整数裂项例题讲解
(完整版)整数裂项.docx
整数裂项整数裂 基本公式(1) 1 2 2 3 3 4 ... (n1) n1 1) n ( n1) (n3(2) 1 2 3 2 3 4 34 5 ... (n2) (n 1) n1 ( n 2)( n 1)n(n 1)4【例 1 】 1 2 2 3 3 4 L49 50=_________【考点】整数裂 【 度】 3 星【 型】 算【解析】是整数的裂 。
裂 思想是:瞻前 后,相互抵消。
S = 12 23 34 L 49 501×2×3= 1×2×32×3×3= 2×3×( 4- 1)= 2×3×4- 1×2×3 3×4×3= 3×4×( 5- 2)= 3×4×5- 2× 3× 4⋯⋯49×50×3= 49×50×( 51- 48) =49 ×50×51- 48×49×50 3S = 1×2×3+ 2×3×3+ 3×4×3+ ⋯+ 49×50×3= 49×50×51 S = 49×50×51÷3= 41650【答案】 41650【巩固】 1 2 2 3 3 44 5 5 6 6 77 8 8 9 9 10 ________【考点】整数裂【 度】 3 星【 型】 算【解析】本 数 少,可以直接将每一 乘 都 算出来再 算它 的和,但是 于 数 多的情况 然不能 行 算. 于 数 多的情况,可以 行如下 形:n n 1 n 2n 1 n n 111n 1 n n 1 , n n 13n n 1 n 233所以原式1 12 31 2 3 4 1 1 2 3L1 9 10 11 18 9 1033 333 110 11 33093另解:由于 n n 1 n 2 n ,所以原式12 1 22 2 L92 91222 L921 2L 91 9 10 19 1 9 1033062 1采用此种方法也可以得到1 2 2 3 Lnn11 n2 一 .n n3【答案】 330【例 2 】 1 44 77 10 L49 52 =_________【考点】整数裂【 度】 3 星【 型】 算【解析】S = 1 4 4 7 7 10 L 49 521×4×9= 1×4×7+ 1×4×24×7×9= 4×7×( 10- 1)= 4×7×10- 1×4×77×10×9= 7×10×( 13-4)= 7×10×13- 4×7×10⋯⋯⋯⋯.49×52×9= 49×52×( 55- 46)= 49×52×55- 46×49×529S= 49×52×55+ 1×4×2S=( 49×52×55+ 1×4×2)÷9=15572【答案】 15572【例 3 】 1 2 3 2 3 4 3 4 5 L 9 10 11【考点】整数裂【度】 3 星【型】算【解析】 n n1n21n1n2n311 n n1n2 ,所以,n n44原式11 2 3 41 2 3 4 511 2 3 4L19 10 11 1218 9 10 11 444441910111229704从中可以看出,1232343 4 5L n n11n 2 n 3 n 2n n 14【答案】 2970【例 4 】算:1 3 5357L171921.【考点】整数裂【度】 3 星【型】算【解析】可以行整数裂.357 3 5 7 9 1 3 5 7 ,8579 5 7 9 11 3 5 7 9 ,817192117 19 21 23 15 17 19 21 ,8所以原式135********L1719212315171921 88135171921231357171921231358819503也可适用公式.原式 3 2 3 3 2 5 2 5 5 2 L19 2 19 19 2 3222 3 5222 5 L19222193353L 193 4 3 5 L 19133353L 193 4 1 3 5 L 19 3而 133353L 193132333L 203234363L20312022128110211219900,441 3 5 L 19 102100 ,所以原式19900 4 100 3 19503.【答案】19503【巩固】算:1 2 3 4 3 4 5 6 5 6 7 8 L 97 98 99 100【考点】整数裂【度】 3 星【型】算【解析】一般的整数裂各之都是的,本中各之是断开的,此可以将中缺少的上,再行算.原式 A ,再 B2345456767 89L96979899 ,A B 1 234 2 3453456L97989910019798991001011901009880 ,5在知道 A 与 B 的和了,如果能再求出 A 与 B 的差,那么 A 、 B 的就都可以求出来了.A B12342345345645 6 7567 8L9798 99 1004(123345567... 979899)42(221)4(421)6(621)L98(9821)4(2 34363L983 )4(246L98)48149250 241100494801020042所以, A1901009880480102002974510040 .【答案】 974510040【例 5 】2004 2003 20032002 2002200120012000L 2 1【考点】整数裂【度】 3 星【型】算【解析】原式2003220012L32122135L20012003212003100222008008其中也可以直接根据公式 1 357L2n 1 n2得出1 35L200120032 1002【答案】2008008【例 6 】 1 1!22!33!L20082008!【考点】整数裂【度】 4 星【型】算【解析】察 22!221(31)213!2! ,3 3!3321(41)32 14!3! ,⋯⋯20082008!20082008 2007L 2 1,(20091)20082007L212009!2008!可,原式1!(2!1!)(3!2!)L(2009!2008!)2009!【答案】 2009!【例 7 】计算:123456L991002345L98 99【考点】整数裂项【难度】 5 星【题型】计算【解析】设原式 =BAA B 122334L98999910011230122 3 412 3 L99 100 101 98 99 100 3【答案】199 100 1013333003B A 1 2 3 2 L 99 2 50 100 5000 B 333300 50003383A 333300 5000328333833283。
(完整word版)整数裂项例题讲解
整数裂项例题讲解对于较长的复杂算式,单单靠一般的运算顺序和计算方法是很难求出结果的.如果算式中每一项的排列都是有规律的,那么我们就要利用这个规律进行巧算和简算。
而裂项法就是一种行之有效的巧算和简算方法。
通常的做法是:把算式中的每一项裂变成两项的差,而且是每个裂变的后项(或前项)恰好与上个裂变的前项(或后项)相互抵消,从而达到“以短制长”的目的。
下面我们以整数裂项为例,谈谈裂项法的运用,并为整数裂项法编制一个易用易记的口诀。
例1、计算1×2+2×3+3×4+4×5+……+98×99+99×100分析:这个算式实际上可以看作是:等差数列1、2、3、4、5……98、99、100,先将所有的相邻两项分别相乘,再求所有乘积的和。
算式的特点概括为:数列公差为1,因数个数为2。
