中考数学试题分类汇编:正方形
2013年中考数学试卷分类汇编-四边形(正方形)
正方形1、(2013•昆明)如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤当△PMN∽△AMP时,点P是AB的中点.其中正确的结论有()∴PE=EM=FP=FN=NP又∵PE=EM=PM FP=FN=NP ACO 48816t(s)S (2cm (B )(C )O488 16t(s)S (2cm (D )2、(2013年临沂)如图,正方形ABCD 中,AB=8cm,对角线AC,BD 相交于点O,点E,F 分别从B,C 两点同时出发,以1cm/s 的速度沿BC,CD 运动,到点C,D 时停止运动,设运动时间为t(s),△OE 的面积为s(2cm ),则s(2cm )与t(s)的函数关系可用图像表示为答案:B解析:经过t 秒后,BE =CF =t ,CE =DF =8-t ,1422BEC S t t ∆=⨯⨯=, 211(8)422ECF S t t t t ∆=⨯-⨯=-,1(8)41622ODF S t t ∆=⨯-⨯=-,(第12题图) BO所以,2211322(4)(162)41622OEF S t t t t t t ∆=-----=-+,是以(4,8)为顶点,开口向上的抛物线,故选B 。
3、(8-3矩形、菱形、正方形²2013东营中考)如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE =DF ,AE 、BF 相交于点O ,下列结论:(1)AE =BF ;(2)AE ⊥BF ;(3)AO =OE ;(4)AOB DEOF S S ∆=四边形中正确的有( )A. 4个B. 3个C. 2个D. 1个12.B.解析:在正方形ABCD 中,因为CE=DF ,所以AF=DE ,又因为AB=AD ,所以ABF DAE ∆≅∆,所以AE=BF ,AFB DEA ∠=∠,DAE ABF ∠=∠,因为90DAE DEA ∠+∠=︒,所以90DAE ABF ∠+∠=︒,即90AOF ∠=︒,所以AE ⊥BF ,因为AOBAOF AOFS S S ∆∆∆+=+S四边形DEOF,所以AOB S ∆= S 四边形DEOF ,故(1),(2),(4)正确.4、(2013凉山州)如图,菱形ABCD 中,∠B=60°,AB=4,则以AC 为边长的正方形ACEF 的周长为( )A .14B .15C .16D .17考点:菱形的性质;等边三角形的判定与性质;正方形的性质.分析:根据菱形得出AB=BC ,得出等边三角形ABC ,求出AC ,长,根据正方形的性质得出AF=EF=EC=AC=4,求出即可.解答:解:∵四边形ABCD 是菱形, ∴AB=BC, ∵∠B=60°,∴△ABC 是等边三角形, ∴AC=AB=4,∴正方形ACEF 的周长是AC+CE+EF+AF=4³4=16, 故选C .点评:本题考查了菱形性质,正方形性质,等边三角形的性质和判定的应用,关键是求出AC 的长. 5、(2013•资阳)如图,点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )³AE³BE³6³86、(2013•雅安)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有()个.,∴BC﹣BE=CD﹣DF,及CE=CF,∵AE=AF,∴AC垂直平分EF.③正确.设EC=x,由勾股定理,得EF=x,CG=x,AG=x,∴AC=,∴AB=,∴BE=﹣x=,∴BE+DF=x﹣x≠x,④错误,∵S△CEF=,S△ABE==,∴2S△ABE==S△CEF,⑤正确.综上所述,正确的有4个,故选C.7、(2013菏泽)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17 C.18 D.19考点:相似三角形的判定与性质;正方形的性质.专题:计算题.分析:由图可得,S1的边长为3,由AC=BC,BC=CE=CD,可得AC=2CD,CD=2,EC=;然后,分别算出S1、S2的面积,即可解答.解答:解:如图,设正方形S2的边长为x,根据等腰直角三角形的性质知,AC=x,x=CD,∴AC=2CD,CD==2,∴EC2=22+22,即EC=;∴S2的面积为EC2==8;∵S1的边长为3,S1的面积为3³3=9,∴S1+S2=8+9=17.故选B.点评:本题考查了正方形的性质和等腰直角三角形的性质,考查了学生的读图能力.8、(2013•咸宁)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为()a=9、(2013台湾、30)如图,四边形ABCD、AEFG均为正方形,其中E在BC上,且B、E两点不重合,并连接BG.根据图中标示的角判断下列∠1、∠2、∠3、∠4的大小关系何者正确?()A.∠1<∠2 B.∠1>∠2 C.∠3<∠4 D.∠3>∠4考点:正方形的性质.分析:根据正方形的每一个角都是直角求出∠BAD=∠EAG=90°,然后根据同角的余角相等可得∠1=∠2,根据直角三角形斜边大于直角边可得AE>AB,从而得到AG>AB,再根据三角形中长边所对的角大于短边所对的角求出∠3>∠4.解答:解:∵四边形ABCD、AEFG均为正方形,∴∠BAD=∠EAG=90°,∵∠BAD=∠1+∠DAE=90°,∠EAG=∠2+∠DAE=90°,∴∠1=∠2,在Rt△ABE中,AE>AB,∵四边形AEFG是正方形,∴AE=AG,∴AG>AB,∴∠3>∠4.故选D.点评:本题考查了正方形的四条边都相等,每一个角都是直角的性质,同角的余角相等的性质,要注意在同一个三角形中,较长的边所对的角大于较短的边所对的角的应用.10、(2013台湾、23)附图为正三角形ABC与正方形DEFG的重迭情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?()A.2 B.3 C.12﹣4 D.6﹣6考点:正方形的性质;等边三角形的性质.分析:过点B作BH⊥AC于H,交GF于K,根据等边三角形的性质求出∠A=∠ABC=60°,然后判定△BDE是等边三角形,再根据等边三角形的性质求出∠BDE=60°,然后根据同位角相等,两直线平行求出AC∥DE,再根据正方形的对边平行得到DE∥GF,从而求出AC∥DE∥GF,再根据等边三角形的边的与高的关系表示出KH,然后根据平行线间的距离相等即可得解.解答:解:如图,过点B作BH⊥AC于H,交GF于K,∵△ABC是等边三角形,∴∠A=∠ABC=60°,∵BD=BE,∴△BDE是等边三角形,∴∠BDE=60°,∴∠A=∠BDE,∴AC∥DE,∵四边形DEFG是正方形,GF=6,∴DE∥GF,∴AC∥DE∥GF,∴KH=18³﹣6³﹣6=9﹣3﹣6=6﹣6,∴F点到AC的距离为6﹣6.故选D.点评:本题考查了正方形的对边平行,四条边都相等的性质,等边三角形的判定与性质,等边三角形的高线等于边长的倍,以及平行线间的距离相等的性质,综合题,但难度不大,熟记各图形的性质是解题的关键.11、(2013年南京)已知如图所示的图形的面积为24,根据图中的条件,可列出方程:。
2010年全国中考数学试题汇编专题三十四·矩形、菱形、正方形.doc
(第 10 题) 【答案】B 24. (2010 湖北襄樊)下列命题中,真命题有( ) (1)邻补角的平分线互相垂直 (2)对角线互相垂直平分的四边形是正方形 (3)四边形的外角和等于 360° (4)矩形的两条对角线相等 A .1 个 B.2 个 C.3 个 D.4 个 【答案】C 25. (2010 湖北襄樊)菱形的周长为 8cm,高为 1cm,则菱形两邻角度数比为( ) A .3:1 B.4:1 C.5:1 D.6:1 【答案】C 26. (2010 四川泸州)如图 1,四边形 ABCD 是正方形,E 是边 CD 上一点,若△AFB 经过 逆时针旋转角θ后与△AED 重合,则θ的取值可能为( )
= 90� ,如果添加
) .
31. (2010 四川自贡)边长为 1 的正方形 ABCD 绕点 A 逆时针旋转 30°得到正方形 AB ′C′D′,两图叠成一个“蝶形风筝” (如图所示阴影部分) ,则这个风筝的面积是( A.2- C.2- 3 3 3 4 B. 2 3 3 ) 。
D.2
【答案】A 32. (2010 山东荷泽)如图,矩形纸片 ABCD 中, AB=4,AD=3,折叠纸片使 AD 边与对 角线 BD 重合,折痕为 DG,记与点 A 重合点为 A ' ,则△A' BG 的面积与该矩形的面积 比为 1 1 1 1 A. B. C. D. 12 9 8 6
【答案】D 36. (2010 广东茂名)如图,边长为 1 的正方形 ABCD 绕点 A 逆时针旋转 45 度后得到正方
第 8 页 共 76 页
形 AB ' C ' D ' ,边 B ' C ' 与 DC 交于点 O,则四边形 AB 'OD 的周长 . .是 A. 2 2 B. 3 C.
初三正方形典型题
正方形的典型题目
题目:在正方形ABCD中,E是BC的中点,F是CD上一点,且CF = (1/4)CD。
求证:∠EAF = 45°。
证明:
第一步,由题目信息,可知正方形ABCD中,AB=BC=CD=DA,且∠B=∠C=∠D=90°。
第二步,连接AC,取AC的中点为O,连接EO和FO。
第三步,根据正方形的性质,可知AC⊥BD,且AC、BD互相平分。
所以,EO为三角形ABC 的中位线,FO为三角形ADC的中位线。
第四步,由三角形中位线的性质,有EO=1/2AB,FO=1/2AD。
而AB=AD,所以EO=FO。
第五步,因为EO=FO,且O为AC的中点,所以∠EOF=90°。
又因为∠BAC=45°,所以∠EAF=∠EOF-∠BAC=45°。
综上,∠EAF = 45°。
这道题考察了正方形的性质、三角形中位线的性质以及角度的计算等知识点。
在解题过程中,我们巧妙地利用了正方形和三角形的性质来找到解题的突破口。
内蒙古赤峰2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案)
内蒙古赤峰2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类一.反比例函数综合题(共1小题)1.(2021•赤峰)阅读理解:在平面直角坐标系中,点M的坐标为(x1,y1),点N的坐标为(x2,y2),且x1≠x2,y1≠y2,若M、N为某矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为M、N的“相关矩形”.如图1中的矩形为点M、N的“相关矩形”.(1)已知点A的坐标为(2,0).①若点B的坐标为(4,4),则点A、B的“相关矩形”的周长为 ;②若点C在直线x=4上,且点A、C的“相关矩形”为正方形,求直线AC的解析式;(2)已知点P的坐标为(3,﹣4),点Q的坐标为(6,﹣2)若使函数y=的图象与点P、Q的“相关矩形”有两个公共点,直接写出k的取值.二.二次函数综合题(共3小题)2.(2023•赤峰)定义:在平面直角坐标系xOy中,当点N在图形M的内部,或在图形M 上,且点N的横坐标和纵坐标相等时,则称点N为图形M的“梦之点”.(1)如图①,矩形ABCD的顶点坐标分别是A(﹣1,2),B(﹣1,﹣1),C(3,﹣1),D(3,2),在点M1(1,1),M2(2,2),M3(3,3)中,是矩形ABCD“梦之点“的是 ;(2)点G(2,2)是反比例函数y1=图象上的一个“梦之点”,则该函数图象上的另一个“梦之点”H的坐标是 ,直线GH的解析式是y2= ,y1>y2时,x的取值范围是 ;(3)如图②,已知点A,B是抛物线y=﹣x2+x+上的“梦之点”,点C是抛物线的顶点.连接AC,AB,BC,判断△ABC的形状,并说明理由.3.(2022•赤峰)【生活情境】为美化校园环境,某学校根据地形情况,要对景观带中一个长AD=4m,宽AB=1m的长方形水池ABCD进行加长改造(如图①,改造后的水池ABNM仍为长方形,以下简称水池1).同时,再建造一个周长为12m的矩形水池EFGH(如图②,以下简称水池2).【建立模型】如果设水池ABCD的边AD加长长度DM为x(m)(x>0),加长后水池1的总面积为y1(m2),则y1关于x的函数解析式为:y1=x+4(x>0);设水池2的边EF的长为x(m)(0<x<6),面积为y2(m2),则y2关于x的函数解析式为:y2=﹣x2+6x(0<x<6),上述两个函数在同一平面直角坐标系中的图象如图③.【问题解决】(1)若水池2的面积随EF长度的增加而减小,则EF长度的取值范围是 (可省略单位),水池2面积的最大值是 m2;(2)在图③字母标注的点中,表示两个水池面积相等的点是 ,此时的x(m)值是 ;(3)当水池1的面积大于水池2的面积时,x(m)的取值范围是 ;(4)在1<x<4范围内,求两个水池面积差的最大值和此时x的值;(5)假设水池ABCD的边AD的长度为b(m),其他条件不变(这个加长改造后的新水池简称水池3),则水池3的总面积y3(m2)关于x(m)(x>0)的函数解析式为:y3=x+b(x>0).若水池3与水池2的面积相等时,x(m)有唯一值,求b的值.4.(2021•赤峰)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣3,0)、B(1,0)两点,与y轴交于点C,对称轴l与x轴交于点F,定直线m∥AC,点E是直线AC上方抛物线上一动点,过点E作EH⊥m,垂足为H,交AC于点G,连接AE、EC、CH、AH.(1)抛物线的解析式为 ;(2)当四边形AHCE面积最大时,求点E的坐标;(3)在(2)的条件下,连接EF,点P是x轴上一动点,在抛物线上是否存在点Q,使得以F、E、P、Q为顶点,以EF为一边的四边形是平行四边形.若存在,请直接写出点Q的坐标;若不存在,说明理由.三.四边形综合题(共1小题)5.(2022•赤峰)同学们还记得吗?图①,图②是人教版八年级下册教材“实验与探究”中我们研究过的两个图形.受这两个图形的启发,数学兴趣小组提出了以下三个问题,请你回答:【问题一】如图①,正方形ABCD的对角线相交于点O,点O又是正方形A1B1C1O的一个顶点,OA1交AB于点E,OC1交BC于点F,则AE与BF的数量关系为 ;【问题二】受图①启发,兴趣小组画出了图③:直线m、n经过正方形ABCD的对称中心O,直线m分别与AD、BC交于点E、F,直线n分别与AB、CD交于点G、H,且m ⊥n,若正方形ABCD边长为8,求四边形OEAG的面积;【问题三】受图②启发,兴趣小组画出了图④:正方形CEFG的顶点G在正方形ABCD 的边CD上,顶点E在BC的延长线上,且BC=6,CE=2.在直线BE上是否存在点P,使△APF为直角三角形?若存在,求出BP的长度;若不存在,说明理由.四.直线与圆的位置关系(共1小题)6.(2021•赤峰)如图,在菱形ABCD中,对角线AC、BD相交于点M,⊙O经过点B,C,交对角线BD于点E,且=,连接OE交BC于点F.(1)试判断AB与⊙O的位置关系,并说明理由;(2)若BD=,tan∠CBD=,求⊙O的半径.五.切线的判定与性质(共1小题)7.(2022•赤峰)如图,已知AB为⊙O的直径,点C为⊙O外一点,AC=BC,连接OC,DF 是AC的垂直平分线,交OC于点F,垂足为点E,连接AD、CD,且∠DCA=∠OCA.(1)求证:AD是⊙O的切线;(2)若CD=6,OF=4,求cos∠DAC的值.六.作图—复杂作图(共1小题)8.(2023•赤峰)已知:如图,点M在∠AOB的边OA上.求作:射线MN,使MN∥OB,且点N在∠AOB的平分线上.作法:①以点O为圆心,适当长为半径画弧,分别交射线OA,OB于点C,D.②分别以点C,D为圆心,大于CD长为半径画弧,两弧在∠AOB的内部相交于点P.③画射线OP.④以点M为圆心,OM长为半径画弧,交射线OP于点N.⑤画射线MN.射线MN即为所求.(1)用尺规作图,依作法补全图形(保留作图痕迹);(2)根据以上作图过程,完成下面的证明.证明:∵OP平分∠AOB,∴∠AON= .∵OM=MN.∴∠AON= ( ).(括号内填写推理依据)∴∠BON=∠ONM.∴MN∥OB( ).(填写推理依据)七.几何变换综合题(共1小题)9.(2021•赤峰)数学课上,有这样一道探究题.如图,已知△ABC中,AB=AC=m,BC=n,∠BAC=α(0°<α<180°),点P为平面内不与点A、C重合的任意一点,连接CP,将线段CP绕点P顺时针旋转α,得线段PD,连接CD、AP点E、F分别为BC、CD的中点,设直线AP与直线EF相交所成的较小角为β,探究的值和β的度数与m、n、α的关系.请你参与学习小组的探究过程,并完成以下任务:(1)填空:【问题发现】小明研究了α=60°时,如图1,求出了的值和β的度数分别为= ,β= ;小红研究了α=90°时,如图2,求出了的值和β的度数分别为= ,β= ;【类比探究】他们又共同研究了α=120°时,如图3,也求出了的值和β的度数;【归纳总结】最后他们终于共同探究得出规律:= (用含m、n的式子表示);β= (用含α的式子表示).(2)求出α=120°时的值和β的度数.八.相似形综合题(共1小题)10.(2023•赤峰)数学兴趣小组探究了以下几何图形.如图①,把一个含有45°角的三角尺放在正方形ABCD中,使45°角的顶点始终与正方形的顶点C重合,绕点C旋转三角尺时,45°角的两边CM,CN始终与正方形的边AD,AB所在直线分别相交于点M,N,连接MN,可得△CMN.【探究一】如图②,把△CDM绕点C逆时针旋转90°得到△CBH,同时得到点H在直线AB上.求证:∠CNM=∠CNH;【探究二】在图②中,连接BD,分别交CM,CN于点E,F.求证:△CEF∽△CNM;【探究三】把三角尺旋转到如图③所示位置,直线BD与三角尺45°角两边CM,CN分别交于点E,F,连接AC交BD于点O,求的值.九.方差(共1小题)11.(2023•赤峰)某校甲乙两班联合举办了“经典阅读”竞赛,从甲班和乙班各随机抽取10名学生,统计这部分学生的竞赛成绩,并对数据(成绩)进行了收集、整理、分析,下面给出了部分信息.【收集数据】甲班10名学生竞赛成绩:85,78,86,79,72,91,79,71,70,89乙班10名学生竞赛成绩:85,80,77,85,80,73,90,74,75,81【整理数据】班级70≤x<8080≤x<9090≤x<100甲班631乙班451【分析数据】班级平均数中位数众数方差甲班80a b51.4乙班808080,85c【解决问题】根据以上信息,回答下列问题:(1)填空:a= ,b= ,c= ;(2)请你根据【分析数据】中的信息,判断哪个班成绩比较好,简要说明理由;(3)甲班共有学生45人,乙班共有学生40人,按竞赛规定,80分及80分以上的学生可以获奖,估计这两个班可以获奖的总人数是多少?一十.列表法与树状图法(共1小题)12.(2021•赤峰)某学校九年级有12个班,每班50名学生,为了调查该校九年级学生平均每天的睡眠时间,准备从12个班里抽取50名学生作为一个样本进行分析,并规定如下:设每个学生平均每天的睡眠时间为t(单位,小时),将收集到的学生平均每天睡眠时间按t≤6、6<t<8、t≥8分为三类进行分析.(1)下列抽取方法具有代表性的是 .A.随机抽取一个班的学生B.从12个班中,随机抽取50名学生C.随机抽取50名男生D.随机抽取50名女生(2)由上述具有代表性的抽取方法抽取50名学生,平均每天的睡眠时间数据如表:5 5.56 6.577.588.5睡眠时间t(小时)人数(人)11210159102①这组数据的众数和中位数分别是 , ;②估计九年级学生平均每天睡眠时间t≥8的人数大约为多少;(3)从样本中学生平均每天睡眠时间t≤6的4个学生里,随机抽取2人,画树状图或列表,求抽得2人平均每天睡眠时间都是6小时的概率.内蒙古赤峰2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类参考答案与试题解析一.反比例函数综合题(共1小题)1.(2021•赤峰)阅读理解:在平面直角坐标系中,点M的坐标为(x1,y1),点N的坐标为(x2,y2),且x1≠x2,y1≠y2,若M、N为某矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为M、N的“相关矩形”.如图1中的矩形为点M、N的“相关矩形”.(1)已知点A的坐标为(2,0).①若点B的坐标为(4,4),则点A、B的“相关矩形”的周长为 12 ;②若点C在直线x=4上,且点A、C的“相关矩形”为正方形,求直线AC的解析式;(2)已知点P的坐标为(3,﹣4),点Q的坐标为(6,﹣2)若使函数y=的图象与点P、Q的“相关矩形”有两个公共点,直接写出k的取值.【答案】(1)①12;②y=x﹣2或y=﹣x+2;(2)﹣24<k<﹣6.【解答】解:(1)①∵A(2,0),B(4,4),∴点A、B的“相关矩形”的周长为(4﹣2+4)×2=12,故答案为:12;②∵若点C在直线x=4上,且点A、C的“相关矩形”为正方形,∴C(4,2)或(4,﹣2),设直线AC的关系式为:y=kx+b将(2,0)、(4,2)代入解得:k=1,b=﹣2,∴y=x﹣2,将(2,0)、(4,﹣2)代入解得:k=﹣1,b=2,∴y=﹣x+2,∴直线AC的解析式为:y=x﹣2或y=﹣x+2;(2)∵点P的坐标为(3,﹣4),点Q的坐标为(6,﹣2),设点P、Q的“相关矩形”为矩形MPNQ,则M(3,﹣2),N(6,﹣4),当函数y=的图象过M时,k=﹣6,当函数y=的图象过N时,k=﹣24,若使函数y=的图象与点P、Q的“相关矩形”有两个公共点,则﹣24<k<﹣6.二.二次函数综合题(共3小题)2.(2023•赤峰)定义:在平面直角坐标系xOy中,当点N在图形M的内部,或在图形M 上,且点N的横坐标和纵坐标相等时,则称点N为图形M的“梦之点”.(1)如图①,矩形ABCD的顶点坐标分别是A(﹣1,2),B(﹣1,﹣1),C(3,﹣1),D(3,2),在点M1(1,1),M2(2,2),M3(3,3)中,是矩形ABCD“梦之点“的是 M1,M2 ;(2)点G(2,2)是反比例函数y1=图象上的一个“梦之点”,则该函数图象上的另一个“梦之点”H的坐标是 H(﹣2,﹣2) ,直线GH的解析式是y2= x ,y1>y2时,x的取值范围是 x<﹣2或0<x<2 ;(3)如图②,已知点A,B是抛物线y=﹣x2+x+上的“梦之点”,点C是抛物线的顶点.连接AC,AB,BC,判断△ABC的形状,并说明理由.【答案】(1)M1,M2;(2)H(﹣2,﹣2),x,x<﹣2或0<x<2;(3)△ABC是直角三角形,理由见解析.【解答】解:(1)∵矩形ABCD的顶点坐标分别是A(﹣1,2),B(﹣1,﹣1),C(3,﹣1),D(3,2),∴矩形ABCD的“梦之点”(x,y)满足﹣1≤x≤3,﹣1≤y≤2,∴点M1(1,1),M2(2,2)是矩形ABCD的“梦之点”,点M3(3,3)不是矩形ABCD 的“梦之点”,故答案为:M1,M2;(2)∵点G(2,2)是反比例函数y1=图象上的一个“梦之点”,∴把G(2,2)代入y1=得k=4,∴y1=,∵“梦之点”的横坐标和纵坐标相等,∴“梦之点”都在y=x的图象上,联立,解得或,∴H(﹣2,﹣2),∴直线GH的解析式为y2=x,∴y1>y2时,x的取值范围是x<﹣2或0<x<2,故答案为:H(﹣2,﹣2),x,x<﹣2或0<x<2;(3)△ABC是直角三角形,理由:∵点A,B是抛物线y=﹣上的“梦之点”,∴,解得或,∴A(3,3),B(﹣3,﹣3),∵y=﹣=﹣(x﹣1)2+5,∴顶点C(1,5),∴AC2=(3﹣1)2+(3﹣5)2=8,AB2=(﹣3﹣3)2+(﹣3﹣3)2=72,BC2=(﹣3﹣1)2+(﹣3﹣5)2=80,∴BC2=AC2+AB2,∴△ABC是直角三角形.3.(2022•赤峰)【生活情境】为美化校园环境,某学校根据地形情况,要对景观带中一个长AD=4m,宽AB=1m的长方形水池ABCD进行加长改造(如图①,改造后的水池ABNM仍为长方形,以下简称水池1).同时,再建造一个周长为12m的矩形水池EFGH(如图②,以下简称水池2).【建立模型】如果设水池ABCD的边AD加长长度DM为x(m)(x>0),加长后水池1的总面积为y1(m2),则y1关于x的函数解析式为:y1=x+4(x>0);设水池2的边EF的长为x(m)(0<x<6),面积为y2(m2),则y2关于x的函数解析式为:y2=﹣x2+6x(0<x<6),上述两个函数在同一平面直角坐标系中的图象如图③.【问题解决】(1)若水池2的面积随EF长度的增加而减小,则EF长度的取值范围是 3≤x<6 (可省略单位),水池2面积的最大值是 9 m2;(2)在图③字母标注的点中,表示两个水池面积相等的点是 C,E ,此时的x(m)值是 1或4 ;(3)当水池1的面积大于水池2的面积时,x(m)的取值范围是 0<x<1或4<x<6 ;(4)在1<x<4范围内,求两个水池面积差的最大值和此时x的值;(5)假设水池ABCD的边AD的长度为b(m),其他条件不变(这个加长改造后的新水池简称水池3),则水池3的总面积y3(m2)关于x(m)(x>0)的函数解析式为:y3=x+b (x>0).若水池3与水池2的面积相等时,x(m)有唯一值,求b的值.【答案】见试题解答内容【解答】解:(1)∵y2=﹣x2+6x=﹣(x﹣3)2+9,又∵﹣1<0,∴抛物线的开口方向向下,当x≥3时,水池2的面积随EF长度的增加而减小,∵0<x<6,∴当3≤x<6时,水池2的面积随EF长度的增加而减小,水池2面积的最大值是9m2.故答案为:3≤x<6;9;(2)由图象可知:两函数图象相交于点C,E,此时两函数的函数值相等,即:x+4=﹣x2+6x,解得:x=1或4,∴表示两个水池面积相等的点是:C,E,此时的x(m)值是:1或4.故答案为:C,E;1或4;(3)由图象知:图象中点C的左侧部分和点E的右侧部分,一次函数的函数值大于二次函数的函数值,即当0<x<1或4<x<6时,水池1的面积大于水池2的面积,故答案为:0<x<1或4<x<6;(4)在抛物线上的CE段上任取一点F,过点F作FG∥y轴交线段CE于点G,则线段FG表示两个水池面积差,设F(m,﹣m2+6m),则G(m,m+4),∴FG=(﹣m2+6m)﹣(m+4)=﹣m2+5m﹣4=﹣+,∵﹣1<0,∴当m=时,FG有最大值为.∴在1<x<4范围内,两个水池面积差的最大值为,此时x的值为;(5)∵水池3与水池2的面积相等,∴y3=y2,即:x+b=﹣x2+6x,∴x2﹣5x+b=0.∵若水池3与水池2的面积相等时,x(m)有唯一值,∴Δ=(﹣5)2﹣4×1×b=0,解得:b=.∴若水池3与水池2的面积相等时,x(m)有唯一值,b的值为米.4.(2021•赤峰)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣3,0)、B(1,0)两点,与y轴交于点C,对称轴l与x轴交于点F,定直线m∥AC,点E是直线AC上方抛物线上一动点,过点E作EH⊥m,垂足为H,交AC于点G,连接AE、EC、CH、AH.(1)抛物线的解析式为 y=﹣x2﹣2x+3 ;(2)当四边形AHCE面积最大时,求点E的坐标;(3)在(2)的条件下,连接EF,点P是x轴上一动点,在抛物线上是否存在点Q,使得以F、E、P、Q为顶点,以EF为一边的四边形是平行四边形.若存在,请直接写出点Q的坐标;若不存在,说明理由.【答案】(1)y=﹣x2﹣2x+3.(2)E(﹣,).(3)存在.点Q坐标为(﹣,)或(,﹣)或(,﹣).【解答】解:(1)∵y=﹣x2+bx+c与x轴交于(﹣3,0)、B(1,0),∴,解得,∴抛物线的解析式为y=﹣x2﹣2x+3.故答案为:y=﹣x2﹣2x+3;(2)如图1中,连接OE.设E(m,﹣m2﹣2m+3).∵A(﹣3,0),C(0,3),∴OA=OC=3,AC=3,∵AC∥直线m,∴当直线m的位置确定时,△ACH的面积是定值,∵S四边形AECH=S△AEC+S△ACH,∴当△AEC的面积最大时,四边形AECH的面积最大,∵S△AEC=S△AEO+S△ECO﹣S△AOC=×3×(﹣m2﹣2m+3)+×3×(﹣m)﹣×3×3=﹣(m+)2+,∵﹣<0,∴m=﹣时,△AEC的面积最大,∴E(﹣,);(3)存在.如图2中,因为点Q在抛物线上EF是平行四边形的边,观察图象可知,满足条件的点Q的纵坐标为±,对于抛物线y=﹣x2﹣2x+3,当y=时,﹣x2﹣2x+3=,解得x=﹣(舍弃)或﹣,∴Q1(﹣,).当y=﹣时,﹣x2﹣2x+3=﹣,解得x=,∴Q2(,﹣),Q3(,﹣).综上所述,满足条件的点Q坐标为(﹣,)或(,﹣)或(,﹣).三.四边形综合题(共1小题)5.(2022•赤峰)同学们还记得吗?图①,图②是人教版八年级下册教材“实验与探究”中我们研究过的两个图形.受这两个图形的启发,数学兴趣小组提出了以下三个问题,请你回答:【问题一】如图①,正方形ABCD的对角线相交于点O,点O又是正方形A1B1C1O的一个顶点,OA1交AB于点E,OC1交BC于点F,则AE与BF的数量关系为 AE=BF ;【问题二】受图①启发,兴趣小组画出了图③:直线m、n经过正方形ABCD的对称中心O,直线m分别与AD、BC交于点E、F,直线n分别与AB、CD交于点G、H,且m ⊥n,若正方形ABCD边长为8,求四边形OEAG的面积;【问题三】受图②启发,兴趣小组画出了图④:正方形CEFG的顶点G在正方形ABCD的边CD上,顶点E在BC的延长线上,且BC=6,CE=2.在直线BE上是否存在点P,使△APF为直角三角形?若存在,求出BP的长度;若不存在,说明理由.【答案】见试题解答内容【解答】解:【问题一】∵正方形ABCD的对角线相交于点O,∴OA=OB,∠OAB=∠OBA=45°,∠AOB=90°,∵四边形A1B1C1O是正方形,∴∠EOF=90°,∴∠AOE=∠BOF,∴△AOE≌△BOF(ASA),∴AE=BF,故答案为:AE=BF;【问题二】如图③,连接OA,OB,∵点O是正方形ABCD的中心,∴S△AOB=S正方形ABCD=×82=16,∵点O是正方形ABCD的中心,∴∠OAE=∠OBG=45°,OA=OB,∠AOB=90°,∵m⊥n,∴∠EOG=90°,∴∠AOE=∠BOG,∴△AOE≌△BOG(ASA),∴S△AOE=S△BOG,∴S四边形OEAG=S△AOE+S△AOG=S△BOG+S△AOG=S△AOB=16;【问题三】在直线BE上存在点P,使△APF为直角三角形,①当∠AFP=90°时,如图④,延长EF,AD相交于点Q,∵四边形ABCD和四边形CEFG是正方形,∴EQ=AB=6,∠BAD=∠B=∠E=90°,∴四边形ABEQ是矩形,∴AQ=BE=BC+CE=8,EQ=AB=6,∠Q=90°=∠E,∴∠EFP+∠EPF=90,∵∠AFP=90°,∴∠EFP+∠AFQ=90°,∴△EFP∽△QAF,∴,∵QF=EQ﹣EF=4,∴,∴EP=1,∴BP=BE﹣EP=7;②当∠APF=90°时,如图⑤,同①的方法得,△ABP∽△PEF,∴,∵PE=BE﹣BP=8﹣BP,∴,∴BP=2或BP=6;③当∠PAF=90°时,如图⑥,过点P作AB的平行线交DA的延长线于M,延长EF,AD相交于N,同①的方法得,四边形ABPM是矩形,∴PM=AB=6,AM=BP,∠M=90°,同①的方法得,四边形ABEN是矩形,∴AN=BE=8,EN=AB=6,∴FN=EN﹣EF=4,同①的方法得,△AMP∽△FNA,∴,∴,∴AM=3,∴BP=3,即BP的长度为2或3或6或7.