰++V dV z y x z 2/3222)(=k ρm ⎰⎰⎰+R hrR dz z r zrdr d 02/322020)(πθ=2k πR ρm ⎪⎪⎭⎫⎝⎛++-22221R h R h R . ∴F={0,0, 2k πR ρm ⎪⎪⎭⎫ ⎝⎛++-22221R h R h R }.7、求曲面⎪⎩⎪⎨⎧=+=+=ψϕψϕψsin sin )cos (cos )cos (a z a b y a b x (0≤φ≤2π, 0≤ψ≤2π) 的面积,其中常数a,b 满足0≤a ≤b.解:∵x φ=-(b+acos ψ)sin φ, y φ=(b+acos ψ)cos φ, z φ=0; x ψ=-asin ψcos φ, y ψ=-asin ψsin φ, z ψ=acos ψ.∴E=222ϕϕϕz y x ++=(b+acos ψ)2, G=222ψψψz y x ++=a 2, F=ψϕψϕψϕz z y y x x ++=0. ∴S=σd F EG D ⎰⎰'-2=σψd a b a D ⎰⎰'+)cos (=⎰⎰+ππψψϕ2020)cos (d a b d a =4ab π2.8、求螺旋面⎪⎩⎪⎨⎧===ϕϕϕb z r y r x sin cos (0≤r ≤a, 0≤φ≤2π) 的面积.解:∵x r =cos φ, y r =sin φ, z r =0; x φ=-rsin φ, y φ=rcos φ, z φ=b.∴E=222r r r z y x ++=1, G=222ϕϕϕz y x ++=r 2+b 2, F=ϕϕϕz z y y x x r r r ++=0.∴S=σd F EG D ⎰⎰'-2=σd b r D ⎰⎰'+22=⎰⎰+πϕ20022d dr b r a=π⎪⎪⎭⎫⎝⎛++++b b a a b b a a 22222ln .9、求边长为a 密度均匀的正方体关于其任一棱边的转动变量. 解:以正方体的一个顶点为原点,顶点上方的棱为z 轴,使 正方体处于第一卦限中,则正方体对z 轴上的棱的转动变量为: J z =ρ⎰⎰⎰+V dV y x )(22=ρ⎰⎰⎰+aaadz y x dy dx 00220)(=a ρ⎰⎰+aady y x dx 0220)(=a ρ⎰+adx a ax 032)31(=32a 5ρ. (ρ为正方体密度)。

最新定积分重积分及其应用答案

最新定积分重积分及其应用答案

定积分重积分及其应用答案定积分、重积分及其应用一、基本题1、设«Skip Record If...»2、设«Skip Record If...»3、设«Skip Record If...»4、«Skip Record If...»;«Skip Record If...»;«Skip Record If...»;«Skip Record If...»5、«Skip Record If...»;«Skip Record If...»6、下列式子中正确的是( B )«Skip Record If...»«Skip Record If...»«Skip Record If...» «Skip Record If...»无法确定7、设«Skip Record If...»,«Skip Record If...», «Skip Record If...»,则( B )«Skip Record If...»8、设«Skip Record If...»在«Skip Record If...»上满足,«Skip Record If...»。

令«Skip Record If...»,«Skip Record If...», «Skip Record If...»,则( B )«Skip Record If...»9、«Skip Record If...»;«Skip Record If...»;«Skip Record If...»10、«Skip Record If...»;«Skip Record If...»11、«Skip Record If...»«Skip Record If...»12、«Skip Record If...»13、«Skip Record If...»«Skip Record If...»14、设«Skip Record If...»,则«Skip Record If...»15、判定下列广义积分的敛散性:1)«Skip Record If...»,发散«Skip Record If...»,发散;«Skip Record If...»,收敛;«Skip Record If...»,发散2)«Skip Record If...»,发散;«Skip Record If...»,发散;«Skip Record If...»,收敛;«Skip Record If...»,发散 3)«Skip Record If...»,收敛;«Skip Record If...»,发散4)«Skip Record If...»;«Skip Record If...»16、设«Skip Record If...»,则«Skip Record If...»17、设«Skip Record If...»,则«Skip Record If...»二重积分的几何意义18、平面区域«Skip Record If...»由«Skip Record If...»所围成,«Skip Record If...»,«Skip Record If...», «Skip Record If...»,则«Skip Record If...»的大小关系是«Skip Record If...»19、交换下列积分次序:1)«Skip Record If...»2)«Skip Record If...»20、二次积分«Skip Record If...»21、设«Skip Record If...»为«Skip Record If...»,«Skip Record If...»则«Skip Record If...»二、计算题1、«Skip Record If...»;«Skip Record If...»2、«Skip Record If...»;«Skip Record If...»;«Skip Record If...»3、«Skip Record If...»;«Skip Record If...»4、«Skip Record If...»;«Skip Record If...»; «Skip Record If...»;«Skip Record If...»5、«Skip Record If...»;«Skip Record If...»; «Skip Record If...»6、设«Skip Record If...»,求«Skip Record If...»7、设«Skip Record If...»,求«Skip Record If...»8、«Skip Record If...»;«Skip Record If...»9、设«Skip Record If...»在«Skip Record If...»上连续可导,«Skip Record If...»,计算«Skip Record If...»10、已知«Skip Record If...»,求«Skip Record If...»。

重积分的应用

重积分的应用

= 2πa 2 4a 2
7
重积分的应用
例 求曲面 z =
x 2 + y 2 被柱面 x 2 + y 2 = ax (a > 0)
z
截下的有限曲面片的面积. 截下的有限曲面片的面积 有限曲面片的面积 解 因曲面方程为 z =
x2 + y2
zx =
x , zy = 2 2 x +y
2 x 2 y
y 2 2 x +y
当物体是均匀的, 当物体是均匀的 均匀 则得形心 形心坐标 则得形心坐标 ∫∫∫ xdv x= , y= V 其中 V = ∫∫∫ dv
常数时, 常数时,
M
∫∫∫ ydv
V V 物体的体积. 物体的体积.
19
, z=
∫∫∫ zdv
重积分的应用
例 求位于两圆 ρ = a cosθ , ρ = b cosθ (0 < a < b) 之间的均匀薄片的质心. 之间的均匀薄片的质心 均匀薄片的质心 解 薄片关于 轴对称 则 y = 0, 薄片关于x轴对称 轴对称. 1 x = ∫∫ xdσ AD
y
曲面S的面积元素 曲面 的面积元素 曲面S的面积公式 曲面 的面积公式
4
重积分的应用
(1) 设曲面 的方程为 z = f ( x , y ) 设曲面S的方程为
2 曲面面积公式 A = ∫∫ 1 + z x + z 2 dxdy y
Dxy
(2) 设曲面的方程为 x = g( y , z )
2 2 曲面面积公式 A = ∫∫ 1 + x y + x z dydz
( x , y )dσ , 这部分质量可近似看作集中在点

数学分析21.7n重积分(含习题及参考答案)

数学分析21.7n重积分(含习题及参考答案)