1×2=(1×2×3-0×1×2)÷(1×3)2×3=(2×3×4-1×2×3)÷(1×3)3×4=(3×4×5—2×3×4)÷(1×3)4×5=(4×5×6-3×4×5)÷(1×3)……98×99=(98×99×100—97×98×99)÷(1×3)99×100=(99×100×101—98×99×100)÷(1×3)将以上算式的等号左边和右边分别累加,左边即为所求的算式,右边括号里面诸多项相互抵消,可以简化为(99×100×101—0×1×2)÷3。
小学奥数教程整数裂项.教师版 全国通用
整数裂项基本公式(1) 122334...(1)n n ⨯+⨯+⨯++-⨯1(1)(1)3n n n =-⨯⨯+(2) 1123234345...(2)(1)(2)(1)(1)4n n n n n n n ⨯⨯+⨯⨯+⨯⨯++-⨯-⨯=--+【例 1】 1223344950⨯+⨯+⨯++⨯L =_________【考点】整数裂项 【难度】3星 【题型】计算【解析】 这是整数的裂项。
裂项思想是:瞻前顾后,相互抵消。
设S =1223344950⨯+⨯+⨯++⨯L1×2×3=1×2×32×3×3=2×3×(4-1)=2×3×4-1×2×33×4×3=3×4×(5-2)=3×4×5-2×3×4……49×50×3=49×50×(51-48)=49×50×51-48×49×503S =1×2×3+2×3×3+3×4×3+…+49×50×3=49×50×51S =49×50×51÷3=41650【答案】41650【巩固】 1223344556677889910⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=________【考点】整数裂项 【难度】3星 【题型】计算【解析】 本题项数较少,可以直接将每一项乘积都计算出来再计算它们的和,但是对于项数较多的情况显然不能这样进行计算.对于项数较多的情况,可以进行如下变形:所以原式1111112323412391011891033333⎛⎫⎛⎫=⨯⨯⨯+⨯⨯⨯-⨯⨯⨯++⨯⨯⨯-⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭L另解:由于()21n n n n +=+,所以原式()()()222112299=++++++L采用此种方法也可以得到()()()112231123n n n n n ⨯+⨯++⨯+=++L 这一结论.【答案】330【例 2】 14477104952⨯+⨯+⨯++⨯L =_________【考点】整数裂项 【难度】3星 【题型】计算【解析】 设S =14477104952⨯+⨯+⨯++⨯L1×4×9=1×4×7+1×4×24×7×9=4×7×(10-1)=4×7×10-1×4×7例题精讲 知识点拨整数裂项7×10×9=7×10×(13-4)=7×10×13-4×7×1049×52×9=49×52×(55-46)=49×52×55-46×49×529S =49×52×55+1×4×2S =(49×52×55+1×4×2)÷9=15572【答案】15572【考点】整数裂项 【难度】3星 【题型】计算【解析】 ()()()()()()()()111212311244n n n n n n n n n n n ++=+++--++,所以, 原式11111123423451234910111289101144444⎛⎫⎛⎫=⨯⨯⨯⨯+⨯⨯⨯⨯-⨯⨯⨯⨯++⨯⨯⨯⨯-⨯⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭L 从中还可以看出,()()()()()1123234345121234n n n n n n n ⨯⨯+⨯⨯+⨯⨯++⨯+⨯+=+++L 【答案】2970【例 3】 计算:135357171921⨯⨯+⨯⨯++⨯⨯=L .【考点】整数裂项 【难度】3星 【题型】计算【解析】 可以进行整数裂项.所以原式35791357171921231517192113588⨯⨯⨯-⨯⨯⨯⨯⨯⨯-⨯⨯⨯=⨯⨯+++L 1719212313571358⨯⨯⨯-⨯⨯⨯=⨯⨯+171921231358⨯⨯⨯+⨯⨯=19503= 也可适用公式.原式()()()()()()323325255219219192=-⨯⨯++-⨯⨯+++-⨯⨯+L而()()333333333333135191232024620++++=++++-++++L L L21351910100++++==L ,所以原式1990041003=-⨯+19503=.【答案】19503【巩固】 计算:101622162228707682768288⨯⨯+⨯⨯++⨯⨯+⨯⨯L L【考点】整数裂项 【难度】3星 【题型】计算【解析】 可进行整数裂项: 原式1016222841016221622283410162228=2424⨯⨯⨯-⨯⨯⨯⨯⨯⨯-⨯⨯⨯⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭L L 【答案】2147376【巩固】 计算:123434565678979899100⨯⨯⨯+⨯⨯⨯+⨯⨯⨯++⨯⨯⨯=L【考点】整数裂项 【难度】3星 【题型】计算【解析】 一般的整数裂项各项之间都是连续的,本题中各项之间是断开的,为此可以将中间缺少的项补上,再进行计算.记原式为A ,再设23454567678996979899B =⨯⨯⨯+⨯⨯⨯+⨯⨯⨯++⨯⨯⨯L ,则123423453456979899100A B +=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯++⨯⨯⨯L现在知道A 与B 的和了,如果能再求出A 与B 的差,那么A 、B 的值就都可以求出来了.所以,()1901009880480102002974510040A =+÷=.【答案】974510040【考点】整数裂项 【难度】3星 【题型】计算【解析】 原式20032200123212=⨯+⨯++⨯+⨯L其中也可以直接根据公式()2135721n n +++++-=L 得出【答案】2008008【考点】整数裂项 【难度】4星 【题型】计算【解析】 观察发现22!221(31)213!2!⨯=⨯⨯=-⨯⨯=-,可见,原式1!(2!1!)(3!2!)(2009!2008!)=+-+-++-L 2009!=【答案】2009!【例 4】 单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。
数列裂项相消典型例题
一个典型的数列裂项相消的例题如下:
例题:考虑数列{1, 1, 2, 3, 5, 8, 13, ...},其中每一项等于前两项的和。
给定一个正整数N,计算数列的前N项之和。
解题思路:
这个数列是著名的斐波那契数列,它的定义是F(1) = 1,F(2) = 1,F(n) = F(n-1) + F(n-2)(n >= 3)。
我们可以使用裂项相消的方法来解决这个问题。
首先,我们可以设S为数列的前N项和。
那么S的表达式可以写为:
S = 1 + 1 + 2 + 3 + 5 + 8 + ... + F(N-1) + F(N)
然后,我们观察数列中每一项与它前一项的关系,即F(n) = F(n-1) + F(n-2)。
根据这个关系,我们可以发现S的表达式中的一些项可以相互抵消,通过相消的方式简化求解过程。