四.直线与圆的位置关系(共1小题)6.(2021•赤峰)如图,在菱形ABCD中,对角线AC、BD相交于点M,⊙O经过点B,C,交对角线BD于点E,且=,连接OE交BC于点F.(1)试判断AB与⊙O的位置关系,并说明理由;(2)若BD=,tan∠CBD=,求⊙O的半径.【答案】(1)AB是⊙O的切线,理由见解答过程;(2)⊙O的半径为5.【解答】解:(1)AB是⊙O的切线,理由如下:连接OB,∵OE=OB,∴∠OEB=∠OBE,∵四边形ABCD是菱形,AC、BD是其对角线,∴∠ABD=∠CBD,∵=,OE是⊙O的半径,∴OE⊥BC,∴∠BFE=90°,∴∠OEB+∠CBE=90°,∴∠ABD+∠OBE=90°,∴OB⊥AB,即AB是⊙O的切线;(2)∵四边形ABCD是菱形,AC、BD是其对角线,BD=,∴BM=BD=,AC⊥BD,∵tan∠CBD=,∴CM=BM=,∴BC==8,∵=,OE是⊙O的半径,∴BF=BC=4,∵tan∠CBD=,OE⊥BC,∴EF=BF=2,设⊙O的半径为r,则OF的长为r﹣2,在Rt△OFB中,OF2+BF2=OB2,即(r﹣2)2+42=r2,解得:r=5,∴⊙O的半径为5.五.切线的判定与性质(共1小题)7.(2022•赤峰)如图,已知AB为⊙O的直径,点C为⊙O外一点,AC=BC,连接OC,DF 是AC的垂直平分线,交OC于点F,垂足为点E,连接AD、CD,且∠DCA=∠OCA.(1)求证:AD是⊙O的切线;(2)若CD=6,OF=4,求cos∠DAC的值.【答案】见试题解答内容【解答】(1)证明:∵AC=BC,点O为AB的中点,∴CO⊥AB.∵DF是AC的垂直平分线,∴DC=DA,∴∠DCA=∠DAC.∵∠DCA=∠OCA,∴∠DAC=∠OCA.∴DA∥OC,∴DA⊥OA.∵OA是⊙O的半径,∴AD是⊙O的切线;(2)解:在△CDE和△CFE中,,∴△CDE≌△CFE(ASA),∴CD=CF=6,∴CO=CF+OF=10.∵DF是AC的垂直平分线,∴CE=AE=AC.∵∠CEF=∠COA=90°,∠ECF=∠OCA,∴△CEF∽△COA,∴,∴,∴AC=2,在Rt△AOC中,∵cos∠OCA=,∴cos∠DAC=cos∠OCA=.六.作图—复杂作图(共1小题)8.(2023•赤峰)已知:如图,点M在∠AOB的边OA上.求作:射线MN,使MN∥OB,且点N在∠AOB的平分线上.作法:①以点O为圆心,适当长为半径画弧,分别交射线OA,OB于点C,D.②分别以点C,D为圆心,大于CD长为半径画弧,两弧在∠AOB的内部相交于点P.③画射线OP.④以点M为圆心,OM长为半径画弧,交射线OP于点N.⑤画射线MN.射线MN即为所求.(1)用尺规作图,依作法补全图形(保留作图痕迹);(2)根据以上作图过程,完成下面的证明.证明:∵OP平分∠AOB,∴∠AON= ∠NOB .∵OM=MN.∴∠AON= ∠ONM ( 等边对等角 ).(括号内填写推理依据)∴∠BON=∠ONM.∴MN∥OB( 内错角相等,两直线平行 ).(填写推理依据)【答案】(1)见解答;(2)∠NOB.∠ONM,等边对等角,内错角相等,两直线平行.【解答】(1)解:如图:(2)证明:∵OP平分∠AOB,∴∠AON=∠NOB.∵OM=MN.∴∠AON=∠ONM(等边对等角).∴∠BON=∠ONM.∴MN∥OB(内错角相等,两直线平行).故答案为:∠NOB.∠ONM,等边对等角,内错角相等,两直线平行.七.几何变换综合题(共1小题)9.(2021•赤峰)数学课上,有这样一道探究题.如图,已知△ABC中,AB=AC=m,BC=n,∠BAC=α(0°<α<180°),点P为平面内不与点A、C重合的任意一点,连接CP,将线段CP绕点P顺时针旋转α,得线段PD,连接CD、AP点E、F分别为BC、CD的中点,设直线AP与直线EF相交所成的较小角为β,探究的值和β的度数与m、n、α的关系.请你参与学习小组的探究过程,并完成以下任务:(1)填空:【问题发现】小明研究了α=60°时,如图1,求出了的值和β的度数分别为= ,β= 60° ;小红研究了α=90°时,如图2,求出了的值和β的度数分别为= ,β= 45° ;【类比探究】他们又共同研究了α=120°时,如图3,也求出了的值和β的度数;【归纳总结】最后他们终于共同探究得出规律:= (用含m、n的式子表示);β= (用含α的式子表示).(2)求出α=120°时的值和β的度数.【答案】(1),60°,,45°,,,(2).【解答】解:(1)如图1,连接AE,PF,延长EF、AP交于点Q,当α=60°时,△ABC和△PDC都是等边三角形,∴∠PCD=∠ACB=60°,PC=CD,AC=CB,∵F、E分别是CD、BC的中点,∴,,∴,又∵∠ACP=∠ECF,∴△ACP∽△ECF,∴,∠CEF=∠CAP,∴∠Q=β=∠ACB=60°,当α=90°时,△ABC和△PDC都是等腰直角三角形,∴∠PCD=∠ACB=45°,PC=CD,AC=CB,∵F、E分别是CD、BC的中点,∴,,∴,又∵∠ACP=∠ECF,∴△ACP∽△ECF,∴,∠CEF=∠CAP,∴∠Q=β=∠ACB=45°,由此,可归纳出,β=∠ACB=;(2)当α=120°,连接AE,PF,延长EF、AP交于点Q,∵AB=AC,E为BC的中点,∴AE⊥BC,∠CAE=60°∴sin60°=,同理可得:,∴,∴,又∵∠ECF=∠ACP,∴△PCA∽△FCE,∴,∠CEF=∠CAP,∴∠Q=β=∠ACB=30°.八.相似形综合题(共1小题)10.(2023•赤峰)数学兴趣小组探究了以下几何图形.如图①,把一个含有45°角的三角尺放在正方形ABCD中,使45°角的顶点始终与正方形的顶点C重合,绕点C旋转三角尺时,45°角的两边CM,CN始终与正方形的边AD,AB所在直线分别相交于点M,N,连接MN,可得△CMN.【探究一】如图②,把△CDM绕点C逆时针旋转90°得到△CBH,同时得到点H在直线AB上.求证:∠CNM=∠CNH;【探究二】在图②中,连接BD,分别交CM,CN于点E,F.求证:△CEF∽△CNM;【探究三】把三角尺旋转到如图③所示位置,直线BD与三角尺45°角两边CM,CN分别交于点E,F,连接AC交BD于点O,求的值.【答案】【探究一】见解析;【探究二】见解析;【探究三】=.【解答】【探究一】证明:∵把△CDM绕点C逆时针旋转90°得到△CBH,同时得到点H在直线AB上,∴CM=CH,∠MCH=90°,∴∠NCH=∠MCH﹣∠MCN=90°﹣45°=45°,∴∠MCN=∠HCN,在△CNM和△CNH中,,∴△CNM≌△CNH(SAS),∴∠CNM=∠CNH;【探究二】证明:如图所示,∵四边形ABCD是正方形,∴∠DBA=45°,∵∠MCN=45°,∴∠FBN=∠FCE=45°°,∵∠EFC=∠BFN,∴∠CEF=∠FNB,∵∠CNM=∠CNH,∴∠CEF=∠CNM,∵公共角∠ECF=∠NCM,∴△CEF∽△CNM;【探究三】解:∵AC,BD是正方形的对角线,∴∠CDE=∠CDA+∠EDM=135°,∠CAN=180°﹣∠BAC=135°,∴∠CDE=∠CAN,∵∠MCN=∠DCA=45°,∴∠MCN﹣∠DCN=∠DCM﹣∠DCN,即∠ECD=∠NCA,∴△ECD∽△NCA,∴∠CED=∠CNA,==,如图所示,将△DMC绕点C顺时针旋转90°得到△BGC,则点G在直线AB上,∴MC=GC,∠MCG=90°,∴∠∠NCG=∠NCM=45°,∵CN=CN,∴△NCG≌△NCM(SAS),∴∠MNC=∠GNC,∵∠CNA=∠CEF,∴∠CNM=∠CEF,∵∠ECF=∠NCM,∴△ECF∽△NCM,∴===,即=.九.方差(共1小题)11.(2023•赤峰)某校甲乙两班联合举办了“经典阅读”竞赛,从甲班和乙班各随机抽取10名学生,统计这部分学生的竞赛成绩,并对数据(成绩)进行了收集、整理、分析,下面给出了部分信息.【收集数据】甲班10名学生竞赛成绩:85,78,86,79,72,91,79,71,70,89乙班10名学生竞赛成绩:85,80,77,85,80,73,90,74,75,81【整理数据】班级70≤x <8080≤x <9090≤x <100甲班631乙班451【分析数据】班级平均数中位数众数方差甲班80a b 51.4乙班808080,85c 【解决问题】根据以上信息,回答下列问题:(1)填空:a = 79 ,b = 79 ,c = 27 ;(2)请你根据【分析数据】中的信息,判断哪个班成绩比较好,简要说明理由;(3)甲班共有学生45人,乙班共有学生40人,按竞赛规定,80分及80分以上的学生可以获奖,估计这两个班可以获奖的总人数是多少?【答案】(1)79,79,27;(2)乙班成绩比较好,理由见解答;(3)42人.【解答】解:(1)甲班成绩从高到低排列为:70、71、72、78、79、79、85、86、89、91,故中位数a =79;众数b =79,乙班的方差为:[2×(85﹣80)2+2×(80﹣80)2+(81﹣80)2+(77﹣80)2+(73﹣80)2+(74﹣80)2+(90﹣80)2+(75﹣80)2]=27;故答案为:79,79,27;(2)乙班成绩比较好,理由如下:两个班的平均数相同,中位数、众数高于甲班,方差小于甲班,代表乙班成绩比甲班稳定,所以乙班成绩比较好;(3)45×+40×=42(人),答:估计这两个班可以获奖的总人数大约是42人.一十.列表法与树状图法(共1小题)12.(2021•赤峰)某学校九年级有12个班,每班50名学生,为了调查该校九年级学生平均每天的睡眠时间,准备从12个班里抽取50名学生作为一个样本进行分析,并规定如下:设每个学生平均每天的睡眠时间为t (单位,小时),将收集到的学生平均每天睡眠时间按t ≤6、6<t <8、t ≥8分为三类进行分析.(1)下列抽取方法具有代表性的是 B .A .随机抽取一个班的学生B .从12个班中,随机抽取50名学生C .随机抽取50名男生D .随机抽取50名女生(2)由上述具有代表性的抽取方法抽取50名学生,平均每天的睡眠时间数据如表:睡眠时间t (小时)5 5.56 6.577.588.5人数(人)11210159102①这组数据的众数和中位数分别是 7 ,7 ;②估计九年级学生平均每天睡眠时间t ≥8的人数大约为多少;(3)从样本中学生平均每天睡眠时间t ≤6的4个学生里,随机抽取2人,画树状图或列表,求抽得2人平均每天睡眠时间都是6小时的概率.【答案】见试题解答内容【解答】解:(1)∵A 、C 、D 不具有全面性,故答案为:B ;(2)①这组数据的众数为7小时,中位数为=7(小时),故答案为:7,7;②估计九年级学生平均每天睡眼时间t≥8的人数大约为:12×50×=144(人);(3)把样本中学生平均每天睡眠时间为5小时、5.5小时、6小时的4个学生分别记为A、B、C、D,画树状图如图:共有12种等可能的结果,抽得2人平均每天睡眠时间都是6小时的结果有2种,∴抽得2人平均每天睡眠时间都是6小时的概率为=.。
中考数学一轮复习正方形试题
正方形制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日知识考点:理解正方形的性质和断定,并能利用它进展有关的证明和计算。
精典例题:【例1】如图,E 、F 分别是正方形ABCD 的边AB 、BC 上的点,且EF ∥AC ,在DA 的延长线上取一点G ,使AG =AD ,EG 与DF 相交于点H 。
求证:AH =AD 。
分析:因为A 是DG 的中点,故在△DGH 中,假设AH =AD ,当且仅当△DGH 为直角三角形,所以只须证明△DGH 为直角三角形〔证明略〕。
评注:正方形除了具备平行四边形的一般性质外,还特别注意其直角的条件。
本例中直角三角形的中线性质使此题证明简单。
例1图例2图【例2】如图,在正方形ABCD 中,P 、Q 分别是BC 、CD 上的点,假设∠PAQ =450,求证:PB +DQ =PQ 。
分析:利用正方形的性质,通过构造全等三角形来证明。
变式:假设条件改为PQ =PB +DQ ,那么∠PAQ =?你还能得到哪些结论? 探究与创新:【问题一】如图,正方形ABCD 的对角线AC 、BD 相交于点O ,E 是AC 上一点,过A 作AG ⊥EB 于G ,AG 交BD 于点F ,那么OE =OF ,对上述命题,假设点E 在AC 的延长线上,AG ⊥EB ,交EB 的延长线于点G ,AG 的延长线交DB 的延长线于点F ,其它条件不变,那么结论“OE =OF 〞还成立吗?假如成立,请给出证明;假如不成立,说明理由。
问题一图1 O F G EDC BA问题一图2分析:对于图1通过全等三角形证明OE =OF ,这种证法是否能应用到图2的情境中去,从而作出正确的判断。
结论:〔2〕的结论“OE =OF 〞仍然成立。
提示:只须证明△AOF ≌△BOE 即可。
评注:此题以正方形为背景,打破了单纯的计算与证明,着重考察了学生观察、分析、判断等多种才能。
【问题二】操作,将一把三角尺放在边长为1的正方形ABCD 上,并使它的直角顶点P 在对角线AC 上滑行,直角的一边始终经过点B ,另一边与射线DC 相交于点Q 。
2021年江苏省中考数学真题分类汇编:图形的变化(附答案解析)
2021年江苏省中考数学真题分类汇编:图形的变化一.选择题(共10小题)1.(2021•泰州)如图所示几何体的左视图是()A.B.C.D.2.(2021•常州)观察如图所示脸谱图案,下列说法正确的是()A.它是轴对称图形,不是中心对称图形B.它是中心对称图形,不是轴对称图形C.它既是轴对称图形,也是中心对称图形D.它既不是轴对称图形,也不是中心对称图形3.(2021•无锡)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.4.(2021•盐城)如图是由4个小正方形体组合成的几何体,该几何体的主视图是()A.B.C.D.5.(2021•连云港)如图,将矩形纸片ABCD沿EF折叠后,点D、C分别落在点D1、C1的位置,ED1的延长线交BC于点G,若∠EFG=64°,则∠EGB等于()A.128°B.130°C.132°D.136°6.(2021•南京)如图,正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板.在灯光照射下,正方形纸板在地面上形成的影子的形状可以是()A.B.C.D.7.(2021•苏州)如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,则下列四个图形中正确的是()A.B.C.D.8.(2021•南通)如图,根据三视图,这个立体图形的名称是()A.三棱柱B.圆柱C.三棱锥D.圆锥9.(2021•宿迁)如图,折叠矩形纸片ABCD,使点B落在点D处,折痕为MN,已知AB =8,AD=4,则MN的长是()A.B.2C.D.410.(2021•连云港)如图,△ABC中,BD⊥AB,BD、AC相交于点D,AD=AC,AB=2,∠ABC=150°,则△DBC的面积是()A.B.C.D.二.填空题(共10小题)11.(2021•常州)如图,在△ABC中,AC=3,BC=4,D、E分别在CA、CB上,点F在△ABC内.若四边形CDFE是边长为1的正方形,则sin∠FBA=.12.(2021•徐州)如图,在△ABC中,点D、E分别在边BA、BC上,且==,△DBE与四边形ADEC的面积的比.13.(2021•无锡)如图,在Rt△ABC中,∠BAC=90°,AB=2,AC=6,点E在线段AC上,且AE=1,D是线段BC上的一点,连接DE,将四边形ABDE沿直线DE翻折,得到四边形FGDE,当点G恰好落在线段AC上时,AF=.14.(2021•苏州)如图,射线OM,ON互相垂直,OA=8,点B位于射线OM的上方,且在线段OA的垂直平分线l上,连接AB,AB=5.将线段AB绕点O按逆时针方向旋转得到对应线段A′B′,若点B′恰好落在射线ON上,则点A′到射线ON的距离d =.15.(2021•南通)如图,一艘轮船位于灯塔P的南偏东60°方向,距离灯塔50海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东45°方向上的B处,此时B处与灯塔P的距离为海里(结果保留根号).16.(2021•常州)中国古代数学家刘徽在《九章算术注》中,给出了证明三角形面积公式的出入相补法.如图所示,在△ABC中,分别取AB、AC的中点D、E,连接DE,过点A 作AF⊥DE,垂足为F,将△ABC分割后拼接成矩形BCHG.若DE=3,AF=2,则△ABC 的面积是.17.(2021•盐城)如图,在矩形ABCD中,AB=3,AD=4,E、F分别是边BC、CD上一点,EF⊥AE,将△ECF沿EF翻折得△EC′F,连接AC′,当BE=时,△AEC′是以AE为腰的等腰三角形.18.(2021•宿迁)如图,在△ABC中,AB=4,BC=5,点D、E分别在BC、AC上,CD =2BD,CE=2AE,BE交AD于点F,则△AFE面积的最大值是.19.(2021•连云港)如图,BE是△ABC的中线,点F在BE上,延长AF交BC于点D.若BF=3FE,则=.20.(2021•南京)如图,将▱ABCD绕点A逆时针旋转到▱A′B′C′D′的位置,使点B′落在BC上,B′C′与CD交于点E.若AB=3,BC=4,BB′=1,则CE的长为.三.解答题(共10小题)21.(2021•盐城)如图,O为线段PB上一点,以O为圆心,OB长为半径的⊙O交PB于点A,点C在⊙O上,连接PC,满足PC2=P A•PB.(1)求证:PC是⊙O的切线;(2)若AB=3P A,求的值.22.(2021•南京)如图,为了测量河对岸两点A,B之间的距离,在河岸这边取点C,D.测得CD=80m,∠ACD=90°,∠BCD=45°,∠ADC=19°17′,∠BDC=56°19′.设A,B,C,D在同一平面内,求A,B两点之间的距离.(参考数据:tan19°17′≈0.35,tan56°19′≈1.50.)23.(2021•泰州)如图,游客从旅游景区山脚下的地面A处出发,沿坡角α=30°的斜坡AB步行50m至山坡B处,乘直立电梯上升30m至C处,再乘缆车沿长为180m的索道CD至山顶D处,此时观测C处的俯角为19°30′,索道CD看作在一条直线上.求山顶D的高度.(精确到1m,sin19°30′≈0.33,cos19°30′≈0.94,tan19°30′≈0.35)24.(2021•盐城)某种落地灯如图1所示,AB为立杆,其高为84cm;BC为支杆,它可绕点B旋转,其中BC长为54cm;DE为悬杆,滑动悬杆可调节CD的长度.支杆BC与悬杆DE之间的夹角∠BCD为60°.(1)如图2,当支杆BC与地面垂直,且CD的长为50cm时,求灯泡悬挂点D距离地面的高度;(2)在图2所示的状态下,将支杆BC绕点B顺时针旋转20°,同时调节CD的长(如图3),此时测得灯泡悬挂点D到地面的距离为90cm,求CD的长.(结果精确到1cm,参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)25.(2021•徐州)如图,斜坡AB的坡角∠BAC=13°,计划在该坡面上安装两排平行的光伏板.前排光伏板的一端位于点A,过其另一端D安装支架DE,DE所在的直线垂直于水平线AC,垂足为点F,E为DF与AB的交点.已知AD=100cm,前排光伏板的坡角∠DAC=28°.(1)求AE的长(结果取整数);(2)冬至日正午,经过点D的太阳光线与AC所成的角∠DGA=32°,后排光伏板的前端H在AB上.此时,若要后排光伏板的采光不受前排光伏板的影响,则EH的最小值为多少(结果取整数)?参考数据:≈1.41,≈1.73,≈2.45.锐角A13°28°32°三角函数sin A0.220.470.53cos A0.970.880.85tan A0.230.530.6226.(2021•无锡)如图,四边形ABCD内接于⊙O,AC是⊙O的直径,AC与BD交于点E,PB切⊙O于点B.(1)求证:∠PBA=∠OBC;(2)若∠PBA=20°,∠ACD=40°,求证:△OAB∽△CDE.27.(2021•宿迁)一架无人机沿水平直线飞行进行测绘工作,在点P处测得正前方水平地面上某建筑物AB的顶端A的俯角为30°,面向AB方向继续飞行5米,测得该建筑物底端B的俯角为45°,已知建筑物AB的高为3米,求无人机飞行的高度(结果精确到1米,参考数据:≈1.414,≈1.732).28.(2021•连云港)我市的前三岛是众多海钓人的梦想之地.小明的爸爸周末去前三岛钓鱼,将鱼竿AB摆成如图1所示.已知AB=4.8m,鱼竿尾端A离岸边0.4m,即AD=0.4m.海面与地面AD平行且相距1.2m,即DH=1.2m.(1)如图1,在无鱼上钩时,海面上方的鱼线BC与海面HC的夹角∠BCH=37°,海面下方的鱼线CO与海面HC垂直,鱼竿AB与地面AD的夹角∠BAD=22°.求点O到岸边DH的距离;(2)如图2,在有鱼上钩时,鱼竿与地面的夹角∠BAD=53°,此时鱼线被拉直,鱼线BO=5.46m,点O恰好位于海面.求点O到岸边DH的距离.(参考数据:sin37°=cos53°≈,cos37°=sin53°≈,tan37°≈,sin22°≈,cos22°≈,tan22°≈)29.(2021•苏州)如图,在矩形ABCD中,线段EF、GH分别平行于AD、AB,它们相交于点P,点P1、P2分别在线段PF、PH上,PP1=PG,PP2=PE,连接P1H、P2F,P1H 与P2F相交于点Q.已知AG:GD=AE:EB=1:2,设AG=a,AE=b.(1)四边形EBHP的面积四边形GPFD的面积(填“>”、“=”或“<”)(2)求证:△P1FQ∽△P2HQ;(3)设四边形PP1QP2的面积为S1,四边形CFQH的面积为S2,求的值.30.(2021•常州)在平面直角坐标系xOy中,对于A、A′两点,若在y轴上存在点T,使得∠ATA′=90°,且TA=TA′,则称A、A′两点互相关联,把其中一个点叫做另一个点的关联点.已知点M(﹣2,0)、N(﹣1,0),点Q(m,n)在一次函数y=﹣2x+1的图象上.(1)①如图,在点B(2,0)、C(0,﹣1)、D(﹣2,﹣2)中,点M的关联点是(填“B”、“C”或“D”);②若在线段MN上存在点P(1,1)的关联点P′,则点P′的坐标是;(2)若在线段MN上存在点Q的关联点Q′,求实数m的取值范围;(3)分别以点E(4,2)、Q为圆心,1为半径作⊙E、⊙Q.若对⊙E上的任意一点G,在⊙Q上总存在点G′,使得G、G′两点互相关联,请直接写出点Q的坐标.2021年江苏省中考数学真题分类汇编:图形的变化参考答案与试题解析一.选择题(共10小题)1.(2021•泰州)如图所示几何体的左视图是()A.B.C.D.【考点】简单组合体的三视图.【专题】投影与视图;空间观念.【分析】根据左视图是从左面看到的图形判定则可.【解答】解:从左边看,是一列两个矩形.故选:C.【点评】本题主要考查了几何体的三种视图和学生的空间想象能力,正确掌握观察角度是解题关键.2.(2021•常州)观察如图所示脸谱图案,下列说法正确的是()A.它是轴对称图形,不是中心对称图形B.它是中心对称图形,不是轴对称图形C.它既是轴对称图形,也是中心对称图形D.它既不是轴对称图形,也不是中心对称图形【考点】轴对称图形;中心对称图形.【专题】平移、旋转与对称;几何直观.【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.据此判断即可.【解答】解:该图是轴对称图形,不是中心对称图形.故选:A.【点评】此题主要考查了中心对称图形和轴对称图形,熟记相关定义是解答本题的关键.3.(2021•无锡)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【考点】轴对称图形;中心对称图形.【专题】平移、旋转与对称;几何直观.【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.【解答】解:A.既是轴对称图形,又是中心对称图形,故本选项符合题意;B.是轴对称图形,不是中心对称图形,故本选项不合题意;C.不是轴对称图形,是中心对称图形,故本选项不合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意.故选:A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.(2021•盐城)如图是由4个小正方形体组合成的几何体,该几何体的主视图是()A.B.C.D.【考点】展开图折叠成几何体;简单组合体的三视图.【专题】投影与视图;空间观念.【分析】根据主视图的意义画出相应的图形,再进行判断即可.【解答】解:该组合体的主视图如下:故选:A.【点评】本题考查简单组合体的主视图,理解主视图的意义是正确判断的前提.5.(2021•连云港)如图,将矩形纸片ABCD沿EF折叠后,点D、C分别落在点D1、C1的位置,ED1的延长线交BC于点G,若∠EFG=64°,则∠EGB等于()A.128°B.130°C.132°D.136°【考点】平行线的性质;矩形的性质;翻折变换(折叠问题).【专题】平移、旋转与对称;推理能力.【分析】在矩形ABCD中,AD∥BC,则∠DEF=∠EFG=64°,∠EGB=∠DEG,又由折叠可知,∠GEF=∠DEF,可求出∠DEG的度数,进而得到∠EGB的度数.【解答】解:如图,在矩形ABCD中,AD∥BC,∴∠DEF=∠EFG=64°,∠EGB=∠DEG,由折叠可知∠GEF=∠DEF=64°,∴∠DEG=128°,∴∠EGB=∠DEG=128°,故选:A.【点评】本题主要考查平行线的性质,折叠的性质等,掌握折叠前后角度之间的关系是解题的基础.6.(2021•南京)如图,正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板.在灯光照射下,正方形纸板在地面上形成的影子的形状可以是()A.B.C.D.【考点】正方形的性质;中心投影.【专题】投影与视图;空间观念;几何直观.【分析】根据正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板,则在地面上的投影关于对角线对称,因为灯在纸板上方,所以上方投影比下方投影要长.【解答】解:根据正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板,∴在地面上的投影关于对角线对称,∵灯在纸板上方,∴上方投影比下方投影要长,故选:D.【点评】本题主要考查中心投影的知识,弄清题目中光源和纸板的相对位置是解题的关键.7.(2021•苏州)如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt △A′O′B,则下列四个图形中正确的是()A.B.C.D.【考点】旋转的性质.【专题】平移、旋转与对称;几何直观.【分析】本题主要考查旋转的性质,旋转过程中图形形状和大小都不发生变化,根据旋转性质判断即可.【解答】解:A选项是原图形的对称图形,故A不正确;B选项是Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,故B正确;C选项旋转后的对应点错误,即形状发生了改变,故C不正确;D选项是按逆时针方向旋转90°,故D不正确;故选:B.【点评】本题主要考查旋转的性质,熟练掌握并应用旋转的性质是解题的关键,重点注意旋转的方向和角度.8.(2021•南通)如图,根据三视图,这个立体图形的名称是()A.三棱柱B.圆柱C.三棱锥D.圆锥【考点】由三视图判断几何体.【专题】投影与视图;空间观念.【分析】从正视图以及左视图都为一个长方形,俯视图三角形来看,可以确定这个几何体为一个三棱柱.【解答】解:根据三视图可以得出立体图形是三棱柱,故选:A.【点评】本题考查了由几何体的三种视图判断出几何体的形状,应从所给几何体入手分析得出是解题关键.9.(2021•宿迁)如图,折叠矩形纸片ABCD,使点B落在点D处,折痕为MN,已知AB =8,AD=4,则MN的长是()A.B.2C.D.4【考点】矩形的性质;翻折变换(折叠问题).【专题】矩形菱形正方形;平移、旋转与对称;推理能力.【分析】由折叠的性质可得BM=MD,BN=DN,∠DMN=∠BMN,可证四边形BMDN 是菱形,在Rt△ADM中,利用勾股定理可求BM的长,由菱形的面积公式可求解.【解答】解:如图,连接BD,BN,∵折叠矩形纸片ABCD,使点B落在点D处,∴BM=MD,BN=DN,∠DMN=∠BMN,∵AB∥CD,∴∠BMN=∠DNM,∴∠DMN=∠DNM,∴DM=DN,∴DN=DM=BM=BN,∴四边形BMDN是菱形,∵AD2+AM2=DM2,∴16+AM2=(8﹣AM)2,∴AM=3,∴DM=BM=5,∵AB=8,AD=4,∴BD===4,∵S菱形BMDN=×BD×MN=BM×AD,∴4×MN=2×5×4,∴MN=2,故选:B.【点评】本题考查了翻折变换,矩形的性质,菱形判定和性质,勾股定理,求出BM的长是解题的关键.10.(2021•连云港)如图,△ABC中,BD⊥AB,BD、AC相交于点D,AD=AC,AB=2,∠ABC=150°,则△DBC的面积是()A.B.C.D.【考点】相似三角形的判定与性质;解直角三角形.【专题】三角形;几何直观.【分析】过点C作BD的垂线,交BD的延长线于点E,可得△ABD∽△CED,可得==,由AD=AC,AB=2,可求出CE的长,又∠ABC=150°,∠ABD=90°,则∠CBD=60°,解直角△BCE,可分别求出BE和BD的长,进而可求出△BCD的面积.【解答】解:如图,过点C作BD的垂线,交BD的延长线于点E,则∠E=90°,∵BD⊥AB,CE⊥BD,∴AB∥CE,∠ABD=90°,∴△ABD∽△CED,∴==,∵AD=AC,∴=,∴===,则CE=,∵∠ABC=150°,∠ABD=90°,∴∠CBE=60°,∴BE=CE=,∴BD=BE=,∴S△BCD=•BD•CE=×=.故选:A.【点评】本题主要考查三角形的面积,相似三角形的性质与判定,解直角三角形等,看到面积或特殊角作垂线是常见的解题思路,也是解题关键.