第二十一章 重积分7 n 重积分引例:设物体V 1中点的坐标为(x 1,y 1,z 1), V 2中点的坐标为(x 2,y 2,z 2), 它们的密度函数分别为连续函数ρ1(x 1,y 1,z 1)与ρ2(x 2,y 2,z 2), 且 设它们之间的引力系数为1. 在V 1中取质量微元ρ1dx 1dy 1dz 1, 在V 2中取质量微元ρ2dx 2dy 2dz 2. 由万有引力定律知, V 1的微元对V 2的微元的吸引力在x 轴上的投影为32221112121)(rdz dy dx dz dy dx x x -ρρ, 其中r=221221221)()()(z z y y x x -+-+-.将两个物体的所有微元间的吸引力在x 轴上投影的量相加,就 得到物体V 1与V 2间的引力在x 轴上投影的值. 它是一个六重积分, 即F x =⎰⎰⎰⎰⎰⎰-Vdz dy dx dz dy dx rx x z y x z y x 22211132122221111))(,,(),,(ρρ.这是在由六维数组(x 1,y 1,z 1,x 2,y 2,z 2)构成六维空间中六维区域V=V 1×V 2上的积分. 吸引力在y 和z 轴上的投影也同样可由六个自变量的积分来表示.概念:规定n 维长方体区域:V=[a 1,b 1]×[a 2,b 2]×…×[a n ,b n ]的体积为 (b 1-a 1)×(b 2-a 2)×…×(b n -a n ). 又存在以下n 维体体积: n 维单纯形:x 1≥0,x 2≥0,…,x n ≥0, x 1+x 2+…+x n ≤h. n 维球体:x 12+x 22+…+x n 2≤R 2.设n 元函数f(x 1,x 2,…,x n )定义在n 维可求体积的区域V 上. 通过对V 的分割、近似求和、取极限的过程,即得到n 重积分: I=n n Vdx dx dx x x x f ⋯⋯⋯⋯⎰⎰2121),,,(.性质:1、若f(x 1,x 2,…,x n )在n 维有界区域V 上连续,则存在n 重积分. 2、若积分区域为长方体[a 1,b 1]×[a 2,b 2]×…×[a n ,b n ],则有 I=n n Vdx dx dx x x x f ⋯⋯⋯⎰⎰2121),,,(=⎰⎰⎰⋯⋯nnb a n n b a b a dx x x x f dx dx ),,,(21212211.3、当V 由不等式组a 1≤x 1≤b 1, a 2(x 1)≤x 2≤b 2(x 1),…, a n (x 1,…,x n-1)≤x n ≤b n (x 1,…,x n-1) 表示时,则有I=⎰⎰⎰--⋯⋯⋯⋯),,,(),,,(21)()(21121121121211),,,(n n n nx x x b xx x a n n x b x a b a dx x x x f dx dx .4、设变换T :⎪⎪⎩⎪⎪⎨⎧⋯=⋯⋯⋯=⋯=),,,(),,,(),,,(2121222111n n n nn x x x x x x ξξξξξξξξξ把n 维ξ1,ξ2,…,ξn 空间区域V ’ 一对一地映射成n 维x 1,x 2,…,x n 空间的区域V ,且在V ’上函数行列式J=),,,(),,,(2121n n x x x ξξξ⋯∂⋯∂=n nn n n n x x x x x x x x x ξξξξξξξξξ∂∂⋯∂∂∂∂⋯⋯⋯⋯∂∂⋯∂∂∂∂∂∂⋯∂∂∂∂212221212111恒不为零,则有n 重积分换元公式:I= n n n Vdx dx x x f ⋯⋯⎰⋯⎰11),,(个=n n n n n Vd d J x x f ξξξξξξ⋯⋯⋯⋯⎰⋯⎰1111||)),,(,),,,((个.例1:求n 维单纯形T n :x 1≥0,x 2≥0,…,x n ≥0, x 1+x 2+…+x n ≤h 的体积. 解:作变换x 1=h ξ1,x 2=h ξ2,…,x n =h ξn , 则J=h n , 单纯形T n 的体积为△T n =h nn n D d d d ξξξ⋯⎰⋯⎰211个=h n a n . 其中D 1={(ξ1,ξ2,…,ξn )|ξ1+ξ2+…+ξn ≤1, ξ1≥0, ξ2≥0,…, ξn ≥0},则a n =1211101--⋯⎰⋯⎰-⎰n n T n d d d d n ξξξξ个, 其中T n-1={(ξ1,ξ2,…,ξn-1)|ξ1+ξ2+…+ξn-1≤1-ξn , ξ1≥0, ξ2≥0,…, ξn-1≥0}. 又对积分a n 作变换ξ1=(1-ξn )ζ1,…, ξn-1=(1-ξn )ζn-1, 则J=(1-ξn )n-1,a n = 12111012)1(---⋯⎰⋯⎰-⎰n n D n n n d d d d ζζζξξ个= a n-1⎰--101)1(n n n d ξξ=na n 1-, 其中D 2={(ζ1, ζ2,…, ζn-1)| ζ1+ζ2+…+ζn-1≤1, ζ1≥0, ζ2≥0,…, ζn-1≥0}.当n=1时,a 1=1, ∴a n =!1n , 于是单纯形T n 的体积为△T n =!n h n .例2:求n 维球体V n :x 12+x 22+…+x n 2≤R 2的体积.解法一:作变换x 1=R ξ1,x 2=R ξ2,…,x n =R ξn , 则J=R n , 球体V n 的体积为△V n =R nn n d d d n ξξξξξ⋯⎰⋯⎰≤+⋯+211221 个=R n b n . 其中b n =121111122121---≤+⋯+-⋯⎰⋯⎰-⎰n n n d d d d nn ξξξξξξξ 个=⎰-11n d ξ△V n-1=b n-1⎰---11212)1(n n n d ξξ. 令ξn =cos θ, 则有b n =b n-1⎰-01cos sin πθθd n =2b n-1⎰20sin πθθd n . 又⎰20sin πθθd n =⎪⎪⎩⎪⎪⎨⎧+=+=-12!)!12(!)!2(22!!2!)!12(m n ,m m m n ,m m π, 及b 1=2, ∴△V n =R nb n =⎪⎪⎩⎪⎪⎨⎧+=+=+12!)!12()2(22!122m n ,m R m n ,m R m m mm ππ.解法二:作变换x 1=rcos φ1,x 2=rsin φ1cos φ2, x 3=rsin φ1sin φ2cos φ3,…, x n-1=rsin φ1sin φ2…sin φn-2cos φn-1, x n =rsin φ1sin φ2…sin φn-1, 则 J=r n-1sin n-2φ1sin n-3φ2…sin 2φn-3sin φn-2, 积分区域为:0≤r ≤R, 0≤φ1,φ2,…,φn-2≤π, 0≤φn-1≤2π, 从而 △V n =⎰⎰⎰⎰------⋯⋯πππϕϕϕϕϕϕ20122312102001sin sin sin n n n n n n Rd r d d dr=⎰⎰⎰----⋯πππϕϕϕϕϕ2010220112sin sin n n n n n d d d n R =⎪⎪⎩⎪⎪⎨⎧+=+=+12!)!12()2(22!122m n ,m R m n ,m R m m mm ππ.注:特别地,当n=1,2,3时,有△V 1=2R ,△V 2=πR 2,△V 3=34πR 3.求n 维空间中的曲面面积:设x n =f(x 1,…,x n-1), f(x 1,…,x n-1)∈△⊂R n-1为n 维空间中的曲面,则其面积为 11212111---∆⋯⎪⎪⎭⎫ ⎝⎛∂∂+⋯+⎪⎪⎭⎫⎝⎛∂∂+⎰⋯⎰n n n nn dx dx x x x x 个.例3:求n 维单位球面x 12+x 22+…+x n 2=1的面积.解:n 维单位球面上半部为:x n =)(12121-+⋯+-n x x (2121-+⋯+n x x ≤1), 又21211⎪⎪⎭⎫ ⎝⎛∂∂+⋯+⎪⎪⎭⎫ ⎝⎛∂∂+-n n n x x x x =n x 1, ∴上半球面面积为 21△S=n n n x x x dx dx n 11112121--≤+⋯+⋯⎰⋯⎰- 个=)(1212111112121---≤+⋯++⋯+-⋯⎰⋯⎰-n n n x x x x dx dx n个=⎰---+⋯+-+⋯+------≤+⋯++⋯+-⋯⎰⋯⎰)(1)(1212112121222122212121)(1n n n x x x x n n n n x x xx dx dx dx个. 又⎰--+⋯+-+⋯+----+⋯+-)(1)(12121122212221)(1n n x x x x n n x x dx =π, ∴21△S=π21212121--≤+⋯+⋯⎰⋯⎰-n n x x dx dx n个=πb n-2, 其中b n-2=21212121--≤+⋯+⋯⎰⋯⎰-n n x x dx dx n个为n-2维空间中单位球体体积.由例2得n 维球面面积为:△S=2πb n-2=⎪⎪⎩⎪⎪⎨⎧+=-=-12!)!12()2(22)!1(2m n ,m m n ,m mmππ.注:特别地,当n=1,2,3时,有△S 1=2,△S 2=2π,△S 3=4π.习题1、计算五重积分⎰⎰⎰⎰⎰Vdxdydzdudv , 其中V :x 2+y 2+z 2+u 2+v 2≤r 2.解:根据例2的结论,当n=5时V 5=!!5)2(225πr =15852r π.2、计算四重积分⎰⎰⎰⎰++++----Vdxdydzdu u z y x u z y x 2222222211, V :x 2+y 2+z 2+u 2≤1.解:令x=rcos φ1, y=rsin φ1cos φ2, z=rsin φ1sin φ2cos φ3, u=rsin φ1sin φ2sin φ3, 原式=⎰⎰⎰⎰+-102123222030201sin sin 11dr r rr d d d ϕϕϕϕϕπππ =⎰⎰+-132011211sin 4dr r r r d πϕϕπ=2π2⎰+-1032211dr r r r =π2(1-4π).3、求n 维角锥x i ≥0,nn a x a x a x +⋯++2211≤1, a i >0 (i=1,2,…,n)的体积. 解:令ξi =iia x (i=1,2,…,n), 则V=n n a x dx dx n i ii ⋯⎰∑⋯⎰≤=111个=a 1…a n n n d d n i i ξξξ⋯⎰∑⋯⎰≤=111个.由例1得V=!1n a 1…a n .4、把Ω:x 12+x 22+…+x n 2≤R 2上的n(n ≥2)重积分n n n dx dx x x x f ⋯+⋯++⎰⋯⎰122221Ω)(个化为单重积分,其中f(u)为连续函数. 解:令x 1=rcos φ1, x 2=rsin φ1cos φ2,…, x n-1=rsin φ1sin φ2…sin φn-2cos φn-1,x n =rsin φ1sin φ2…sin φn-2sin φn-1, 则nn n dx dx x x x f ⋯+⋯++⎰⋯⎰122221Ω)(个=⎰⎰⎰⎰⎰------⋯⋯ππππϕϕϕϕϕϕϕ2012231202020101sin sin sin )(n n n n n Rn d d d d dr r f r ,∵⎰π0sin tdt n =2⎰20cos πtdt n =⎪⎭⎫⎝⎛+Γ⎪⎭⎫⎝⎛+Γ2221n n π. ∴原式=⎰-⎪⎭⎫ ⎝⎛ΓR n hdr r f r h 012)(22π.。