具体来说,我们可以将S的表达式中的项分为两组,一组是从F(1)到F(N-2)的项,另一组是F(N-1)和F(N)。
对于第一组,我们可以看到F(n)等于它的前两项之和,所以这些项可以两两抵消。
因此,我们可以得到:
S = F(N-1) + F(N)
对于第二组,我们可以看到F(N)等于F(N-1)和F(N-2)的和,所以这两项仍然保留在S中。
综合上述分析,我们可以得到以下简化后的表达式:
S = F(N) + F(N-1)
因此,这个问题的答案就是数列中第N项和第N-1项的和,即F(N) + F(N-1)。
我们可以通过计算斐波那契数列的第N项和第N-1项的值,然后求和来得到最终的答案。
希望这个解题思路能够帮助到你解决数列裂项相消的典型例题!。
整数裂项,小学奥数整数裂项公式方法讲解
整数裂项,小学奥数整数裂项公式方法讲解在小学奥数中有一些非常长的整数算式,仅仅用一般的运算法则满足不了计算要求,这时候我们要找式子中各乘式之间的规律,把各乘式裂项,前后抵消,从而简化计算。
规律和之前G老师讲过的分数裂项法十分类似。
先看一道整数裂项的经典例题:【例1】1x2+2x3+3x4+4x5+……98x99+99x100分析:题中计算式共有99个乘法式子相加,如果一个一个计算下来,恐怕一个下午就过去了,G老师告诉同学们,遇见这种复杂的计算式,一定是有规律的,数学重点考查的是思维。
能不能想办法把乘法式子换成两个数的差,再让其中一些项抵消掉,就像分数裂项的形式,最后只剩下头和尾呢?1x2=(1x2x3-0x1x2)÷3;2x3=(2x3x4-1x2x3)÷3;3x4=(3x4x5-2x3x4)÷3;……99x100=(99x100x101-98x99x100)÷3;规律是不是找着了?原式=(1x2x3-0x1x2+2x3x4-1x2x3+3x4x5-2x3x4+……+99x100x101-98x99x100)÷3=99x100x101÷3=333300整数裂项法就是将整数乘积化成两个乘积差的形式,这个差也不是随便乘一个数,而是要根据题目中各项数字公差来确定的。
比如在例1中,1x2和2x3这两项,1与2,2与3的的差都是1,我们就在1x2这一项乘以(2+1),再减去(1-1)x1x2;2x3这一项,也化成[2x3x(3+1)-(2-1)x2x3]……这样就刚好可以前后项互相抵消,然后再除以后延与前伸的差[(3+1)-(2-1)]。
整数裂项法应用:式中各项数字成等差数列,将各项后延一位,减去前伸一位,再除以后延与前伸的差。
【例2】1x3+3x5+5x7+……+95x97+97x99分析:算式中各个项中数字之差都是2,满足整数裂项条件,后延一位,减去前伸一位,再除以后延与前伸的差6。
小学奥数 整数裂项 精选练习例题 含答案解析(附知识点拨及考点)
整数裂项基本公式 (1) 122334...(1)n n ⨯+⨯+⨯++-⨯1(1)(1)3n n n =-⨯⨯+ (2) 1123234345...(2)(1)(2)(1)(1)4n n n n n n n ⨯⨯+⨯⨯+⨯⨯++-⨯-⨯=--+【例 1】 1223344950⨯+⨯+⨯++⨯=_________【考点】整数裂项 【难度】3星 【题型】计算【解析】 这是整数的裂项。
裂项思想是:瞻前顾后,相互抵消。
设S =1223344950⨯+⨯+⨯++⨯1×2×3=1×2×32×3×3=2×3×(4-1)=2×3×4-1×2×33×4×3=3×4×(5-2)=3×4×5-2×3×4……49×50×3=49×50×(51-48)=49×50×51-48×49×503S =1×2×3+2×3×3+3×4×3+…+49×50×3=49×50×51S =49×50×51÷3=41650【答案】41650【巩固】 1223344556677889910⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=________【考点】整数裂项 【难度】3星 【题型】计算【解析】 本题项数较少,可以直接将每一项乘积都计算出来再计算它们的和,但是对于项数较多的情况显然不能这样进行计算.对于项数较多的情况,可以进行如下变形:()()()()()()()()()12111111211333n n n n n n n n n n n n n n ++--++==++--+, 所以原式1111112323412391011891033333⎛⎫⎛⎫=⨯⨯⨯+⨯⨯⨯-⨯⨯⨯++⨯⨯⨯-⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭1910113303=⨯⨯⨯= 另解:由于()21n n n n +=+,所以 原式()()()222112299=++++++()()222129129=+++++++119101991062=⨯⨯⨯+⨯⨯330= 采用此种方法也可以得到()()()112231123n n n n n ⨯+⨯++⨯+=++这一结论. 【答案】330例题精讲知识点拨整数裂项【例 2】 14477104952⨯+⨯+⨯++⨯=_________【考点】整数裂项 【难度】3星 【题型】计算【解析】 设S =14477104952⨯+⨯+⨯++⨯ 1×4×9=1×4×7+1×4×24×7×9=4×7×(10-1)=4×7×10-1×4×7 7×10×9=7×10×(13-4)=7×10×13-4×7×10………….49×52×9=49×52×(55-46)=49×52×55-46×49×529S =49×52×55+1×4×2S =(49×52×55+1×4×2)÷9=15572【答案】15572【例 3】 12323434591011⨯⨯+⨯⨯+⨯⨯++⨯⨯=【考点】整数裂项 【难度】3星 【题型】计算【解析】 ()()()()()()()()111212311244n n n n n n n n n n n ++=+++--++,所以, 原式11111123423451234910111289101144444⎛⎫⎛⎫=⨯⨯⨯⨯+⨯⨯⨯⨯-⨯⨯⨯⨯++⨯⨯⨯⨯-⨯⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭191011124=⨯⨯⨯⨯2970= 从中还可以看出,()()()()()1123234345121234n n n n n n n ⨯⨯+⨯⨯+⨯⨯++⨯+⨯+=+++ 【答案】2970【例 4】 计算:135357171921⨯⨯+⨯⨯++⨯⨯= .【考点】整数裂项 【难度】3星 【题型】计算【解析】 可以进行整数裂项.357913573578⨯⨯⨯-⨯⨯⨯⨯⨯=, 5791135795798⨯⨯⨯-⨯⨯⨯⨯⨯=, 17192123151719211719218⨯⨯⨯-⨯⨯⨯⨯⨯=, 所以原式35791357171921231517192113588⨯⨯⨯-⨯⨯⨯⨯⨯⨯-⨯⨯⨯=⨯⨯+++1719212313571358⨯⨯⨯-⨯⨯⨯=⨯⨯+171921231358⨯⨯⨯+⨯⨯=19503= 也可适用公式.原式()()()()()()323325255219219192=-⨯⨯++-⨯⨯+++-⨯⨯+()()()22222232352519219=-⨯+-⨯++-⨯ ()()333351943519=+++-⨯+++()()3333135194135193=++++-⨯+++++ 而()()333333333333135191232024620++++=++++-++++ 22221120218101144=⨯⨯-⨯⨯⨯19900=, 21351910100++++==,所以原式1990041003=-⨯+19503=.