二.填空题(共10小题)11.(2021•常州)如图,在△ABC中,AC=3,BC=4,D、E分别在CA、CB上,点F在△ABC内.若四边形CDFE是边长为1的正方形,则sin∠FBA=.【考点】正方形的性质;相似三角形的判定与性质;解直角三角形.【专题】解直角三角形及其应用;推理能力.【分析】连接AF,过点F作FG⊥AB于G,由四边形CDFE是边长为1的正方形可得AD=2,BE=3,根据勾股定理求出AB=5,AF=,BF=,设BG=x,利用勾股定理求出x=3,可得FG=1,即可得sin∠FBA的值.【解答】解:连接AF,过点F作FG⊥AB于G,∵四边形CDFE是边长为1的正方形,∴CD=CE=DF=EF=1,∠C=∠ADF=90°,∵AC=3,BC=4,∴AD=2,BE=3,∴AB==5,AF==,BF==,设BG=x,∵FG2=AF2﹣AG2=BF2﹣BG2,∴5﹣(5﹣x)2=10﹣x2,解得:x=3,∴FG==1,∴sin∠FBA==.故答案为:.【点评】此题综合考查了正方形、锐角三角函数的定义及勾股定理.根据勾股定理求出BG的长是解题的关键.12.(2021•徐州)如图,在△ABC中,点D、E分别在边BA、BC上,且==,△DBE与四边形ADEC的面积的比.【考点】相似三角形的判定与性质.【专题】三角形;图形的相似;推理能力;应用意识.【分析】先由==,设AD=3m,DB=2m,CE=3k,EB=2k,证明=,又∠B=∠B,可证明△DBE~△ABC.进而可得相似比为,面积比==,从而可得S△DBE:S四边形ADEC=4:21.【解答】解:∵==,则设AD=3m,DB=2m,CE=3k,EB=2k,∴=,=,∴=,又∠B=∠B,∴△DBE~△ABC.相似比为,面积比==,设S△DBE=4a,则S△ABC=25a,∴S四边形ADEC=25a﹣4a=21a,∴S△DBE:S四边形ADEC=.故答案为:.【点评】本题考查了相似三角形的判定与性质,证明△DBE~△ABC得出相似比是解题的关键.13.(2021•无锡)如图,在Rt△ABC中,∠BAC=90°,AB=2,AC=6,点E在线段AC上,且AE=1,D是线段BC上的一点,连接DE,将四边形ABDE沿直线DE翻折,得到四边形FGDE,当点G恰好落在线段AC上时,AF=.【考点】勾股定理;翻折变换(折叠问题).【专题】平移、旋转与对称;解直角三角形及其应用;推理能力.【分析】由折叠的性质可得AB=FG=2,AE=EF=1,∠BAC=∠EFG=90°,在Rt△EFG中,由勾股定理可求EG=3,由锐角三角函数可求EH,HF的长,在Rt△AHF 中,由勾股定理可求AF.【解答】解:如图,过点F作FH⊥AC于H,∵将四边形ABDE沿直线DE翻折,得到四边形FGDE,∴AB=FG=2,AE=EF=1,∠BAC=∠EFG=90°,∴EG===3,∵sin∠FEG=,∴,∴HF=,∵cos∠FEG=,∴,∴EH=,∴AH=AE+EH=,∴AF===,故答案为:.【点评】本题考查了翻折变换,考查了折叠的性质,勾股定理,锐角三角函数,构造直角三角形是解题的关键.14.(2021•苏州)如图,射线OM,ON互相垂直,OA=8,点B位于射线OM的上方,且在线段OA的垂直平分线l上,连接AB,AB=5.将线段AB绕点O按逆时针方向旋转得到对应线段A′B′,若点B′恰好落在射线ON上,则点A′到射线ON的距离d=.【考点】线段垂直平分线的性质;旋转的性质.【专题】综合题;推理填空题;平移、旋转与对称;应用意识.【分析】设OA的垂直平分线与OA交于C,将线段AB绕点O按逆时针方向旋转得到对应线段A′B′,C随之旋转到C',过A'作A'H⊥ON于H,过C'作C'D⊥ON于D,过A'作A'E⊥DC'于E,由OA=8,AB=5,BC是OA的垂直平分线,可得OB=5,OC=AC =4,BC=3,cos∠BOC==,sin∠BOC==,证明∠BOC=∠B'C'D=∠C'A'E,从而在Rt△B'C'D中求出C'D=,在Rt△A'C'E中,求出C'E=,得DE=C'D+C'E =,即可得到A'到ON的距离是.【解答】解:设OA的垂直平分线与OA交于C,将线段AB绕点O按逆时针方向旋转得到对应线段A′B′,C随之旋转到C',过A'作A'H⊥ON于H,过C'作C'D⊥ON于D,过A'作A'E⊥DC'于E,如图:∵OA=8,AB=5,BC是OA的垂直平分线,∴OB=5,OC=AC=4,BC=3,cos∠BOC==,sin∠BOC==,∵线段AB绕点O按逆时针方向旋转得到对应线段A′B′,C随之旋转到C',∴B'C'=BC=3,A'C'=AC=4,∠BOC=∠B'OC',∵∠B'C'D=∠B'C'O﹣∠DC'O=90°﹣∠DC'O=∠B'OC',∴cos∠B'C'D=,Rt△B'C'D中,=,即=,∴C'D=,∵AE∥ON,∴∠B'OC'=∠C'A'E,∴sin∠C'AE=sin∠B'OC'=sin∠BOC=,Rt△A'C'E中,=,即=,∴C'E=,∴DE=C'D+C'E=,而A'H⊥ON,C'D⊥ON,A'E⊥DC',∴四边形A'EDH是矩形,∴A'H=DE,即A'到ON的距离是.故答案为:.方法二:过A作AC⊥OB于C,如图:由旋转可知:点A′到射线ON的距离d=AC,∵OB•AC=OA•BD,∴AC==.【点评】本题考查线段的垂直平分线及旋转变换,涉及三角函数及矩形等知识,解题的关键是在Rt△B'C'D中和Rt△A'C'E中,求出求出C'D=,C'E=.15.(2021•南通)如图,一艘轮船位于灯塔P的南偏东60°方向,距离灯塔50海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东45°方向上的B处,此时B处与灯塔P的距离为25海里(结果保留根号).【考点】解直角三角形的应用﹣方向角问题.【专题】解直角三角形及其应用;运算能力;推理能力.【分析】过点P作PC⊥AB,在Rt△APC中由锐角三角函数定义求出PC的长,再在Rt △BPC中由锐角三角函数定义求出PB的长即可.【解答】解:过P作PC⊥AB于C,如图所示:由题意得:∠APC=30°,∠BPC=45°,P A=50海里,在Rt△APC中,cos∠APC=,∴PC=P A•cos∠APC=50×=25(海里),在Rt△PCB中,cos∠BPC=,∴PB===25(海里),故答案为:25.【点评】本题考查了解直角三角形的应用﹣方向角问题以及锐角三角函数定义;熟练掌握锐角三角函数定义,求出PC的长是解题的关键.16.(2021•常州)中国古代数学家刘徽在《九章算术注》中,给出了证明三角形面积公式的出入相补法.如图所示,在△ABC中,分别取AB、AC的中点D、E,连接DE,过点A 作AF⊥DE,垂足为F,将△ABC分割后拼接成矩形BCHG.若DE=3,AF=2,则△ABC 的面积是12.【考点】数学常识;三角形的面积;三角形中位线定理;矩形的判定;图形的剪拼.【专题】作图题;应用意识.【分析】根据图形的拼剪,求出BC以及BC边上的高即可解决问题.【解答】解:由题意,BG=CH=AF=2,DG=DF,EF=EH,∴DG+EH=DE=3,∴BC=GH=3+3=6,∴△ABC的边BC上的高为4,∴S△ABC=×6×4=12,故答案为:12.【点评】本题考查图形的拼剪,矩形的性质,全等三角形的判定和性质,三角形的面积等知识,解题的关键是读懂图象信息,属于中考常考题型.17.(2021•盐城)如图,在矩形ABCD中,AB=3,AD=4,E、F分别是边BC、CD上一点,EF⊥AE,将△ECF沿EF翻折得△EC′F,连接AC′,当BE=或时,△AEC′是以AE为腰的等腰三角形.【考点】等腰三角形的判定;勾股定理;矩形的性质;翻折变换(折叠问题).【专题】分类讨论;推理能力.【分析】设BE=x,则EC=4﹣x,由翻折得:EC′=EC=4﹣x.当AE=EC′时,由勾股定理得:32+x2=(4﹣x)2;当AE=AC’时,作AH⊥EC’,由∠AEF=90°,EF平方∠CEC′可证得∠AEB=∠AEH,则△ABE≌△AHE,所以BE=HE=x,由三线合一得EC′=2EH,即4﹣x=2x,解方程即可.【解答】解:设BE=x,则EC=4﹣x,由翻折得:EC′=EC=4﹣x,当AE=EC′时,AE=4﹣x,∵矩形ABCD,∴∠B=90°,由勾股定理得:32+x2=(4﹣x)2,解得:,当AE=AC′时,如图,作AH⊥EC′∵EF⊥AE,∴∠AEF=∠AEC′+∠FEC′=90°,∴∠BEA+∠FEC=90°,∵△ECF沿EF翻折得△ECF,∴∠FEC′=∠FEC,∴∠AEB=∠AEH,∵∠B=∠AHE=90°,AH=AH,∴△ABE≌△AHE(AAS),∴BE=HE=x,∵AE=AC′时,作AH⊥EC′,∴EC′=2EH,即4﹣x=2x,解得,综上所述:BE=或.故答案为:或.【点评】本题考查了矩形的性质、等腰三角形的性质、勾股定理等知识点,涉及到方程思想和分类讨论思想.当AE=AC′时如何列方程,有一定难度.18.(2021•宿迁)如图,在△ABC中,AB=4,BC=5,点D、E分别在BC、AC上,CD =2BD,CE=2AE,BE交AD于点F,则△AFE面积的最大值是.【考点】平行线分线段成比例.【专题】线段、角、相交线与平行线;三角形;推理能力.【分析】连接DE.首先证明DE∥AB,推出S△ABE=S△ABD,推出S△AEF=S△BDF,可得S=S△ABD,求出△ABD面积的最大值即可解决问题.△AEF【解答】解:连接DE.∵CD=2BD,CE=2AE,∴==2,∴DE∥AB,∴△CDE∽△CBA,∴==,∴==,∵DE∥AB,∴S△ABE=S△ABD,∴S△AEF=S△BDF,∴S△AEF=S△ABD,∵BD=BC=,∴当AB⊥BD时,△ABD的面积最大,最大值=××4=,∴△AEF的面积的最大值=×=,故答案为:【点评】本题考查相似三角形的判定和性质,平行线的判定和性质等知识,解题的关键是证明DE∥AB,推出S△AEF=S△ABD,属于中考常考题型.19.(2021•连云港)如图,BE是△ABC的中线,点F在BE上,延长AF交BC于点D.若BF=3FE,则=.【考点】平行线分线段成比例.【专题】图形的相似;推理能力.【分析】过点E作EG∥DC交AD于G,可得△AGE∽△ADC,所以,得到DC=2GE;再根据△GFE∽△DFB,得==,所以,即=.【解答】解:如图,∵BE是△ABC的中线,∴点E是AC的中点,∴=,过点E作EG∥DC交AD于G,∴∠AGE=∠ADC,∠AEG=∠C,∴△AGE∽△ADC,∴,∴DC=2GE,∵BF=3FE,∴,∵GE∥BD,∴∠GEF=∠FBD,∠EGF=∠BDF,∴△GFE∽△DFB,∴==,∴,∴=,故答案为:.【点评】本题考查了相似三角形的判定与性质,过点E作EG∥DC,构造相似三角形是解题的关键.20.(2021•南京)如图,将▱ABCD绕点A逆时针旋转到▱A′B′C′D′的位置,使点B′落在BC上,B′C′与CD交于点E.若AB=3,BC=4,BB′=1,则CE的长为.【考点】平行四边形的性质;旋转的性质;解直角三角形的应用.【专题】三角形;解直角三角形及其应用;运算能力.【分析】过点A作AM⊥BC于点M,过点B作BN⊥AB′于点N,过点E作EG⊥BC,交BC的延长线于点G.BM=B′M=,由勾股定理可得,AM==,由等面积法可得,BN=,由勾股定理可得,AN===,由题可得,△AMB∽△EGC,△ANB∽△B′GE,则==,==,设CG=a,则EG=a,B′G=3+a,则=,解得a=.最后由勾股定理可得,EC===.【解答】解:法一、如图,过点A作AM⊥BC于点M,过点B作BN⊥AB′于点N,过点E作EG⊥BC,交BC的延长线于点G.由旋转可知,AB=AB′=3,∠ABB′=∠AB′C′,∴∠ABB′=∠AB′B=∠AB′C′,∵BB′=1,AM⊥BB′,∴BM=B′M=,∴AM==,∵S△ABB′==,∴××1=•BN×3,则BN=,∴AN===,∵AB∥DC,∴∠ECG=∠ABC,∵∠AMB=∠EGC=90°,∴△AMB∽△EGC,∴===,设CG=a,则EG=a,∵∠ABB′+∠AB′B+∠BAB′=180°,∠AB′B+∠AB′C′+∠C′B′C=180°,又∵∠ABB′=∠AB′B=∠AB′C′,∴∠BAB′=∠C′B′C,∵∠ANB=∠EGC=90°,∴△ANB∽△B′GE,∴===,∵BC=4,BB′=1,∴B′C=3,B′G=3+a,∴=,解得a=.∴CG=,EG=,∴EC===.故答案为:.法二、如图,连接DD',由旋转可知,∠BAB′=∠DAD′,AB′=AB=3,AD′=AD=4,∴△BAB′∽△DAD′,∴AB:BB′=AD:DD′=3:1,∠AD′D=∠AB′B=∠B,∴DD′=,又∵∠D′=∠AB′C′=∠B,∠B=∠AB′B,∴∠D′=∠B,即点D′,D,C′在同一条直线上,∴DC′=,又∠C′=∠ECB′,∠DEC′=∠B′EC,∴△CEB’∽△C'ED,∴B′E:DE=CE:C′E=B′C:DC′,即B′E:DE=CE:C′E=3:,设CE=x,B'E=y,∴x:(4﹣y)=y:(3﹣x)=3:,∴x=.故答案为:.【点评】本题主要考考查平行四边形的性质,等腰三角形三线合一,相似三角形的性质与判定,解直角三角形的应用等,构造正确的辅助线是解题关键.三.解答题(共10小题)21.(2021•盐城)如图,O为线段PB上一点,以O为圆心,OB长为半径的⊙O交PB于点A,点C在⊙O上,连接PC,满足PC2=P A•PB.(1)求证:PC是⊙O的切线;(2)若AB=3P A,求的值.【考点】圆周角定理;点与圆的位置关系;切线的判定与性质;相似三角形的判定与性质.【专题】与圆有关的位置关系;图形的相似;推理能力.【分析】(1)由PC2=P A•PB得,可证得△P AC∽△PCB,根据相似三角形的性质得∠PCA=∠B,根据圆周角定理得∠ACB=90°,则∠CAB+∠B=90°,由OA=OC 得∠CAB=∠OCA,等量代换可得∠PCA+∠OCA=90°,即OC⊥PC,即可得出结论;(2)由AB=3P A可得PB=4P A,OA=OC=1.5P A,根据勾股定理求出PC=2P A,根据相似三角形的性质即可得出的值.【解答】(1)证明:连接OC,∵PC2=P A•PB,∴,∵∠P=∠P,∴△P AC∽△PCB,∴∠PCA=∠B,∵∠ACB=90°,∴∠CAB+∠B=90°,∵OA=OC,∴∠CAB=∠OCA,∴∠PCA+∠OCA=90°,∴OC⊥PC,∴PC是⊙O的切线;(2)解:∵AB=3P A,∴PB=4P A,OA=OC=1.5P A,PO=2.5P A,∵OC⊥PC,∴PC==2P A,∵△P AC∽△PCB,∴===.【点评】本题考查三角形相似的判定与性质,考查切线的判定,圆周角定理,解题的关键是熟练掌握圆周角定理及相似三角形的判定等知识点的综合运用.22.(2021•南京)如图,为了测量河对岸两点A,B之间的距离,在河岸这边取点C,D.测得CD=80m,∠ACD=90°,∠BCD=45°,∠ADC=19°17′,∠BDC=56°19′.设A,B,C,D在同一平面内,求A,B两点之间的距离.(参考数据:tan19°17′≈0.35,tan56°19′≈1.50.)【考点】解直角三角形的应用.【专题】解直角三角形及其应用;应用意识.【分析】过B作BE⊥CD于E,过A作AF⊥BE于F,由已知△BCE是等腰直角三角形,设CE=x,则BE=x,DE=(80﹣x)m,在Rt△BDE中,可得=1.5,解得BE=CE=48m,在Rt△ACD中,解得AC=28m,根据四边形ACEF是矩形,可得AF=CE=48m,EF=AC=28m,BF=20m,即可在Rt△ABF中,求出AB==52(m)【解答】解:过B作BE⊥CD于E,过A作AF⊥BE于F,如图:∵∠BCD=45°,∴△BCE是等腰直角三角形,设CE=x,则BE=x,∵CD=80m,∴DE=(80﹣x)m,Rt△BDE中,∠BDC=56°19',∴tan56°19'=,即=1.5,解得x=48(m),∴BE=CE=48m,Rt△ACD中,∠ADC=19°17′,CD=80m,∴tan19°17'=,即=0.35,解得AC=28m,∵∠ACD=90°,BE⊥CD于E,AF⊥BE,∴四边形ACEF是矩形,∴AF=CE=48m,EF=AC=28m,∴BF=BE﹣EF=20m,Rt△ABF中,AB===52(m),答:A,B两点之间的距离是52m.【点评】本题考查解直角三角形的应用,涉及勾股定理、矩形判定及性质等知识,解题的关键是适当添加辅助线,构造直角三角形.23.(2021•泰州)如图,游客从旅游景区山脚下的地面A处出发,沿坡角α=30°的斜坡AB步行50m至山坡B处,乘直立电梯上升30m至C处,再乘缆车沿长为180m的索道CD至山顶D处,此时观测C处的俯角为19°30′,索道CD看作在一条直线上.求山顶D的高度.(精确到1m,sin19°30′≈0.33,cos19°30′≈0.94,tan19°30′≈0.35)【考点】解直角三角形的应用﹣坡度坡角问题;解直角三角形的应用﹣仰角俯角问题.【专题】解直角三角形及其应用;运算能力;模型思想.【分析】通过作垂线,构造直角三角形,利用直角三角形的边角关系分别求出DE,FG 即可.【解答】解:如图,过点B、C分别作CE⊥DG,BF⊥DG垂足为E、F,延长CB交AG 于点H,由题意可知,∠DCE=19°30′,CD=180m,BC=EF=30m,在Rt△ABH中,∠α=30°,AB=50m,∴BH=AB=25(m)=FG,在Rt△DCE中,∠DCE=19°30′,CD=180m,∴DE=sin∠DCE•CD≈0.33×180=59.4(m),∴DG=DE+EF+FG=59.4+30+25=114.4≈114(m),答:山顶D的高度约为114m.【点评】本题考查解直角三角形,掌握直角三角形的边角关系是正确解答的前提,构造直角三角形是解决问题的关键..24.(2021•盐城)某种落地灯如图1所示,AB为立杆,其高为84cm;BC为支杆,它可绕点B旋转,其中BC长为54cm;DE为悬杆,滑动悬杆可调节CD的长度.支杆BC与悬杆DE之间的夹角∠BCD为60°.(1)如图2,当支杆BC与地面垂直,且CD的长为50cm时,求灯泡悬挂点D距离地面的高度;(2)在图2所示的状态下,将支杆BC绕点B顺时针旋转20°,同时调节CD的长(如图3),此时测得灯泡悬挂点D到地面的距离为90cm,求CD的长.(结果精确到1cm,参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)。
2011年中考数学试题精选汇编《矩形、菱形、正方形》
2011年中考数学试题精选汇编《矩形、菱形、正方形》一、选择题1. (2011浙江省舟山,10,3分)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm 2,四边形ABCD 面积是11cm 2,则①②③④四个平行四边形周长的总和为( )(A )48cm(B )36cm (C )24cm (D )18cm【答案】A 2. (2011山东德州8,3分)图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3),……,则第n 个图形的周长是(A )2n (B )4n (C )12n + (D )22n +【答案】C3. (2011山东泰安,17 ,3分)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为A.17B.17C.18D.19图1图2 图3……(第10题) FA B C D H E① ②③ ④ ⑤4. (2011山东泰安,19 ,3分)如图,点O是矩形ABCD的中心,E是AB上的点,沿CE 折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为A.23B. 332C. 3D.6【答案】A5. (2011浙江杭州,10,3)在矩形ABCD中,有一个菱形B F D E(点E,F分别在线段AB,CD上),记它们的面积分别为ABCD BFDES S和.现给出下列命题:()①若ABCDBFDESStan EDF∠=.②若2,DE BD EF=∙则2DF AD=.则:A.①是真命题,②是真命题 B.①是真命题,②是假命题C.①是假命题,②是真命题 D,①是假命题,②是假命题【答案】A6. (2011浙江衢州,1,3分)衢州市新农村建设推动了农村住宅旧貌变新颜,如图为一农村民居侧面截图,屋坡AF AG、分别架在墙体的点B、点C处,且AB AC=,侧面四边形BDEC为矩形,若测得100FAG∠=︒,则FBD∠=( )A. 35°B. 40°C. 55°D. 70°【答案】C7. (2011浙江温州,6,4分)如图,在矩形ABCD中,对角线AC,BD交于点O.已知∠AOB= 60°,AC=16,则图中长度为8的线段有( )A.2条B.4条C.5条D.6条8. 2011四川重庆,10,4分)如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =3.其中正确结论的个数是( )A .1B .2C .3D .4【答案】C9. (2011浙江省嘉兴,10,4分)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm 2,四边形ABCD 面积是11cm 2,则①②③④四个平行四边形周长的总和为( )(A )48cm(B )36cm (C )24cm (D )18cm【答案】A 10.(2011台湾台北,29)如图(十二),长方形ABCD 中,E 为BC 中点,作AEC 的角平分线交AD 于F 点。
2012年全国中考数学试题分类解析汇编专题44:矩形、菱形、正方形
2012年全国中考数学试题分类解析汇编(159套63专题)专题44:矩形、菱形、正方形一、选择题1. (2012天津市3分)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD 至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为【】(A1(B)3(C(D1【答案】D。
【考点】正方形的性质,勾股定理。
【分析】利用勾股定理求出CM的长,即ME的长,有DM=DE,所以可以求出DE,从而得到DG的长:∵四边形ABCD是正方形,M为边AD的中点,∴DM=12DC=1。
∴CM=1。
∵四边形EDGF1。
故选D。
2. (2012安徽省4分)为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为【】A.22a B. 32a C. 42a D.52a【答案】A 。
【考点】正多边形和圆,等腰直角三角形的性质,正方形的性质。
【分析】图案中间的阴影部分是正方形,面积是2a ,由于原来地砖更换成正八边形,四周一个阴影部分是对角线为a 的正方形的一半,它的面积用对角线积的一半来计算:222114222a a a +⨯⨯=。
故选A 。
3. (2012山西省2分)如图,已知菱形ABCD 的对角线AC .BD 的长分别为6cm 、8cm ,AE⊥BC 于点E ,则AE 的长是【 】A .B .C .48cm 5D .24cm 5 【答案】D 。
【考点】菱形的性质,勾股定理。
【分析】∵四边形ABCD 是菱形,∴CO=12AC=3,BO=12BD=,AO⊥BO,∴5=。
∴ABCD 11S BD AC 682422=⋅=⨯⨯=菱形。
又∵ABCD S BC AE =⋅菱形,∴BC·AE=24,即()24AE cm 5=。
故选D 。
4. (2012陕西省3分)如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,OE⊥AB,垂足为E ,若∠ADC=1300,则∠AOE 的大小为【 】A .75°B .65°C .55°D .50°【答案】B 。
2014年全国中考数学试题分类汇编25 矩形菱形与正方形(含解析)
矩形菱形与正方形一、选择题1. (2014•安徽省,第10题4分)如图,正方形ABCD的对角线BD长为2,若直线l满足:①点D到直线l的距离为;②A、C两点到直线l的距离相等.则符合题意的直线l的条数为()A. 1 B. 2 C. 3 D. 4考点:正方形的性质.菁优网分析:连接AC与BD相交于O,根据正方形的性质求出OD=,然后根据点到直线的距离和平行线间的距离相等解答.解答:解:如图,连接AC与BD相交于O,∵正方形ABCD的对角线BD长为2,∴OD=,∴直线l∥AC并且到D的距离为,同理,在点D的另一侧还有一条直线满足条件,故共有2条直线l.故选B.点评:本题考查了正方形的性质,主要利用了正方形的对角线互相垂直平分,点D到O 的距离小于是本题的关键.2. (2014•福建泉州,第5题3分)正方形的对称轴的条数为()3. (2014•珠海,第2题3分)边长为3cm的菱形的周长是()4.(2014•广西玉林市、防城港市,第6题3分)下列命题是假命题的是()5.(2014•毕节地区,第8题3分)如图,菱形ABCD中,对角线AC、BC相交于点O,H 为AD边中点,菱形ABCD的周长为28,则OH的长等于()AAB6.(2014•襄阳,第12题3分)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()PE===7.(2014•孝感,第9题3分)如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()8.(2014·台湾,第12题3分)如图,D 为△ABC 内部一点,E 、F 两点分别在AB 、BC 上,且四边形DEBF 为矩形,直线CD 交AB 于G 点.若CF =6,BF =9,AG =8,则△ADC 的面积为何?( )A .16B .24C .36D .54分析:由于△ADC =△AGC ﹣△ADG ,根据矩形的性质和三角形的面积公式计算即可求解. 解:△ADC =△AGC ﹣△ADG =12×AG ×BC ﹣12×AG ×BF=12×8×(6+9)﹣12×8×9=60﹣36=24. 故选:B .点评:考查了三角形的面积和矩形的性质,本题关键是活用三角形面积公式进行计算. 9.(2014·台湾,第27题3分)如图,矩形ABCD 中,AD =3AB ,O 为AD 中点,是半圆.甲、乙两人想在上取一点P ,使得△PBC 的面积等于矩形ABCD 的面积其作法如下: (甲) 延长BO 交于P 点,则P 即为所求;(乙) 以A 为圆心,AB 长为半径画弧,交于P 点,则P 即为所求. 对于甲、乙两人的作法,下列判断何者正确?( )A .两人皆正确B .两人皆错误C .甲正确,乙错误D .甲错误,乙正确分析:利用三角形的面积公式进而得出需P甲H=P乙K=2AB,即可得出答案.解:要使得△PBC的面积等于矩形ABCD的面积,需P甲H=P乙K=2A B.故两人皆错误.故选:B.点评:此题主要考查了三角形面积求法以及矩形的性质,利用四边形与三角形面积关系得出是解题关键.10.(2014•浙江宁波,第6题4分)菱形的两条对角线长分别是6和8,则此菱形的边长是()===511.(2014•浙江宁波,第11题4分)如图,正方形ABCD和正方形CEFG中,点D在CG 上,BC=1,CE=3,H是AF的中点,那么CH的长是()..=,=3,===2,=AF=×2=.11.(2014•呼和浩特,第9题3分)已知矩形ABCD的周长为20cm,两条对角线AC,BD 相交于点O,过点O作AC的垂线EF,分别交两边AD,BC于E,F(不与顶点重合),则以下关于△CDE与△ABF判断完全正确的一项为()=12. (2014•湘潭,第7题,3分)以下四个命题正确的是()13. (2014•株洲,第7题,3分)已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()14. (2014年江苏南京,第6题,2分)如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是()(第3题图)A.(,3)、(﹣,4)B.(,3)、(﹣,4)C.(,)、(﹣,4)D.(,)、(﹣,4)考点:矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质。
全国181套中考数学试题分类汇编33网格问题
全国181套中考数学试题分类汇编33⽹格问题33⽹格问题⼀、选择题1.(浙江⾈⼭、嘉兴3分)如图,点A、B、C、D、O都在⽅格纸的格点上,若△COD是由△AOB 绕点O按逆时针⽅向旋转⽽得,则旋转的⾓度为(A)30°(B)45°(C)90°(D)135°【答案】C。
【考点】旋转的性质,勾股定理的逆定理。
【分析】△COD是由△AOB绕点O按逆时针⽅向旋转⽽得,由图可知,∠AOC为旋转⾓,可利⽤△AOC的三边关系解答:设⼩⽅格的边长为1,从图知,=AC=4。
从⽽OA,OC,AC满⾜OC2+OA2=AC2,∴△A OC是直⾓三⾓形,∴∠AOC=90°。
故选C。
2.(浙江⾦华、丽⽔3分)如图,在平⾯直⾓坐标系中,过格点A,B,C作⼀圆弧,点B与下列格点的连线中,能够与该圆弧相切的是A、点(0,3)B、点(2,3)C、点(5,1)D、点(6,1)【答案】 C。
【考点】切线的性质;坐标与图形性质;勾股定理;垂径定理。
【分析】如图,根据垂径定理的性质得出圆⼼所在位置O(2,0),再根据切线的性质得出∠OBD+∠EBF=90°时,BF与圆相切,∴当△BOD≌△FBE时,∴EF=BD=2,F点的坐标为:(5,1)。
故选C。
3.(⼴西贺州3分)如图,在⽅格纸中的△ABC经过变换得到△DEF,正确的变换是A.把△ABC向右平移6格,B.把△ABC向右平移4格,再向上平移1格C.把△ABC绕着点A顺时针⽅向90o旋转,再右平移6格D.把△ABC绕着点A逆时针⽅向90o旋转,再右平移6格【答案】D。
【考点】平移和旋转变换。
【分析】根据平移和旋转变换的特点,直接得出结果。
故选D。
4.(⼴西南宁3分)在边长为1的⼩正⽅形组成的⽹格中,有如图所⽰的A 、B 两点,在格点中任意放置点C ,恰好能使△A BC 的⾯积为1的概率为A .3 25 B .4 25 C . 1 5 D . 625【答案】D 。
新中考数学真题分项汇编专题16矩形菱形正方形(共50题)(原卷版)
