11.2 与三角形有关的角 同步练习及答案

合集下载

人教版八年级上册数学三角形的外角同步练习(含答案)

人教版八年级上册数学三角形的外角同步练习(含答案)

人教版八年级上册数学11.2.2三角形的外角同步练习一、单选题1.如图,在ABC 中,30A ∠=︒,50B ∠=︒,CD 平分ACB ∠,则BDC ∠的度数是( )A .80︒B .90︒C .100︒D .110︒ 2.如果将一副三角板按如图的方式叠放,则∠1的度数为( )A .105°B .120°C .75°D .45° 3.如图,,380,1220∠=︒∠-∠︒=∥a b ,则1∠的度数是( )A .30B .40︒C .50︒D .80︒ 4.如图,直线//a b ,点A 在直线a 上,点C 、D 在直线b 上,且AB ∠BC ,BD 平分∠ABC ,若∠1=32°,则∠2的度数是( )A .13°B .15°C .14°D .16° 5.如图,AB CD ∥,∠A =45°,∠C =∠E ,则∠C 的度数为( )A .45°B .22.5°C .67.5°D .30° 6.如图,∠B =30°,∠CAD =65°,且AD 平分∠CAE ,则∠ACD 等于( )A .95°B .65°C .50°D .80° 7.已知,如图,AB CD ∥,95A ∠=︒,65C =︒∠,1:23:4∠∠=,则B 的度数为( )A .56°B .45°C .36°D .24° 8.如图,点D 在BC 的延长线上,DE ∠AB 于点E ,交AC 于F ,若∠A =35°,15D ∠=︒,则∠ACB 的度数为( )A .85°B .75°C .70°D .65°二、填空题 9.如图,点A 、B 、C 、D 、E 在同一平面内,连接AB 、B C 、CD 、DE 、EA ,若100BCD ∠=︒,则A B D E ∠+∠+∠+∠=___________.10.如图,AB ∥CD ,MF 与AB 、CD 分别交于点E 、F ,∠CFE 的平分线FG 交AB 于点G ,若∠MEG =140︒,则∠EGF 的度数为_______.11.如图,在ABC 中,B C ∠=∠,D 为BC 边上的一点,点E 在AC 边上,ADE AED ∠=∠,若30BAD ∠=︒,则CDE ∠的度数为__________.12.一把直尺与一块直角三角板按如图方式摆放,若147∠=︒,则2∠=______.13.如图,点D 在线段AB 的延长线上,∠BAC =26°,∠CBD =115°,则∠C 的度数是______.14.如图,PAC △∠PBD △,若40A ∠=︒,20BPD ∠=︒,则PCD ∠的度数为______.15.∠ABC的内角关系如图所示,则∠1=_______.16.如图,∠1 和∠2 是∠ABC的两个外角,若∠A=40°,∠1=100°,则∠2=_____.三、解答题17.(1)如图1,P是∠ABC中BC边延长线上一点,∠A=50°,∠B=70°,则∠ACP=_____;(2)如图2,已知∠ABE=142°,∠C=72°,则∠A=______,∠ABC=_______;(3)如图3,已知∠3=120°,则∠1-∠2=_______.18.如图,在△ABC中,∠A=70°,∠ACD=30°,CD平分∠ACB.求:(1)∠BDC的度数.(2)∠B的度数.19.如图,在∠ABC中,∠1=∠2=36°,∠3=∠4,求∠DAC的度数.20.某校八年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在∠ABC中,∠ABC与∠ACB的平分线交于点P,若∠A=66°,则∠BPC =°;(2)如图2,∠ABC的内角∠ACB的平分线与∠ABC的外角∠ABD的平分线交于点E.其中∠A=α,则∠BEC=(用α表示∠BEC);(3)如图3,BQ平分外角∠CBM,CQ平分外角∠BCN.试确定∠BQC与∠A的数量关系,并说明理由.参考答案:1.A2.A3.C4.A5.B6.D7.B8.C9.280︒10.70︒11.15°12.43°13.89︒14.60︒15.150︒16.120︒17.(1)120°,(2)70°,38°,(3)60°18.(1)∠BDC=100°(2)∠B=50°19.36°20.(1)122(2)2α(3)∠BQC=90°12A-∠,答案第1页,共1页。