【答案】19503【巩固】 计算:101622162228707682768288⨯⨯+⨯⨯++⨯⨯+⨯⨯【考点】整数裂项 【难度】3星 【题型】计算【解析】 可进行整数裂项: 原式1016222841016221622283410162228=2424⨯⨯⨯-⨯⨯⨯⨯⨯⨯-⨯⨯⨯⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭ 707682886470768276828894707682882424⨯⨯⨯-⨯⨯⨯⨯⨯⨯-⨯⨯⨯⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭ 1016222841016221622283410162228=24242424⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯-+-++ 7076828864707682768288947076828824242424⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯-+- 768288944101622=2424⨯⨯⨯⨯⨯⨯- 768288944101622=24⨯⨯⨯-⨯⨯⨯ =2147376【答案】2147376【巩固】 计算:123434565678979899100⨯⨯⨯+⨯⨯⨯+⨯⨯⨯++⨯⨯⨯=【考点】整数裂项 【难度】3星 【题型】计算【解析】 一般的整数裂项各项之间都是连续的,本题中各项之间是断开的,为此可以将中间缺少的项补上,再进行计算.记原式为A ,再设23454567678996979899B =⨯⨯⨯+⨯⨯⨯+⨯⨯⨯++⨯⨯⨯,则123423453456979899100A B +=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯++⨯⨯⨯197989910010119010098805=⨯⨯⨯⨯⨯=, 现在知道A 与B 的和了,如果能再求出A 与B 的差,那么A 、B 的值就都可以求出来了.12342345345645675678979899100A B -=⨯⨯⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯+⨯⨯⨯++⨯⨯⨯4(123345567...979899)=⨯⨯⨯+⨯⨯+⨯⨯++⨯⨯222242(21)4(41)6(61)98(981)⎡⎤=⨯⨯-+⨯-+⨯-++⨯-⎣⎦33334(24698)4(24698)=⨯++++-⨯++++221148495041004942=⨯⨯⨯⨯-⨯⨯⨯48010200= 所以,()1901009880480102002974510040A =+÷=.【答案】974510040【例 5】 2004200320032002200220012001200021⨯-⨯+⨯-⨯++⨯【考点】整数裂项 【难度】3星 【题型】计算【解析】 原式20032200123212=⨯+⨯++⨯+⨯()213520012003=⨯+++++()21200310022=⨯+⨯÷2008008=其中也可以直接根据公式()2135721n n +++++-=得出2135200120031002+++++=【答案】2008008【例 6】 11!22!33!20082008!⨯+⨯+⨯++⨯=【考点】整数裂项 【难度】4星 【题型】计算【解析】 观察发现22!221(31)213!2!⨯=⨯⨯=-⨯⨯=-,33!3321(41)3214!3!⨯=⨯⨯⨯=-⨯⨯⨯=-,……20082008!20082008200721(20091)20082007212009!2008!⨯=⨯⨯⨯⨯⨯=-⨯⨯⨯⨯⨯=-,可见,原式1!(2!1!)(3!2!)(2009!2008!)=+-+-++- 2009!=【答案】2009!【例 7】 计算:1234569910023459899⨯+⨯+⨯++⨯=⨯+⨯++⨯【考点】整数裂项 【难度】5星 【题型】计算【解析】 设原式=BA122334989999100A B +=⨯+⨯+⨯++⨯+⨯()()()11230122341239910010198991003=⨯⨯-⨯⨯+⨯⨯-⨯⨯++⨯⨯-⨯⨯⎡⎤⎣⎦ 1991001013333003=⨯⨯⨯= 1232992501005000B A -=⨯+⨯++⨯=⨯=3333005000338333330050003283B A +==- 【答案】33833283。
整数裂项
整数裂项整数裂项基本公式(1) 122334...(1)n n ⨯+⨯+⨯++-⨯1(1)(1)3n n n =-⨯⨯+ (2) 1123234345...(2)(1)(2)(1)(1)4n n n n n n n ⨯⨯+⨯⨯+⨯⨯++-⨯-⨯=--+【例 1】 1223344950⨯+⨯+⨯++⨯=_________【考点】整数裂项 【难度】3星 【题型】计算【解析】 这是整数的裂项。
裂项思想是:瞻前顾后,相互抵消。
设S =1223344950⨯+⨯+⨯++⨯1×2×3=1×2×32×3×3=2×3×(4-1)=2×3×4-1×2×33×4×3=3×4×(5-2)=3×4×5-2×3×4……49×50×3=49×50×(51-48)=49×50×51-48×49×503S =1×2×3+2×3×3+3×4×3+…+49×50×3=49×50×51S =49×50×51÷3=41650【答案】41650【巩固】 1223344556677889910⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=________【考点】整数裂项 【难度】3星 【题型】计算【解析】 本题项数较少,可以直接将每一项乘积都计算出来再计算它们的和,但是对于项数较多的情况显然不能这样进行计算.对于项数较多的情况,可以进行如下变形:()()()()()()()()()12111111211333n n n n n n n n n n n n n n ++--++==++--+, 所以原式1111112323412391011891033333⎛⎫⎛⎫=⨯⨯⨯+⨯⨯⨯-⨯⨯⨯++⨯⨯⨯-⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭1910113303=⨯⨯⨯= 另解:由于()21n n n n +=+,所以 原式()()()222112299=++++++()()222129129=+++++++119101991062=⨯⨯⨯+⨯⨯330= 采用此种方法也可以得到()()()112231123n n n n n ⨯+⨯++⨯+=++这一结论. 