第十章-重积分的应用

第十章-重积分的应用

第十章-重积分的应用第九章(二) 重积分的应用重积分的应用十分广泛。

尤其是在几何和物理两方面。

几何方面的应用有利用二重积分求平面图形的面积;求曲面面积;利用三重积分求立体体积。

物理方面的应用有求质量;求重心;求转动惯量;求引力等。

在研究生入学考试中,该内容是《高等数学一》和《高等数学二》的考试内容。

通过这一章节的学习,我们认为应达到如下要求:1、掌握重积分的几何和物理意义,并能应用于实际计算。

2、对于重积分的应用领域和常见应用问题有全面的了解,并能利用重积分解决应用问题。

3、具备空间想象能力,娴熟的重积分计算技巧和将理论转化为应用的能力。

一、知识网络图⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧求引力求转动慣量求重心求质量物理应用求曲面面积求立体体积求平面图形面积几何应用重积分的应用 二、典型错误分析例1. 求如下平面区域D 的面积,其中D 由直线x y x ==,2及曲线1=xy 所围成。

如图: y 1=xy (2,2))21,2(O 1 2 x[错解]89)2(2212221=-===⎰⎰⎰⎰⎰dy y dx dy d S yDσ[分析]平面图形的面积可以利用二重积分来计算,这一点并没有错。

问题在于区域D ,若先按x 积分,再按y 积分,则应注意到区域D 因此划分为两个部分,在这两个部分,x 、y 的积分限并不相同,因此此题若先积x, 后积y ,则应分两部分分别积分,再相加。

[正确解] 2ln 2322112121-=+==⎰⎰⎰⎰⎰⎰y y Ddx dy dx dy d S σ 例 2..设平面薄片所占的闭区域D 是由螺线θγ2=上一段弧)20(πθ≤≤与直线2πθ=所围成,它的面密度为22),(y x y x +=ρ,求该薄片的质量。

[错解] 24023420320220πθθθσρπθπ====⎰⎰⎰⎰⎰d r dr r d d MD[分析] 平面物体的质量是以面密度函数为被积函数的二重积分,因此解法的第一步是正确的。

重积分的应用

重积分的应用

z
设从卫星中心到地面的距离
为 h ,地球半径为 R 。
的方程: x R sin cos
y
R
sin
sin
z R cos
y
, 为参数。
OR
x
2020/3/20
x Rsinsin Ex2y2z2
x Rcoscos R2 sin2
y Rsincos y Rcossin
z 0
Gx2y2z2 R 2
O
x
2020/3/20
y
(d )
(x, y)
(x, y)
D xy
d
cos 1
dA d
1
f
S dA
1 fx2 fy2 d z
(x,y, f(x,y))
n
dA
(x,y, f(x,y))
O
y
x
2020/3/20
(x, y)
(d )
D xy
d
(x, y)
z S dA
(x,y, f(x,y))
)2dxdy
a2 x2 y2
a2 x2 y2
D xy
a
a2 x2 y2 dxdy
z
被积函数
a a2 x2 y2
z a2x2y2 在积分区域 D xy 上
是无界的
此积分不是二重积分
y 因而,不能直接用
x
2020/3/20
D xy x2y2 a2
曲面面积公式来求。
设 0ba ,作一个小闭区域 D b :x2y2b2 分布在 D b 上的那部分球面面积为
O
曲面 S的面积
A dA
D xy
1 fx2 fy2 d
D xy

重积分习题与答案

重积分习题与答案

第九章 重积分A1、 填空题1)交换下列二次积分的积分次序(1)()=⎰⎰-dx y x f dy y y 102,______________________________________________ (2)()=⎰⎰dx y x f dy y y 2022,______________________________________________ (3)()=⎰⎰dx y x f dy y 100,_______________________________________________ (4)()=⎰⎰---dx y x f dy y y 101122,___________________________________________ (5)()=⎰⎰dy y x f dx ex 1ln 0,______________________________________________ (6)()()=⎰⎰---dx y x f dy y y 404214,________________________________________ 2)积分dy e dx xy ⎰⎰-2022的值等于__________________________________ 3)设(){}10,10,≤≤≤≤=y x y x D ,试利用二重积分的性质估计()σd y x xy I D⎰⎰+=的 值则 。