专题16矩形菱形正方形(共50题)一.选择题(共24小题)1.(2020•荆门)如图,菱形ABCD 中,E ,F 分别是AD ,BD 的中点,若EF =5,则菱形ABCD 的周长为( )A .20B .30C .40D .502.(2020•黄冈)若菱形的周长为16,高为2,则菱形两邻角的度数之比为( )A .4:1B .5:1C .6:1D .7:13.(2020•牡丹江)如图,在平面直角坐标系中,O 是菱形ABCD 对角线BD 的中点,AD ∥x 轴且AD =4,∠A =60°,将菱形ABCD 绕点O 旋转,使点D 落在x 轴上,则旋转后点C 的对应点的坐标是( )A .(0,2√3)B .(2,﹣4)C .(2√3,0)D .(0,2√3)或(0,﹣2√3)4.(2020•盐城)如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为BC 中点,AC =6,BD =8.则线段OH 的长为( )A .125 B .52 C .3 D .55.(2020•辽阳)如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,AC =8.BD =6,点E 是CD上一点,连接OE ,若OE =CE ,则OE 的长是( )A .2B .52C .3D .46.(2020•黑龙江)如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DH ⊥AB 于点H ,连接OH ,若OA =6,S 菱形ABCD =48,则OH 的长为( )A .4B .8C .√13D .67.(2020•黑龙江)如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DH ⊥AB 于点H ,连接OH ,若OA =6,OH =4,则菱形ABCD 的面积为( )A .72B .24C .48D .968.(2020•绥化)如图,四边形ABCD 是菱形,E 、F 分别是BC 、CD 两边上的点,不能保证△ABE 和△ADF一定全等的条件是( )A .∠BAF =∠DAEB .EC =FC C .AE =AFD .BE =DF9.(2020•乐山)如图,在菱形ABCD 中,AB =4,∠BAD =120°,O 是对角线BD 的中点,过点O 作OE⊥CD 于点E ,连结OA .则四边形AOED 的周长为( )A .9+2√3B .9+√3C .7+2√3D .810.(2020•甘孜州)如图,菱形ABCD 中,对角线AC ,BD 相交于点O ,E 为AB 的中点.若菱形ABCD 的周长为32,则OE 的长为( )A .3B .4C .5D .611.(2020•贵阳)菱形的两条对角线长分别是6和8,则此菱形的周长是( )A .5B .20C .24D .3212.(2020•南充)如图,面积为S 的菱形ABCD 中,点O 为对角线的交点,点E 是线段BC 的中点,过点E 作EF ⊥BD 于F ,EG ⊥AC 于G ,则四边形EFOG 的面积为( )A .14SB .18SC .112S D .116S13.(2020•遵义)如图,在菱形ABCD 中,AB =5,AC =6,过点D 作DE ⊥BA ,交BA 的延长线于点E ,则线段DE 的长为( )A .125 B .185 C .4 D .24514.(2020•湘西州)如图,在平面直角坐标系xOy中,矩形ABCD的顶点A在x轴的正半轴上,矩形的另一个顶点D在y轴的正半轴上,矩形的边AB=a,BC=b,∠DAO=x,则点C到x轴的距离等于()A.a cos x+b sin x B.a cos x+b cos xC.a sin x+b cos x D.a sin x+b sin x15.(2020•怀化)在矩形ABCD中,AC、BD相交于点O,若△AOB的面积为2,则矩形ABCD的面积为()A.4 B.6 C.8 D.1016.(2020•达州)如图,∠BOD=45°,BO=DO,点A在OB上,四边形ABCD是矩形,连接AC、BD 交于点E,连接OE交AD于点F.下列4个判断:①OE平分∠BOD;②OF=BD;③DF=√2AF;④若点G是线段OF的中点,则△AEG为等腰直角三角形.正确判断的个数是()A.4 B.3 C.2 D.117.(2020•泰安)如图,矩形ABCD中,AC,BD相交于点O,过点B作BF⊥AC交CD于点F,交AC于点M,过点D作DE∥BF交AB于点E,交AC于点N,连接FN,EM.则下列结论:①DN=BM;②EM∥FN;③AE=FC;④当AO=AD时,四边形DEBF是菱形.其中,正确结论的个数是()A.1个B.2个C.3个D.4个18.(2020•连云港)如图,将矩形纸片ABCD沿BE折叠,使点A落在对角线BD上的A'处.若∠DBC=24°,则∠A'EB等于()A.66°B.60°C.57°D.48°19.(2020•天津)如图,四边形OBCD是正方形,O,D两点的坐标分别是(0,0),(0,6),点C在第一象限,则点C的坐标是()A.(6,3)B.(3,6)C.(0,6)D.(6,6)20.(2020•黑龙江)如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∠DAM =45°,点F在射线AM上,且AF=√2BE,CF与AD相交于点G,连接EC、EF、EG.则下列结论:①∠ECF=45°;②△AEG的周长为(1+√22)a;③BE2+DG2=EG2;④△EAF的面积的最大值是18a2;⑤当BE=13a时,G是线段AD的中点.其中正确的结论是()A .①②③B .②④⑤C .①③④D .①④⑤21.(2020•河南)如图,在△ABC 中,∠ACB =90°,边BC 在x 轴上,顶点A ,B 的坐标分别为(﹣2,6)和(7,0).将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,点D 的坐标为( )A .(32,2)B .(2,2)C .(114,2) D .(4,2)22.(2020•湖州)七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形可以制作一副中国七巧板或一副日本七巧板,如图1所示.分别用这两副七巧板试拼如图2中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是( )A .1和1B .1和2C .2和1D .2和223.(2020•台州)下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是( )A .由②推出③,由③推出①B .由①推出②,由②推出③C .由③推出①,由①推出②D .由①推出③,由③推出② 24.(2020•菏泽)如果顺次连接四边形的各边中点得到的四边形是矩形,那么原来四边形的对角线一定满足的条件是( )A .互相平分B .相等C.互相垂直D.互相垂直平分二.填空题(共15小题)25.(2020•常州)数学家笛卡尔在《几何》一书中阐述了坐标几何的思想,主张取代数和几何中最好的东西,互相以长补短.在菱形ABCD中,AB=2,∠DAB=120°.如图,建立平面直角坐标系xOy,使得边AB在x轴正半轴上,点D在y轴正半轴上,则点C的坐标是.26.(2020•营口)如图,在菱形ABCD中,对角线AC,BD交于点O,其中OA=1,OB=2,则菱形ABCD 的面积为.27.(2020•陕西)如图,在菱形ABCD中,AB=6,∠B=60°,点E在边AD上,且AE=2.若直线l经过点E,将该菱形的面积平分,并与菱形的另一边交于点F,则线段EF的长为.28.(2020•哈尔滨)如图,在菱形ABCD中,对角线AC、BD相交于点O,点E在线段BO上,连接AE,若CD=2BE,∠DAE=∠DEA,EO=1,则线段AE的长为.29.(2020•无锡)如图,在菱形ABCD中,∠B=50°,点E在CD上,若AE=AC,则∠BAE=°.30.(2020•淮安)菱形的两条对角线长分别为6和8,则这个菱形的边长为 .31.(2020•嘉兴)如图,▱ABCD 的对角线AC ,BD 相交于点O ,请添加一个条件: ,使▱ABCD 是菱形.32.(2020•菏泽)如图,矩形ABCD 中,AB =5,AD =12,点P 在对角线BD 上,且BP =BA ,连接AP 并延长,交DC 的延长线于点Q ,连接BQ ,则BQ 的长为 .33.(2020•绍兴)将两条邻边长分别为√2,1的矩形纸片剪成四个等腰三角形纸片(无余纸片),各种剪法剪出的等腰三角形中,其中一个等腰三角形的腰长可以是下列数中的 (填序号).①√2,②1,③√2−1,④√32,⑤√3. 34.(2020•青岛)如图,在正方形ABCD 中,对角线AC 与BD 交于点O ,点E 在CD 的延长线上,连接AE ,点F 是AE 的中点,连接OF 交AD 于点G .若DE =2,OF =3,则点A 到DF 的距离为 .35.(2020•连云港)如图,将5个大小相同的正方形置于平面直角坐标系中,若顶点M 、N 的坐标分别为(3,9)、(12,9),则顶点A 的坐标为 .36.(2020•绍兴)如图1,直角三角形纸片的一条直角边长为2,剪四块这样的直角三角形纸片,把它们按图2放入一个边长为3的正方形中(纸片在结合部分不重叠无缝隙),则图2中阴影部分面积为 .37.(2020•枣庄)如图,E ,F 是正方形ABCD 的对角线AC 上的两点,AC =8,AE =CF =2,则四边形BEDF的周长是 .38.(2020•天水)如图,将正方形OEFG 放在平面直角坐标系中,O 是坐标原点,点E 的坐标为(2,3),则点F 的坐标为 .39.(2020•德州)如图,在矩形ABCD 中,AB =√3+2,AD =√3.把AD 沿AE 折叠,使点D 恰好落在AB边上的D ′处,再将△AED ′绕点E 顺时针旋转α,得到△A 'ED ″,使得EA ′恰好经过BD ′的中点F .A ′D ″交AB 于点G ,连接AA ′.有如下结论:①A ′F 的长度是√6−2;②弧D 'D ″的长度是5√312π;③△A ′AF ≌△A ′EG ;④△AA ′F ∽△EGF .上述结论中,所有正确的序号是 .三.解答题(共11小题)40.(2020•福建)如图,点E,F分别在菱形ABCD的边BC,CD上,且BE=DF.求证:∠BAE=∠DAF.41.(2020•滨州)如图,过▱ABCD对角线AC与BD的交点E作两条互相垂直的直线,分别交边AB、BC、CD、DA于点P、M、Q、N.(1)求证:△PBE≌△QDE;(2)顺次连接点P、M、Q、N,求证:四边形PMQN是菱形.42.(2020•郴州)如图,在菱形ABCD中,将对角线AC分别向两端延长到点E和F,使得AE=CF.连接DE,DF,BE,BF.求证:四边形BEDF是菱形.43.(2020•连云港)如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.44.(2020•聊城)如图,在▱ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC,若AD=AF,求证:四边形ABFC是矩形.45.(2020•遂宁)如图,在△ABC中,AB=AC,点D、E分别是线段BC、AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:△BDE≌△F AE;(2)求证:四边形ADCF为矩形.46.(2020•北京)如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF⊥AB,OG∥EF.(1)求证:四边形OEFG是矩形;(2)若AD=10,EF=4,求OE和BG的长.47.(2020•湘西州)如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:△BAE≌△CDE;(2)求∠AEB的度数.48.(2020•自贡)如图,在正方形ABCD中,点E在BC边的延长线上,点F在CD边的延长线上,且CE =DF,连接AE和BF相交于点M.求证:AE=BF.49.(2020•遵义)如图,在边长为4的正方形ABCD中,点E为对角线AC上一动点(点E与点A、C不重合),连接DE,作EF⊥DE交射线BA于点F,过点E作MN∥BC分别交CD、AB于点M、N,作射线DF交射线CA于点G.(1)求证:EF=DE;(2)当AF=2时,求GE的长.50.(2020•临沂)如图,菱形ABCD的边长为1,∠ABC=60°,点E是边AB上任意一点(端点除外),线段CE的垂直平分线交BD,CE分别于点F,G,AE,EF的中点分别为M,N.(1)求证:AF=EF;(2)求MN+NG的最小值;(3)当点E在AB上运动时,∠CEF的大小是否变化?为什么?。
【精品】2020版中考数学分类汇编:考点26 正方形试题(含解析)
中考数学试题分类汇编:考点26 正方形一.选择题(共4小题)1.(2018•无锡)如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH的顶点G、H都在边AD上,若AB=3,BC=4,则tan∠AFE的值()A.等于B.等于C.等于D.随点E位置的变化而变化【分析】根据题意推知EF∥AD,由该平行线的性质推知△AEH∽△ACD,结合该相似三角形的对应边成比例和锐角三角函数的定义解答.【解答】解:∵EF∥AD,∴∠AFE=∠FAG,∴△AEH∽△ACD,∴==.设EH=3x,AH=4x,∴HG=GF=3x,∴tan∠AFE=tan∠FAG===.故选:A.2.(2018•宜昌)如图,正方形ABCD的边长为1,点E,F分别是对角线AC上的两点,EG ⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.则图中阴影部分的面积等于()A.1 B.C.D.【分析】根据轴对称图形的性质,解决问题即可;【解答】解:∵四边形ABCD是正方形,∴直线AC是正方形ABCD的对称轴,∵EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.∴根据对称性可知:四边形EFHG的面积与四边形EFJI的面积相等,∴S阴=S正方形ABCD=,故选:B.3.(2018•湘西州)下列说法中,正确个数有()①对顶角相等;②两直线平行,同旁内角相等;③对角线互相垂直的四边形为菱形;④对角线互相垂直平分且相等的四边形为正方形.A.1个B.2个C.3个D.4个【分析】根据对顶角的性质,菱形的判定,正方形的判定,平行线的性质,可得答案.【解答】解:①对顶角相等,故①正确;②两直线平行,同旁内角互补,故②错误;③对角线互相垂直且平分的四边形为菱形,故③错误;④对角线互相垂直平分且相等的四边形为正方形,故④正确,故选:B.4.(2018•张家界)下列说法中,正确的是()A.两条直线被第三条直线所截,内错角相等B.对角线相等的平行四边形是正方形C.相等的角是对顶角D.角平分线上的点到角两边的距离相等【分析】根据平行线的性质、正方形的判定、矩形的判定、对顶角的性质、角平分线性质逐个判断即可.【解答】解:A、两条平行线被第三条直线所截,内错角才相等,错误,故本选项不符合题意;B、对角线相等的四边形是矩形,不一定是正方形,错误,故本选项不符合题意;C、相等的角不一定是对顶角,错误,故本选项不符合题意;D、角平分线上的点到角的两边的距离相等,正确,故本选项符合题意;故选:D.二.填空题(共7小题)5.(2018•武汉)以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是30°或150°.【分析】分等边△ADE在正方形的内部和外部两种情况分别求解可得.【解答】解:如图1,∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°,∴∠BAE=∠CDE=150°,又AB=AE,DC=DE,∴∠AEB=∠CED=15°,则∠BEC=∠AED﹣∠AEB﹣∠CED=30°.如图2,∵△ADE是等边三角形,∴AD=DE,∵四边形ABCD是正方形,∴AD=DC,∴DE=DC,∴∠CED=∠ECD,∴∠CDE=∠ADC﹣∠ADE=90°﹣60°=30°,∴∠CED=∠ECD=(180°﹣30°)=75°,∴∠BEC=360°﹣75°×2﹣60°=150°.故答案为:30°或150°.6.(2018•呼和浩特)如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到.若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM=HM;③无论点M运动到何处,∠CHM一定大于135°.其中正确结论的序号为①②③.【分析】先判定△MEH≌△DAH(SAS),即可得到△DHM是等腰直角三角形,进而得出DM=HM;依据当∠DHC=60°时,∠ADH=60°﹣45°=15°,即可得到Rt△ADM中,DM=2AM,即可得到DM=2BE;依据点M是边BA延长线上的动点(不与点A重合),且AM<AB,可得∠AHM<∠BAC=45°,即可得出∠CHM>135°.【解答】解:由题可得,AM=BE,∴AB=EM=AD,∵四边形ABCD是正方形,EH⊥AC,∴EM=AH,∠AHE=90°,∠MEH=∠DAH=45°=∠EAH,∴EH=AH,∴△MEH≌△DAH(SAS),∴∠MHE=∠DHA,MH=DH,∴∠MHD=∠AHE=90°,△DHM是等腰直角三角形,∴DM=HM,故②正确;当∠DHC=60°时,∠ADH=60°﹣45°=15°,∴∠ADM=45°﹣15°=30°,∴Rt△ADM中,DM=2AM,即DM=2BE,故①正确;∵点M是边BA延长线上的动点(不与点A重合),且AM<AB,∴∠AHM<∠BAC=45°,∴∠CHM>135°,故③正确;故答案为:①②③.7.(2018•青岛)如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.【分析】根据正方形的四条边都相等可得AB=AD,每一个角都是直角可得∠BAE=∠D=90°,然后利用“边角边”证明△ABE≌△DAF得∠ABE=∠DAF,进一步得∠AGE=∠BGF=90°,从而知GH=BF,利用勾股定理求出BF的长即可得出答案.【解答】解:∵四边形ABCD为正方形,∴∠BAE=∠D=90°,AB=AD,在△ABE和△DAF中,∵,∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=∠BGF=90°,∵点H为BF的中点,∴GH=BF,∵BC=5、CF=CD﹣DF=5﹣2=3,∴BF==,∴GH=BF=,故答案为:.8.(2018•咸宁)如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为(﹣1,5).【分析】结合全等三角形的性质可以求得点G的坐标,再由正方形的中心对称的性质求得点F的坐标.【解答】解:如图,过点E作x轴的垂线EH,垂足为H.过点G作x轴的垂线EG,垂足为G,连接GE、FO交于点O′.∵四边形OEFG是正方形,∴OG=EO,∠GOM=∠OEH,∠OGM=∠EOH,在△OGM与△EOH中,∴△OGM≌△EOH(ASA)∴GM=OH=2,OM=EH=3,∴G(﹣3,2).∴O′(﹣,).∵点F与点O关于点O′对称,∴点F的坐标为(﹣1,5).故答案是:(﹣1,5).9.(2018•江西)在正方形ABCD中,AB=6,连接AC,BD,P是正方形边上或对角线上一点,若PD=2AP,则AP的长为2或2或﹣.【分析】根据正方形的性质得出AC⊥BD,AC=BD,OB=OA=OC=OD,AB=BC=AD=CD=6,∠ABC=90°,根据勾股定理求出AC、BD、求出OA、OB、OC、OD,画出符合的三种情况,根据勾股定理求出即可.【解答】解:∵四边形ABCD是正方形,AB=6,∴AC⊥BD,AC=BD,OB=OA=OC=OD,AB=BC=AD=CD=6,∠ABC=∠DAB=90°,在Rt△ABC中,由勾股定理得:AC===6,∴OA=OB=OC=OD=3,有三种情况:①点P在AD上时,∵AD=6,PD=2AP,∴AP=2;②点P在AC上时,设AP=x,则DP=2x,在Rt△DPO中,由勾股定理得:DP2=DO2+OP2,(2x)2=(3)2+(3﹣x)2,解得:x=﹣(负数舍去),即AP=﹣;③点P在AB上时,设AP=y,则DP=2y,在Rt△APD中,由勾股定理得:AP2+AD2=DP2,y2+62=(2y)2,解得:y=2(负数舍去),即AP=2;故答案为:2或2或﹣.10.(2018•潍坊)如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′与CD相交于点M,则点M的坐标为(﹣1,).【分析】连接AM,由旋转性质知AD=AB′=1、∠BAB′=30°、∠B′AD=60°,证Rt△ADM≌Rt△AB′M得∠DAM=∠B′AD=30°,由DM=ADtan∠DAM可得答案.【解答】解:如图,连接AM,∵将边长为1的正方形ABCD绕点A逆时针旋转30°得到正方形AB'C′D′,∴AD=AB′=1,∠BAB′=30°,∴∠B′AD=60°,在Rt△ADM和Rt△AB′M中,∵,∴Rt△ADM≌Rt△AB′M(HL),∴∠DAM=∠B′AM=∠B′AD=30°,∴DM=ADtan∠DAM=1×=,∴点M的坐标为(﹣1,),故答案为:(﹣1,).11.(2018•台州)如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G.若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG的周长为+3 .【分析】根据面积之比得出△BGC的面积等于正方形面积的,进而依据△BCG的面积以及勾股定理,得出BG+CG的长,进而得出其周长.【解答】解:∵阴影部分的面积与正方形ABCD的面积之比为2:3,∴阴影部分的面积为×9=6,∴空白部分的面积为9﹣6=3,由CE=DF,BC=CD,∠BCE=∠CDF=90°,可得△BCE≌△CDF,∴△BCG的面积与四边形DEGF的面积相等,均为×3=,设BG=a,CG=b,则ab=,又∵a2+b2=32,∴a2+2ab+b2=9+6=15,即(a+b)2=15,∴a+b=,即BG+CG=,∴△BCG的周长=+3,故答案为: +3.三.解答题(共6小题)12.(2018•盐城)在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.【分析】(1)根据正方形的性质和全等三角形的判定证明即可;(2)四边形AECF是菱形,根据对角线垂直的平行四边形是菱形即可判断;【解答】证明:(1)∵正方形ABCD,∴AB=AD,∴∠ABD=∠ADB,∴∠ABE=∠ADF,在△ABE与△ADF中,∴△ABE≌△ADF(SAS);(2)连接AC,四边形AECF是菱形.理由:∵正方形ABCD,∴OA=OC,OB=OD,AC⊥EF,∴OB+BE=OD+DF,即OE=OF,∵OA=OC,OE=OF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形.13.(2018•吉林)如图,在正方形ABCD中,点E,F分别在BC,CD上,且BE=CF,求证:△ABE≌△BCF.【分析】根据正方形的性质,利用SAS即可证明;【解答】证明:∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,在△ABE和△BCF中,,∴△ABE≌△BCF.14.(2018•白银)已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.(1)求证:△BGF≌△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.【分析】(1)根据三角形中位线定理和全等三角形的判定证明即可;(2)利用正方形的性质和矩形的面积公式解答即可.【解答】解:(1)∵点F,G,H分别是BC,BE,CE的中点,∴FH∥BE,FH=BE,FH=BG,∴∠CFH=∠CBG,∵BF=CF,∴△BGF≌△FHC,(2)当四边形EGFH是正方形时,可得:EF⊥GH且EF=GH,∵在△BEC中,点,H分别是BE,CE的中点,∴GH=,且GH∥BC,∴EF⊥BC,∵AD∥BC,AB⊥BC,∴AB=EF=GH=a,∴矩形ABCD的面积=.15.(2018•潍坊)如图,点M是正方形ABCD边CD上一点,连接AM,作DE⊥AM于点E,BF ⊥AM于点F,连接BE.(1)求证:AE=BF;(2)已知AF=2,四边形ABED的面积为24,求∠EBF的正弦值.【分析】(1)通过证明△ABF≌△DEA得到BF=AE;(2)设AE=x,则BF=x,DE=AF=2,利用四边形ABED的面积等于△ABE的面积与△ADE的面积之和得到•x•x+•x•2=24,解方程求出x得到AE=BF=6,则EF=x﹣2=4,然后利用勾股定理计算出BE,最后利用正弦的定义求解.【解答】(1)证明:∵四边形ABCD为正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于点E,BF⊥AM于点F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DEA中,∴△ABF≌△DEA(AAS),∴BF=AE;(2)解:设AE=x,则BF=x,DE=AF=2,∵四边形ABED的面积为24,∴•x•x+•x•2=24,解得x1=6,x2=﹣8(舍去),∴EF=x﹣2=4,在Rt△BEF中,BE==2,∴sin∠EBF===.16.(2018•湘潭)如图,在正方形ABCD中,AF=BE,AE与DF相交于点O.(1)求证:△DAF≌△ABE;(2)求∠AOD的度数.【分析】(1)利用正方形的性质得出AD=AB,∠DAB=∠ABC=90°,即可得出结论;(2)利用(1)的结论得出∠ADF=∠BAE,进而求出∠ADF+∠DAO=90°,最后用三角形的内角和定理即可得出结论.【解答】(1)证明:∵四边形ABCD是正方形,∴∠DAB=∠ABC=90°,AD=AB,在△DAF和△ABE中,,∴△DAF≌△ABE(SAS),(2)由(1)知,△DAF≌△ABE,∴∠ADF=∠BAE,∵∠ADF+∠DAO=∠BAE+∠DAO=∠DAB=90°,∴∠AOD=180°﹣(∠ADF+DAO)=90°.17.(2018•遵义)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.【分析】(1)证△OAM≌△OBN即可得;(2)作OH⊥AD,由正方形的边长为4且E为OM的中点知OH=HA=2、HM=4,再根据勾股定理得OM=2,由直角三角形性质知MN=OM.【解答】解:(1)∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为4,∴OH=HA=2,∵E为OM的中点,∴HM=4,则OM==2,∴MN=OM=2.。
中考数学真题分类汇编及解析(二十五)勾股定理
(2022•湖州中考)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,在6×6的正方形网格图形ABCD中,M,N分别是AB,BC上的格点,BM=4,BN=2.若点P是这个网格图形中的格点,连结PM,PN,则所有满足∠MPN=45°的△PMN中,边PM的长的最大值是()A.4√2B.6C.2√10D.3√5【解析】选C.如图所示:△MNP为等腰直角三角形,∠MPN=45°,此时PM最长,根据勾股定理得:PM=√22+62=√40=2√10.(2022•宁波中考)如图,在Rt△ABC中,D为斜边AC的中点,E为BD上一点,F为CE中点.若AE=AD,DF=2,则BD的长为()A.2√2B.3C.2√3D.4【解析】选D.因为D为斜边AC的中点,F为CE中点,DF=2,所以AE=2DF=4,因为AE=AD,所以AD=4,在Rt△ABC中,D为斜边AC的中点,所以BD=12AC=AD=4A .2B .32C .12D .√55【解析】选A .由已知可得,大正方形的面积为1×4+1=5,设直角三角形的长直角边为a ,短直角边为b ,则a 2+b 2=5,a ﹣b =1,解得a =2,b =1,所以tan α=a b =21=2(2022·遵义中考)如图1是第七届国际数学教育大会(ICME )会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC .若AB =BC =1,∠AOB =30°,则点B 到OC 的距离为( )A .√55B .2√55C .1D .2 【解析】选B .作BH ⊥OC 于H ,因为∠AOB =30°,∠A =90°,所以OB =2AB =2,在Rt △OBC 中,由勾股定理得,OC =√OB 2+BC 2=√22+12=√5,因为∠CBO =∠BHC =90°,所以∠CBH =∠BOC ,所以cos ∠BOC =cos ∠CBH ,所以OBOC =BHBC ,所以2√5=BH 1,所以BH =2√55.(2022•十堰中考)【阅读材料】如图①,四边形ABCD中,AB=AD,∠B+∠D=180°,点E,F分别在BC,CD 上,若∠BAD=2∠EAF,则EF=BE+DF.【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD.已知CD=CB=100m,∠D=60°,∠ABC=120°,∠BCD=150°,道路AD,AB上分别有景点M,N,且DM=100m,BN=50(√3−1)m,若在M,N 之间修一条直路,则路线M→N的长比路线M→A→N的长少370 m(结果取整数,参考数据:√3≈1.7).【解析】解法一:如图,延长DC,AB交于点G,因为∠D=60°,∠ABC=120°,∠BCD=150°,所以∠A=360°﹣60°﹣120°﹣150°=30°,所以∠G=90°,所以AD=2DG,Rt△CGB中,∠BCG=180°﹣150°=30°,BC=50,CG=50√3,所以DG=CD+CG=100+50√3,所以BG=12所以AD=2DG=200+100√3,AG=√3DG=150+100√3,因为DM=100,所以AM=AD﹣DM=200+100√3−100=100+100√3,因为BG=50,BN=50(√3−1),所以AN=AG﹣BG﹣BN=150+100√3−50﹣50(√3−1)=150+50√3,AN=75+25√3,AH=√3NH=75√3+75,Rt△ANH中,因为∠A=30°,所以NH=12由勾股定理得:MN=√NH2+MH2=√(75+25√3)2+(25√3+25)2=50(√3+1),所以AM+AN﹣MN=100+100√3+150+50√3−50(√3+1)=200+100√3≈370(m).答:路线M→N的长比路线M→A→N的长少370m.解法二:如图,延长DC,AB交于点G,连接CN,CM,则∠G=90°,因为CD=DM,∠D=60°,所以△BCM是等边三角形,所以∠DCM=60°,由解法一可知:CG=50√3,GN=BG+BN=50+50(√3−1)=50√3,所以△CGN是等腰直角三角形,所以∠GCN=45°,所以∠BCN=45°﹣30°=15°,所以∠MCN=150°﹣60°﹣15°=75°=12∠BCD,由【阅读材料】的结论得:MN=DM+BN=100+50(√3−1)=50√3+50,因为AM+AN﹣MN=AD+AG﹣MN=100+100√3+150+50√3−50(√3+1)=200+100√3≈370(m).答:路线M→N的长比路线M→A→N的长少370m.答案:370.(2022•河南中考)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2√2,点D为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为√5或√13.【解析】如图:因为∠ACB=90°,AC=BC=2√2,所以AB=√2AC=4,因为点D为AB的中点,所以CD=AD=12AB=2,∠ADC=90°,因为∠ADQ=90°,所以点C、D、Q在同一条直线上,由旋转得:CQ=CP=CQ′=1,分两种情况:当点Q在CD上,在Rt△ADQ中,DQ=CD﹣CQ=1,所以AQ=√AD2+DQ2=√22+12=√5,当点Q在DC的延长线上,在Rt△ADQ′中,DQ′=CD+CQ ′=3,所以AQ′=√AD2+DQ′2=√22+32=√13,综上所述:当∠ADQ=90°时,AQ的长为√5或√13.答案:√5或√13是25,小正方形的面积是1,则AE=3.【解析】因为大正方形的面积是25,小正方形的面积是1,所以AB=BC=CD=DA=5,EF=FG=GH=HE=1,根据题意,设AF=DE=CH=BG=x,则AE=x﹣1,在Rt△AED中,AE2+ED2=AD2,所以(x﹣1)2+x2=52,解得:x1=4,x2=﹣3(舍去),所以x﹣1=3.答案:3(2022•泰州中考)如图所示的象棋盘中,各个小正方形的边长均为1.“马”从图中的位置出发,不走重复路线,按照“马走日”的规则,走两步后的落点与出发点间的最短距离为√2.【解析】走两步后的落点与出发点间的最短距离为√12+12=√2.答案:√2.(2022•内江中考)勾股定理被记载于我国古代的数学著作《周髀算经》中,汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.图②由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若正方形EFGH的边长为4,则S1+S2+S3=48.【解析】设八个全等的直角三角形的长直角边为a,短直角边是b,则:S1=(a+b)2,S2=42=16,S3=(a﹣b)2,且:a2+b2=EF2=16,所以S1+S2+S3=(a+b)2+16+(a﹣b)2=2(a2+b2)+16=2×16+16=48.。