【答案】330【例 2】 14477104952⨯+⨯+⨯++⨯=_________ 【考点】整数裂项 【难度】3星 【题型】计算【解析】 设S =14477104952⨯+⨯+⨯++⨯1×4×9=1×4×7+1×4×24×7×9=4×7×(10-1)=4×7×10-1×4×7 7×10×9=7×10×(13-4)=7×10×13-4×7×10………….49×52×9=49×52×(55-46)=49×52×55-46×49×529S =49×52×55+1×4×2S =(49×52×55+1×4×2)÷9=15572【答案】15572【例 3】 12323434591011⨯⨯+⨯⨯+⨯⨯++⨯⨯=【考点】整数裂项 【难度】3星 【题型】计算【解析】 ()()()()()()()()111212311244n n n n n n n n n n n ++=+++--++,所以, 原式11111123423451234910111289101144444⎛⎫⎛⎫=⨯⨯⨯⨯+⨯⨯⨯⨯-⨯⨯⨯⨯++⨯⨯⨯⨯-⨯⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭191011124=⨯⨯⨯⨯2970= 从中还可以看出,()()()()()1123234345121234n n n n n n n ⨯⨯+⨯⨯+⨯⨯++⨯+⨯+=+++ 【答案】2970【例 4】 计算:135357171921⨯⨯+⨯⨯++⨯⨯= .【考点】整数裂项 【难度】3星 【题型】计算【解析】 可以进行整数裂项.357913573578⨯⨯⨯-⨯⨯⨯⨯⨯=, 5791135795798⨯⨯⨯-⨯⨯⨯⨯⨯=, 17192123151719211719218⨯⨯⨯-⨯⨯⨯⨯⨯=, 所以原式35791357171921231517192113588⨯⨯⨯-⨯⨯⨯⨯⨯⨯-⨯⨯⨯=⨯⨯+++1719212313571358⨯⨯⨯-⨯⨯⨯=⨯⨯+171921231358⨯⨯⨯+⨯⨯=19503= 也可适用公式.原式()()()()()()323325255219219192=-⨯⨯++-⨯⨯+++-⨯⨯+()()()22222232352519219=-⨯+-⨯++-⨯ ()()333351943519=+++-⨯+++()()3333135194135193=++++-⨯+++++而()()333333333333135191232024620++++=++++-++++22221120218101144=⨯⨯-⨯⨯⨯19900=, 21351910100++++==,所以原式1990041003=-⨯+19503=.【答案】19503【巩固】 计算:123434565678979899100⨯⨯⨯+⨯⨯⨯+⨯⨯⨯++⨯⨯⨯=【考点】整数裂项 【难度】3星 【题型】计算【解析】 一般的整数裂项各项之间都是连续的,本题中各项之间是断开的,为此可以将中间缺少的项补上,再进行计算.记原式为A ,再设23454567678996979899B =⨯⨯⨯+⨯⨯⨯+⨯⨯⨯++⨯⨯⨯,则123423453456979899100A B +=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯++⨯⨯⨯197989910010119010098805=⨯⨯⨯⨯⨯=, 现在知道A 与B 的和了,如果能再求出A 与B 的差,那么A 、B 的值就都可以求出来了.12342345345645675678979899100A B -=⨯⨯⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯+⨯⨯⨯++⨯⨯⨯4(123345567...979899)=⨯⨯⨯+⨯⨯+⨯⨯++⨯⨯222242(21)4(41)6(61)98(981)⎡⎤=⨯⨯-+⨯-+⨯-++⨯-⎣⎦33334(24698)4(24698)=⨯++++-⨯++++ 221148495041004942=⨯⨯⨯⨯-⨯⨯⨯48010200= 所以,()1901009880480102002974510040A =+÷=.【答案】974510040【例 5】 2004200320032002200220012001200021⨯-⨯+⨯-⨯++⨯ 【考点】整数裂项 【难度】3星 【题型】计算【解析】 原式20032200123212=⨯+⨯++⨯+⨯()213520012003=⨯+++++()21200310022=⨯+⨯÷ 2008008=其中也可以直接根据公式()2135721n n +++++-=得出2135200120031002+++++= 【答案】2008008【例 6】 11!22!33!20082008!⨯+⨯+⨯++⨯=【考点】整数裂项 【难度】4星 【题型】计算【解析】 观察发现22!221(31)213!2!⨯=⨯⨯=-⨯⨯=-,33!3321(41)3214!3!⨯=⨯⨯⨯=-⨯⨯⨯=-,……20082008!20082008200721(20091)20082007212009!2008!⨯=⨯⨯⨯⨯⨯=-⨯⨯⨯⨯⨯=-, 可见,原式1!(2!1!)(3!2!)(2009!2008!)=+-+-++- 2009!= 【答案】2009!。
整数裂项知识点
整数裂项知识点一、知识概述《整数裂项知识点》①基本定义:整数裂项呢,简单说就是把一个整数乘积形式的式子分解成几个式子相加减的形式。
比如说n×(n + 1),可以裂项成n×(n + 1)= (n²+ n)等类似这样更方便运算或者找规律的形式。
②重要程度:在数学学科里,特别是小学奥数和中学数学数列、求和等问题里非常重要。
好多复杂的计算、找规律问题,用整数裂项就能很巧妙地解决,就像一把钥匙打开难题的锁。
③前置知识:得先掌握好基本的整数运算,像加、减、乘、除,还有简单的数列知识,比如等差数列这些。
要是这些都没学明白,整数裂项就有点难理解了。
④应用价值:实际中像算一堆有规律物品的总数。
打个比方,有一堆相同形状的积木,按照一定规律摆放,每一层的积木数量是个整数列,要算总数用整数裂项就可能轻松解决,在工程计算、经济计算中类似的有规律数量计算也会用到。
二、知识体系①知识图谱:在数学里,它是数列知识体系中的一部分,是为了更简便求解数列和或者一些与整数乘积相关运算的分支。
②关联知识:和数列、代数运算、数学归纳法等知识密切相关。
数列求和时可能用到整数裂项来简化式子;代数运算里它又属于一种特殊的式子变形技巧;数学归纳法有时候可以用来验证整数裂项的正确性。
③重难点分析:- 掌握难度:说实话,一开始挺难掌握的。
因为要学会找出规律来裂项,不是随便拆拆就行。
像有时候一个式子同时包含几种可能的裂项形式,要准确找到,有一定挑战性。
- 关键点:关键是要找到正确的裂项形式。
所以得对式子观察得特别仔细,看看每个数和整体式子的关系,然后根据式子的特点来裂项。
④考点分析:- 在考试中的重要性:在奥数竞赛和中学数学考试里,这可是个常考内容啊,特别是在和数列有关的大题中经常出现。
- 考查方式:一般是给个需要求和或者化简的式子,让你用整数裂项的方法进行计算或者化简。
有时候也会出在找规律的题型里,让你先找出裂项规律,再进行计算。
奥数 整数裂项
【例1】1x2+2x3+3x4+4x5+……98x99+99x100
分析:题中计算式共有99个乘法式子相加,如果一个一个计算下来,恐怕一个下午就过去了,G老师告诉同学们,遇见这种复杂的计算式,一定是有规律的,数学重点考查的是思维。
能不能想办法把乘法式子换成两个数的差,再让其中一些项抵消掉,就像分数裂项的形式,最后只剩下头和尾呢?