4)设区域D 是有x 轴、y 轴与直线1=+y x 所围成,根据二重积分的性质,试比较积分 ()σd y x I D 2⎰⎰+=与()σd y x I D 3⎰⎰+=的大小________________________________5)设()⎭⎬⎫⎩⎨⎧≤≤≤≤=20,20,ππy x y x D ,则积分()dxdy y x I D⎰⎰+-=2sin 1 ___________________________________________6)已知Ω是由12,0,0,0=++===z y x z y x 所围,按先z 后y 再x 的积分次序将 ⎰⎰⎰Ω=xdxdydz I 化为累次积分,则__________________________=I7)设Ω是由球面222y x z --=与锥面22y x z +=的围面,则三重积分dxdydz z y x f I ⎰⎰⎰Ω++=)(222在球面坐标系下的三次积分表达式为2、 把下列积分化为极坐标形式,并计算积分值1)⎰⎰-+a x ax dy y x dx 2020222)(2)⎰⎰+ax dy y x dx 00223、利用极坐标计算下列各题1)⎰⎰+D y x d e σ22,其中D 是由圆周122=+y x 及坐标轴所围成的在第一象限内的闭区域.2)⎰⎰++Dd y x σ)1ln(22,其中D 是由圆周122=+y x 及坐标轴所围成的在第一象限的闭区域.3)⎰⎰D d xy σarctan,其中D 是由圆周1,42222=+=+y x y x 及直线x y y ==,0所围成的在第一象限的闭区域.4、选用适当的坐标计算下列各题 1)⎰⎰D d yx σ22,其中D 是直线x y x ==,2及曲线1=xy 所围成的闭区域.2)⎰⎰+D yd x σsin )1(,其中D 是顶点分别为)2,1(),0,1(),0,0(和)1,0(的梯形闭区域.3)⎰⎰--D d y x R σ222,其中D 是圆周Rx y x =+22所围成的闭区域.4)⎰⎰+D d y x σ22,其中D 是圆环形闭区域{}2222),(b y x a y x ≤+≤.5、设平面薄片所占的闭区域D 由螺线θρ2=上一段弧⎪⎭⎫ ⎝⎛≤≤20πθ与直线2πθ=所围成,它的面密度为()22,y x y x +=μ,求这薄片的质量(图9-5).6、求平面0=y ,()0>=k kx y ,0=z ,以及球心在原点、半径为R 的上半球面所围成的在第一卦限内的立体的体积(图9-6).7、设平面薄片所占的闭区域D 由直线2=+y x ,x y =和x 轴所围成,它的面密度 ()22,y x y x +=μ,求该薄片的质量.8、计算由四个平面0=x ,0=y ,1=x ,1=y 所围成的柱体被平面0=z 及 632=++z y x 截得的立体的体积.9、求由平面0=x ,0=y ,1=+y x 所围成的柱体被平面0=z 及抛物面z y x -=+622 截得的立体的体积.10、计算以xoy 面上的圆周ax y x =+22围成的闭区域为底,而以曲面22y x z +=为顶的曲顶柱体的体积.11、化三重积分()⎰⎰⎰Ω=dxdydz z y x f I ,,为三次积分,其中积分区域Ω分别是1)由双曲抛物面z xy =及平面0,01==-+z y x 所围成的闭区域.2)由曲面222y x z +=及22x z -=所围成的闭区域.12、设有一物体,占有空间闭区域(){}10,10,10,,≤≤≤≤≤≤=Ωz y x z y x ,在点()z y x ,, 处的密度为()z y x z y x ++=,,ρ,计算该物体的质量.13、计算⎰⎰⎰Ωdxdydz z xy 32,其中Ω是由曲面xy z =,与平面1,==x x y 和0=z 所围成的闭区域.14、计算⎰⎰⎰Ωxyzdxdydz ,其中Ω为球面1222=++z y x及三个坐标面所围成的在第一卦限内的闭区域.15、算⎰⎰⎰Ωzdxdydz ,其中Ω是由锥面22y x Rh z +=与平面()0,0>>=h R h z 所围成的闭区域.16、利用柱面坐标计算三重积分⎰⎰⎰Ωzdv ,其中Ω是由曲面222y x z --=及22y x z +=所围成的闭区域.17、利用球面坐标计算三重积分()⎰⎰⎰Ω++dv z y x 222,其中Ω是由球面1222=++z y x 所围成的闭区域.18、选用适当的坐标计算下列三重积分1)⎰⎰⎰Ωxydv ,其中Ω为柱面122=+y x 及平面1=z ,0=z 0=x ,0=y 所围成的在第一卦限内的闭区域.2)⎰⎰⎰Ωdxdydz z 2,其中Ω是两个球2222R z y x ≤++和)0(2222>≤++R Rz z y x 的公共部分.3)()⎰⎰⎰Ω+dv y x 22,其中Ω是由曲面()222254y x z +=及平面5=z 所围成的闭区域.4)()⎰⎰⎰Ω+dv y x22,其中闭区域Ω由不等式A z y x a ≤++≤<2220,0≥z 所确定.19、利用三重积分计算下列由曲面所围成的立体的体积1)226y x z --=及22y x z +=.2)()02222>=++a az z y x 及222z y x =+(含有z 轴的部分).20、球心在原点、半径为R 的球体,在其上任意一点的密度大小与这点到球心的距离成正比,求这球体的的质量.21、求球面2222a z y x =++含在圆柱面ax y x =+22内部的那部分面积.22、求锥面22y x z +=被柱面x z 22=所割下部分的曲面面积.23、求由抛物线2x y =及直线1=y 所围成的均匀薄片(面密度为常数μ)对于直线1-=y 的转动惯量.24、设薄片所占的闭区域D 如下,求均匀薄片的质心 D 是半椭圆形闭区域()⎭⎬⎫⎩⎨⎧≥≤+0,1,2222y b y a x y x .25、设平面薄片所占的闭区域D 由抛物线2x y =及直线x y =所围成,它在点()y x ,处的面密度()y x y x 2,=μ,求该薄片的质心.25、利用三重积分计算下列由曲面所围立体的质心(设密度1=ρ)1)222y x z +=,1=z2)222y x A z --=,222y x a z --=()0>>a A ,0=z26、求半径为a 高为h 的均匀圆柱体对于过中心而平行于母线的轴的转动惯量(设密度1=ρ).B1、 根据二重积分的性质,比较下列积分的大小1)()σd y x D ⎰⎰+2与()σd y x D⎰⎰+3,其中积分区域D 是由圆周()()21222=-+-y x 所围成.2)()σd y x D ⎰⎰+ln 与()[]σd y x D⎰⎰+2ln ,其中D 是三角形闭区域,三顶点分别为()0,1, ()1,1,()0,2 .2、计算下列二重积分1)⎰⎰+σd e y x ,其中(){}1,≤+=y x y x D2)()⎰⎰-+D d x y x σ22,其中D 是由直线2=y ,x y =及x y 2=所围成的闭区域3),()σd y x y D ⎰⎰+-+9632,其中(){}222,R y x y x D ≤+=3、化二重积分()σd y x f I D⎰⎰=,为而次积分(分别列出对两个变量先后次序不同的两个二次积分),其中积分区域D 是 1)由x 轴及半圆周222ry x =+()0≥y 所围成的闭区域2)环形闭区域(){}41,22≤+≤y x y x4、求由曲面222y x z +=及2226y x z --=所围成的立体的体积.5、计算()⎰⎰⎰Ω+++31z y x dxdydz ,其中Ω为平面0=x ,0=y ,0=z ,1=++z y x 所围成的四面体.6、计算下列三重积分 1)dxdydz z ⎰⎰⎰Ω2,其中Ω是两个球:2222R z y x ≤++和Rz z y x 2222≤++()0>R 的公共部分.2)()dv z y x z y x z ⎰⎰⎰Ω++++++11ln 222222,其中Ω是由球面1222=++z y x 所围成的闭区域.3)()d v z y⎰⎰⎰Ω+22,其中Ω是由xoy 平面上曲线x y 22=绕x 轴旋转而成的曲面与平面5=x 所围成的闭区域.7、设球体占有闭区域(){}Rz z y x z y x 2,,222≤++=Ω,它在内部各点处的密度的大小等于该点到坐标原点的距离的平方,试求这球体的球心.8、一均匀物体(密度ρ为常量)占有的闭区域Ω由曲面22y x z +=和平面0=z ,,a x =a y =所围成1)求物体的体积; 2)求物体的质心;3)求物体关于z 轴的转动.C1、利用二重积分的性质,估计积分()⎰⎰++=Dd y x I σ10,其中D 是由圆周422=+y x 所围成.2、用二重积分计算立体Ω的体积V ,其中Ω由平面0=z ,x y =,a x y +=,a y 2=和y x z 23+=所围成()0>a .3、计算二重积分⎰⎰Dydxdy ,其中D 是由直线2-=x ,0=y 以及曲线22y y x --=所围成的平面区域.4、设()y x f ,在积分域上连续,更换二次积分()⎰⎰---=yy dx y x f dy I 311102,的积分次序.5、计算二重积分dxdy x y I D⎰⎰-=2,其中积分区域D 是由20≤≤y 和1≤x 确定.6、求二重积分()dxdy xe y D y x ⎰⎰⎥⎦⎤⎢⎣⎡++22211的值,其中D 是由直线x y =,1-=y 及1=x 围成的平面区域. 7、计算⎰⎰⎰Ωdv z 2,其中Ω由曲面2222R z y x =++及()2222R r z y x =-++围成.8、计算dxdydz z xy I ⎰⎰⎰Ω=32,其中Ω是由曲面xy z =与平面1=y 及0=z 所围成的闭区域.9、设有一半径为R 的球体,0P 是此球表面上的一个定点,球体上任一点的密度与该点到0P 的距离的平方成正比(比例常数0>k ),求球体的重心的位置. 10、设有一高度为()t h (t 为时间)的雪堆在融化过程中,其侧面满足方程()()()t h y x z t h z 22+-=(设长度单位为cm ,时间单位为h ),已知体积减少的速率与侧面积成正比例(比例系数9.0),问高度为130(cm )的雪堆全部融化需多少时间?第九章 重积分答案 习 题 答 案(A )1、 填空题 1)①()()⎰⎰⎰⎰-+2120122,,x x dy y x f dx dy y x f dx②()dy y x f dx xx ⎰⎰240, ③()dy y x f dy x⎰⎰110, ④()dy y x f dx x ⎰⎰--21011,⑤()⎰⎰ee ydx y x f dy ,10⑥()⎰⎰-+-244202,x x dy y x f dx2)()4121--e 3)20≤≤I 4)()()⎰⎰⎰⎰+≥+D Dd y x d y x σσ325)2-π 6)⎰⎰⎰---yx x xdz dy dx 21021017)()⎰⎰⎰2224020sin dr r r f d d ϕϕθππ2、1)443a π 2)()[]21ln 2613++a3、1)()14-e π2)()12ln 24-π 3)2643π4、1)49 2)2sin 22cos 1sin 1cos 23--++ 3)⎪⎭⎫ ⎝⎛-34313πR 4)()3332a b -π 5、5401π 6、k R arctan 313 7、34 8、27 9、617 10、4323a π 11、1)()dz z y x f dy dx xy x⎰⎰⎰-01010,, 2)()⎰⎰⎰-+----22222221111,,x y x x x dz z y x f dy dx12、23 13、3641 14、481 15、224R h π 16、π127 17、π54 18、1)81 2)548059R π 3)π8 4)()55154a A -π19、1)π332 2)3a π 20、3R k π 21、()222-πa22、π2 23、μ105368=I 24、π34,0by x == 25、4835=x ,5435=y 26、⎪⎭⎫ ⎝⎛43,0,027、M a 221(ρπh a M 2=为圆柱体的质量) (B )1、 1)()()⎰⎰⎰⎰+≤+DDd y x d y x σσ32 2)()()⎰⎰⎰⎰+≤+DDd y x d y x σσln ln 22、1)1--e e 2) 613 3) 2494R R ππ+ 3、1)()⎰⎰--=220,x r rr dy y x f dx I ,()⎰⎰---=2222,0y r y r rdx y x f dy I2)()()()⎰⎰⎰⎰⎰⎰-------------++=222222141141114412,,,x x x x x x dy y x f dx dy y x f dx dy y x f dx I()⎰⎰---+224421,x x dy y x f dx()()()⎰⎰⎰⎰⎰⎰-----------++=222222144111114421,,,y y y y y y dx y x f dy dx y x f dy dx y x f dy I()⎰⎰-----+224412,y y dx y x f dy4、π65、⎪⎭⎫ ⎝⎛-852ln 21 ; 6、1)548059R π 2)0 3)π3250 ; 7、⎪⎭⎫ ⎝⎛R 45,0,0 8、1)438a 2)⎪⎭⎫ ⎝⎛2157,0,0a 3)645112a ρ(C )1、 解:令()10,++=y x y x f ,关键是求()y x f ,在D 上的最大值和最小值,在D 内部,1=x f ,1=y f ,因此()y x f ,在D 内部无驻点,最值点一定在边界上取得,作 ()()410,22-++++=y x y x y x F λ由方程组⎪⎩⎪⎨⎧=-+='=+='=+='0402102122y x F y F x F y x λλλ解得驻点为()2,2,()2,2-,比较可得最小值2210-=m ,最大值为2210+=M ,而D 的面积为π4,由估值定理得()()258258+≤≤-ππI 。