【2022】苏教版中考数学精编专题《平行四边形、矩形、正方形、菱形》(含答案解析)
【苏教版】中考数学精编专题汇编专题1平行四边形、矩形、菱形、正方形学校:___________姓名:___________班级:___________1.【江苏省南京市中考二模】下列命题中假命题是( ) A 、两组对边分别相等的四边形是平行四边形 B 、两组对角分别相等的四边形是平行四边形C 、一组对边平行一组对角相等的四边形是平行四边形D 、一组对边平行一组对边相等的四边形是平行四边形D 、例如等腰梯形,满足一组对边平行一组对边相等,但它不是平行四边形,所以是个假命题.正确. 故选D .【考点定位】命题与定理.2.【江苏省江阴市中考】如图,菱形ABCD 中,对角线AC 交BD 于O ,AB =8, E 是CD 的中点,则OE 的长等于( )A.2B.3C.4D.5 【答案】C.B【解析】已知菱形ABCD ,根据菱形的性质可得AB=BC=8,OB=OD ,又因E 是CD 的中点,所以OE 为△DBC 的中位线,根据三角形的中位线定理可得OE=BC=4.故选C. 【考点定位】菱形的性质;三角形的中位线定理.3. 【江苏省常州市中考】如图,▱ABCD 的对角线AC 、BD 相交于点O ,则下列说法一定正确的是( )A .AO =ODB .AO ⊥ODC .AO =OCD .AO ⊥AB 【答案】C .【考点定位】平行四边形的性质.4.【江苏省徐州市中考】如图,菱形中,对角线AC 、BD 交于点O ,E 为AD 边中点,菱形ABCD 的周长为28,则OE 的长等于( )【考点定位】菱形的性质.215. 【江苏省徐州市中考模拟】15.如图,四边形ABCD 中,E ,F ,G ,H 分别是边AB 、BC 、CD 、DA 的中点.若四边形EFGH 为菱形,则对角线AC 、BD 应满足条件 .【答案】AC=BD .【考点定位】1.菱形的性质;2.三角形中位线定理.6.【江苏省徐州市中考模拟】将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1,如图2,将Rt△BCD 沿射线BD 方向平移,在平移的过程中,当点B的移动距离为时,四边ABC 1D 1为矩形;当点B 的移动距离为 时,四边形ABC1D 1为菱形.【解析】当点B 的移动距离为时,∠C 1BB 1=60°,则∠ABC 1=90°,根据有一直角的平行四边形是矩形,可判定四边形ABC 1D 1为矩形;当点B 的移动距离为时,D 、B1两点重合,根据对角线互相垂直平分的四边形是菱形,可判定四边形ABC 1D 1为菱形.333如图:【考点定位】1.菱形的判定;2.矩形的判定;3.平移的性质.7. 【江苏省淮安市中考】如图,A,B两地被一座小山阻隔,为测量A,B两地之间的距离,在地面上选一点C,连接CA,CB,分别取CA,CB的中点D、E,测得DE的长度为360米,则A、B两地之间的距离是米.【答案】720.【考点定位】1.三角形中位线定理;2.应用题.8.【江苏省无锡市中考】如图,已知矩形ABCD的对角线长为8cm,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的周长等于 cm.【答案】16.【解析】根据三角形的中位线定理和矩形对角线相等的性质可证得四边形EFGH是菱形,且故答案为:16.【考点定位】三角形的中位线定理;矩形的性质;菱形的判定及性质.9.【江苏省中考模拟】已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.【答案】证明见解析.【解析】试题分析:根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形是平行四边形,可得证明结论.试题解析:证明:如图,连接 BD设对角线交于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵AE=CF,OA﹣AE=OC﹣CF,∴OE=OF.∴四边形BEDF是平行四边形.【考点定位】平行四边形的判定与性质.10.【江苏省常州市中考】如图,在▱ABCD中,∠BCD=120°,分别延长DC、BC到点E,F,使得△BCE和△CDF 都是正三角形.(1)求证:AE=AF;(2)求∠EAF的度数.【答案】(1)证明见试题解析;(2)60°.【考点定位】1.全等三角形的判定与性质;2.等边三角形的性质;3.平行四边形的性质.专题2 圆的有关计算及圆的综合学校:___________姓名:___________班级:___________1.【江苏省南通市九年级上学期期末】如图,⊙O 中,OA ⊥BC ,∠A OB=52°,则∠ADC 的度数为( )A .36°B .26°C . 38°D .46°【答案】D . 【解析】故选D.【考点定位】1.圆周角定理;2.垂径定理.2.【江苏省江阴市九年级下学期期中】一个圆锥底面直径为2,母线为4,则它的侧面积为( ) A . B.C .D .【答案】C.【解析】根据圆锥的侧面积公式S=πrl 可得这个圆锥的侧面积为π×1×4=4π.故选C. 【考点定位】圆锥的侧面积公式.3.【江苏省苏州市区中考】如图,⊙O 上A 、B 、C 三点,若∠B=50,∠A=20°,则∠AOB 等于( ) A 、30° B 、50° C 、70° D 、60°【答案】D .2π12π4π8π【解析】先根据圆周角定理得出∠ACB=∠AOB ,再由三角形内角和定理即可得出结论.∵∠AOB 与∠ACB是同弧所对的圆心角与圆周角,∠B=50,∠A=20°,∴∠ACB=∠AOB .∴180°-∠AOB-∠A=180°-∠ACB-∠B ,即180°-∠AOB-20°=180°-∠AOB-50°,解得∠AOB=60°.故选D .【考点定位】圆周角定理.4.【江苏省南通市九年级上学期期末】某个圆锥的侧面展开图形是一个半径为6cm ,圆心角为120°的扇形,则这个圆锥的底面半径为( )cm . A 、2B 、3C 、4D 、5【答案】A .故选A.【考点定位】弧长的计算.5.【江苏省苏州市中考一模】如图,AB 是⊙O 的切线,切点为B ,AO 交⊙O 于点C ,且AC=OC ,若⊙O 的半径为5,则图中阴影部分的面积是 .. 【解析】直接利用切线的性质结合勾股定理得出AB 的长,再利用锐角三角函数关系得出∠BOC 的度数,结合阴影部分的面积为:S △OBA -S 扇形BOC 求出即可.连接OB ,∵AB 是⊙O 的切线,切点为B ,∴∠OBBA=90°,∵AC=OC ,⊙O 的半径为5,∴AC=5,AB=5,∴∠A=30°,则∠BOC=60°,∴图中阴影部分的面积为:S △OBA -S 扇形BOC =×BO ×AB-.故答案为:121212625π312605360π⨯536225π. 【考点定位】1.扇形面积的计算;2.切线的性质.6.【江苏省徐州中考】13.圆锥底面圆的半径为3m ,其侧面展开图是半圆,则圆锥母线长为 m. 【答案】6.【考点定位】圆锥的计算.7.【江苏省中考】已知扇形的圆心角为120°,弧长为6π,则扇形的面积是 . 【答案】27π.【考点定位】扇形面积的计算.8.【江苏省南京市中考二模】已知等腰△ABC 中,AB=AC=13cm ,BC=10cm ,则△ABC 的内切圆半径为 cm . 【答案】. 【解析】如图,设△ABC 的内切圆半径为r ,由勾股定理得AD=12,再由切线长定理得AE=8,根据勾股定理求得r 即可.如图,∵AB=AC=13cm ,BC=10cm ,∴BD=5cm ,∴AD=12cm ,根据切线长定理,AE=AB-BE=AB-BD=13-5=8,设△ABC 的内切圆半径为r ,∴AO=12-r ,∴(12-r )2-r 2=64,解得r=.故答案为:. 【考点定位】1.三角形的内切圆与内心;2.等腰三角形的性质.9.【江苏省苏州中考一模】如图所示,D 是以AB 为直径的半圆O 上的一点,C 是弧AD 的中点,点M 在AB 上,AD 与CM 交于点N ,CN=AN .625π103103103(1)求证:CM⊥AB;(2)若BD=2,求半圆的直径.【答案】(1)证明见解析;(2)6.【解析】试题解析:(1)证明:如图1,连接BC,则∠ACB=90°,∵CN=AN,∴∠NCA=∠NAC,∴∠MCA=∠DAC,∵C是弧AD的中点,∴∠ABC=∠DAC,∴∠MCA=∠ABC,∵∠CAB=∠BAC,∴△ABC∽△ACM,∴∠AMC=90°,∴CM⊥AB;(2)解:如图2,连接CD,作CE⊥BD,交BD的延长线于E,在△CMB与△BCE中,,【考点定位】1.相似三角形的判定与性质;2,全等三角形的判定与性质;2.圆周角定理.10.【江苏省无锡市中考】已知:如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,且BC =6cm ,AC =8cm ,∠ABD =45º.(1)求BD 的长;(2)求图中阴影部分的面积.【答案】(1)BD =52cm;(2)S 阴影=25π-504cm 2. 【解析】MBC CBE CMB CEB BC BC ∠=∠∠=∠=⎧⎪⎨⎪⎩【考点定位】圆周角定理的推论;勾股定理;扇形的面积公式.专题3 图形的变换、视图与投影学校:___________姓名:___________班级:___________1. 【江苏省苏州市中考一模】下列腾讯QQ表情中,不是轴对称图形的是()【答案】C.【解析】根据轴对称图形的概念求解.A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项正确;D、是轴对称图形,故本选项错误.故选C.【考点定位】轴对称图形.2.【江苏省徐州市中考模拟】下列图形中,既是中心对称图形又是轴对称图形的是()【答案】D.【考点定位】1.中心对称图形;2.轴对称图形.3. 【江苏省淮安市中考】如图所示物体的主视图是()A. B. C. D.【答案】C.【考点定位】简单组合体的三视图.4.【江苏省常州市中考】下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A. B. C. D.【答案】B.故选B.【考点定位】轴对称图形.5.【江苏省常州市中考】将一张宽为4cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是【答案】8cm2 .故答案为:8cm 2.【考点定位】1.翻折变换(折叠问题);2.最值问题.6.【江苏省江阴市中考】如图,Rt ΔABC 中,AB=9,BC=6,∠B=900,将ΔABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN的长为【答案】 4. 【解析】 故答案为:4.【考点定位】翻折变换;勾股定理. 7.【江苏省苏州市区中考】在R t △ABC 中,斜边AB=4,∠B=60°,将△ABC 绕点B 旋转60°,顶点C 运动的路线长是 (结果保留π).【答案】.【解析】将△ABC 绕点B 旋转60°,顶点C 运动的路线长是就是以点B 为圆心,B C 为半径所旋转的弧,根据弧长公式即可求得.∵AB=4,∴BC=2,所以弧长=.故答案为:. 【考点定位】1.弧长的计算;2.旋转的性质.8.【江苏省扬州市2015年中考数学试题】如图,已知Rt △ABC 中,∠ABC =90°,AC =6,BC =4,将△ABC 绕直角顶点C 顺时针旋转90°得到△DEC ,若点F 是DE 的中点,连接AF ,则AF = 23π602180π⨯=23π23π【答案】5【考点定位】旋转的性质9.【江苏省徐州市中考】如图,在方格纸上建立平面直角坐标系,每个小正方形的边长为1.(1)画出△AOB关于x轴对称的△A1OB1.(2)画出将△AOB绕点O顺时针旋转90°的△A2OB2,并判断△A1OB1和△A2OB2在位置上有何关系?若成中心对称,请直接写出对称中心坐标;如成轴对称,请直接写出对称轴的函数关系式.(3)若将△AOB绕点O旋转360°,试求出线段AB扫过的面积.【答案】(1)画图见解析;(2)画图见解析;△A1OB1和△A2OB2是轴对称关系,对称轴为:y=﹣x.(3)2.5π.【解析】试题解析:(1)如图所示:.(2)如图所示:△A1OB1和△A2OB2是轴对称关系,对称轴为:y=﹣x.(3)过点O作OE⊥AB,线段AB2﹣π()2=5π﹣2.5π=2.5π. 【考点定位】1.作图-旋转变换;2.扇形面积的计算;3.作图-轴对称变换.10.【江苏省南京市中考二模试题】△ABC 中,AB=AC=10,BC=12,矩形DEFG 中,EF=4,FG >12.(1)如图①,点A 是FG 的中点,FG ∥BC ,将矩形DEFG 向下平移,直到DE 与BC 重合为止.要研究矩形DEFG 与△ABC 重叠部分的面积,就要进行分类讨论,你认为如何进行分类,写出你的分类方法(无需求重叠部分的面积).(2)如图②,点B 与F 重合,E 、B 、C 在同一直线上,将矩形DEFG 向右平移,直到点E 与C 重合为止.设矩形DEFG 与△ABC 重叠部分的面积为y ,平移的距离为x .①求y 与x 的函数关系式,并写出自变量的取值范围;②在给定的平面直角坐标系中画出y 与x 的大致图象,并在图象上标注出关键点坐标.2【考点定位】几何变换综合题.。
专题20矩形菱形正方形-2021年中考数学真题分项汇编(原卷版)(第02期)
2021年中考数学真题分项汇编【全国通用】(第02期)专题20矩形菱形正方形姓名:__________________ 班级:______________ 得分:_________________ 一、单选题1.如图,在边长为3的正方形ABCD 中,30∠=︒CDE ,DE CF ⊥,则BF 的长是( )A.1 B C D .22.如图,在边长为4的正方形ABCD 中,点E ,F 分别在CD ,AC 上,BF EF ⊥,1CE =,则AF 的长是( )A.B C D .543.如图,矩形AOBC 的顶点A 、B 在坐标轴上,点C 的坐标是(﹣10,8),点D 在AC 上,将BCD 沿BD 翻折,点C 恰好落在OA 边上点E 处,则tan ∠DBE 等于( )A .34B .35C D .124.如图,在等腰直角ABC 中,90C ∠=︒,M 、N 分别为BC 、AC 上的点,50CNM ∠=︒,P 为MN 上的点,且12PC MN =,117BPC ∠=︒,则ABP ∠=( )A .22︒B .23︒C .25︒D .27︒5.如图,在平面直角坐标系中,//AB DC ,AC BC ⊥,5CD AD ==,6AC =,将四边形ABCD 向左平移m 个单位后,点B 恰好和原点O 重合,则m 的值是( )A .11.4B .11.6C .12.4D .12.66.如图1,动点P 从矩形ABCD 的顶点A 出发,在边AB ,BC 上沿A →B →C 的方向,以1cm/s 的速度匀速运动到点C ,APC △的面积S (cm 2)随运动时间t (s )变化的函数图象如图2所示,则AB 的长是( )A .3cm 2B .3cmC .4cmD .6cm7.如图,菱形ABCD 的对角线AC 与BD 相交于点O ,点E 在BD 上,连接AE ,CE ,60ABC ∠=︒,15BCE ∠=︒,2ED =+,则AD =( )A.4 B .3 C .D .28.如图,将图1中的菱形纸片沿对角线剪成4个直角三角形,拼成如图2的四边形ABCD (相邻纸片之间不重叠,无缝隙).若四边形ABCD 的面积为13,中间空白处的四边形EFGH 的面积为1,直角三角形的两条直角边分别为a 和b ,则()2a b +=( )A .12B .13C .24D .259.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,点E 是CD 中点,连接OE ,则下列结论中不一定正确的是( )A .AB =AD B .OE 12=AB C .∠DOE =∠DEO D .∠EOD =∠EDO10.如图,在菱形ABCD 中,点E ,F 分别在AB ,CD 上,且BE =2AE ,DF =2CF ,点G ,H 分别是AC 的三等分点,则S 四边形EHFG ÷S 菱形ABCD 的值为( )A .19B .16C .13D .2911.如图,正方形ABCD 的边长为3,E 为BC 边上一点,BE =1.将正方形沿GF 折叠,使点A 恰好与点E 重合,连接AF ,EF ,GE ,则四边形AGEF 的面积为( )A .B .C .6D .512.如图,将矩形纸片ABCD 的两个直角进行折叠,使CB ,AD 恰好落在对角线AC 上,B ′,D ′分别是B ,D 的对应点,折痕分别为CF ,AE .若AB =4,BC =3,则线段B D ''的长是( )A .52B .2C .32D .113.如图,在矩形纸片ABCD 中,7AB =,9BC =,M 是BC 上的点,且2CM =.将矩形纸片ABCD 沿过点M 的直线折叠,使点D 落在AB 上的点P 处,点C 落在点C '处,折痕为MN ,则线段P A 的长是( )A .4B .5C .6D .14.如图,在边长为2的正方形ABCD 中,若将AB 绕点A 逆时针旋转60︒,使点B 落在点B '的位置,连接B B ',过点D 作DE ⊥BB ',交'BB 的延长线于点E ,则B E '的长为( )A 1B .2C D第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题15.如图,矩形ABCD 中,6AB =,8BC =,对角线BD 的垂直平分线EF 交AD 于点E 、交BC 于点F ,则线段EF 的长为 __.16.如图,在矩形ABCD 中,E 为AD 的中点,连接CE ,过点E 作CE 的垂线交AB 于点F ,交CD 的延长线于点G ,连接CF .已知12AF =,5CF =,则EF =_________.17.如图,一个由8个正方形组成的“C”型模板恰好完全放入一个矩形框内,模板四周的直角顶点M,N,O,P,Q都在矩形ABCD的边上,若8个小正方形的面积均为1,则边AB的长为__________.AD=,点P从点B出发,以2cm/s的速度沿BC边向点C运18.如图,在矩形ABCD中,8cmAB=,12cmv的速度沿CD边向点D运动,到达点D停止,规定其动,到达点C停止,同时,点Q从点C出发,以cm/s△全等.中一个动点停止运动时,另一个动点也随之停止运动.当v为_____时,ABP△与PCQ19.如图,在菱形ABCD中,60∠=︒,G为AD中点,点E在BC延长线上,F、H分别为CE、GE中点,A∠=∠,CF=AB=_____.EHF DGE20.如图,90POQ ∠=︒,定长为a 的线段端点A ,B 分别在射线OP ,OQ 上运动(点A ,B 不与点O 重合),C 为AB 的中点,作OAC 关于直线OC 对称的OA C ',A O '交AB 于点D ,当OBD 是等腰三角形时,OBD ∠的度数为_____________.21.如图,四边形ABCD 为矩形,AB =AD =P 为边AB 上一点.以DP 为折痕将△DAP 翻折,点A 的对应点为点A '.连结AA ',AA ' 交PD 于点M ,点Q 为线段BC 上一点,连结AQ ,MQ ,则AQ +MQ 的最小值是________22.如图,在矩形ABCD 中,AB =6,BC =10,以点B 为圆心、BC 的长为半径画弧交AD 于点E ,再分别以点C ,E 为圆心、大于12CE 的长为半径画弧,两弧交于点F ,作射线BF 交CD 于点G ,则CG 的长为__________________.23.如图,在矩形ABCD 中,AD ,对角线相交于点O ,动点M 从点B 向点A 运动(到点A 即停止),点N 是AD 上一动点,且满足∠MON =90°,连结MN .在点M 、N 运动过程中,则以下结论中,①点M 、N 的运动速度不相等;②存在某一时刻使ΔAMNMON S S =;③AMNS逐渐减小;④222MN BM DN =+.正确的是________.(写出所有正确结论的序号)24.如图,正方形OABC的边长为2,将正方形OABC绕点O逆时针旋转角α(0°<α<180°)得到正方形OA′B′C′,连接BC′,当点A′恰好落在线段BC′上时,线段BC′的长度是___.25.如图,矩形ABCD中,AD,点E在BC边上,且AE=AD,DF⊥AE于点F,连接DE,BF,BF的延长线交DE于点O,交CD于点G.以下结论:①AF=DC,②OF:BF=CE:CG,③S△BCG△DFG,④图形中相似三角形有6对,则正确结论的序号是____.∠平分线BE的垂线,垂足为点E,且交BD于点F;26.如图,在矩形ABCD中,连接BD,过点C作DBC∠平分线DH的垂线,垂足为点H,且交BD于点G,连接HE,若BC=CD过点C作BDC则线段HE的长度为_________.三、解答题27.如图,在ABCD中,E为CD边的中点,连接BE并延长,交AD的延长线于点F,延长ED至点G,=,分别连接AE,AG,FG.使DG DE(1)求证:BCE FDE ≅△△;(2)当BF 平分ABC ∠时,四边形AEFG 是什么特殊四边形?请说明理由. 28.如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,BOC CEB ≅△△.(1)求证:四边形OBEC 是矩形;(2)若120ABC ∠=︒,6AB =,求矩形OBEC 的周长.29.如图,点E 是矩形ABCD 的边BC 上一点,将△ABE 绕点A 逆时针旋转至△AB 1E 1的位置,此时E 、B 1、E 1三点恰好共线.点M 、N 分别是AE 和AE 1的中点,连接MN 、NB 1.(1)求证:四边形MEB 1N 是平行四边形; (2)延长EE 1交AD 于点F ,若EB 1=E 1F ,11AE FCB ESS=,判断△AE 1F 与△CB 1E 是否全等,并说明理由.30.如图,四边形ABCD 是平行四边形,延长DA ,BC ,使得AE =CF ,连接BE ,DF . (1)求证:ABE CDF △≌△;(2)连接BD ,∠1=30°,∠2=20°,当∠ABE = °时,四边形BFDE 是菱形.31.如图,在ABCD 中,G 为BC 边上一点,DG DC =,延长DG 交AB 的延长线于点E ,过点A 作//AF ED 交CD 的延长线于点F .求证:四边形AEDF 是菱形.32.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,//BE AC ,//AE BD . (1)求证:四边形AOBE 是菱形;(2)若60AOB ∠=︒,4AC =,求菱形AOBE 的面积.33.如图,四边形ABCD 中,AD //BC ,AB =AD =CD 12=BC .分别以B 、D 为圆心,大于12BD 长为半径画弧,两弧交于点M .画射线AM 交BC 于E ,连接DE . (1)求证:四边形ABED 为菱形; (2)连接BD ,当CE =5时,求BD 的长.34.已知:如图,在▱ABCD 中,点E 、F 分别在AD 、BC 上,且BE 平分∠ABC ,EF ∥AB .求证:四边形ABFE 是菱形.35.如图,四边形ABCD 是正方形,△ECF 为等腰直角三角形,∠ECF =90°,点E 在BC 上,点F 在CD 上,N 为EF 的中点,连结NA ,以NA ,NF 为邻边作□ANFG .连结DG ,DN ,将Rt △ECF 绕点C 顺时针方向旋转,旋转角为α(0°≤α≤360°).(1)如图1,当α=0°时,DG 与DN 的关系为____________________;(2)如图2,当045α︒<<︒时,(1)中的结论是否成立?若成立,请写出证明过程;若不成立,请说明理由;(3)在Rt △ECF 旋转的过程中,当□ANFG 的顶点G 落在正方形ABCD 的边上,且AB =12,EC =连结GN ,请直接写出GN 的长.36.已知:如图,在矩形ABCD 和等腰Rt ADE △中,8cm AB =,6cm AD AE ==,90DAE ∠=︒.点P 从点B 出发,沿BA 方向匀速运动.速度为1cm/s ;同时,点Q 从点D 出发,沿DB 方向匀速运动,速度为1cm/s .过点Q 作//QM BE ,交AD 于点H ,交DE 于点M ,过点Q 作//QN BC ,交CD 于点N .分别连接PQ ,PM ,设运动时间为()()s 08t t <<.解答下列问题:(1)当PQ BD ⊥时,求t 的值;(2)设五边形PMDNQ 的面积为()2cm S ,求S 与t 之间的函数关系式; (3)当PQ PM =时,求t 的值;(4)若PM 与AD 相交于点W ,分别连接QW 和EW .在运动过程中,是否存在某一时刻t ,使AWE QWD ∠=∠?若存在,求出t 的值;若不存在,请说明理由.37.已知正方形ABCD ,E ,F 为平面内两点.(探究建模)(1)如图1,当点E 在边AB 上时,DE DF ⊥,且B ,C ,F 三点共线.求证:AE CF =; (类比应用)(2)如图2,当点E 在正方形ABCD 外部时,DE DF ⊥,AE EF ⊥,且E ,C ,F 三点共线.猜想并证明线段AE ,CE ,DE 之间的数量关系;(拓展迁移)(3)如图3,当点E 在正方形ABCD 外部时,AE EC ⊥,AE AF ⊥,DE BE ⊥,且D ,F ,E 三点共线,DE 与AB 交于G 点.若3DF =,AE CE 的长.38.如图,平面直角坐标系中,O 是坐标原点,直线15(0)y kx k =+≠经过点()3,6C ,与x 轴交于点A ,与y 轴交于点B .线段CD 平行于x 轴,交直线34y x =于点D ,连接OC ,AD .(1)填空:k = __________.点A 的坐标是(__________,__________);(2)求证:四边形OADC 是平行四边形;(3)动点P 从点O 出发,沿对角线OD 以每秒1个单位长度的速度向点D 运动,直到点D 为止;动点Q 同时从点D 出发,沿对角线OD 以每秒1个单位长度的速度向点O 运动,直到点O 为止.设两个点的运动时间均为t 秒.①当1t =时,CPQ 的面积是__________.②当点P ,Q 运动至四边形CPAQ 为矩形时,请直接写出此时t 的值.39.问题背景:如图1,在矩形ABCD 中,AB =30ABD ∠=︒,点E 是边AB 的中点,过点E 作EF AB ⊥交BD 于点F .实验探究:(1)在一次数学活动中,小王同学将图1中的BEF 绕点B 按逆时针方向旋转90︒,如图2所示,得到结论:①AE DF=_____;②直线AE 与DF 所夹锐角的度数为______. (2)小王同学继续将BEF 绕点B 按逆时针方向旋转,旋转至如图3所示位置.请问探究(1)中的结论是否仍然成立?并说明理由.拓展延伸:在以上探究中,当BEF 旋转至D 、E 、F 三点共线时,则ADE 的面积为______.40.已知:在正方形ABCD 的边BC 上任取一点F ,连接AF ,一条与AF 垂直的直线l (垂足为点P )沿AF 方向,从点A 开始向下平移,交边AB 于点E .(1)当直线l经过正方形ABCD的顶点D时,如图1所示.求证:AE BF=;∠的度数;(2)当直线l经过AF的中点时,与对角线BD交于点Q,连接FQ,如图2所示.求AFQ(3)直线l继续向下平移,当点P恰好落在对角线BD上时,交边CD于点G,如图3所示.设2,,===,求y与x之间的关系式.AB BF x DG y。
2021年中考数学真题分类汇编--图形与变换:视图与投影(老师版)
【详解】把该几何体它在水平面内顺时针旋转 后,旋转后的主视图与该几何体旋转前从右面看到的图形一样,
∵该几何体的从右面看到的图形为 ,
∴该几何体它在水平面内顺时针旋转 后,旋转后几何体的主视图为 .