1x2=(1x2x3-0x1x2)÷3;
2x3=(2x3x4-1x2x3)÷3;
3x4=(3x4x5-2x3x4)÷3;
……
99x100=(99x100x101-98x99x100)÷3;
规律是不是找着了?
原式=(1x2x3-0x1x2+2x3x4-1x2x3+3x4x5-2x3x4+……+99x100x101-98x99x100)÷3
=99x100x101÷3
=333300
整数裂项法就是将整数乘积化成两个乘积差的形式,这个差也不是随便乘一个数,而是要根据题目中各项数字公差来确定的。
比如在例1中,1x2和2x3这两项,1与2,2与3 的的差都是1,我们就在1x2这一项乘以(2+1),再减去(1-1)x1x2;2x3这一项,也化成[2x3x(3+1)-(2-1)x2x3]……这样就刚好可以前后项互相抵消,然后再除以后延与前伸的差[(3+1)-(2-1)]。
整数裂项法应用:
式中各项数字成等差数列,将各项后延一位,减去前伸一位,再除以后延与前伸的差。
【例2】1x3+3x5+5x7+……+95x97+97x99
分析:算式中各个项中数字之差都是2,满足整数裂项条件,后延一位,减去前伸一位,再除以后延与前伸的差6。
小学奥数教程-整数裂项 (4) (含答案)
【答案】 41650
【巩固】 1× 2 + 2 × 3 + 3× 4 + 4 × 5 + 5 × 6 + 6 × 7 + 7 × 8 + 8 × 9 + 9 ×10 =________
【考点】整数裂项
【难度】3 星
【题型】计算
【解析】 本题项数较少,可以直接将每一项乘积都计算出来再计算它们的和,但是对于项数较多的情况显然
4
4
原式 =
1 4
×
1×
2
×
3
×
4
+
1 4
×
2
×
3
×
4
×
5
−
1 4
×1×
2
×
3
×
4
+
+
1 4
×
9
×10
×11×12
−
1 4
×
8
×
9
×10
×11
= 1 × 9 ×10 ×11×12 = 2970 4
从中还可以看出,1× 2 × 3 + 2 × 3× 4 + 3× 4 × 5 + + n × (n + 1) × (n += 2) 1 n(n + 1)(n + 2)(n + 3)
整数裂项
知识点拨
整数裂项基本公式 (1) 1× 2 + 2 × 3 + 3× 4 + ... + (n −1) × n= 1 (n −1) × n × (n + 1)
3 (2) 1× 2 × 3 + 2 × 3× 4 + 3× 4 × 5 + ... + (n − 2) × (n −1) × n= 1 (n − 2)(n −1)n(n + 1)
裂项例题及解析
裂项例题及解析一、裂项的基本概念裂项是将一个分数拆分成两个或多个分数的差或和的形式,以便于进行简便计算。
例如:(1)/(n(n + 1))=(1)/(n)-(1)/(n + 1)1. 例题1:计算∑_n = 1^100(1)/(n(n+1))- 解析:- 根据裂项公式(1)/(n(n + 1))=(1)/(n)-(1)/(n + 1)。
- 那么∑_n = 1^100(1)/(n(n+1))=<=ft(1-(1)/(2))+<=ft((1)/(2)-(1)/(3))+<=ft((1)/(3)-(1)/(4))+·s+<=ft((1)/(100)-(1)/(101))。
- 可以发现从第二项起,每一项的后一个分数与下一项的前一个分数可以相互抵消,最后只剩下1-(1)/(101)=(100)/(101)。
2. 例题2:计算∑_n = 2^20(1)/(n^2)-1- 解析:- 先对(1)/(n^2)-1进行裂项,因为n^2-1=(n - 1)(n + 1),所以(1)/(n^2)-1=(1)/(2)<=ft((1)/(n - 1)-(1)/(n + 1))。
- 则∑_n = 2^20(1)/(n^2)-1=(1)/(2)<=ft[<=ft(1-(1)/(3))+<=ft((1)/(2)-(1)/(4))+<=ft((1)/(3)-(1)/(5))+·s+<=ft((1)/(19)-(1)/(21))]。
- 重新组合可得(1)/(2)<=ft[<=ft(1+(1)/(2)-(1)/(20)-(1)/(21))]。
- 计算得(1)/(2)×(589)/(420)=(589)/(840)。
3. 例题3:计算∑_n = 1^50(2n + 1)/(n(n + 1))- 解析:- 先将(2n + 1)/(n(n + 1))拆分为(2n)/(n(n + 1))+(1)/(n(n + 1))。
小学奥数-整数裂项
小学奥数--整数裂项对于较长得复杂算式,单单靠一般得运算顺序与计算方法就是很难求出结果得。
如果算式中每一项得排列都就是有规律得,那么我们就要利用这个规律进行巧算与简算。
而裂项法就就是一种行之有效得巧算与简算方法。
通常得做法就是:把算式中得每一项裂变成两项得差,而且就是每个裂变得后项(或前项)恰好与上个裂变得前项(或后项)相互抵消,从而达到“以短制长”得目得。
下面我们以整数裂项为例,谈谈裂项法得运用,并为整数裂项法编制一个易用易记得口诀。
后延减前伸差数除以N例1、计算1×2+2×3+3×4+4×5+…+98×99+99×100分析:这个算式实际上可以瞧作就是:等差数列1、2、3、4、5……98、99、100,先将所有得相邻两项分别相乘,再求所有乘积得与。
算式得特点概括为:数列公差为1,因数个数为2。
1×2=(1×2×3-0×1×2)÷(1×3)2×3=(2×3×4-1×2×3)÷(1×3)3×4=(3×4×5-2×3×4)÷(1×3)4×5=(4×5×6-3×4×5)÷(1×3)……98×99=(98×99×100-97×98×99)÷(1×3)99×100=(99×100×101-98×99×100)÷(1×3)将以上算式得等号左边与右边分别累加,左边即为所求得算式,右边括号里面诸多项相互抵消,可以简化为(99×100×101-0×1×2)÷3。
【小升初专项训练】2 整数的裂项与拆分