21-6重积分的应用

21-6重积分的应用

R x
2
2


D xy
R R x
2
2 2
dxdy
o
R
x
当x R时,
R R x
2
,
数学分析电子教案
AⅠ
D xy
z z 1 x y
2
2
y
dxdy
R
y
D xy
R x
2
2

R x R 当x R时, , 2 2 R x
离散分布的,而 是质量连续分布的几何体。因此,首 先把 分划成若干可度量的小块:
1 , 2 , ,
n
为了简化符号,也用
1 , 2 , ,
n
表示小块的度量。
数学分析电子教案 若这些小块分得充分小,每一个小块可近似地看
作一个点,于是 心坐标。 为此先计算每一个小块的质量,由于密度函数 (M )
o
4a r
2 2
2a
x
0
r dr
2
1 2
0
2
d
2
2 a cos
0 3
4a r
2
d ( 4a r )
2
2
8 3 a 0 3
(1 sin )d
8 3 2 a ( ) 3 2 3
所求立体体积
V 4V1
32 3 2 a ( ) 3 2 3
2
a

a a x y
2 2 2
,
a
o
x
a
y
数学分析电子教案
Dxy : x y ax
2 2

重积分习题(含答案)

重积分习题(含答案)

x 2 y 2 被柱面 z 2 2 x 所割下部分的曲面面积.
2 2 2 2
5.求由曲面 z x 2 y 及 z 6 2 x y 所围成的立体的体积. 6. 计算三重积分 的区域。
x z dv ,其中 是由曲面 z

x 2 y 2 与 z 1 x 2 y 2 所围成

注意到

2 0
cosd 0 ,因此
2
x z dv 0

d 4 d r 3 sin cos dr
0 0

1


2

4 0
sin cos d
sin 2
2 2

4 0


8
1 2 x y 0
xd z dx
1 2 0
1 2 x 0
1 1 2 x1 2 x y dy 2 x1 2 x dx 2 0 96
1
4.求锥面 z
x 2 y 2 被柱面 z 2 2 x 所割下部分的曲面面积.
解 曲面 z x2 y 2 与 z22x 的交线在 xOy 面上的投影为 所求曲面在 xOy 在上的投影区域为 D{(x y)|x2y22x}
2
2
D
D
0
0
=3

2
0
d = 6
6. 计算三重积分 的区域。
x z dv ,其中 是由曲面 z

x 2 y 2 与 z 1 x 2 y 2 所围成
解:由于曲面 z
x 2 y 2 是一个圆锥面,曲面 z 1 x 2 y 2 是上半单位球面,

高数重积分-重积分的应用

高数重积分-重积分的应用

由元素法
x ( x, y )d x , ( x, y )d
D D
y ( x, y )d y . ( x , y )d
D D
当薄片是均匀的,重心称为形心.
1 x xd , AD 1 y yd . 其中 A d AD D

2 d
2 0
b cos
a cos
r cos rdr
D

D 8 4
(b 3 a 3 ) b 2 ba a 2 . 2 2 (b a ) 2(b a )
20
对 y 轴的转动惯量为
y
b
o
a
x
I y x 2dxdy,
D
0 dy 0
b
y a ( 1 b )
1 3 x dx a b . 12
2
同理:对x 轴的转动惯量为
I x y 2dxdy 1 ab3 .
D
12
14
例 5 已知均匀矩形板(面密度为常数 )的长 b h 和宽分别为 和 ,计算此矩形板对于通过其形 心且分别与一边平行的两轴的转动惯量.
2 2
1 2 故S a 4 x 2 4 y 2 dxdy 2dxdy D a Dxy
xy
d
0
2
a
0
1 2 a 4r 2 rdr 2a 2 a
a 2 (6 2 5 5 1). 6
7
三、平面薄片的重心 ( x , y )
n 设 xoy 平面上有 个质点,它们分别位于
5
例 2 求由曲面 x 2 y 2 az 和 z 2a (a 0) 所围立体的表面积.