则大圆面积为:π×22=4π,小圆面积为:π×12=π,
故这个几何体的体积为:6×4π﹣6×π=24π﹣6π=18π.
故选:B.
16.(2021•四川省成都市)如图所示的几何体是由6个大小相同的小立方块搭成,它的俯视图是( )
A. B.
C. D.
【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.
【解析】
【分析】从正面看:共有2列,从左往右分别有2,1个小正方形;据此可画出图形.
【详解】解:如图所示的几何体的主视图是
.
故选:D.
24.(2021•四川省自贡市)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“迎”字一面的相对面上的字是()
A. 百B. 党C. 年D. 喜
【答案】B
【解析】
【解答】解:从上边看,底层是三个小正方形,上层的右边是一个小正方形,
故选:A.
27.(2021•青海省).如图所示的几何体的左视图是( )
A. B. C. D.
【分析】从左面看该几何体,能看得见的轮廓线用实线表示,看不见的轮廓线用虚线表示,画出相应的图形即可.
【解答】解:该几何体的左视图如图所示:
故选:C.
【解答】解:从上面看,底层的最右边是一个小正方形,上层是四个小正方形,右齐.
故选:C.
山东省各地市2023-中考数学真题分类汇编-03解答题(较难题)知识点分类
山东省各地市2023-中考数学真题分类汇编-03解答题(较难题)知识点分类一.一次函数的应用(共1小题)1.(2023•日照)要制作200个A,B两种规格的顶部无盖木盒,A种规格是长、宽、高都为20cm的正方体无盖木盒,B种规格是长、宽、高各为20cm,20cm,10cm的长方体无盖木盒,如图1.现有200张规格为40cm×40cm的木板材,对该种木板材有甲、乙两种切割方式,如图2.切割、拼接等板材损耗忽略不计.(1)设制作A种木盒x个,则制作B种木盒 个;若使用甲种方式切割的木板材y张,则使用乙种方式切割的木板材 张;(2)该200张木板材恰好能做成200个A和B两种规格的无盖木盒,请分别求出A,B 木盒的个数和使用甲,乙两种方式切割的木板材张数;(3)包括材质等成本在内,用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元.根据市场调研,A种木盒的销售单价定为a元,B种木盒的销售单价定为(20﹣a)元,两种木盒的销售单价均不能低于7元,不超过18元.在(2)的条件下,两种木盒的销售单价分别定为多少元时,这批木盒的销售利润最大,并求出最大利润.二.二次函数综合题(共5小题)2.(2023•淄博)如图,一条抛物线y=ax2+bx经过△OAB的三个顶点,其中O为坐标原点,点A(3,﹣3),点B在第一象限内,对称轴是直线x=,且△OAB的面积为18.(1)求该抛物线对应的函数表达式;(2)求点B的坐标;(3)设C为线段AB的中点,P为直线OB上的一个动点,连接AP,CP,将△ACP沿CP翻折,点A的对应点为A1.问是否存在点P,使得以A1,P,C,B为顶点的四边形是平行四边形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.3.(2023•东营)如图,抛物线过点O(0,0),E(10,0),矩形ABCD的边AB在线段OE 上(点B在点A的左侧),点C,D在抛物线上.设B(t,0),当t=2时,BC=4.(1)求抛物线的函数表达式;(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线,当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形ABCD的面积时,求抛物线平移的距离.4.(2023•枣庄)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,并交x轴于另一点B,点M是抛物线的顶点,直线AM与y轴交于点D.(1)求该抛物线的表达式;(2)若点H是x轴上一动点,分别连接MH,DH,求MH+DH的最小值;(3)若点P是抛物线上一动点,问在对称轴上是否存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.5.(2023•日照)在平面直角坐标系xOy内,抛物线y=﹣ax2+5ax+2(a>0)交y轴于点C,过点C作x轴的平行线交该抛物线于点D.(1)求点C,D的坐标;(2)当时,如图1,该抛物线与x轴交于A,B两点(点A在点B的左侧),点P 为直线AD上方抛物线上一点,将直线PD沿直线AD翻折,交x轴于点M(4,0),求点P的坐标;(3)坐标平面内有两点E(,a+1),F(5,a+1),以线段EF为边向上作正方形EFGH.①若a=1,求正方形EFGH的边与抛物线的所有交点坐标;②当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为时,求a的值.6.(2023•聊城)如图①,抛物线y=ax2+bx﹣9与x轴交于点A(﹣3,0),B(6,0),与y 轴交于点C,连接AC,BC.点P是x轴上任意一点.(1)求抛物线的表达式;(2)点Q在抛物线上,若以点A,C,P,Q为顶点,AC为一边的四边形为平行四边形时,求点Q的坐标;(3)如图②,当点P(m,0)从点A出发沿x轴向点B运动时(点P与点A,B不重合),自点P分别作PE∥BC,交AC于点E,作PD⊥BC,垂足为点D.当m为何值时,△PED面积最大,并求出最大值.三.三角形综合题(共1小题)7.(2023•临沂)如图,∠A=90°,AB=AC,BD⊥AB,BC=AB+BD.(1)写出AB与BD的数量关系.(2)延长BC到E,使CE=BC,延长DC到F,使CF=DC,连接EF.求证:EF⊥AB.(3)在(2)的条件下,作∠ACE的平分线,交AF于点H,求证:AH=FH.四.四边形综合题(共2小题)8.(2023•淄博)在数学综合与实践活动课上,小红以“矩形的旋转”为主题开展探究活动.(1)操作判断小红将两个完全相同的矩形纸片ABCD和CEFG拼成“L”形图案,如图①.试判断:△ACF的形状为 .(2)深入探究小红在保持矩形ABCD不动的条件下,将矩形CEFG绕点C旋转,若AB=2,AD=4.探究一:当点F恰好落在AD的延长线上时,设CG与DF相交于点M,如图②.求△CMF 的面积.探究二:连接AE,取AE的中点H,连接DH,如图③.求线段DH长度的最大值和最小值.9.(2023•东营)(1)用数学的眼光观察如图①,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是AB的中点,N是DC的中点.求证:∠PMN=∠PNM.(2)用数学的思维思考如图②,延长图①中的线段AD交MN的延长线于点E,延长线段BC交MN的延长线于点F.求证:∠AEM=∠F.(3)用数学的语言表达如图③,在△ABC中,AC<AB,点D在AC上,AD=BC,M是AB的中点,N是DC 的中点,连接MN并延长,与BC的延长线交于点G,连接GD.若∠ANM=60°,试判断△CGD的形状,并进行证明.五.圆的综合题(共3小题)10.(2023•枣庄)如图,AB为⊙O的直径,点C是的中点,过点C做射线BD的垂线,垂足为E.(1)求证:CE是⊙O的切线;(2)若BE=3,AB=4,求BC的长;(3)在(2)的条件下,求阴影部分的面积(用含有π的式子表示).11.(2023•日照)在探究“四点共圆的条件”的数学活动课上,小霞小组通过探究得出:在平面内,一组对角互补的四边形的四个顶点共圆.请应用此结论,解决以下问题:如图1,△ABC中,AB=AC,∠BAC=α(60°<α<180°).点D是BC边上的一动点(点D不与B,C重合),将线段AD绕点A顺时针旋转α到线段AE,连接BE.(1)求证:A,E,B,D四点共圆;(2)如图2,当AD=CD时,⊙O是四边形AEBD的外接圆,求证:AC是⊙O的切线;(3)已知α=120°,BC=6,点M是边BC的中点,此时⊙P是四边形AEBD的外接圆,直接写出圆心P与点M距离的最小值.12.(2023•济宁)如图,已知AB是⊙O的直径,CD=CB,BE切⊙O于点B,过点C作CF⊥OE交BE于点F,EF=2BF.(1)如图1,连接BD,求证:△ADB≌△OBE;(2)如图2,N是AD上一点,在AB上取一点M,使∠MCN=60°,连接MN.请问:三条线段MN,BM,DN有怎样的数量关系?并证明你的结论.六.相似三角形的判定与性质(共1小题)13.(2023•泰安)如图,△ABC和△CDE均是等腰直角三角形,∠BAC=∠DCE=90°,点E在线段AC上,BC,DE相交于点F,连接BE,BD,作EH⊥BD,垂足为点H,交BC与点G.(1)若点H是BD的中点,求∠BED的度数;(2)求证:△EFG∽△BFD;(3)求证:=.七.相似形综合题(共2小题)14.(2023•济南)在矩形ABCD中,AB=2,AD=2,点E在边BC上,将射线AE绕点A逆时针旋转90°,交CD延长线于点G,以线段AE,AG为邻边作矩形AEFG.(1)如图1,连接BD,求∠BDC的度数和的值;(2)如图2,当点F在射线BD上时,求线段BE的长;(3)如图3,当EA=EC时,在平面内有一动点P,满足PE=EF,连接PA,PC,求PA+PC的最小值.15.(2023•菏泽)(1)如图1,在矩形ABCD中,点E,F分别在边DC,BC上,AE⊥DF,垂足为点G.求证:△ADE∽△DCF.【问题解决】(2)如图2,在正方形ABCD中,点E,F分别在边DC,BC上,AE=DF,延长BC到点H,使CH=DE,连接DH.求证:∠ADF=∠H.【类比迁移】(3)如图3,在菱形ABCD中,点E,F分别在边DC,BC上,AE=DF=11,DE=8,∠AED=60°,求CF的长.山东省各地市2023-中考数学真题分类汇编-03解答题(较难题)知识点分类参考答案与试题解析一.一次函数的应用(共1小题)1.(2023•日照)要制作200个A,B两种规格的顶部无盖木盒,A种规格是长、宽、高都为20cm的正方体无盖木盒,B种规格是长、宽、高各为20cm,20cm,10cm的长方体无盖木盒,如图1.现有200张规格为40cm×40cm的木板材,对该种木板材有甲、乙两种切割方式,如图2.切割、拼接等板材损耗忽略不计.(1)设制作A种木盒x个,则制作B种木盒 (200﹣x) 个;若使用甲种方式切割的木板材y张,则使用乙种方式切割的木板材 (200﹣y) 张;(2)该200张木板材恰好能做成200个A和B两种规格的无盖木盒,请分别求出A,B 木盒的个数和使用甲,乙两种方式切割的木板材张数;(3)包括材质等成本在内,用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元.根据市场调研,A种木盒的销售单价定为a元,B种木盒的销售单价定为(20﹣a)元,两种木盒的销售单价均不能低于7元,不超过18元.在(2)的条件下,两种木盒的销售单价分别定为多少元时,这批木盒的销售利润最大,并求出最大利润.【答案】(1)(200﹣x),(200﹣y);(2)制作A种木盒100个,B种木盒100个;使用甲种方式切割的木板150张,使用乙种方式切割的木板50张;(3)A种木盒的销售单价定为18元,B种木盒的销售单价定为11元时,这批木盒的销售利润最大,最大利润为1750元.【解答】解:(1)∵要制作200个A,B两种规格的顶部无盖木盒,制作A种木盒x个,故制作B种木盒(200﹣x)个;∵有200张规格为40cm×40cm的木板材,使用甲种方式切割的木板材y张,故使用乙种方式切割的木板材(200﹣y)张;故答案为:(200﹣x),(200﹣y);(2)使用甲种方式切割的木板材y张,则可切割出4y个长、宽均为20cm的木板,使用乙种方式切割的木板材(200﹣y)张,则可切割出8(200﹣y)个长为10cm、宽为20cm 的木板;设制作A种木盒x个,则需要长、宽均为20cm的木板5x个,制作B种木盒(200﹣x)个,则需要长、宽均为20cm的木板(200﹣x)个,需要长为10cm、宽为20cm的木板4(200﹣x)个;故,解得:,故制作A种木盒100个,制作B种木盒100个,使用甲种方式切割的木板150张,使用乙种方式切割的木板材50张;(3)∵用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元,且使用甲种方式切割的木板150张,使用乙种方式切割的木板材50张,故总成本为150×5+8×50=1150(元);∵两种木盒的销售单价均不能低于7元,不超过18元,∴,解得:7≤a≤18,设利润为w元,则w=100a+100(20﹣a)﹣1150,整理得:w=850+50a,∵50>0,∴w随a的增大而增大,故当a=18时,有最大值,最大值为850+50×18=1750(元),则此时B种木盒的销售单价定为20﹣×18=11(元),即A种木盒的销售单价定为18元,B种木盒的销售单价定为11元时,这批木盒的销售利润最大,最大利润为1750元.二.二次函数综合题(共5小题)2.(2023•淄博)如图,一条抛物线y=ax2+bx经过△OAB的三个顶点,其中O为坐标原点,点A(3,﹣3),点B在第一象限内,对称轴是直线x=,且△OAB的面积为18.(1)求该抛物线对应的函数表达式;(2)求点B的坐标;(3)设C为线段AB的中点,P为直线OB上的一个动点,连接AP,CP,将△ACP沿CP 翻折,点A的对应点为A1.问是否存在点P,使得以A1,P,C,B为顶点的四边形是平行四边形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)y=x2﹣3x;(2)(6,6);(3)存在,P点坐标为(,)或(﹣,﹣)或(+6,+6)或(﹣+6,﹣+6).【解答】解:(1)∵对称轴为直线x=,∴﹣=,∴b=﹣a①,将点A(3,﹣3)代入y=ax2+bx,∴9a+3b=﹣3②,联立①②可得,a=,b=﹣3,∴函数的解析式为y=x2﹣3x;(2)设B(m,m2﹣3m),如图1,过A点作EF⊥y轴交于E点,过B点作BF⊥EF交于F点,∴△OAB的面积=•m(m2﹣3m+3+3)﹣3×3﹣(m﹣3)(m2﹣3m+3)=18,解得m=6或m=﹣3(舍),∴B(6,6);(3)存在点P,使得以A1,P,C,B为顶点的四边形是平行四边形,理由如下:∵A(3,﹣3),B(6,6),∴C(,),设直线OB的解析式为y=kx,∴6k=6,解得k=1,∴直线OB的解析式为y=x,设P(t,t),如图2,当BP为平行四边形的对角线时,BC∥A1P,BC=A1P,∵AC=BC,∴AC=A1P,由对称性可知AC=A1C,AP=A1P,∴AP=AC,∴=,解得t=,∴P点坐标为(,)或(﹣,﹣);如图3,当BC为平行四边形的对角线时,BP∥A1C,BP=A1C,由对称性可知,AC=A1C,∴BP=AC,∴=,解得t=+6或t=﹣+6,∴P(+6,+6)或(﹣+6,﹣+6);综上所述:P点坐标为(,)或(﹣,﹣)或(+6,+6)或(﹣+6,﹣+6).3.(2023•东营)如图,抛物线过点O(0,0),E(10,0),矩形ABCD的边AB在线段OE 上(点B在点A的左侧),点C,D在抛物线上.设B(t,0),当t=2时,BC=4.(1)求抛物线的函数表达式;(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线,当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形ABCD的面积时,求抛物线平移的距离.【答案】(1)y=x2﹣x;(2)当t=1时,矩形ABCD的周长有最大值,最大值为;(3)抛物线向右平移的距离是4个单位.【解答】解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,BC=4,∴点C的坐标为(2,﹣4),∴将点C坐标代入解析式得2a(2﹣10)=﹣4,解得:a=,∴抛物线的函数表达式为y=x2﹣x;(2)由抛物线的对称性得AE=OB=t,∴AB=10﹣2t,当x=t时,点C的纵坐标为t2﹣t,∴矩形ABCD的周长=2(AB+BC)=2[(10﹣2t)+(﹣t2+t)]=﹣t2+t+20=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为;(3)如图,连接AC,BD相交于点P,连接OC,取OC的中点Q,连接PQ,∵t=2,∴B(2,0),∴A(8,0),∵BC=4.∴C(2,﹣4),∵直线GH平分矩形ABCD的面积,∴直线GH过点P,由平移的性质可知,四边形OCHG是平行四边形,∴PQ=CH,∵四边形ABCD是矩形,∴点P是AC的中点,∴P(5,﹣2),∴PQ=OA,∵OA=8,CH=PQ=OA=4,∴抛物线向右平移的距离是4个单位4.(2023•枣庄)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,并交x轴于另一点B,点M是抛物线的顶点,直线AM与y轴交于点D.(1)求该抛物线的表达式;(2)若点H是x轴上一动点,分别连接MH,DH,求MH+DH的最小值;(3)若点P是抛物线上一动点,问在对称轴上是否存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.【答案】(1)y=﹣x2+2x+3;(2)MH+DH的最小值为;(3)对称轴上存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形,点Q的坐标为(1,3)或(1,1)或(1,5).【解答】解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,∴,解得:,∴该抛物线的表达式为y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点M(1,4),设直线AM的解析式为y=kx+d,则,解得:,∴直线AM的解析式为y=2x+2,当x=0时,y=2,∴D(0,2),作点D关于x轴的对称点D′(0,﹣2),连接D′M,D′H,如图,则DH=D′H,∴MH+DH=MH+D′H≥D′M,即MH+DH的最小值为D′M,∵D′M==,∴MH+DH的最小值为;(3)对称轴上存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形.由(2)得:D(0,2),M(1,4),∵点P是抛物线上一动点,∴设P(m,﹣m2+2m+3),∵抛物线y=﹣x2+2x+3的对称轴为直线x=1,∴设Q(1,n),当DM、PQ为对角线时,DM、PQ的中点重合,∴,解得:,∴Q(1,3);当DP、MQ为对角线时,DP、MQ的中点重合,∴,解得:,∴Q(1,1);当DQ、PM为对角线时,DQ、PM的中点重合,∴,解得:,∴Q(1,5);综上所述,对称轴上存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形,点Q的坐标为(1,3)或(1,1)或(1,5).5.(2023•日照)在平面直角坐标系xOy内,抛物线y=﹣ax2+5ax+2(a>0)交y轴于点C,过点C作x轴的平行线交该抛物线于点D.(1)求点C,D的坐标;(2)当时,如图1,该抛物线与x轴交于A,B两点(点A在点B的左侧),点P 为直线AD上方抛物线上一点,将直线PD沿直线AD翻折,交x轴于点M(4,0),求点P的坐标;(3)坐标平面内有两点E(,a+1),F(5,a+1),以线段EF为边向上作正方形EFGH.①若a=1,求正方形EFGH的边与抛物线的所有交点坐标;②当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为时,求a的值.【答案】(1)C(0,2),D(5,2);(2);(3)①(1,6),(4,6),(5,2);②a=0.5.【解答】解:(1)在y=﹣ax2+5ax+2(a>0)中,当x=0时,y=2,∴C(0,2),∵抛物线解析式为y=﹣ax2+5ax+2(a>0),∴抛物线对称轴为直线,∵过点C作x轴的平行线交该抛物线于点D,∴C、D关于抛物线对称轴对称,∴D(5,2);(2)当时,抛物线解析式为,当y=0时,,解得x=﹣1或x=6,∴A(﹣1,0),如图,设DP上与点M关于直线AD对称的点为N(m,n),由轴对称的性质可得:AN=AM,DN=DM,,∴3m+n=12,∴n=12﹣3m∴m2+2m+1+144﹣72m+9m2=25,∴m2﹣7m+12=0,解得m=3或m=4(舍去),∴n=12﹣3m=3,∴N(3,3),设直线DP的解析式为y=kx+b1,∴,解得,∴直线DP的解析式为,联立,解得或,∴P(,);(3)①当a=1时,抛物线解析式为y=﹣x2+5x+2,E(1,2),F(5,2),∴EH=EF=FG=4,∴H(1,6),G(5,6),当x=1时,y=﹣12+5×1+2=6,∴抛物线y=﹣x2+5x+2 恰好经过H(1,6);∵抛物线对称轴为直线,由对称性可知抛物线经过(4,6),∴点(4,6)为抛物线与正方形的一个交点,又∵点F与点D重合,∴抛物线也经过点F(5,2);综上所述,正方形EFGH的边与抛物线的所有交点坐标为(1,6),(4,6),(5,2);②如图,当抛物线与GH、GF分别交于T、D时,∵当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为,∴点T的纵坐标为2+2.5=4.5,∴,∴a2+1.5a﹣1=0,解得a=﹣2(舍去)或a=0.5;如图,当抛物线与GH、EF分别交于T、S,∵当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为,∴,解得a=0.4(舍去,因为此时点F在点D下方)如图,当抛物线与EH、EF分别交于T、S,∵当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为,∴﹣a()2+5a•+2=a+1+2.5,解得或(舍去);当时,y=﹣ax2+5ax+2=6.25a+2,当时,6.25a+2>6+a﹣,∴不符合题意;综上所述,a=0.5.6.(2023•聊城)如图①,抛物线y=ax2+bx﹣9与x轴交于点A(﹣3,0),B(6,0),与y 轴交于点C,连接AC,BC.点P是x轴上任意一点.(1)求抛物线的表达式;(2)点Q在抛物线上,若以点A,C,P,Q为顶点,AC为一边的四边形为平行四边形时,求点Q的坐标;(3)如图②,当点P(m,0)从点A出发沿x轴向点B运动时(点P与点A,B不重合),自点P分别作PE∥BC,交AC于点E,作PD⊥BC,垂足为点D.当m为何值时,△PED面积最大,并求出最大值.【答案】(1)y=;(2)Q(3,﹣9)或(,9)或(,9);(3)当m=时,△PDE的面积最大值为:.【解答】解:(1)设抛物线的表达式为:y=a(x+3)(x﹣6),∴﹣9=a•3×(﹣6),∴a=,∴y=(x+3)(x﹣6)=;(2)如图1,抛物线的对称轴为:直线x==,由对称性可得Q1(3,﹣9),当y=9时,=9,∴x=,∴Q2(,9),Q3(,9),综上所述:Q(3,﹣9)或(,9)或(,9);(3)设△PED的面积为S,由题意得:AP=m+3,BP=6﹣m,OB=6,OC=9,AB=9.∴BC==3,∵sin∠PBD=,∴,∴PD=,∵PE∥BC,∴△APE∽△ABC,∠EPD=∠PDB=90°,∴,∴,∴PE=,∴S=PE•PD=(m+3)(6﹣m)=﹣,∴当m=时,S最大=,∴当m=时,△PDE的面积最大值为:.三.三角形综合题(共1小题)7.(2023•临沂)如图,∠A=90°,AB=AC,BD⊥AB,BC=AB+BD.(1)写出AB与BD的数量关系.(2)延长BC到E,使CE=BC,延长DC到F,使CF=DC,连接EF.求证:EF⊥AB.(3)在(2)的条件下,作∠ACE的平分线,交AF于点H,求证:AH=FH.【答案】(1)结论:AB=(+1)BD.理由见解析部分;(2)(3)证明见解析部分.【解答】(1)解:结论:AB=(+1)BD.理由:在BC上取一点T,使得BT=BD,连接DT,AT.设AB=AC=a,则BC=a.∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∵BD⊥AB,∴∠ABD=90°,∴∠DBT=45°,∵BD=BT,∴∠BDT=∠BTD=67.5°,∵BC=AB+BD=AC+BD=BT+AC,∴CT=CA=a,∴BD=BT=BC﹣CT=a﹣a,∴==+1,∴AB=(+1)BD;(2)证明:如图2中,在△BCD和△ECF中,,∴△BCD≌△ECF(SAS),∴∠CBD=∠E=45°,BD=EF,∴BD∥EF,∵BD⊥AB,∴EF⊥AB;(3)证明:延长CH交EF的延长线于点J.∵∠ACE=180°﹣∠ACB=135°,CH平分∠ACE,∴∠ACH=∠ECH=67.5°,∵∠ACB=∠E=45°,∴AC∥EJ,∴∠J=∠ACH=∠ECJ=67.5°,∴CE=EJ=CB,∵BC=BD+AB,EJ=EF+FJ,∴FJ=AB=AC,∵∠AHC=∠FHJ,∠ACH=∠J,∴△ACH≌△FJH(AAS),∴AH=FH.四.四边形综合题(共2小题)8.(2023•淄博)在数学综合与实践活动课上,小红以“矩形的旋转”为主题开展探究活动.(1)操作判断小红将两个完全相同的矩形纸片ABCD和CEFG拼成“L”形图案,如图①.试判断:△ACF的形状为 等腰直角三角形 .(2)深入探究小红在保持矩形ABCD不动的条件下,将矩形CEFG绕点C旋转,若AB=2,AD=4.探究一:当点F恰好落在AD的延长线上时,设CG与DF相交于点M,如图②.求△CMF 的面积.探究二:连接AE,取AE的中点H,连接DH,如图③.求线段DH长度的最大值和最小值.【答案】(1)等腰直角三角形;(2)探究一:;探究二:DH的最大值为+1,最小值为﹣1.【解答】解:(1)在Rt△ABC中,AC=,在Rt△CFG中,CF=,∵AB=GF,BC=CG,∴AC=CF,∴△ACF是等腰三角形,∵AB=GF,∠FGC=∠ABC=90°.BC=CG,∴△ABC≌△FGC(SAS),∴∠ACG=∠GFC,∵∠GCF+∠GFC=90°,∴∠ACG+∠GCF=90°,∴∠ACF=90°,∴△ACF是等腰直角三角形,故答案为:等腰直角三角形;(2)探究一:∵CD=GF,∠FMG=∠DMC,∠G=∠CDF=90°,∴△CDM≌△FGM(AAS),∴CM=MF,∵AC=CF,CD⊥AF,∴AD=DF,∵AB=CD=2,AD=DF=4,∴DM=4﹣CM,在Rt△CDM中,CM2=CD2+DM2,∴CM2=22+(4﹣CM)2,解得CM=,∴MF=,∴△CMF的面积=2×=;探究二:连接DE,取DE的中点P,连接HP,取AD、BC的中点为M、N,连接MN,MH,NH,∵H是AE的中点,∴MH∥DE,且MH=DE,∵CD=CE,∴CP⊥DE,DP=PE,∵MH∥DP,且MH=DP,∴四边形MHPD是平行四边形,∴MD=HP,MD∥HP,∵AD∥BC,MD=CN,∴HP∥CN,HP=CN,∴四边形HNCP是平行四边形,∴NH∥CP,∴∠MHN=90°,∴H点在以MN为直径的圆上,设MN的中点为T,∴DT==,∴DH的最大值为+1,最小值为﹣1.方法二:设AC的中点为T,连接HT,∵HT是△ACE的中位线,∴HT=CE=1,∴H在以T为圆心,1为半径的圆上,∵DT==,∴DH的最大值为+1,最小值为﹣1.9.(2023•东营)(1)用数学的眼光观察如图①,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是AB的中点,N是DC的中点.求证:∠PMN=∠PNM.(2)用数学的思维思考如图②,延长图①中的线段AD交MN的延长线于点E,延长线段BC交MN的延长线于点F.求证:∠AEM=∠F.(3)用数学的语言表达如图③,在△ABC中,AC<AB,点D在AC上,AD=BC,M是AB的中点,N是DC 的中点,连接MN并延长,与BC的延长线交于点G,连接GD.若∠ANM=60°,试判断△CGD的形状,并进行证明.【答案】(1)证明见解析;(2)证明见解析;(3)直角三角形,理由见解析.【解答】(1)证明:∵P是BD的中点,N是DC的中点,∴PN是△BCD的中位线,PM是△ABD的中位线,∴PN=BC,PM=AD,∵AD=BC,∴PM=PN,∴∠PMN=∠PNM;(2)证明:由(1)知,PN是△BDC的中位线,PM是△ABD的中位线,∴PN∥BC,PM∥AD,∴∠PNM=∠F,∠PMN=∠AEM,∵∠PNM=∠PMN,∴∠AEM=∠F;(3)解:△CGD是直角三角形,理由如下:如图③,取BD的中点P,连接PM、PN,∵N是CD的中点,M是AB的中点,∴PN是△BCD的中位线,PM是△ABD的中位线,∴PN ∥BC ,PN =BC ,PM ∥AD ,PM =AD ,∵AD =BC∴PM =PN ,∴∠PNM =∠PMN ,∵PM ∥AD ,∴∠PMN =∠ANM =60°,∴∠PNM =∠PMN =60°,∵PN ∥BC ,∴∠CGN =∠PNM =60°,又∵∠CNG =∠ANM =60°,∴△CGN 是等边三角形.