部编版人教初中数学八年级上册《11.2 与三角形有关的角 同步练习题及答案》最新精品优秀测试题

部编版人教初中数学八年级上册《11.2 与三角形有关的角 同步练习题及答案》最新精品优秀测试题

前言:该同步练习题由多位一线国家特级教师针对当前最新的热点、考点、重点、难点、知识点,精心编辑而成。

以高质量的同步练习题助力考生查漏补缺,在原有基础上更进一步。

(最新精品同步练习题)11.2 与三角形有关的角基础巩固1.(题型三角度a)如图11-2-1,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为()图11-2-1A.80°B.50°C.30°D.20°2.(题型一)如图11-2-2,在△ABC中,∠A=80°,∠B=40°,D,E分别是AB,AC上的点,且DE∥BC,则∠AED的度数是()图11-2-2A.40°B.60°C.80°D.120°3.(题型一)若三角形的一个内角等于另外两个内角之差,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定4.(题型一)如图11-2-3,一根直尺EF压在三角形30°的角∠BAC上,与两边AC,AB分别交于点M,N,那么∠CME+∠BNF=()图11-2-3A.135°B.150°C.180°D.不能确定5.(题型一)如图11-2-4,在△ABC中,∠ABD=∠DBE=∠EBC,∠ACD=∠DCE=∠ECB,若∠BEC=145°,则∠BDC=()图11-2-4A.100°B.105°C.110°D.115°6.(题型三角度a)将一副直角三角板,按图11-2-5叠放在一起,则图中α的度数是 .图11-2-57.(题型一)如图11-2-6,EF∥BC,AC平分∠BAF,∠B=80°,则∠C的度数是.图11-2-68.(知识点2)如图11-2-7,在Rt△ACB中,∠ACB=90°,CD⊥AB,则图中互余的角有对.图11-2-79.(知识点3)如图11-2-8,已知在△ABC中,∠A=40°,剪去∠A后成四边形,∠1+∠2=°.。

八年级上册数学11.2与三角形有关的角练习题(含答案)

八年级上册数学11.2与三角形有关的角练习题(含答案)