重积分的计算及应用习题课

重积分的计算及应用习题课
F(0) 0
利用洛必达法则与导数定义,得
lim
t0
F (t )
t4

lim
t 0
4 f (t) 4 t3
t
2

lim
t 0
f
(t) f (0) t0

f
(0)
三、重积分的应用
1. 几何方面 面积 ( 平面域或曲面域 ) , 体积 , 形心
2. 物理方面 质量, 转动惯量, 质心, 引力
b
dx
a
b f 2(y)dy
a

ba 2

b f 2(x)dx
a
b a
f
2
(
y)d
利y 用
(b a) b f 2 (x)dx = 右端 2ab a2 b2 a
例2. 设函数 f (x) 连续且恒大于零,
f (x2 y2 z2 ) d v
F (t) (t)
o
D1
2
D2 x
I

dx
sin x
f (x, y) d y
2
dx
0
f (x, y) d y
00

sin x
D1 f (x, y) d D2 f (x, y) d
1 arcsin y
dy
f (x, y) d x
0 arcsin y
所围成的闭区域 .
xx
z
提示: 利用柱坐标 y r cos
o
z r sin
1 2
r
2

x

5
x5
y
: 0 r 10

重积分的应用课件

重积分的应用课件
(2) 在每个 Si 上任取一点 Mi , 作曲面在这一点的切
平面 i , 并在 i 上取出一小块 Ai , 使得Ai 与 Si 在
数学分析 第二十一章 重积分
高等教育出版社
§6重积分的应用
曲面的面积
重心
转动惯量
引力
x y 平面上的投影都是 i (见图 21-38). 在点 Mi 附
S : z f (x, y)
于是小块 Vi的质量可用(i ,i , i )Vi近似代替, 若 把每一块看作质量集中在 (i ,i , i )的质点时, 整个
物体就可用这 n 个质点的质点系来近似代替.
由于质点系的重心坐标公式为
数学分析 第二十一章 重积分
高等教育出版社
§6重积分的应用
曲面的面积
重心
转动惯量
引力
n
i (i ,i , i )Vi
§6重积分的应用
曲面的面积
重心
转动惯量
引力
曲面的面积
设 D 为可求面积的平面有界区域, f ( x, y) 在 D 上
具有连续的一阶偏导数,现讨论由方程
z f (x, y) , (x, y) D 所表示的曲面 S 的面积.
(1) 对区域 D 作分割 T,把 D 分成 n 个小区域 i
(i 1,2, ,n). 这个分割相应地将曲面 S 也分成 n 个 小曲面片 Si (i 1,2, , n).
xn
i 1 n
,
(i ,i , i )Vi
i 1
n
i (i ,i , i )Vi
yn
i 1 n
,
(i ,i , i )Vi
i 1
n
i (i ,i , i )Vi
zn
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十一章 重积分 6重积分的应用一、曲面的面积问题:设D 为可求面积的平面有界区域,函数f(x,y)在D 上具有连续的一阶偏导数,讨论由方程z=f(x,y), (x,y)∈D 所确定的曲面S 的面积.分析:对区域D 作分割T ,把D 分成n 个小区域σi (i=1,2,…,n). 曲面S 同时也被分割成相应的n 个小曲面片S i (i=1,2,…,n). 在每个S i 上任取一点M i , 作曲面在这一点的切平面πi , 并 在πi 上取出一小块A i , 使得A i 与S i 在xy 平面上的投影都是σi . 现在M i 附近,用切平面A i 代替小曲面片S i . 则当T 充分小时,有 △S=∑=∆ni i S 1≈∑=∆ni i A 1, 这里的△S, △S i , △A i 分别表示S, S i 和A i 的面积.∴当T →0时,可用和式∑=∆ni i A 1的极限作为S 的面积.建立曲面面积计算公式:∵切平面πi 的法向量就是曲面S 在点M i (ξi ,ηi ,ζi )处的法向量, 记其与z 轴的夹角为γi , 则|cos γi |=),(),(1122i i yi i xf f ηξηξ++.∵A i 在xy 平面上投影为σi , ∴△A i =iiγσcos ∆=i i i y i i x f f σηξηξ∆++),(),(122. 又和数∑=∆ni i A 1=∑=∆++ni i i i y i i x f f 122),(),(1σηξηξ是连续函数),(),(122y x f y x f y x ++在有界闭区域D 上的积分和,∴当T →0时,有△S=∑=→∆++ni i i i y i i x T f f 1220),(),(1lim σηξηξ=⎰⎰++Dy x dxdy y x f y x f ),(),(122, 或△S=∑=→∆ni i iT 1cos limγσ=⎰⎰∧Dz n dxdy ),cos(,其中),cos(∧z n 为曲面的法向量与z 轴正向夹角的余弦.例1:求圆锥z=22y x +在圆柱体x 2+y 2≤x 内那一部分的面积. 解:由x 2+y 2≤x, 得D={(r,θ)|0≤r ≤21, 0≤θ≤2π}, 又z x =22y x x +=r r θcos =cos θ, z y =22yx y+=r r θsin =sin θ, ∴△S=⎰⎰++Dyxdxdy z z 221=⎰⎰πθ202102rdr d =π42.例2:设平面光滑曲线的方程为y=f(x), x ∈[a,b] (f(x)>0). 求证:此曲线绕x 轴旋转一周得到的旋转曲面的面积为: S=⎰'+ba dx x f x f )(1)(22π.证:由上半旋转面方程为z=22)(y x f -, 得 z x =22)()()(yx f x f x f -', z y =22)(yx f y --. 即有221yxz z ++=2222222)()()()(1yx f y y x f x f x f -+-'+=2222)())(1)((yx f x f x f -'+. ∴S=⎰⎰--'+b a x f x f dy y x f x f x f dx )()(222)()(1)(2=⎰⎰-'+b a x f dyy x f dx x f x f )(0222)(1)(1)(4=⎰⎰---'+ba x f x yf d x f y dx x f x f )(01222))(()(11)(1)(4=⎰⎰-'+b a dt tdx x f x f 102211)(1)(4=⎰'+b adx x f x f )(1)(22π.注:若空间曲面S 由参量方程:x=x(u,v),y=y(u,v),z=z(u,v),(u,v)∈D 确定, 其中x(u,v), y(u,v), z(u,v)在D 上具有连续一阶偏导数,且),(),(v u u y x ∂,),(),(v u u z y ∂,),(),(v u u x z ∂中至少有一个不等于0,则 曲面S 在点(x,y,z)的法线方向数为⎝⎛∂),(),(v u u z y ,),(),(v u u x z ∂,⎪⎪⎭⎫∂),(),(v u u y x , 则 它与z 轴的夹角的余弦的绝对值为:),cos(∧z n =222),(),(),(),(),(),(),(),(⎪⎪⎭⎫ ⎝⎛∂+⎪⎪⎭⎫ ⎝⎛∂+⎪⎪⎭⎫ ⎝⎛∂∂v u u y x v u u x z v u u z y v u u y x=2222222)())((),(),(v u v u v u vvvuuuz z y y x x z y x z y x v u u y x ++-++++∂=21),(),(FEG v u u y x -∂,其中E=222u u u z y x ++,G=222v v v z y x ++,F=v u v u v u z z y y x x ++.当),(),(v u u y x ∂≠0,则有△S=⎰⎰∧Dz n dxdy ),cos(=dudv z n v u u y x D ⎰⎰'∧∂),cos(),(),(=dudv F EG D ⎰⎰'-2.