∴CN =GN ,又∵CN =DN ,∴DN =GN ,∴∠NDG =∠NGD =CNG =30°,∴∠CGD =∠CGN +∠NGD =90°,∴△CGD 是直角三角形.五.圆的综合题(共3小题)10.(2023•枣庄)如图,AB 为⊙O 的直径,点C 是的中点,过点C 做射线BD 的垂线,垂足为E .(1)求证:CE 是⊙O 的切线;(2)若BE =3,AB =4,求BC 的长;(3)在(2)的条件下,求阴影部分的面积(用含有π的式子表示).【答案】(1)证明见解答.(2)BC的长为2.(3)阴影部分的面积为.【解答】(1)证明:如图,连接OC,∵点C是的中点,∴,∴∠ABC=∠EBC,∵OB=OC,∴∠ABC=∠OCB,∴∠EBC=∠OCB,∴OC∥BE,∵BE⊥CE,∴半径OC⊥CE,∴CE是⊙O的切线.(2)解:如图,连接AC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=∠CEB=90°,∵∠ABC=∠EBC,∴△ACB∽△CEB,∴,∴,∴.答:BC的长为2.(3)解:如图,连接OD、CD,∵AB=4,∴OC=OB=2,在Rt△BCE中,,∴,∴∠CBE=30°,∴∠COD=60°,∴∠AOC=60°,∵OC=OD,∴△COD是等边三角形,∴∠CDO=60°,∴∠CDO=∠AOC,∴CD∥AB,∴S△COD=S△CBD,∴.答:阴影部分的面积为.11.(2023•日照)在探究“四点共圆的条件”的数学活动课上,小霞小组通过探究得出:在平面内,一组对角互补的四边形的四个顶点共圆.请应用此结论,解决以下问题:如图1,△ABC中,AB=AC,∠BAC=α(60°<α<180°).点D是BC边上的一动点(点D不与B,C重合),将线段AD绕点A顺时针旋转α到线段AE,连接BE.(1)求证:A,E,B,D四点共圆;(2)如图2,当AD=CD时,⊙O是四边形AEBD的外接圆,求证:AC是⊙O的切线;(3)已知α=120°,BC=6,点M是边BC的中点,此时⊙P是四边形AEBD的外接圆,直接写出圆心P与点M距离的最小值.【答案】(1)证明见解析;(2)证明见解析,(3).【解答】(1)证明:由旋转的性质可得AE=AD,∠DAE=α,∴∠BAC=∠DAE,∴∠BAC﹣∠BAD=∠DAE﹣∠BAD,即∠BAE=∠CAD,又∵AB=AC,∴△ABE≌△ACD(SAS),∴∠AEB=∠ADC,∵∠ADC+∠ADB=180°,∴∠AEB+∠ADB=180°,∴A、B、D、E四点共圆;(2)证明:如图所示,连接OA,OD,∵AB=AC,AD=CD,∴∠ABC=∠ACB=∠DAC,∵⊙O是四边形AEBD的外接圆,∴∠AOD=2∠ABC,∴∠AOD=2∠ABC=2∠DAC,∵OA=OD,∴∠OAD=∠ODA,∵∠OAD+∠ODA+∠AOD=180°,∴2∠DAC+2∠OAD=180°,∴∠DAC+∠OAD=90°,即∠OAC=90°,∴OA⊥AC,又∵OA是⊙O的半径,∴AC是⊙O的切线;(3)解:如图所示,作线段AB的垂直平分线,分别交AB、BC于G、F,连接AM,PM,如图:∵AB=AC,∠BAC=120°,∴∠ABC=∠ACB=30°,∵点M是边BC的中点,∴,AM⊥BC,∴,,在Rt△BGF中,,∴FM=BM﹣BF=3﹣2=1,∵⊙P是四边形AEBD的外接圆,∴点P一定在AB的垂直平分线上,∴点P在直线GF上,∴当MP⊥GF时,PM有最小值,∴∠PFM=∠BFG=90°﹣∠ABC=60°,在Rt△MPF中,PM=MF•sin∠PFM=1×sin60°=,∴圆心P与点M距离的最小值为.12.(2023•济宁)如图,已知AB是⊙O的直径,CD=CB,BE切⊙O于点B,过点C作CF ⊥OE交BE于点F,EF=2BF.(1)如图1,连接BD,求证:△ADB≌△OBE;(2)如图2,N是AD上一点,在AB上取一点M,使∠MCN=60°,连接MN.请问:三条线段MN,BM,DN有怎样的数量关系?并证明你的结论.【答案】(1)证明过程见解答;(2)MN=BM+DN,理由见解答.【解答】(1)证明:∵CF⊥OE,OC是半径,∴CF是圆O的切线,∵BE是圆O的切线,∴BF=CF,∵EF=2BF,∴EF=2CF,sin E==,∴∠E=30°,∠EOB=60°,∵CD=CB,∴=,∴OC⊥BD,∵AB是直径,∴∠ADB=90°=∠EBO,∵∠E+∠EBD=90°,∠ABD+∠EBD=90°,∴∠E=∠ABD=30°,∴AD=BO=AB,∴△ABD≌△OEB(AAS);(2)解:MN=BM+DN,理由如下:延长ND至H使得DH=BM,连接CH,BD,如图2所示,∵∠CBM+∠NDC=180°,∠HDC+∠NDC=180°,∴∠HDC=∠MBC,∵CD=CB,DH=BM,∴△HDC≌△MBC(SAS),∴∠BCM=∠DCH,CM=CH,由(1)可得∠ABD=30°,∵AB是直径,∴∠ADB=90°,∴∠DCB=180°﹣∠A=120°,∵∠MCN=60°,∴∠BCM+∠NCD=120°﹣∠NCM=120°﹣60°=60°,∴∠DCH+∠NCD=∠NCH=60°,∴∠NCH=∠NCM,∵NC=NC,∴△CNH≌△CNM(SAS),∴NH=MN,∴MN=DN+DH=DN+BM,∴MN=BM+DN.六.相似三角形的判定与性质(共1小题)13.(2023•泰安)如图,△ABC和△CDE均是等腰直角三角形,∠BAC=∠DCE=90°,点E在线段AC上,BC,DE相交于点F,连接BE,BD,作EH⊥BD,垂足为点H,交BC与点G.(1)若点H是BD的中点,求∠BED的度数;(2)求证:△EFG∽△BFD;(3)求证:=.【答案】(1)60°;(2)证明过程详见解答;(3)证明过程详见解答.【解答】(1)解:∵△ABC、△CDE是两个等腰直角三角形,∴∠ACB=∠ABC=45°,∠CED=∠CDE=45°,∴∠CFE=180°﹣∠ACB﹣∠CED=90°,∴EF=DF=DE,∵BH=DH,EH⊥BD,∴BE=DE,∴EF=BE,∴cos∠BED=,∴∠BED=60°;(2)证明:由(1)得:∠CFE=90°,∴CF⊥DE,∴∠BFD=∠EFG=∠BHE=90°,∵∠BGH=∠EGF,∴∠DBF=∠FEG,∴△EFG∽△BFD;(3)证明:如图,作BQ∥AC,交EH的延长线于点Q,∴△BGQ∽△CGE,∴,∠Q=∠CEH,∠QBE=∠AEB,∴,设∠DBF=DEH=α,由(1)知:BC是DE的垂直平分线,∴BE=BD,∴∠EBF=∠DBF=α,∴∠AEB=∠ACB+∠EBF=45°+α,∠CEH=∠CED+∠FEG=45°+α,∴∠AEB=∠CEH,∴∠Q=∠QBE,∴BE=EQ,∴=.七.相似形综合题(共2小题)14.(2023•济南)在矩形ABCD中,AB=2,AD=2,点E在边BC上,将射线AE绕点A逆时针旋转90°,交CD延长线于点G,以线段AE,AG为邻边作矩形AEFG.(1)如图1,连接BD,求∠BDC的度数和的值;(2)如图2,当点F在射线BD上时,求线段BE的长;(3)如图3,当EA=EC时,在平面内有一动点P,满足PE=EF,连接PA,PC,求PA+PC 的最小值.【答案】(1)∠BDC=60°,;(2);(3)4.【解答】解:(1)∵矩形ABCD中,AB=2,,∴∠C=90°,CD=AB=2,,∴,∴∠BDC=60°,∵∠ABE=∠BAD=∠EAG=∠ADG=90°,∴∠EAG﹣∠EAD=∠BAD﹣∠EAD,即∠DAG=∠BAE,∴△ADG∽△ABE,∴;(2)如图2,过点F作FM⊥CG于点M,∵∠ABE=∠AGF=∠ADG=90°,AE=GF,∴∠BAE=∠DAG=∠CGF,∠ABE=∠GMF=90°,∴△ABE≌△GMF(AAS),∴BE=MF,AB=GM=2,∴∠MDF=∠BDC=60°,FM⊥CG,∴,∴,设DM=x,则,∴DG=GM+MD=2+x,由(1)可知:,∴,解得x=1,∴;(3)如图3,连接AC,将△AEP绕点E顺时针旋转120°,EA与EC重合,得到△CEP',连接PP',矩形ABCD中,AD=BC=,AB=2,∴tan∠ACB==,∴∠ACB=30°,∴AC=2AB=4,∵EA=EC,∴∠EAC=∠ACE=30°,∠AEC=120°,∴∠ACG=∠GAC=90°﹣30°=60°,∴△AGC是等边三角形,AG=AC=4,∴PE=EF=AG=4,∵将△AEP绕点E顺时针旋转120°,EA与EC重合,得到△CEP',∴PA=P'C,∠PEP'=120°,EP=EP'=4,∴,∴当点P,C,P′三点共线时,PA+PC的值最小,此时为.15.(2023•菏泽)(1)如图1,在矩形ABCD中,点E,F分别在边DC,BC上,AE⊥DF,垂足为点G.求证:△ADE∽△DCF.【问题解决】(2)如图2,在正方形ABCD中,点E,F分别在边DC,BC上,AE=DF,延长BC到点H,使CH=DE,连接DH.求证:∠ADF=∠H.【类比迁移】(3)如图3,在菱形ABCD中,点E,F分别在边DC,BC上,AE=DF=11,DE=8,∠AED=60°,求CF的长.【答案】(1)证明见解析;(2)证明见解析;(3)3.【解答】(1)证明:∵四边形ABCD是矩形,∴∠C=∠ADE=90°,∴∠CDF+∠DFC=90°,∵AE⊥DF,∴∠DGE=90°,∴∠CDF+∠AED=90°,∴∠AED=∠DFC,∴△ADE∽△DCF;(2)证明:∵四边形ABCD是正方形,∴AD=DC,AD∥BC,∠ADE=∠DCF=90°,∵AE=DF,∴Rt△ADE≌Rt△DCF(HL),∴DE=CF,∵CH=DE,∴CF=CH,∵点H在BC的延长线上,∴∠DCH=∠DCF=90°,又∵DC=DC,∴△DCF≌△DCH(SAS),∴∠DFC=∠H,∵AD∥BC,∴∠ADF=∠DFC,∴∠ADF=∠H;(3)解:如图3,延长BC至点G,使CG=DE=8,连接DG,∵四边形ABCD是菱形,∴AD=DC,AD∥BC,∴∠ADE=∠DCG,∴△ADE≌△DCG(SAS),∴∠DGC=∠AED=60°,AE=DG,∵AE=DF,∴DG=DF,∴△DFG是等边三角形,∴FG=DF=11,∵CF+CG=FG,∴CF=FG﹣CG=11﹣8=3,即CF的长为3.。
全国181套中考数学试题分类汇编44矩形、菱形、正方形
44矩形、菱形、正方形一、选择题1.(浙江舟山、嘉兴3分)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm 2,四边形ABCD 面积是11cm 2,则①②③④四个平行四边形周长的总和为(A )48cm(B )36cm (C )24cm (D )18cm 【答案】A 。
【考点】菱形的性质,平行四边形的性质。
【分析】根据①②③④四个平行四边形面积的和为14cm2,四边形ABCD 面积是11cm2,从图可求出⑤的面积: 2ABCD 1S S S 2cm ⑤四边形①+②+③+④=-=11-7=4。
从而可求出菱形的面积:2EFGH S S 14418cm ==+=①+②+③+④+⑤菱形。
又∵∠EFG=30°,∴菱形的边长为6cm 。
从而根据菱形四边都相等的性质得:①②③④四个平行四边形周长的总和=2(AE+AH+HD+DG+GC+CF+FB+BE ) =2(EF+FG+GH+HE )=48cm 。
故选A 。
2.(浙江温州4分)如图,在矩形ABCD 中,对角线AC ,BD 交与点O .已知∠AOB=60°,AC=16,则图中长度为8的线段有A 、2条B 、4条C 、5条D 、6条 【答案】D 。
【考点】矩形的性质。
等边三角形的判定和性质。
【分析】因为矩形的对角线相等且互相平分,AC=16,所以AO=BO=CO=DO=8;又由∠AOB=60°,所以三角形AOB 是等边三角形,所以AB=AO=8;又根据矩形的对边相等得,CD=AB=AO=8.从而可求出线段为8的线段有6条。
故选D 。
3.(辽宁大连3分)如图,矩形ABCD 中,AB =4,BC =5,AF 平分∠DAE,EF⊥AE,则CF 等于A .23B .1C .32D .2【答案】C 。
4.(黑龙江哈尔滨3分)如图,矩形ABCD 中,对角线AC 、BD 相交于点O ,∠AOB=600,AB=5,则AD 的长是.(A)53 (B )52 (C )5 (D)10【答案】A 。
近五年(2017-2021)年浙江中考数学真题分类汇编之图形的性质(含解析)
2017-2021年浙江中考数学真题分类汇编之图形的性质一.选择题(共14小题)1.(2021•杭州)如图,设点P是直线l外一点,PQ⊥l,垂足为点Q,点T是直线l上的一个动点,连结PT,则()A.PT≥2PQ B.PT≤2PQ C.PT≥PQ D.PT≤PQ 2.(2021•衢州)已知扇形的半径为6,圆心角为150°,则它的面积是()A.πB.3πC.5πD.15π3.(2020•宁波)如图,在Rt△ABC中,∠ACB=90°,CD为中线,延长CB至点E,使BE=BC,连接DE,F为DE中点,连接BF.若AC=8,BC=6,则BF的长为()A.2B.2.5C.3D.4 4.(2021•衢州)如图,在△ABC中,AB=4,AC=5,BC=6,点D,E,F分别是AB,BC,CA的中点,连结DE,EF,则四边形ADEF的周长为()A.6B.9C.12D.15 5.(2021•台州)小光准备从A地去往B地,打开导航、显示两地距离为37.7km,但导航提供的三条可选路线长却分别为45km,50km,51km(如图).能解释这一现象的数学知识是()A.两点之间,线段最短B.垂线段最短C.三角形两边之和大于第三边D.两点确定一条直线6.(2020•温州)如图,菱形OABC的顶点A,B,C在⊙O上,过点B作⊙O的切线交OA 的延长线于点D.若⊙O的半径为1,则BD的长为()A.1B.2C.D.7.(2021•绍兴)数学兴趣小组同学从“中国结”的图案(图1)中发现,用相同的菱形纵向排列放置,可得到更多的菱形.如图2,用2个相同的菱形放置,得到3个菱形.下面说法正确的是()A.用3个相同的菱形放置,最多能得到6个菱形B.用4个相同的菱形放置,最多能得到16个菱形C.用5个相同的菱形放置,最多能得到27个菱形D.用6个相同的菱形放置,最多能得到41个菱形8.(2020•金华)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连接EG,BD相交于点O,BD与HC相交于点P.若GO=GP,则的值是()A.1+B.2+C.5﹣D.9.(2020•温州)如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD 为边作▱BCDE,则∠E的度数为()A.40°B.50°C.60°D.70°10.(2020•衢州)过直线l外一点P作直线l的平行线,下列尺规作图中错误的是()A.B.C.D.11.(2020•湖州)如图,已知OT是Rt△ABO斜边AB上的高线,AO=BO.以O为圆心,OT为半径的圆交OA于点C,过点C作⊙O的切线CD,交AB于点D.则下列结论中错误的是()A.DC=DT B.AD=DT C.BD=BO D.2OC=5AC 12.(2020•嘉兴)如图,在等腰△ABC中,AB=AC=2,BC=8,按下列步骤作图:①以点A为圆心,适当的长度为半径作弧,分别交AB,AC于点E,F,再分别以点E,F为圆心,大于EF的长为半径作弧相交于点H,作射线AH;②分别以点A,B为圆心,大于AB的长为半径作弧相交于点M,N,作直线MN,交射线AH于点O;③以点O为圆心,线段OA长为半径作圆.则⊙O的半径为()A.2B.10C.4D.5 13.(2021•宁波)如图是一个由5张纸片拼成的平行四边形ABCD,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张矩形纸片EFGH的面积为S3,FH与GE相交于点O.当△AEO,△BFO,△CGO,△DHO的面积相等时,下列结论一定成立的是()A.S1=S2B.S1=S3C.AB=AD D.EH=GH14.(2021•金华)如图,在Rt△ABC中,∠ACB=90°,以该三角形的三条边为边向外作正方形,正方形的顶点E,F,G,H,M,N都在同一个圆上.记该圆面积为S1,△ABC 面积为S2,则的值是()A.B.3πC.5πD.二.填空题(共6小题)15.(2020•台州)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是.16.(2020•绍兴)如图1,直角三角形纸片的一条直角边长为2,剪四块这样的直角三角形纸片,把它们按图2放入一个边长为3的正方形中(纸片在结合部分不重叠无缝隙),则图2中阴影部分面积为.17.(2020•绍兴)将两条邻边长分别为,1的矩形纸片剪成四个等腰三角形纸片(无余纸片),各种剪法剪出的等腰三角形中,其中一个等腰三角形的腰长可以是下列数中的(填序号).①,②1,③﹣1,④,⑤.18.(2020•衢州)图1是由七根连杆链接而成的机械装置,图2是其示意图.已知O,P两点固定,连杆P A=PC=140cm,AB=BC=CQ=QA=60cm,OQ=50cm,O,P两点间距与OQ长度相等.当OQ绕点O转动时,点A,B,C的位置随之改变,点B恰好在线段MN上来回运动.当点B运动至点M或N时,点A,C重合,点P,Q,A,B在同一直线上(如图3).(1)点P到MN的距离为cm.(2)当点P,O,A在同一直线上时,点Q到MN的距离为cm.19.(2019•绍兴)把边长为2的正方形纸片ABCD分割成如图的四块,其中点O为正方形的中心,点E,F分别为AB,AD的中点.用这四块纸片拼成与此正方形不全等的四边形MNPQ(要求这四块纸片不重叠无缝隙),则四边形MNPQ的周长是.20.(2019•湖州)七巧板是我国祖先的一项卓越创造,被誉为“东方魔板”.由边长为4的正方形ABCD可以制作一副如图1所示的七巧板,现将这副七巧板在正方形EFGH内拼成如图2所示的“拼搏兔”造型(其中点Q、R分别与图2中的点E、G重合,点P 在边EH上),则“拼搏兔”所在正方形EFGH的边长是.三.解答题(共2小题)21.(2020•台州)如图,在△ABC中,∠ACB=90°,将△ABC沿直线AB翻折得到△ABD,连接CD交AB于点M.E是线段CM上的点,连接BE.F是△BDE的外接圆与AD的另一个交点,连接EF,BF.(1)求证:△BEF是直角三角形;(2)求证:△BEF∽△BCA;(3)当AB=6,BC=m时,在线段CM上存在点E,使得EF和AB互相平分,求m的值.22.(2020•衢州)【性质探究】如图,在矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAC,交BC于点E.作DF⊥AE于点H,分别交AB,AC于点F,G.(1)判断△AFG的形状并说明理由.(2)求证:BF=2OG.【迁移应用】(3)记△DGO的面积为S1,△DBF的面积为S2,当=时,求的值.【拓展延伸】(4)若DF交射线AB于点F,【性质探究】中的其余条件不变,连接EF,当△BEF的面积为矩形ABCD面积的时,请直接写出tan∠BAE的值.2017-2021年浙江中考数学真题分类汇编之图形的性质参考答案与试题解析一.选择题(共14小题)1.(2021•杭州)如图,设点P是直线l外一点,PQ⊥l,垂足为点Q,点T是直线l上的一个动点,连结PT,则()A.PT≥2PQ B.PT≤2PQ C.PT≥PQ D.PT≤PQ【考点】垂线段最短.【专题】线段、角、相交线与平行线;推理能力.【分析】根据垂线的性质“垂线段最短”即可得到结论.【解答】解:∵PQ⊥l,点T是直线l上的一个动点,连结PT,∴PT≥PQ,故选:C.【点评】本题考查了垂线段最短,熟练掌握垂线的性质是解题的关键.2.(2021•衢州)已知扇形的半径为6,圆心角为150°,则它的面积是()A.πB.3πC.5πD.15π【考点】扇形面积的计算.【专题】常规题型;运算能力.【分析】把已知数据代入扇形面积公式计算,即可得到答案.【解答】解:扇形面积=,故选:D.【点评】本题考查的是扇形面积计算,掌握扇形面积公式:是解决本题的关键.3.(2020•宁波)如图,在Rt△ABC中,∠ACB=90°,CD为中线,延长CB至点E,使BE=BC,连接DE,F为DE中点,连接BF.若AC=8,BC=6,则BF的长为()A.2B.2.5C.3D.4【考点】三角形中位线定理;直角三角形斜边上的中线;勾股定理.【专题】转化思想;等腰三角形与直角三角形;推理能力.【分析】利用勾股定理求得AB=10;然后由直角三角形斜边上的中线等于斜边的一半求得CD的长度;结合题意知线段BF是△CDE的中位线,则BF=CD.【解答】解:∵在Rt△ABC中,∠ACB=90°,AC=8,BC=6,∴AB===10.又∵CD为中线,∴CD=AB=5.∵F为DE中点,BE=BC即点B是EC的中点,∴BF是△CDE的中位线,则BF=CD=2.5.故选:B.【点评】本题主要考查了勾股定理,三角形中位线定理,直角三角形斜边上的中线,此题的突破口是推知线段CD的长度和线段BF是△CDE的中位线.4.(2021•衢州)如图,在△ABC中,AB=4,AC=5,BC=6,点D,E,F分别是AB,BC,CA的中点,连结DE,EF,则四边形ADEF的周长为()A.6B.9C.12D.15【考点】三角形中位线定理.【专题】三角形;推理能力.【分析】根据三角形中位线定理、线段中点的概念分别求出AD、DE、EF、AF,根据四边形的周长公式计算即可.【解答】解:∵点D,E,F分别是AB,BC,CA的中点,∴DE=AC=2.5,AF=AC=2.5,EF=AB=2,AD=AB=2,∴四边形ADEF的周长=AD+DE+EF+AF=9,故选:B.【点评】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.5.(2021•台州)小光准备从A地去往B地,打开导航、显示两地距离为37.7km,但导航提供的三条可选路线长却分别为45km,50km,51km(如图).能解释这一现象的数学知识是()A.两点之间,线段最短B.垂线段最短C.三角形两边之和大于第三边D.两点确定一条直线【考点】线段的性质:两点之间线段最短;垂线段最短;直线的性质:两点确定一条直线.【专题】线段、角、相交线与平行线;几何直观.【分析】根据线段的性质,可得答案.【解答】解:从A地去往B地,打开导航、显示两地距离为37.7km,理由是两点之间线段最短,故选:A.【点评】本题考查了线段的性质,熟记线段的性质并应用是解题的关键.6.(2020•温州)如图,菱形OABC的顶点A,B,C在⊙O上,过点B作⊙O的切线交OA 的延长线于点D.若⊙O的半径为1,则BD的长为()A.1B.2C.D.【考点】切线的性质;菱形的性质;圆周角定理.【专题】与圆有关的位置关系;推理能力.【分析】连接OB,根据菱形的性质得到OA=AB,求得∠AOB=60°,根据切线的性质得到∠DBO=90°,解直角三角形即可得到结论.【解答】解:连接OB,∵四边形OABC是菱形,∴OA=AB,∵OA=OB,∴OA=AB=OB,∴∠AOB=60°,∵BD是⊙O的切线,∴∠DBO=90°,∵OB=1,∴BD=OB=,故选:D.【点评】本题考查了切线的性质,菱形的性质,等边三角形的判定和性质,解直角三角形,熟练正确切线的性质定理是解题的关键.7.(2021•绍兴)数学兴趣小组同学从“中国结”的图案(图1)中发现,用相同的菱形纵向排列放置,可得到更多的菱形.如图2,用2个相同的菱形放置,得到3个菱形.下面说法正确的是()A.用3个相同的菱形放置,最多能得到6个菱形B.用4个相同的菱形放置,最多能得到16个菱形C.用5个相同的菱形放置,最多能得到27个菱形D.用6个相同的菱形放置,最多能得到41个菱形【考点】菱形的判定与性质.【专题】矩形菱形正方形;几何直观.【分析】根据题意画出图形,从图形中找到出现的菱形的个数即可.【解答】解:如图所示,用2个相同的菱形放置,最多能得到3个菱形;用3个相同的菱形放置,最多能得到8个菱形,用4个相同的菱形放置,最多能得到16个菱形,用5个相同的菱形放置,最多能得到29个菱形,用6个相同的菱形放置,最多能得到47个菱形.故选:B.【点评】本题主要考查菱形在实际生活中的应用,解题的关键是根据题意画出图形并熟练掌握菱形的判定.8.(2020•金华)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连接EG,BD相交于点O,BD与HC相交于点P.若GO=GP,则的值是()A.1+B.2+C.5﹣D.【考点】勾股定理的证明.【专题】计算题;等腰三角形与直角三角形;运算能力;推理能力.【分析】证明△BPG≌△BCG(ASA),得出PG=CG.设OG=PG=CG=x,则EG=2x,FG=x,由勾股定理得出BC2=(4+2)x2,则可得出答案.【解答】解:∵四边形EFGH为正方形,∴∠EGH=45°,∠FGH=90°,∵OG=GP,∴∠GOP=∠OPG=67.5°,∴∠PBG=22.5°,又∵∠DBC=45°,∴∠GBC=22.5°,∴∠PBG=∠GBC,∵∠BGP=∠BGC=90°,BG=BG,∴△BPG≌△BCG(ASA),∴PG=CG.设OG=PG=CG=x,∵O为EG,BD的交点,∴EG=2x,FG=x,∵四个全等的直角三角形拼成“赵爽弦图”,∴BF=CG=x,∴BG=x+x,∴BC2=BG2+CG2==,∴=.故选:B.【点评】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,直角三角形的性质等知识,熟练掌握勾股定理的应用是解题的关键.9.(2020•温州)如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD 为边作▱BCDE,则∠E的度数为()A.40°B.50°C.60°D.70°【考点】平行四边形的性质;等腰三角形的性质.【专题】等腰三角形与直角三角形;多边形与平行四边形;几何直观.【分析】根据等腰三角形的性质可求∠C,再根据平行四边形的性质可求∠E.【解答】解:∵在△ABC中,∠A=40°,AB=AC,∴∠C=(180°﹣40°)÷2=70°,∵四边形BCDE是平行四边形,∴∠E=70°.故选:D.【点评】考查了平行四边形的性质,等腰三角形的性质,关键是求出∠C的度数.10.(2020•衢州)过直线l外一点P作直线l的平行线,下列尺规作图中错误的是()A.B.C.D.【考点】作图—复杂作图;平行线的判定.【专题】线段、角、相交线与平行线;应用意识.【分析】根据平行线的判定方法一一判断即可.【解答】解:A、本选项作了角的平分线与等腰三角形,能得到一组内错角相等,从而可证两直线平行,故本选项不符合题意.B、本选项作了一个角等于已知角,根据同位角相等两直线平行,能判断是过点P且与直线l的平行直线,本选项不符合题意.C、由作图可知,垂直于同一条直线的两条直线平行,本选项不符合题意.D、作图只截取了两条线段相等,而无法保证两直线平行的位置关系,本选项符合题意.故选:D.【点评】本题考查作图﹣复杂作图,平行线的判定等知识,解题的关键是读懂图象信息,属于中考常考题型.11.(2020•湖州)如图,已知OT是Rt△ABO斜边AB上的高线,AO=BO.以O为圆心,OT为半径的圆交OA于点C,过点C作⊙O的切线CD,交AB于点D.则下列结论中错误的是()A.DC=DT B.AD=DT C.BD=BO D.2OC=5AC【考点】全等三角形的判定与性质;等腰直角三角形;切线的性质.【专题】圆的有关概念及性质;应用意识.【分析】如图,连接OD.想办法证明选项A,B,C正确即可解决问题.【解答】解:如图,连接OD.∵OT是半径,OT⊥AB,∴DT是⊙O的切线,∵DC是⊙O的切线,∴DC=DT,故选项A正确,∵OA=OB,∠AOB=90°,∴∠A=∠B=45°,∵DC是切线,∴CD⊥OC,∴∠ACD=90°,∴∠A=∠ADC=45°,∴AC=CD=DT,∴AC=CD=DT,故选项B正确,∵OD=OD,OC=OT,DC=DT,∴△DOC≌△DOT(SSS),∴∠DOC=∠DOT,∵OA=OB,OT⊥AB,∠AOB=90°,∴∠AOT=∠BOT=45°,∴∠DOT=∠DOC=22.5°,∴∠BOD=∠ODB=67.5°,∴BO=BD,故选项C正确,根据筛选法,故选:D.【点评】本题考查切线的判定和性质,等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.(2020•嘉兴)如图,在等腰△ABC中,AB=AC=2,BC=8,按下列步骤作图:①以点A为圆心,适当的长度为半径作弧,分别交AB,AC于点E,F,再分别以点E,F为圆心,大于EF的长为半径作弧相交于点H,作射线AH;②分别以点A,B为圆心,大于AB的长为半径作弧相交于点M,N,作直线MN,交射线AH于点O;③以点O为圆心,线段OA长为半径作圆.则⊙O的半径为()A.2B.10C.4D.5【考点】作图—复杂作图;等腰三角形的性质;垂径定理.【专题】作图题;应用意识.【分析】如图,设OA交BC于T.解直角三角形求出AT,再在Rt△OCT中,利用勾股定理构建方程即可解决问题.【解答】解:如图,设OA交BC于T.半径为r,∵AB=AC=2,AO平分∠BAC,∴AO⊥BC,BT=TC=4,∴AT===2,在Rt△OCT中,则有r2=(r﹣2)2+42,解得r=5,故选:D.