11.2与三角形有关的角练习题姓名:_______________班级:_______________考号:______________一、选择题1、在中,,则的度数为(???)A.?????B.??????C.??????D.2、如图,已知直线AB∥CD,∠C=115°,∠A=25°,则∠E=(??)A.70°?????B.80°??????C.90°?????D.100°3、如图8,AB=BC=CD,且∠A=15°,则∠ECD=(????)A.30°??????B.45°??????C.60°???????D.75°4、如图,在ΔABC中,AC=DC=DB,∠ACD=100°,则∠B等于(??)A.50°??????B.40°??????C.25°????D.20°第4题第5题5、如图,△ABC中,,点D、E分别在AB、AC上,则的大小为(????)??A、??????B、??????C、?????D、第6题第7题第9题6、如图,已知,∠1=130o,∠2=30o,则∠C=??????.7、如下图所示,已知:∠AEC的度数为110°,则∠A+∠B+∠C+∠D的度数为(??)A.110°?????B.130°?????C.220°???D.180°8、已知等腰三角形的一个角为75°,则其顶角为(?)A.30°???B.75°???C.105°????D.30°或75°9、如图,已知,若,,则C等于(???)A.20°????B.35°??????C.45°????D.55°10、如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()第10题第11题第12题11、如图,已知△ABC的两条高BE、CF相交于点O,,则的度数为(??)A.95o???B.130o??????C.140o???D.150o12、如图,已知与相交于点,,如果,,则的大小为(???)A.??????B.?????C.???????D.13、如图,在△ABC中,∠C=90o,∠B=40o,AD是角平分线,则∠ADC等于A.25o?????B.50o???????C.65o??????D.70o第13题第14题14、如图,直线a∥b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.?20°????B.40°??????C.30°????D.25°15、如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是(????)A.45°?????B.54°?????C.40°?????D.50°第15题第16题第18题16、如图7-7,C在AB的延长线上,CE⊥AF于E,交FB于D,若∠F=40°,∠C=20°,则∠FBA 的度数为(?????).?A.50°??B.60°??C.70°??D.80°17、适合条件的三角形ABC是(????)A.锐角三角形??B.直角三角形C.钝角三角形?D.等边三角形???????????18、如图1,若∠1=110°,∠2=135°,则∠3等于A.55°????B.65°????C.75°????D.85°19、如图,在△AB C中,∠A=60°,∠ABC=50°,∠B、∠C的平分线相交于F,过点F作DE∥BC,交AB于D,交AC于E,那么下列结论正确的是(?)①∠ACB=70°;??????②∠BFC=115°;③∠BDF=130°;?④∠CFE=40°;A.①②?????B.③④?????C.①③????D.①②③第19题第20题20、如图,△ABC中,∠BAC=60°,∠ABC、∠ACB的平分线交于E,D是AE延长线上一点,且∠BDC=120°.下列结论:①∠BEC=120°;②DB=DE;③∠DBE=∠DCE.其中正确结论的个数为( )A.0??????B.1??????C.2??????D.3二、填空题21、如图,∠l=20°,∠2=25°,∠A=35°,则∠BDC=???????????.第21题第22题第23题22、如下图,?∠A=27°,?∠CBE=96°,?∠C=30°,?则∠ADE的度数是________度.?23、如图,∠1,∠2,∠3的大小关系是??????.24、如图,∠A=50°,∠ACD=38°,∠ABE=32°,则∠BFC= _________ .第24题第25题第26题25、如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=50°,则∠ACD的度数为.26、如图,已知△ABC中,AD是BC边上的高,AE是∠BAC的平分线,若∠B=42°,∠C=70°,则∠DAE=????°.27、△ABC中,∠A∶∠B∶∠C=1∶2∶3,则△ABC是??????三角形.28、如图,⊿ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=????????度。

新人教版八年级数学上册11.2与三角形有关角练习(附)

新人教版八年级数学上册11.2与三角形有关角练习(附)