例3:求球面上两条纬线和两条经线之间 的曲面的面积(图中阴影部分). 解:设球面方程为:(R 为球的半径). x=Rcos ψcos φ,y=Rcos ψsin φ, z=Rsin ψ.由E=222ψψψz y x ++=R 2, G=222ϕϕϕz y x ++=R 2cos 2ψ, F=ϕψϕψϕψz z y y x x ++=0, 得2F EG -=R 2cos ψ. ∴△S=⎰⎰2121cos 2ψψϕϕψψϕd R d =R 2(φ2-φ1)(sin ψ2-sin ψ1).二、质心引例:设V 是密度函数为ρ(x,y,z)的空间物体,ρ(x,y,z)在V 上连续. 为求得V 的质心坐标公式,先对V 作分割T ,在属于T 的每一小块v i 上任取一点(ξi ,ηi ,ζi ),则小块v i 的质量可用ρ(ξi ,ηi ,ζi )△v i 近似代替. 若把每一小块看作质量集中在(ξi ,ηi ,ζi )的质点时,整个物体就可用这n 个质点的质点系来近似代替. 由于质点系的质心坐标公式为:∑∑==∆∆=ni iiiini iiiiin v v x 11),,(),,(ζηξρζηξρξ, ∑∑==∆∆=ni iiiini iiiiin v v y 11),,(),,(ζηξρζηξρη, ∑∑==∆∆=n i iiiini ii i i in v v z 11),,(),,(ζηξρζηξρζ.当T →0时,n x , n y , n z 的极限x , y , z 就定义为V 的质心坐标,即⎰⎰⎰⎰⎰⎰=VVdVz y x dVz y x x x ),,(),,(ρρ, ⎰⎰⎰⎰⎰⎰=VVdVz y x dVz y x y y ),,(),,(ρρ, ⎰⎰⎰⎰⎰⎰=VVdVz y x dVz y x z z ),,(),,(ρρ.当物体V 的密度均匀即ρ为常数时,则有⎰⎰⎰∆=VxdV Vx 1, ⎰⎰⎰∆=VydV Vy 1, ⎰⎰⎰∆=VzdV Vz 1, 这里△V 为V 的体积.又密度分布为ρ(x,y)的平面薄板D 的质心坐标为:⎰⎰⎰⎰=DDd y x d y x x x σρσρ),(),(, ⎰⎰⎰⎰=DDd y x d y x y y σρσρ),(),(. 当平面薄板的密度均匀时,即ρ为常数时,则有⎰⎰∆=Dxd D x σ1, ⎰⎰∆=D yd D y σ1, △D 为薄板D 的面积.例4:求密度均匀的上半椭球体的质心.解:设椭球体由不等式a x 2+by 2+c z 2≤1表示.由对称性知x =0, y =0, 又由ρ为常数,得z =⎰⎰⎰⎰⎰⎰VVdVdVz ρρ=abc abc ππ3242=83c .三、转动惯量质点A 对于轴l 的转动惯量J 是质点A 的质量m 和A 与转动轴l 的距离r 的平方的乘积,即J=mr 2.设ρ(x,y,z)为空间物体V 的密度分布函数,它在V 上连续. 对V 作分割T ,在属于T 的每一小块v i 上任取一点(ξi ,ηi ,ζi ),则v i 的质量可用ρ(ξi ,ηi ,ζi )△v i 近似代替. 当以质点系{(ξi ,ηi ,ζi ), i=1,2,…, n}近似替代V 时,质点系对于x 轴的转动惯量为:i i i i ni i i x v J n∆+=∑=),,()(122ζηξρζη.当T →0时,上述积分和的极限就是物体V 对于x 轴的转动惯量 J x =⎰⎰⎰+VdV z y x z y ),,()(22ρ. 类似地,V 对于y 轴与z 轴的转动惯量分别为:J y =⎰⎰⎰+VdV z y x x z ),,()(22ρ, J z =⎰⎰⎰+VdV z y x y x ),,()(22ρ.同理,V 对于坐标平面的转动惯量分别为:J xy =⎰⎰⎰VdV z y x z ),,(2ρ, J yz =⎰⎰⎰VdV z y x x ),,(2ρ, J xz =⎰⎰⎰VdV z y x y ),,(2ρ.平面薄板对于坐标轴的转动惯量分别为:J x =⎰⎰Dd y x y σρ),(2, J y =⎰⎰Dd y x x σρ),(2. 以及有J l =⎰⎰Dd y x y x r σρ),(),(2,其中l 为转动轴, r(x,y)为D 中点(x,y)到l 的距离函数.例5:求密度均匀的圆环D 对于垂直于圆环面中心轴的转动惯量. 解:设圆环D 为R 12≤x 2+y 2≤R 22, 密度为ρ, 则D 中任一点(x,y)与转轴的距离平方为x 2+y 2, 于是转动惯量为:J=⎰⎰+Dd y x σρ)(22=⎰⎰21320R R dr r d πθρ=2πρ(R 24-R 14)=例6:求均匀圆盘D 对于其直径的转动惯量.解:设D 为x 2+y 2≤R 2, 密度为ρ, D 内任一点(x,y)与y 轴的距离为|x|, 于是转动惯量为:(m 为圆盘质量) J=⎰⎰Dd x σρ2=⎰⎰Rdr r d 02320cos θθρπ=⎰πθθρ2024cos 4d R =44R ρπ=42mR .例7:设某球体的密度与球心的距离成正比,求它对于切平面的转动惯量.解:设球体由x 2+y 2+z 2≤R 2表示,密度为k 222z y x ++, k 为比便常数. 切平面方程为x=R, 则球体对于平面x=R 的转动惯量为: J=k ⎰⎰⎰-++VdV x R z y x 2222)(=k ⎰⎰⎰-ππϕθϕϕθ003220sin )cos sin (Rdr r r R d d=kR 6⎰⎰⎪⎭⎫ ⎝⎛+-ππϕθϕθϕθ023220cos sin 61cos sin 5241d d =⎰πθθ2026cos 911d kR =911k πR 6.四、引力求密度为ρ(x,y,z)的立体对立体外质量为1的质点A 的引力.设A 的坐标为(ξi ,ηi ,ζi ),V 中点的坐标用(x,y,z)表示. V 中质量微元dm=ρdV 对A 的引力在坐标轴上的投影为 dF xyz其中K 为引力系数, r=222)()()(ζηξ-+-+-z y x 是A 到dV 的距离,于是 力F 在三个坐标轴上的投影分别为: F x =K ⎰⎰⎰-VdV r x ρξ3, F y =K ⎰⎰⎰-V dV r y ρη3, F z =K ⎰⎰⎰-VdV r z ρζ3, 所以F=F x i+F y j+F z k.例8:设球体V 具有均匀的密度ρ, 求V 对球外一点A(质量为1)的引力(引力系数为k).解:设球体为x 2+y 2+z 2≤R 2,球外一点坐标为(0,0,a) (R<a). 则F x =F y =0,F z =k ⎰⎰⎰-++-V dV a z y x a z ρ2/3222])([=k ρ⎰⎰⎰-++--zD R R a z y x dxdydz a z 2/3222])([)(, 其中D z ={(x,y)|x2+y2≤R 2-z 2}. 运用极坐标计算得: F z =k ρdr a z r rd dz a z z R RR ⎰⎰⎰---+-2202/32220])([)(πθ =2πk ρ⎰-+----R R dz aaz R a z )21(22=2πk ρ⎪⎪⎭⎫⎝⎛+--++-+-⎰-R R dz a az R R a a az R a R 22222222212= 2πk ρ⎥⎦⎤⎢⎣⎡-+----+---⎰⎰--RRRRaz d a az R a R a az d a az R a R )2(214)2(241222222222=2πk ρ⎥⎦⎤⎢⎣⎡+---+-----RRRRa az R a R a a az R a R 22222322222)2(612 =2πk ρ⎥⎦⎤⎢⎣⎡-++----222233)(6)()(2a R a R a a R R a R=2πk ρ⎪⎪⎭⎫⎝⎛-+++-232332a R R a R R R =2334a R k ρπ-. (注:z ≤R<a)习题1、求曲面az=xy 包含在圆柱x 2+y 2=a 2内那部分的面积.