第5讲整数的裂项与拆分第一关【知识点】整数的列项与分拆:就是把一个自然数表示成为若干个自然数的和的形式,每一种表示方法,就是自然数的一个分拆.整数的分拆是古老而又有趣的问题,其中最著名的是哥德巴赫猜想.在国内外数学竞赛中,整数分拆的问题常常以各种形式出现,如,存在性问题、计数问题、最优化问题等.【例1】电视台要播放一部30集电视连续剧,若要求每天安排播出的集数互不相等,则该电视连续剧最多可以播几天?【答案】7天【例2】把135个苹果分成若干份且任意两份的苹果数都不相同,最多可以分多少份?【答案】15【例3】一次数学考试的满分是100分,6位同学在这次考试中平均得分是91分,这6位同学的得分互不相同,其中有一位同学仅得65分.则得分排在第三名的同学至少得多少分?【答案】95分【例4】五名选手在一次数学竞赛中共得404分,每人得分互不相同,并且其中得分最高为90分,那么得分最低的选手至少得多少分?【答案】50【例5】七个小队共种树100棵,各小队种的棵数都不同,其中种树最多的小队种了18棵,种树最少的小队至少种了多少棵?【答案】7【例6】将11个球分别放在三个盒子里,使盒子里球的个数彼此不同,那么,放球最多的盒子里最多可放多少个球,至少要放多少个球?【答案】8;5【例7】甲、乙、丙、丁四个朋友,共分苹果18个,每人依次少一个.甲、乙、丙、丁各有几个苹果?【答案】甲有6个苹果,乙有5个苹果,丙有4个苹果,丁有3个苹果【例8】7名选手在一次数学竞赛中共得170分,每人得分互不相等,并且其中得分最高的选手得30分,那么得分最少的选手至少得多少分,至多得多少分?【答案】5;20【例9】7个工人共生产100个零件,每个工人的生产零件数不同,其中最多的生产了18个,最少多少个?【答案】7【例10】把44块糖分给9个小朋友,每人都分到了,并且任何两人都不相同,这_______做到.(填“能”或“不能”)【答案】不能【例11】某学校有80名小学生参加夏令营,其中男生50人,女生30人,他们住的宾馆有11人间、7人间、5人间三种房间,要求男、女生住不同的房间,并且不能有空床位,他们至少要住多少间?【答案】12【例12】将66个乒乓球放入10个盒子中,要求每只盒子都要有乒乓球,有且只有两个盒子中的乒乓球的个数相同,能办到吗?若能办到,请说明一种具体方法.若办不到,请说明理由.【答案】能将66个乒乓球放入10个盒子中;10个盒子里面的数目为:1,2,3,5,5,6,7,8,9,20。
整数裂项知识
整数裂项基本公式 (1) 122334...(1)n n ⨯+⨯+⨯++-⨯1(1)(1)3n n n =-⨯⨯+ (2) 1123234345...(2)(1)(2)(1)(1)4n n n n n n n ⨯⨯+⨯⨯+⨯⨯++-⨯-⨯=--+【例 1】 1223344950⨯+⨯+⨯++⨯=_________【考点】整数裂项 【难度】3星 【题型】计算【巩固】 1223344556677889910⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=________【考点】整数裂项 【难度】3星 【题型】计算【例 2】 14477104952⨯+⨯+⨯++⨯=_________【考点】整数裂项 【难度】3星 【题型】计算【解析】 设S =14477104952⨯+⨯+⨯++⨯1×4×9=1×4×7+1×4×24×7×9=4×7×(10-1)=4×7×10-1×4×77×10×9=7×10×(13-4)=7×10×13-4×7×10………….49×52×9=49×52×(55-46)=49×52×55-46×49×529S =49×52×55+1×4×2S =(49×52×55+1×4×2)÷9=15572【答案】15572【例 3】 12323434591011⨯⨯+⨯⨯+⨯⨯++⨯⨯=【考点】整数裂项 【难度】3星 【题型】计算【例 4】 计算:135357171921⨯⨯+⨯⨯++⨯⨯= .【考点】整数裂项 【难度】3星 【题型】计算【巩固】 计算:101622162228707682768288⨯⨯+⨯⨯++⨯⨯+⨯⨯【考点】整数裂项 【难度】3星 【题型】计算【巩固】 计算:123434565678979899100⨯⨯⨯+⨯⨯⨯+⨯⨯⨯++⨯⨯⨯=【考点】整数裂项 【难度】3星 【题型】计算【例 5】 2004200320032002200220012001200021⨯-⨯+⨯-⨯++⨯【考点】整数裂项 【难度】3星 【题型】计算【解析】 原式20032200123212=⨯+⨯++⨯+⨯()213520012003=⨯+++++()21200310022=⨯+⨯÷ 2008008=其中也可以直接根据公式()2135721n n +++++-=得出例题精讲知识点拨整数裂项2135200120031002+++++=【答案】2008008【例 6】11!22!33!20082008!⨯+⨯+⨯++⨯=【考点】整数裂项【难度】4星【题型】计算【例 7】计算:12345699100 23459899⨯+⨯+⨯++⨯=⨯+⨯++⨯【考点】整数裂项【难度】5星【题型】计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整数裂项例题讲解对于较长的复杂算式,单单靠一般的运算顺序和计算方法是很难求出结果的。
如果算式中每一项的排列都是有规律的,那么我们就要利用这个规律进行巧算和简算。
而裂项法就是一种行之有效的巧算和简算方法。
通常的做法是:把算式中的每一项裂变成两项的差,而且是每个裂变的后项(或前项)恰好与上个裂变的前项(或后项)相互抵消,从而达到“以短制长”的目的。
下面我们以整数裂项为例,谈谈裂项法的运用,并为整数裂项法编制一个易用易记的口诀。
例1、计算1×2+2×3+3×4+4×5+……+98×99+99×100分析:这个算式实际上可以看作是:等差数列1、2、3、4、5……98、99、100,先将所有的相邻两项分别相乘,再求所有乘积的和。
算式的特点概括为:数列公差为1,因数个数为2。