新人教版八年级数学上册与三角形相关的角练习1.△ ABC中,∠ A=50°,∠ B=60°,则∠ C=________.2.已知三角形的三个内角的度数之比为1:2:3,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不可以确立3.△ ABC中,∠ A=∠ B+∠C,则∠ A=______度.4.依据以下条件,能确立三角形形状的是()( 1)最小内角是 20°;(2)最大内角是100°;( 3)最大内角是 89°;(4)三个内角都是60°;( 5)有两个内角都是80°.A.(1)、(2)、(3)、(4)B.(1)、(3)、(4)、(5)C.(2)、(3)、(4)、(5)D.(1)、(2)、(4)、(5)5.如图 1,∠ 1+∠2+∠3+∠ 4=______度.(1)(2)(3)6.三角形中最大的内角不可以小于_______度,最小的内角不可以大于______度.7.△ ABC中,∠ A 是最小的角,∠ B 是最大的角,且∠ B=4∠A,求∠ B 的取值范围.8.如图 2,在△ ABC中,∠ BAC=4∠ABC=4∠ C, BD⊥AC于 D,求∠ ABD的度数.9.(综合题)如图3,在△ ABC中,∠ B=66°,∠ C=54°, AD是∠ BAC的均分线, DE均分∠ADC交 AC于 E,则∠ BDE=.10.(应用题)如图7-2-1-4是一个大型模板,设计要求BA与 CD订交成 30°角, DA与 CB 订交成 20°角,如何经过丈量∠ A,∠ B,∠ C,∠ D 的度数,来查验模板能否合格?11.(创新题)如图,△ ABC中, AD是 BC上的高, AE均分∠ BAC,∠B=75°, ?∠C=45°,求∠ DAE与∠ AEC的度数.12.( 2005 年,福建厦门)如图,已知,在直角△ABC中,∠ C=90°, BD均分∠ ABC且交 AC 于 D.(1)若∠ BAC=30°,求证: AD=BD;( 2)若 AP均分∠ BAC且交 BD于 P,求∠ BPA的度数.13.(易错题)在△ ABC中,已知∠ A=1∠B=1∠C,求∠ A、∠ B、∠ C 的度数.3514.(研究题)( 1)如图,在△ ABC中,∠ A=42°,∠ ABC和∠ ACB?的均分线订交于点D,求∠ BDC的度数.( 2)在( 1)中去掉∠ A=42°这个条件,请研究∠ BDC和∠ A 之间的数目关系.15.(开放题)如图,在直角三角形ABC中,∠ BAC=90°,作 BC边上的高 AD,?图中出现多少个直角三角形?又作△ ABD中 AB边上的高 DD1,这时,图中共出现多少个直角三角形?依据相同的方法作下去,作出D1D2,D2D3,, ,看作出D n-1D n时,图中共出现多少个直角三角形?数学世界推门与加水爱迪生成名此后,去拜见他的人好多,但客人们都感觉爱迪生家的大门很重,推门很费劲.此后,一位朋友对他说:“你有没有方法让你家的大门开关起来省力一些?”爱迪生边笑边回答:“我家的大门做得特别合理,我让那个门与一个取水装置相连结,来访的客人,每次推开门都能够往水槽加 20 升水.”不单这样,爱迪生还在想,假如每次推门能向水槽加入25 升水的话,那么比本来少推12次门,水槽就能够装满了.你能算出爱迪生家水槽的容积吗?答案 :1. 70°2. B点拨:设这个三角形的三个内角分别为x°、 2x°、 3x°,则 x+2x+3x=180,解得x=30.