解:∵z x =a y, z y =ax , D={(r,θ)|0≤r ≤a, 0≤θ≤2π}, ∴曲面面积为: S=⎰⎰⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+Ddxdy a x a y 221=⎰⎰+a dr a r r d 022201πθ=)122(322-a π.2、求锥面z=22y x +被柱面z 2=2x 所截部分的曲面面积. 解:且面在xy 平面的投影区域为:D={(r,θ)|0≤r ≤1, 0≤θ≤2π}, 且z x =22yx x +, z y =22yx y +, ∴曲面面积为:S=⎰⎰⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛++Ddxdy y x y y x x 2222221=⎰⎰10202rdr d πθ=π2.3、求下列均匀密度的平面薄板质心:(1)半椭圆2222by a x +≤1, y ≥0;(2)高为h, 底分别为a 和b 的等腰梯形.解:(1)设质心位置为(x ,y ), 由对称性得x =0.y =⎰⎰⎰⎰DDd yd σρσρ=⎰⎰⎰⎰DDd yd σσ=⎰⎰Dyd ab σπ2=dr r ab d ab ⎰⎰πθθπ122sin 2=π34b . (2)不妨设a 为下底,以下底中点为原点建立直角坐标系,则 D={(x,y)|l 1(y)≤x ≤l 2(y),0≤y ≤h}.设质心位置为(x ,y ), 由对称性得x =0.又等腰三角形的面积为2)(hb a +, ∴y =⎰⎰+D yd h b a σ)(2=⎰⎰+h y l y l dx ydy h b a 0)()(21)(2=⎰⎥⎦⎤⎢⎣⎡+---+--+h ydy a h y h a b a h y h b a h b a 02)(22)(2)(2=⎰⎥⎦⎤⎢⎣⎡+--+h ydy a h y h b a h b a 0)()(2=⎰⎪⎭⎫ ⎝⎛+-+h dy by y h b a h b a 02)(2=h b a a b )(32++. 其中:l 1(y): x=2)(2a h y h a b ---; l 2(y): x=2)(2ah y h b a +--.4、求下列均匀密度物体的质心.(1)z ≤1-x 2-y 2, z ≥0;(2)由坐标面及平面x+2y-z=1所围的四面体. 解:(1)设质心为(x ,y ,z ), 由对称性x =y =0, 应用柱面坐标变换有,z =⎰⎰⎰⎰⎰⎰VVdV dV z ρρ=⎰⎰⎰⎰⎰⎰--221020110201r r dz r d r d zdz r d r d ππθθ=dr r r dr r r )1()1(212102210--⎰⎰=31. (2)设质心为(x ,y ,z ),∵V=⎰⎰⎰VdV =121, ∴x =⎰⎰⎰--+21001211x y x dz dy xdx V =⎰⎰---2101)21(12x dy y x xdx =⎰-1024)1(12dx x x =41. y =⎰⎰⎰--+yy x dz dx ydy V 210122101=⎰⎰---ydx x y ydy 210210)21(12=⎰-21022)21(12dy y y =81. z =⎰⎰⎰--+yy x zdz dx dy V21012211=⎰⎰--+-ydx y x dy 2102210)12(6=⎰--21033)21(6dy y =41-.5、求下列均匀密度的平面薄板的转动惯量: (1)半径为R 的圆关于其切线的转动惯量;(2)边长为a 和b, 且夹角为φ的平行四边形,关于底边b 的转动惯量.解:(1)设切线为x=R, 密度为ρ.则对任一点P(x,y)∈D, P 到x=R 的距离为R-x ,从而转动惯量 J=ρ⎰⎰-Dd x R σ2)(=ρ⎰⎰+-Rdr r Rr R r d 022220)cos cos 2(θθθπ=ρ⎰+-πθθθ2024)cos 41cos 3221(d R= R 4. (2)设密度为ρ. 以底边为x 轴,左端点为原点,则转动惯量 J=⎰⎰Dd y σ2=ρ⎰⎰+by y a dx dy y ϕϕϕcot cot sin 02=3sin 33ϕρb a .6、计算下列引力:(1)均匀薄片x 2+y 2≤R 2, z=0对于轴上一点(0,0,c) (c>0)处的单位质量的引力;(2)均匀柱体x 2+y 2≤a 2, 0≤z ≤h 对于点P(0,0,c) (c>h)处的单位质量的引力;(3)均匀密度的正圆锥体(高h, 底半径R)对于在它的顶点处质量为m 的质点的引力.解:(1)根据对称性知引力方向在z 轴上,∴F z =0, F y =0.F z =k ρ⎰⎰++Ddxdy c y x c 2/3222)(=kc ρ⎰⎰+R dr c r r d 02/32220)(πθ=2k .∴F={0,0,2k }.(2)根据对称性知引力方向在z 轴上,∴F z =0, F y =0. F z =k ρ⎰⎰⎰-++-VdV c z y x c z 2/3222])([=k ρ⎰⎰⎰-+-a h dr c z r rd dz c z 02/322200])([)(πθ=-2k πρdz c z a c z h⎰⎥⎥⎦⎤⎢⎢⎣⎡-+-+022)(1=2k πρ[]h c h a c a --+-+2222)(. ∴F={0,0,2k πρ[]h c h a c a --+-+2222)(}.(3)以圆锥体的顶点为原点, 对称轴为z 轴建立xyz 三维直角坐标系. 根据对称性知引力方向在z 轴上,∴F z =0, F y =0.F z =k ρm ⎰⎰⎰++V dV z y x z 2/3222)(=k ρm ⎰⎰⎰+R hrR dz z r zrdr d 02/322020)(πθ=2k πR ρm ⎪⎪⎭⎫⎝⎛++-22221R h R h R . ∴F={0,0, 2k πR ρm ⎪⎪⎭⎫ ⎝⎛++-22221R h R h R }.7、求曲面⎪⎩⎪⎨⎧=+=+=ψϕψϕψsin sin )cos (cos )cos (a z a b y a b x (0≤φ≤2π, 0≤ψ≤2π) 的面积,其中常数a,b 满足0≤a ≤b.解:∵x φ=-(b+acos ψ)sin φ, y φ=(b+acos ψ)cos φ, z φ=0; x ψ=-asin ψcos φ, y ψ=-asin ψsin φ, z ψ=acos ψ.∴E=222ϕϕϕz y x ++=(b+acos ψ)2, G=222ψψψz y x ++=a 2, F=ψϕψϕψϕz z y y x x ++=0. ∴S=σd F EG D ⎰⎰'-2=σψd a b a D ⎰⎰'+)cos (=⎰⎰+ππψψϕ2020)cos (d a b d a =4ab π2.8、求螺旋面⎪⎩⎪⎨⎧===ϕϕϕb z r y r x sin cos (0≤r ≤a, 0≤φ≤2π) 的面积.解:∵x r =cos φ, y r =sin φ, z r =0; x φ=-rsin φ, y φ=rcos φ, z φ=b.∴E=222r r r z y x ++=1, G=222ϕϕϕz y x ++=r 2+b 2, F=ϕϕϕz z y y x x r r r ++=0.∴S=σd F EG D ⎰⎰'-2=σd b r D ⎰⎰'+22=⎰⎰+πϕ20022d dr b r a=π⎪⎪⎭⎫⎝⎛++++b b a a b b a a 22222ln .9、求边长为a 密度均匀的正方体关于其任一棱边的转动变量. 解:以正方体的一个顶点为原点,顶点上方的棱为z 轴,使 正方体处于第一卦限中,则正方体对z 轴上的棱的转动变量为: J z =ρ⎰⎰⎰+V dV y x )(22=ρ⎰⎰⎰+aaadz y x dy dx 00220)(=a ρ⎰⎰+aady y x dx 0220)(=a ρ⎰+adx a ax 032)31(=32a 5ρ. (ρ为正方体密度)。

相关文档
最新文档