【点评】本题考查作图﹣复杂作图,等腰三角形的性质,垂径定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.13.(2021•宁波)如图是一个由5张纸片拼成的平行四边形ABCD,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张矩形纸片EFGH的面积为S3,FH与GE相交于点O.当△AEO,△BFO,△CGO,△DHO的面积相等时,下列结论一定成立的是()A.S1=S2B.S1=S3C.AB=AD D.EH=GH【考点】矩形的性质;全等三角形的判定与性质;等腰直角三角形;平行四边形的性质.【专题】图形的全等;多边形与平行四边形;矩形菱形正方形;推理能力.【分析】如图,连接DG,AH,过点O作OJ⊥DE于J.证明S△DGH=S△AEH,S△DGC=S,可得结论.△ADH【解答】解:如图,连接DG,AH,过点O作OJ⊥DE于J.∵四边形EFGH是矩形,∴OH=OF,EF=GH,∠HEF=90°,∵OJ⊥DE,∴∠OJH=∠HEF=90°,∴OJ∥EF,∵HO=OF,∴HJ=JE,∴EF=GH=2OJ,∵S△DHO=•DH•OJ,S△DHG=•DH•GH,∴S△DGH=2S△DHO,同法可证S△AEH=2S△AEO,∵S△DHO=S△AEO,∴S△DGH=S△AEH,∵S△DGC=•CG•DH,S△ADH=•DH•AE,CG=AE,∴S△DGC=S△ADH,∴S△DHC=S△ADE,∴S1=S2,故A选项符合题意;S3=HE•EF≠S1,故B选项不符合题意;AB=AD,EH=GH均不成立,故C选项,D选项不符合题意,故选:A.【点评】本题考查矩形的性质,全等三角形的判定和性质,等腰直角三角形的性质,平行四边形的性质,矩形的性质等知识,解题的关键是证明S△DGH=S△AEH,S△DGC=S△ADH.14.(2021•金华)如图,在Rt△ABC中,∠ACB=90°,以该三角形的三条边为边向外作正方形,正方形的顶点E,F,G,H,M,N都在同一个圆上.记该圆面积为S1,△ABC 面积为S2,则的值是()A.B.3πC.5πD.【考点】勾股定理;垂径定理.【专题】与圆有关的计算;推理能力.【分析】先设Rt△ABC的三边长为a,b,c,其中c为斜边,设⊙O的半径为r,根据图形找出a,b,c,r的关系,用含c的式子表示S1和S2,即可求出比值.【解答】解:如图,取AB的中点为O,AC的中点为D,连接OE,OG,OD,OC,设AB=c,AC=b,BC=a,则a2+b2=c2,①取AB的中点为O,∵△ABC是直角三角形,∴OA=OB=OC,∵圆心在MN和HG的垂直平分线上,∴O为圆心,连接OC,OG,OE,作OD⊥AC,则OG,OE为半径,由勾股定理得:,②由①②得a=b,∴,∴,,∴,故选:C.【点评】本题主要考查勾股定理的应用,关键在找到圆心,依据的知识点是直角三角形斜边上的中点等于斜边的一半,即斜边的中点为圆心,用字母表示多条边,然后找它们的关系是中考经常考的类型,平时要多加练习此类题型.二.填空题(共6小题)15.(2020•台州)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是6.【考点】等边三角形的判定与性质;平行线的性质.【专题】等腰三角形与直角三角形;几何直观.【分析】根据三等分点的定义可求EF的长,再根据等边三角形的判定与性质即可求解.【解答】解:∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点,∴EF=2,∵△ABC是等边三角形,∴∠B=∠C=60°,又∵DE∥AB,DF∥AC,∴∠DEF=∠B=60°,∠DFE=∠C=60°,∴△DEF是等边三角形,∴剪下的△DEF的周长是2×3=6.故答案为:6.【点评】考查了等边三角形的性质,平行线的性质,关键是证明△DEF是等边三角形.16.(2020•绍兴)如图1,直角三角形纸片的一条直角边长为2,剪四块这样的直角三角形纸片,把它们按图2放入一个边长为3的正方形中(纸片在结合部分不重叠无缝隙),则图2中阴影部分面积为4.【考点】正方形的性质.【专题】矩形菱形正方形;运算能力;推理能力.【分析】根据题意和图形,可以得到直角三角形的一条直角边的长和斜边的长,从而可以得到直角三角形的另一条直角边长,再根据图形,可知阴影部分的面积是四个直角三角形的面积,然后代入数据计算即可.【解答】解:由题意可得,直角三角形的斜边长为3,一条直角边长为2,故直角三角形的另一条直角边长为:=,故阴影部分的面积是:=4,故答案为:4.【点评】本题考查正方形的性质、勾股定理、三角形的面积,解答本题的关键是明确题意,利用数形结合的思想解答.17.(2020•绍兴)将两条邻边长分别为,1的矩形纸片剪成四个等腰三角形纸片(无余纸片),各种剪法剪出的等腰三角形中,其中一个等腰三角形的腰长可以是下列数中的①②③④(填序号).①,②1,③﹣1,④,⑤.【考点】矩形的性质;三角形三边关系;等腰三角形的性质.【专题】矩形菱形正方形;几何直观.【分析】首先作出图形,再根据矩形的性质和等腰三角形的判定即可求解.【解答】解:如图所示:则其中一个等腰三角形的腰长可以是①,②1,③﹣1,④,不可以是.故答案为:①②③④.【点评】考查了矩形的性质,等腰三角形的判定与性质,根据题意作出图形是解题的关键.18.(2020•衢州)图1是由七根连杆链接而成的机械装置,图2是其示意图.已知O,P两点固定,连杆P A=PC=140cm,AB=BC=CQ=QA=60cm,OQ=50cm,O,P两点间距与OQ长度相等.当OQ绕点O转动时,点A,B,C的位置随之改变,点B恰好在线段MN上来回运动.当点B运动至点M或N时,点A,C重合,点P,Q,A,B在同一直线上(如图3).(1)点P到MN的距离为160cm.(2)当点P,O,A在同一直线上时,点Q到MN的距离为cm.【考点】勾股定理的应用;菱形的性质;轨迹;等腰三角形的性质.【专题】矩形菱形正方形;解直角三角形及其应用;应用意识.【分析】(1)如图3中,延长PO交MN于T,过点O作OH⊥PQ于H.解直角三角形求出PT即可.(2)如图4中,当O,P,A共线时,过Q作QH⊥PT于H.设HA=xcm.解直角三角形求出HT即可.【解答】解:(1)如图3中,延长PO交MN于T,过点O作OH⊥PQ于H.由题意:OP=OQ=50cm,PQ=P A﹣AQ=140﹣60=80(cm),PM=P A+BC=140+60=200(cm),PT⊥MN,∵OH⊥PQ,∴PH=HQ=40(cm),∵cos∠P==,∴=,∴PT=160(cm),∴点P到MN的距离为160cm,故答案为160.(2)如图4中,当O,P,A共线时,过Q作QH⊥PT于H.设HA=xcm.由题意AT=PT﹣P A=160﹣140=20(cm),OA=P A﹣OP=140﹣50=90(cm),OQ=50cm,AQ=60cm,∵QH⊥OA,∴QH2=AQ2﹣AH2=OQ2﹣OH2,∴602﹣x2=502﹣(90﹣x)2,解得x=,∴HT=AH+AT=(cm),∴点Q到MN的距离为cm.故答案为.【点评】本题考查解直角三角形的应用,等腰三角形的性质,菱形的性质等知识,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题.19.(2019•绍兴)把边长为2的正方形纸片ABCD分割成如图的四块,其中点O为正方形的中心,点E,F分别为AB,AD的中点.用这四块纸片拼成与此正方形不全等的四边形MNPQ(要求这四块纸片不重叠无缝隙),则四边形MNPQ的周长是6+2或10或8+2.【考点】平面镶嵌(密铺);整式的加减.【专题】整式.【分析】先根据题意画出图形,再根据周长的定义即可求解.【解答】解:如图所示:图1的周长为1+2+3+2=6+2;图2的周长为1+4+1+4=10;图3的周长为3+5++=8+2.故四边形MNPQ的周长是6+2或10或8+2.故答案为:6+2或10或8+2.【点评】考查了平面镶嵌(密铺),关键是得到与此正方形不全等的四边形MNPQ(要求这四块纸片不重叠无缝隙)的各种情况.20.(2019•湖州)七巧板是我国祖先的一项卓越创造,被誉为“东方魔板”.由边长为4的正方形ABCD可以制作一副如图1所示的七巧板,现将这副七巧板在正方形EFGH内拼成如图2所示的“拼搏兔”造型(其中点Q、R分别与图2中的点E、G重合,点P 在边EH上),则“拼搏兔”所在正方形EFGH的边长是4.【考点】七巧板.【专题】图表型;矩形菱形正方形.【分析】如图2中,连接EG,GM⊥EN交EN的延长线于M,利用勾股定理解决问题即可.【解答】解:如图2中,连接EG,作GM⊥EN交EN的延长线于M.在Rt△EMG中,∵GM=4,EM=2+2+4+4=12,∴EG===4,∴EH==4,解法二:如图,连接EG交MN于点O.由题意,EN=MN=4,GM=8,∵∠EON=∠GOM,∠N=∠M=90°,∴△EON∽△GOM,∴==,∴ON=MN=,∴OE==,OG=2OE=,∴GF=EG=(OE+OG)=4.故答案为4.【点评】本题考查正方形的性质,七巧板,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.三.解答题(共2小题)21.(2020•台州)如图,在△ABC中,∠ACB=90°,将△ABC沿直线AB翻折得到△ABD,连接CD交AB于点M.E是线段CM上的点,连接BE.F是△BDE的外接圆与AD的另一个交点,连接EF,BF.(1)求证:△BEF是直角三角形;(2)求证:△BEF∽△BCA;(3)当AB=6,BC=m时,在线段CM上存在点E,使得EF和AB互相平分,求m的值.【考点】圆的综合题.【专题】几何综合题;应用意识.【分析】(1)想办法证明∠BEF=90°即可解决问题(也可以利用圆内接四边形的性质直接证明).(2)根据两角对应相等两三角形相似证明.(3)证明四边形AFBE是平行四边形,推出FJ=BD=,EF=m,由△ABC∽△CBM,可得BM=,由△BEJ∽△BME,可得BE=,由△BEF∽△BCA,推出=,由此构建方程求解即可.【解答】(1)证明:∵∠ACB=90°,将△ABC沿直线AB翻折得到△ABD,∴∠ADB=∠ACB=90°,∵∠EFB=∠EDB,∠EBF=∠EDF,∴∠EFB+∠EBF=∠EDB+∠EDF=∠ADB=90°,∴∠BEF=90°,∴△BEF是直角三角形.(2)证明:∵BC=BD,∴∠BDC=∠BCD,∵∠EFB=∠EDB,∴∠EFB=∠BCD,∵AC=AD,BC=BD,∴AB⊥CD,∴∠AMC=90°,∵∠BCD+∠ACD=∠ACD+∠CAB=90°,∴∠BCD=∠CAB,∴∠BFE=∠CAB,∵∠ACB=∠FEB=90°,∴△BEF∽△BCA.(3)解:设EF交AB于J.连接AE.∵EF与AB互相平分,∴四边形AFBE是平行四边形,∴∠EF A=∠FEB=90°,即EF⊥AD,∵BD⊥AD,∴EF∥BD,∵AJ=JB,∴AF=DF,∴FJ=BD=,∴EF=m,∵△ABC∽△CBM,∴BC:MB=AB:BC,∴BM=,∵△BEJ∽△BME,∴BE:BM=BJ:BE,∴BE=,∵△BEF∽△BCA,∴=,即=,解得m=2(负根已经舍弃).【点评】本题属于圆综合题,考查了圆周角定理,相似三角形的判定和性质平行四边形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.22.(2020•衢州)【性质探究】如图,在矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAC,交BC于点E.作DF⊥AE于点H,分别交AB,AC于点F,G.(1)判断△AFG的形状并说明理由.(2)求证:BF=2OG.【迁移应用】(3)记△DGO的面积为S1,△DBF的面积为S2,当=时,求的值.【拓展延伸】(4)若DF交射线AB于点F,【性质探究】中的其余条件不变,连接EF,当△BEF的面积为矩形ABCD面积的时,请直接写出tan∠BAE的值.【考点】四边形综合题.【专题】几何综合题;应用意识.【分析】(1)如图1中,△AFG是等腰三角形.利用全等三角形的性质证明即可.(2)如图2中,过点O作OL∥AB交DF于L,则∠AFG=∠OLG.首先证明OG=OL,再证明BF=2OL即可解决问题.(3)如图3中,过点D作DK⊥AC于K,则∠DKA=∠CDA=90°,利用相似三角形的性质解决问题即可.(4)设OG=a,AG=k.分两种情形:①如图4中,连接EF,当点F在线段AB上时,点G在OA上.②如图5中,当点F在AB的延长线上时,点G在线段OC上,连接EF.分别求解即可解决问题.【解答】(1)解:如图1中,△AFG是等腰三角形.理由:∵AE平分∠BAC,∴∠1=∠2,∵DF⊥AE,∴∠AHF=∠AHG=90°,∵AH=AH,∴△AHF≌△AHG(ASA),∴AF=AG,∴△AFG是等腰三角形.(2)证明:如图2中,过点O作OL∥AB交DF于L,则∠AFG=∠OLG.∵AF=AG,∴∠AFG=∠AGF,∵∠AGF=∠OGL,∴∠OGL=∠OLG,∴OG=OL,∵OL∥AB,∴△DLO∽△DFB,∴=,∵四边形ABCD是矩形,∴BD=2OD,∴BF=2OL,∴BF=2OG.(3)解:如图3中,过点D作DK⊥AC于K,则∠DKA=∠CDA=90°,∵∠DAK=∠CAD,∴△ADK∽△ACD,∴=,∵S1=•OG•DK,S2=•BF•AD,又∵BF=2OG,=,∴==,设CD=2x,AC=3x,则AD=x,∴==.(4)解:设OG=a,AG=k.①如图4中,连接EF,当点F在线段AB上时,点G在OA上.∵AF=AG,BF=2OG,∴AF=AG=k,BF=2a,∴AB=k+2a,AC=2(k+a),∴AD2=AC2﹣CD2=[2(k+a)]2﹣(k+2a)2=3k2+4ka,∵∠ABE=∠DAF=90°,∠BAE=∠ADF,∴△ABE∽△DAF,∴=,即=,∴=,∴BE=,由题意:10××2a×=AD•(k+2a),∴AD2=10ka,即10ka=3k2+4ka,∴k=2a,∴AD=2a,∴BE==a,AB=4a,∴tan∠BAE==.②如图5中,当点F在AB的延长线上时,点G在线段OC上,连接EF.∵AF=AG,BF=2OG,∴AF=AG=k,BF=2a,∴AB=k﹣2a,AC=2(k﹣a),∴AD2=AC2﹣CD2=[2(k﹣a)]2﹣(k﹣2a)2=3k2﹣4ka,∵∠ABE=∠DAF=90°,∠BAE=∠ADF,∴△ABE∽△DAF,∴=,即=,∴=,∴BE=,由题意:10××2a×=AD•(k﹣2a),∴AD2=10ka,即10ka=3k2﹣4ka,∴k=a,∴AD=a,∴BE==a,AB=a,∴tan∠BAE==,综上所述,tan∠BAE的值为或.【点评】本题属于四边形综合题,考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学试题分类汇编:正方形一.选择题(共4小题)1.(无锡)如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH 的顶点G、H都在边AD上,若AB=3,BC=4,则tan∠AFE的值()A.等于B.等于C.等于D.随点E位置的变化而变化【分析】根据题意推知EF∥AD,由该平行线的性质推知△AEH∽△ACD,结合该相似三角形的对应边成比例和锐角三角函数的定义解答.【解答】解:∵EF∥AD,∴∠AFE=∠FAG,∴△AEH∽△ACD,∴==.设EH=3x,AH=4x,∴HG=GF=3x,∴tan∠AFE=tan∠FAG===.故选:A.2.(宜昌)如图,正方形ABCD的边长为1,点E,F分别是对角线AC上的两点,EG ⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.则图中阴影部分的面积等于()A.1 B.C.D.【分析】根据轴对称图形的性质,解决问题即可;【解答】解:∵四边形ABCD是正方形,∴直线AC是正方形ABCD的对称轴,∵EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.∴根据对称性可知:四边形EFHG的面积与四边形EFJI的面积相等,S正方形ABCD=,∴S阴=故选:B.3.(湘西州)下列说法中,正确个数有()①对顶角相等;②两直线平行,同旁内角相等;③对角线互相垂直的四边形为菱形;④对角线互相垂直平分且相等的四边形为正方形.A.1个 B.2个 C.3个 D.4个【分析】根据对顶角的性质,菱形的判定,正方形的判定,平行线的性质,可得答案.【解答】解:①对顶角相等,故①正确;②两直线平行,同旁内角互补,故②错误;③对角线互相垂直且平分的四边形为菱形,故③错误;④对角线互相垂直平分且相等的四边形为正方形,故④正确,故选:B.4.(张家界)下列说法中,正确的是()A.两条直线被第三条直线所截,内错角相等B.对角线相等的平行四边形是正方形C.相等的角是对顶角D.角平分线上的点到角两边的距离相等【分析】根据平行线的性质、正方形的判定、矩形的判定、对顶角的性质、角平分线性质逐个判断即可.【解答】解:A、两条平行线被第三条直线所截,内错角才相等,错误,故本选项不符合题意;B、对角线相等的四边形是矩形,不一定是正方形,错误,故本选项不符合题意;C、相等的角不一定是对顶角,错误,故本选项不符合题意;D、角平分线上的点到角的两边的距离相等,正确,故本选项符合题意;故选:D.二.填空题(共7小题)5.(武汉)以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是30°或150°.【分析】分等边△ADE在正方形的内部和外部两种情况分别求解可得.【解答】解:如图1,∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°,∴∠BAE=∠CDE=150°,又AB=AE,DC=DE,∴∠AEB=∠CED=15°,则∠BEC=∠AED﹣∠AEB﹣∠CED=30°.如图2,∵△ADE是等边三角形,∴AD=DE,∵四边形ABCD是正方形,∴AD=DC,∴DE=DC,∴∠CED=∠ECD,∴∠CDE=∠ADC﹣∠ADE=90°﹣60°=30°,∴∠CED=∠ECD=(180°﹣30°)=75°,∴∠BEC=360°﹣75°×2﹣60°=150°.故答案为:30°或150°.6.(呼和浩特)如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到.若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM=HM;③无论点M运动到何处,∠CHM一定大于135°.其中正确结论的序号为①②③.【分析】先判定△MEH≌△DAH(SAS),即可得到△DHM是等腰直角三角形,进而得出DM=HM;依据当∠DHC=60°时,∠ADH=60°﹣45°=15°,即可得到Rt△ADM 中,DM=2AM,即可得到DM=2BE;依据点M是边BA延长线上的动点(不与点A 重合),且AM<AB,可得∠AHM<∠BAC=45°,即可得出∠CHM>135°.【解答】解:由题可得,AM=BE,∴AB=EM=AD,∵四边形ABCD是正方形,EH⊥AC,∴EM=AH,∠AHE=90°,∠MEH=∠DAH=45°=∠EAH,∴EH=AH,∴△MEH≌△DAH(SAS),∴∠MHE=∠DHA,MH=DH,∴∠MHD=∠AHE=90°,△DHM是等腰直角三角形,∴DM=HM,故②正确;当∠DHC=60°时,∠ADH=60°﹣45°=15°,∴∠ADM=45°﹣15°=30°,∴Rt△ADM中,DM=2AM,即DM=2BE,故①正确;∵点M是边BA延长线上的动点(不与点A重合),且AM<AB,∴∠AHM<∠BAC=45°,∴∠CHM>135°,故③正确;故答案为:①②③.7.(青岛)如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE 与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.【分析】根据正方形的四条边都相等可得AB=AD,每一个角都是直角可得∠BAE=∠D=90°,然后利用“边角边”证明△ABE≌△DAF得∠ABE=∠DAF,进一步得∠AGE=∠BGF=90°,从而知GH=BF,利用勾股定理求出BF的长即可得出答案.【解答】解:∵四边形ABCD为正方形,∴∠BAE=∠D=90°,AB=AD,在△ABE和△DAF中,∵,∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=∠BGF=90°,∵点H为BF的中点,∴GH=BF,∵BC=5、CF=CD﹣DF=5﹣2=3,∴BF==,∴GH=BF=,故答案为:.8.(咸宁)如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为(﹣1,5).【分析】结合全等三角形的性质可以求得点G的坐标,再由正方形的中心对称的性质求得点F的坐标.【解答】解:如图,过点E作x轴的垂线EH,垂足为H.过点G作x轴的垂线EG,垂足为G,连接GE、FO交于点O′.∵四边形OEFG是正方形,∴OG=EO,∠GOM=∠OEH,∠OGM=∠EOH,在△OGM与△EOH中,∴△OGM≌△EOH(ASA)∴GM=OH=2,OM=EH=3,∴G(﹣3,2).∴O′(﹣,).∵点F与点O关于点O′对称,∴点F的坐标为(﹣1,5).故答案是:(﹣1,5).9.(江西)在正方形ABCD中,AB=6,连接AC,BD,P是正方形边上或对角线上一点,若PD=2AP,则AP的长为2或2或﹣.【分析】根据正方形的性质得出AC⊥BD,AC=BD,OB=OA=OC=OD,AB=BC=AD=CD=6,∠ABC=90°,根据勾股定理求出AC、BD、求出OA、OB、OC、OD,画出符合的三种情况,根据勾股定理求出即可.【解答】解:∵四边形ABCD是正方形,AB=6,∴AC⊥BD,AC=BD,OB=OA=OC=OD,AB=BC=AD=CD=6,∠ABC=∠DAB=90°,在Rt△ABC中,由勾股定理得:AC===6,∴OA=OB=OC=OD=3,有三种情况:①点P在AD上时,∵AD=6,PD=2AP,∴AP=2;②点P在AC上时,设AP=x,则DP=2x,在Rt△DPO中,由勾股定理得:DP2=DO2+OP2,(2x)2=(3)2+(3﹣x)2,解得:x=﹣(负数舍去),即AP=﹣;③点P在AB上时,设AP=y,则DP=2y,在Rt△APD中,由勾股定理得:AP2+AD2=DP2,y2+62=(2y)2,解得:y=2(负数舍去),即AP=2;故答案为:2或2或﹣.10.(潍坊)如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′与CD相交于点M,则点M的坐标为(﹣1,).【分析】连接AM,由旋转性质知AD=AB′=1、∠BAB′=30°、∠B′AD=60°,证Rt△ADM ≌Rt△AB′M得∠DAM=∠B′AD=30°,由DM=ADtan∠DAM可得答案.【解答】解:如图,连接AM,∵将边长为1的正方形ABCD绕点A逆时针旋转30°得到正方形AB'C′D′,∴AD=AB′=1,∠BAB′=30°,∴∠B′AD=60°,在Rt△ADM和Rt△AB′M中,∵,∴Rt△ADM≌Rt△AB′M(HL),∴∠DAM=∠B′AM=∠B′AD=30°,∴DM=ADtan∠DAM=1×=,∴点M的坐标为(﹣1,),故答案为:(﹣1,).11.(台州)如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF 相交于点G.若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG 的周长为+3.【分析】根据面积之比得出△BGC的面积等于正方形面积的,进而依据△BCG的面积以及勾股定理,得出BG+CG的长,进而得出其周长.【解答】解:∵阴影部分的面积与正方形ABCD的面积之比为2:3,∴阴影部分的面积为×9=6,∴空白部分的面积为9﹣6=3,由CE=DF,BC=CD,∠BCE=∠CDF=90°,可得△BCE≌△CDF,∴△BCG的面积与四边形DEGF的面积相等,均为×3=,设BG=a,CG=b,则ab=,又∵a2+b2=32,∴a2+2ab+b2=9+6=15,即(a+b)2=15,∴a+b=,即BG+CG=,∴△BCG的周长=+3,故答案为: +3.三.解答题(共6小题)12.(盐城)在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.【分析】(1)根据正方形的性质和全等三角形的判定证明即可;(2)四边形AECF是菱形,根据对角线垂直的平行四边形是菱形即可判断;【解答】证明:(1)∵正方形ABCD,∴AB=AD,∴∠ABD=∠ADB,∴∠ABE=∠ADF,在△ABE与△ADF中,∴△ABE≌△ADF(SAS);(2)连接AC,四边形AECF是菱形.理由:∵正方形ABCD,∴OA=OC,OB=OD,AC⊥EF,∴OB+BE=OD+DF,即OE=OF,∵OA=OC,OE=OF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形.13.(吉林)如图,在正方形ABCD中,点E,F分别在BC,CD上,且BE=CF,求证:△ABE≌△BCF.【分析】根据正方形的性质,利用SAS即可证明;【解答】证明:∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,在△ABE和△BCF中,,∴△ABE≌△BCF.14.(白银)已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE 的中点.(1)求证:△BGF≌△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.【分析】(1)根据三角形中位线定理和全等三角形的判定证明即可;(2)利用正方形的性质和矩形的面积公式解答即可.【解答】解:(1)∵点F,G,H分别是BC,BE,CE的中点,∴FH∥BE,FH=BE,FH=BG,∴∠CFH=∠CBG,∵BF=CF,∴△BGF≌△FHC,(2)当四边形EGFH是正方形时,可得:EF⊥GH且EF=GH,∵在△BEC中,点,H分别是BE,CE的中点,∴GH=,且GH∥BC,∴EF⊥BC,∵AD∥BC,AB⊥BC,∴AB=EF=GH=a,∴矩形ABCD的面积=.15.(潍坊)如图,点M是正方形ABCD边CD上一点,连接AM,作DE⊥AM于点E,BF⊥AM于点F,连接BE.(1)求证:AE=BF;(2)已知AF=2,四边形ABED的面积为24,求∠EBF的正弦值.【分析】(1)通过证明△ABF≌△DEA得到BF=AE;(2)设AE=x,则BF=x,DE=AF=2,利用四边形ABED的面积等于△ABE的面积与△ADE 的面积之和得到•x•x+•x•2=24,解方程求出x得到AE=BF=6,则EF=x﹣2=4,然后利用勾股定理计算出BE,最后利用正弦的定义求解.【解答】(1)证明:∵四边形ABCD为正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于点E,BF⊥AM于点F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DEA中,∴△ABF≌△DEA(AAS),∴BF=AE;(2)解:设AE=x,则BF=x,DE=AF=2,∵四边形ABED的面积为24,∴•x•x+•x•2=24,解得x1=6,x2=﹣8(舍去),∴EF=x﹣2=4,在Rt△BEF中,BE==2,∴sin∠EBF===.16.(湘潭)如图,在正方形ABCD中,AF=BE,AE与DF相交于点O.(1)求证:△DAF≌△ABE;(2)求∠AOD的度数.【分析】(1)利用正方形的性质得出AD=AB,∠DAB=∠ABC=90°,即可得出结论;(2)利用(1)的结论得出∠ADF=∠BAE,进而求出∠ADF+∠DAO=90°,最后用三角形的内角和定理即可得出结论.【解答】(1)证明:∵四边形ABCD是正方形,∴∠DAB=∠ABC=90°,AD=AB,在△DAF和△ABE中,,∴△DAF≌△ABE(SAS),(2)由(1)知,△DAF≌△ABE,∴∠ADF=∠BAE,∵∠ADF+∠DAO=∠BAE+∠DAO=∠DAB=90°,∴∠AOD=180°﹣(∠ADF+DAO)=90°.17.(遵义)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE <BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.【分析】(1)证△OAM≌△OBN即可得;(2)作OH⊥AD,由正方形的边长为4且E为OM的中点知OH=HA=2、HM=4,再根据勾股定理得OM=2,由直角三角形性质知MN=OM.【解答】解:(1)∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为4,∴OH=HA=2,∵E为OM的中点,∴HM=4,则OM==2,∴MN=OM=2.。