∴ 3x=90.∴这个三角形是直角三角形,应选B.3. 90点拨:由三角形内角和定理知∠ A+∠B+∠C=180°,又∠ B+∠C=∠A,?∴∠ A+∠A=180°,∴∠ A=90°.4. C5. 280点拨:由三角形内角和定理知,∠1+∠2=180° -40 °=140°, ?∠3+?∠ 4=180°-40 °=140°.∴∠ 1+∠2+∠3+∠ 4=140°× 2=280°.6. 60;607.解:设∠ B=x,则∠ A=1x.4由三角形内角和定理,知∠C=180°- 5x.4而∠ A≤∠ C≤∠ B.因此1x≤180°-5x≤x.?即 80°≤ x≤120°.448.解:设∠ ABC=∠ C=x°,则∠ BAC=4x°.由三角形内角和定理得4x+x+x=180.解得 x=30.∴∠ BAC=4×30°=120°.∠BAD=180°- ∠BAC=180°-120 °=60°.∴∠ ABD=90°- ∠BAD=90°-60 ° =30°.点拨:∠ ABD是 Rt△ BDA的一个锐角,若能求出另一个锐角∠DAB.便可运用直角三角形两锐角互余求得.9. 132°点拨:由于∠ BAC=180°-∠B-∠ C=180°-66°-54° =60°,且 AD?是∠ BAC的均分线,因此∠BAD=∠DAC=30°.在△ ABD中,∠ ADB=180°-66 °-30 ° =84°.在△ ADC 中,∠ ADC=180°-54 °-30 ° =96°.又 DE 均分∠ ADC ,因此∠ ADE=48°.故∠ BDE=∠ ADB+∠ ADE=84°+48°=132°.10.解:设计方案 1:丈量∠ ABC ,∠ C ,∠ CDA ,若 180° - (∠ ABC+∠C )=30°, 180°- (∠ C+∠ CDA )=20°同时建立,则模板合格;不然不合格.设计方案 2:丈量∠ ABC ,∠ C ,∠ DAB ,若 180° - (∠ ABC+∠C )=30°,(∠ BAD+∠ABC )-180 °=20°同时建立,则模板合格;不然不合格.设计方案 3:丈量∠ DAB ,∠ ABC ,∠ CDA ,若(∠ DAB+∠ CDA )-180 °=30°,(∠ BAD+∠ABC )-180 °=20°同时建立,则模板合格;不然不合格.设计方案 4:丈量∠ DAB ,∠ C ,∠ CDA ,若(∠ DAB+∠ CDA )-180 °=30°, 180°- (∠ C+∠ CDA )=20°同时建立,则模板合格;不然不合格.点拨:这是一道几何应用题,借助于三角形知识剖析解决问题, ?对形成用数学的意识解决实质问题是大有好处的.11.解法 1:∵∠ B+∠C+∠BAC=180°,∠ B=75°,∠ C=45°,∴∠ BAC=60°.∵ AE 均分∠ BAC ,∴∠ BAE=∠CAE=1 ∠BAC=1×60°=30°. 2 2∵ AD 是 BC 上的高,∴∠ B+∠BAD=90°,∴∠ BAD=90°- ∠B=90°-75 °=15°,∴∠ DAE=∠ BAE-∠ BAD=30°-15 °=15°. ?在△ AEC 中,∠ AEC=180°- ∠C-∠ CAE=180°-45 ° -30 °=105°.解法 2:同解法 1,得出∠ BAC=60°.∵AE 均分∠ BAC ,∴∠ EAC=1 ∠BAC=1×60°=30°. 