1×2=(1×2×3-0×1×2)÷(1×3)2×3=(2×3×4-1×2×3)÷(1×3)3×4=(3×4×5-2×3×4)÷(1×3)4×5=(4×5×6-3×4×5)÷(1×3)……98×99=(98×99×100-97×98×99)÷(1×3)99×100=(99×100×101-98×99×100)÷(1×3)将以上算式的等号左边和右边分别累加,左边即为所求的算式,右边括号里面诸多项相互抵消,可以简化为(99×100×101-0×1×2)÷3。
解:1×2+2×3+3×4+4×5+……+98×99+99×100=(99×100×101-0×1×2)÷3=333300例2、计算3×5+5×7+7×9+……+97×99+99×101分析:这个算式实际上也可以看作是:等差数列3、5、7、9……97、99、101,先将所有的相邻两项分别相乘,再求所有乘积的和。
算式的特点概括为:数列公差为2,因数个数为2。
3×5=(3×5×7-1×3×5)÷(2×3)5×7=(5×7×9-3×5×7)÷(2×3)7×9=(7×9×11-5×7×9)÷(2×3)……97×99=(97×99×101-95×97×99)÷(2×3)99×101=(99×101×103-97×99×101)÷(2×3)将等号左右两边分别累加,左边即为所求算式,右边括号里面许多项可以相互抵消。
解:3×5+5×7+7×9+……+97×99+99×101=(99×101×103-1×3×5)÷(2×3)=1029882÷6=171647例3、计算1×2×3+2×3×4+3×4×5+……+96×97×98+97×98×99分析:这个算式实际上可以看作是:等差数列1、2、3、4、5……98、99、100,先将所有的相邻三项分别相乘,再求所有乘积的和。
算式的特点概括为:数列公差为1,因数个数为3。
1×2×3=(1×2×3×4-0×1×2×3)÷(1×4)2×3×4=(2×3×4×5-1×2×3×4)÷(1×4)3×4×5=(3×4×5×6-2×3×4×5)÷(1×4)……96×97×98=(96×97×98×99-95×96×97×98)÷(1×4)97×98×99=(97×98×99×100-96×97×98×99)÷(1×4)右边累加,括号内相互抵消,整个结果为(97×98×99×100-0×1×2×3)÷(1×4)。
解:1×2×3+2×3×4+3×4×5+…+96×97×98×+97×98×99=(97×98×99×100-0×1×2×3)÷(1×4)=23527350例4、计算10×16×22+16×22×28+……+70×76×82+76×82×88分析:算式的特点为:数列公差为6,因数个数为3。
解:10×16×22+16×22×28+……+70×76×82+76×82×88=(76×82×88×94-4×10×16×22)÷(6×4)=2147376通过以上例题,可以看出这类算式的特点是:从公差一定的数列中依次取出若干个数相乘,再把所有的乘积相加。
其巧解方法是:先把算式中最后一项向后延续一个数,再把算式中最前面一项向前伸展一个数,用它们的差除以公差与因数个数加1的乘积。
将以上叙述可以概括一个口诀是:等差数列数,依次取几个。
所有积之和,裂项来求作。
后延减前伸,差数除以N。
N取什么值,两数相乘积。
公差要乘以,因个加上一。
需要注意的是:按照公差向前伸展时,当伸展数小于0时,可以取负数,当然是积为负数,减负要加正。
对于小学生,这时候通常是把第一项甩出来,按照口诀先算出后面的结果再加上第一项的结果。
此外,有些算式可以先通过变形,使之符合要求,再利用裂项求解。
例5、计算1×1+2×2+3×3+……+99×99+100×100分析:n×n=(n-1)×n+n解:1×1+2×2+3×3+……+99×99+100×100=1+(1×2+2)+(2×3+3)+……+(98×99+99)+(99×100+100)=(1×2+2×3+……+98×99+99×100)+(1+2+3+……+99+100)=99×100×101÷3+(1+100)×100÷2=333300+5050=338350例6、计算1×2+3×4+5×6+……+97×98+99×100分析:(n-1)×n=(n-2)×n+n解:1×2+3×4+5×6+7×8+……+97×98+99×100=2+(2×4+4)+(4×6+6)+(6×8+8)+……+(96×98+98)+(98×100+100)=(2×4+4×6+6×8+……+96×98+98×100)+(2+4+6+8+……+98+100)=98×100×102÷6+(2+100)×50÷2=169150例7、计算1×1×1+2×2×2+3×3×3+……+99×99×99+100×100×100分析:n×n×n=(n-1)×n×(n+1)+n解:1×1×1+2×2×2+3×3×3+……+99×99×99+100×100×100=1+(1×2×3+2)+(2×3×4+3)+……+(98×99×100+99)+(99×100×101+100)=(1×2×3+2×3×4+……+98×99×100+99×100×101)+(1+2+3+……+99+100)=99×100×101×102÷4+(1+100)×100÷2=25492400例8、计算1×3+2×4+3×5+4×6+……+98×100+99×101解:1×3+2×4+3×5+4×6+……+98×100+99×101=(1×3+3×5+……+99×101)+(2×4+4×6+……+98×100)=(99×101×103-1×3×5)÷6+1×3+98×100×102÷6=171650+166600=338250例9、计算1+(1+2)+(1+2+3)+......+(1+2+3+4+ (100)解:1+(1+2)+(1+2+3)+......+(1+2+3+4+ (100)=1×2÷2+2×3÷2+3×4÷2+……+100×101÷2=(1×2+2×3+3×4+……+100×101)÷2=(100×101×102÷3)÷2=171700将上面的口诀继续编写是:前延比零小,取负就是了。