2 2∵AD 是 BC 上的高,∴∠ C+∠ CAD=90°,∴∠ CAD=90° -45 °=45°,∴∠ DAE=∠CAD-?∠ CAE=45°-30 °=15°.∵∠ AEC+∠C+∠EAC=180°,∴∠ AEC+30° +45°=180°, ?∴∠ AEC=105°.答:∠ DAE=15°,∠ AEC=105°.点拨:本节知识多与角均分线的定义,余角的性质,平行线的性质,三角形高的定义综合应用,有时也联合方程组、不等式等代数知识综合应用.求角的度数的重点是把已知角放在三角形中,利用三角形内角和定理求解,或转变为与已知角有互余关系或互补关系求解,有些题目还能够转变为已知角的和或差来求解.12.( 1)证明:∵∠ BAC=30°,∠ C=90°,∴∠ ABC=60°.又∵ BD 均分∠ ABC ,∴∠ ABD=30°.∴∠ BAC=∠ ABD ,∴ BD=AD .(2)解法 1:∵∠ C=90°,∴∠ BAC+∠ ABC=90°.∴ 1 (∠ BAC+∠ABC ) =45°.2∵ BD 均分∠ ABC ,AP 均分∠ BAC ,∴∠ BAP=1 ∠BAC ,∠ ABP=1∠ABC ; 2 2即∠ BAP+∠ ABP=45°,∴∠ APB=180° -45 °=135°.解法 2:∵∠ C=90°,∴∠ BAC+∠ ABC=90°.∴ 1 (∠ BAC+∠ABC ) =45°.2∵ BD 均分∠ ABC ,AP 均分∠ BAC ,∴∠ DBC=1 ∠ABC ,∠ PAC=1∠BAC , 2 2∴∠ DBC+∠ PAD=45°.∴∠ APB=∠ PDA+∠ PAD=∠ DBC+∠C+∠PAD=∠DBC+∠PAD+∠C=45°+90°=135°.1 13 5 设∠ A=x °,则∠ B=3x °,∠ C=5x °.由三角形内角和定理得 x+3x+5x=180.解得 x=20.∴ 3x=60,5x=100.∴∠ A=20°,∠ B=60°,∠ C=100°.点拨:解此类题,一般设较小的角为未知数.14.解:( 1)∵∠ A=42°,∴∠ ABC+∠ ACB=180° - ∠ A=138°.∵ BD 、CD 均分∠ ABC 、∠ ACB 的均分线.11∠ACB . ∴∠ DBC= ∠ABC ,∠ DCB= 2 2 ∴∠ DBC+∠ DCB=1 (∠ ABC+∠ACB ) = 1 ×138°=69°.2 2∴∠ BDC=180° - (∠ DBC+∠DCB )=180°-69 ° =111°. (2)∠ BDC=90° + 1 ∠A .2原因:∵ BD 、CD 分别为∠ ABC 、∠ ACB 的均分线,11 ∠ACB .∴∠ DBC= ∠ABC ,∠ DCB= 2 2 ∴∠ DBC+∠ DCB=1 (∠ ABC+∠ACB ) = 1 (180°- ∠A )=90°- 1∠ A .2 2 2∴∠ BDC=180° - (∠ DBC+∠DCB )=180°-(90°-1∠A)2=90°+1∠A.2点拨:欲求∠ BDC,只需求出∠ DBC+∠DCB即可.15.解:作出 BC边上的高 AD时,图中出现 3 个直角三角形;作出△ABD中AB边上的高DD1时,图中出现5 个直角三角形;作出 D n-1 D n时,图中共出现( 2n+3)个直角三角形.数学世界答案 :设本来推门 x 次可把水槽装满水,由题意,得20x=25(x-12 ).解得 x=60.则水槽容积为 20×60=1200(升).。

人教版八年级上数学11.2 与三角形有关的角 同步练习及答案(含答案)

人教版八年级上数学11.2 与三角形有关的角 同步练习及答案(含答案)

第11章《三角形》同步练习(§11.2 与三角形有关的角)班级学号姓名得分1.填空:(1)三角形的内角和性质是____________________________________________________.(2)三角形的内角和性质是利用平行线的______与______的定义,通过推理得到的.它的推理过程如下:已知:△ABC,求证:∠BAC+∠ABC+∠ACB=______.证明:过A点作______∥______,则∠EAB=______,∠F AC=______.(___________,___________)∵∠EAF是平角,∴∠EAB+______+______=180°.( )∴∠ABC+∠BAC+∠ACB=∠EAB+∠______+∠______.( )即∠ABC+∠BAC+∠ACB=______.2.填空:(1)三角形的一边与_________________________________________叫做三角形的外角.因此,三角形的任意一个外角与和它相邻的三角形的一个内角互为______.(2)利用“三角形内角和”性质,可以得到三角形的外角性质?如图,∵∠ACD是△ABC的外角,∴∠ACD与∠ACB互为______,即∠ACD=180°-∠ACB.①又∵∠A+∠B+∠ACB=______,∴∠A+∠B=______.②由①、②,得∠ACD=______+______.∴∠ACD>∠A,∠ACD>∠B由上述(2)的说理,可以得到三角形外角的性质如下:三角形的一个外角等于____________________________________________________.三角形的一个外角大于____________________________________________________. 3.(1)已知:如图,∠1、∠2、∠3分别是△ABC的外角,求:∠1+∠2+∠3.(2)结论:三角形的外角和等于______.4.已知:如图,BE与CF相交于A点,试确定∠B+∠C与∠E+∠F之间的大小关系,并说明你的理由.5.已知:如图,CE⊥AB于E,AD⊥BC于D,∠A=30°,求∠C的度数.6.依据题设,写出结论,想一想,为什么?已知:如图,△ABC中,∠ACB=90°,则:(1)∠A+∠B=______.即∠A与∠B互为______;(2)若作CD⊥AB于点D,可得∠BCD=∠______,∠ACD=∠______.7.填空:(1)△ABC中,若∠A+∠C=2∠B,则∠B=______.(2)△ABC中,若∠A∶∠B∶∠C=2∶3∶5,则∠A=______,∠B=______,∠C=______.(3)△ABC中,若∠A∶∠B∶∠C=1∶2∶3,则它们的相应邻补角的比为______.(4)如图,直线a∥b,则∠A=______度.(5)已知:如图,DE⊥AB,∠A=25°,∠D=45°,则∠ACB=______.(6)已知:如图,∠DAC=∠B,∠ADC=115°,则∠BAC=______.(7)已知:如图,△ABC中,∠ABC=∠C=∠BDC,∠A=∠ABD,则∠A=______(8)在△ABC中,若∠B-∠A=15°,∠C-∠B=60°,则∠A=______,∠B=______,∠C=______.8.已知:如图,一轮船在海上往东行驶,在A处测得灯塔C位于北偏东60°,在B处测得灯塔C位于北偏东25°,求∠ACB.9.已知:如图,在△ABC中,AD、AE分别是△ABC的高和角平分线.(1)若∠B=30°,∠C=50°,求∠DAE的度数.(2)试问∠DAE与∠C-∠B有怎样的数量关系?说明理由.10.已知:如图,O是△ABC内一点,且OB、OC分别平分∠ABC、∠ACB.(1)若∠A=46°,求∠BOC;(2)若∠A=n°,求∠BOC;(3)若∠BOC=148°,利用第(2)题的结论求∠A.11.已知:如图,O是△ABC的内角∠ABC和外角∠ACE的平分线的交点.(1)若∠A=46°,求∠BOC;(2)若∠A=n°,用n的代数式表示∠BOC的度数.12.类比第10、11题,若O是△ABC外一点,OB、OC分别平分△ABC的外角∠CBE、∠BCF,若∠A=n°,画出图形并用n的代数表示∠BOC.13.如图,点M是△ABC两个内角平分线的交点,点N是△ABC两个外角平分线的交点,如果∠CMB;∠CNB=3∶2求∠CAB的度数.14.如图,已知线段AD、BC相交于点Q,DM平分∠ADC,BM平分∠ABC,且∠A=27°,∠M=33°,求∠C的度数.参考答案1.(1)三角形的内角和等于180°,(2)性质、平角,说理过程(略) 2.略.3.∠1+∠2+∠3=360°,360°.4.∠B +∠C =∠E +∠F .(此图中的结论为常用结论) 5.30° 6.(1)90°,余角,(2)∠A ,∠B7.(1)60°.(2)36°,54°,90°.(3)5∶4∶3.(4)39°.(5)110°. (6)115°.(7)36°.(8)30°,45°,105°. 8.35°. 9.(1)10°;(2)).(21B C DAE ∠-∠=∠ 10.(1)113°,(2),2190o οn + (3)116°.11.(1)23°.(2).21οn BOC =∠ 证明:∵OB 平分∠ABC ,OC 平分∠ACE , ∴.21,21ABC OBC ACE OCE ∠=∠∠=∠ ∴.2121)(21οn A ABC ACE OBC OCF BOC =∠=∠-∠=∠-∠=∠ 12.)(21180)32(180FCB EBC BOC ∠+∠-=∠+∠-=∠οο)]()[(21180o ABC A ACB A ∠+∠+∠+∠-=)180(21180o o A ∠+-=A ∠-=2190ο.2190o οn -=13.36°. 14.39°.由本练习中第4题结论可知: ∠C +∠CDM =∠M +∠MBC ,即①.2121ABC M ADC C ∠+∠=∠+∠同理,②.2121ABC A ADC M ∠+∠=∠+∠由①、②得),(21C A M ∠+∠=∠ 因此∠C =39°.。

11.2 《与三角形有关的角》测试题练习题常考题试卷及答案

11.2 《与三角形有关的角》测试题练习题常考题试卷及答案

11.2 与三角形有关的角一、单选题(共18题;共36分)1.将两个含30º和45º的直角三角板如图放置,则∠a的度数是().A. 10°B. 15°C. 20°D. 25°2.如图,AB∥CD,∠A=70°,∠C=40°,则∠E等于()A. 30°B. 40°C. 60°D. 70°3.如图,∠ACD是△ ABC的一个外角,CE平分∠ACD,F为CA延长线上的一点,FG // CE,交AB于点G,若∠1=70°,∠2=36°,则∠3=()A. 36°B. 40°C. 34°D. 70°4.如图,一把直尺的边缘AB 经过一块三角板 DCB 的直角顶点B,交斜边CD 于点A,直尺的边缘EF 分别交CD、BD 于点E、F,若∠D=60°,∠ABC=20°,则∠1 的度数为()A. 25°B. 40°C. 50°D. 80°5.如图,AB∥CD,BC平分∠ABD,∠1=50°,则∠2的度数是()A. 50°B. 60°C. 70°D. 80°6.若等腰三角形的一个角为40∘,则该等腰三角形的顶角为()A. 40∘B. 70∘C. 100∘D. 40∘或100∘7.如图,在△ABC中,D是BC延长线上一点,∠B=50°,∠ACD= 110°,则∠A=().A. 50∘B. 60∘C. 70∘D. 80∘8.如图所示,AB∥CD,∠E=37°,∠C=20°,则∠EAB的度数为()A. 57°B. 60°C. 63°D. 123°9.将一副三角板(∠A=30°,∠E=45°)按如图所示方式摆放,使得BA//EF,则∠AOF等于()A.75°B.90°C.105°D.115°10.如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为()A. 120°B. 180°C. 240°D. 300°11.如图,在ΔABC中,AD⊥BC,AE平分∠BAC,若∠BAE=30°,∠CAD=20°,则∠B的度数为()A. 30°B. 40°C. 50°D. 60°12.如图所示,被纸板遮住的三角形是()A.直角三角形B. 锐角三角形C. 钝角三角形D. 以上三种情况都有可能13.如图,△ABC中,∠ABC=∠ACB,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC等于()A. 110°B. 120°C. 130°D. 140°14.在△ABC中,∠C=90°,∠B=50°,则∠A=()A. 60°B. 30°C. 50°D. 40°15.如图,在△ABC中,∠ABC=50°,AD,CD分别平分∠BAC,∠ACB,则∠ADC等于()A.125°B.105°C.115°D.100°16.如图,∠ABC与∠ACB的角平分线BO,CO相交于点O,∠A=100°,则∠BOC=A. 60°B. 100°C. 130°D. 140°17.一个三角形的两个内角分别为55°和65°,这个三角形的外角不可能是()A. 115°B. 120°C. 125°D. 130°18.三角形中,若一个角等于其他两个角的差,则这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰三角形二、填空题(共12题;共13分)19.如图,若△OAD≌△OBC,且∠O=75o,∠C=10o,则∠OAD=________°.20.如图,△ABC与△A′B′C′关于直线l对称,且∠A=102°,∠C′=25°,则∠B的度数为________21.如图,D是AB上一点,E是AC上一点,BE、CD相交于点F,∠A=62°,∠ACD=35°,∠ABE=20°。

8年级数学人教版上册同步练习11.2与三角形有关的角(含答案解析)

8年级数学人教版上册同步练习11.2与三角形有关的角(含答案解析)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!11.2与三角形有关的角专题一利用三角形的内角和求角度1.如图,在△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于D点,∠A=50°,则∠D =( )A.15° B.20° C.25° D.30°2.如图,已知:在直角△ABC中,∠C=90°,BD平分∠ABC且交AC于D.若AP平分∠BAC且交BD于P,求∠BPA的度数.3.已知:如图1,线段AB、CD相交于点O,连接AD、CB,如图2,在图1的条件下,∠DA B和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:__________;(2)在图2中,若∠D=40°,∠B=30°,试求∠P的度数;(写出解答过程)(3)如果图2中∠D和∠B为任意角,其他条件不变,试写出∠P与∠D、∠B之间的数量关系.(直接写出结论即可)专题二利用三角形外角的性质解决问题4.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为( )A.15°B.20° C.25° D.30°5.如图,△ABC中,CD是∠ACB的角平分线,CE是AB边上的高,若∠A=40°,∠B=72°.(1)求∠DCE的度数;(2)试写出∠DCE与∠A、∠B的之间的关系式.(不必证明)6.如图:(1)求证:∠BDC=∠A+∠B+∠C;(2)如果点D与点A分别在线段BC的两侧,猜想∠BDC、∠A、∠ABD、∠ACD这4个角之间有怎样的关系,并证明你的结论.状元笔记【知识要点】1.三角形内角和定理三角形三个内角的和等于180°.2.直角三角形的性质及判定性质:直角三角形的两个锐角互余.判定:有两个角互余的三角形是直角三角形.3.三角形的外角及性质外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.性质:三角形的外角等于与它不相邻的两个内角的和.【温馨提示】1.三角形的外角是一边与另一边的延长线组成的角,而不是两边延长线组成的角.2.三角形的外角的性质中的内角一定是与外角不相邻的内角.【方法技巧】1.在直角三角形中已知一个锐角求另一个锐角时,可直接使用“直角三角形的两个锐角互余”.2.由三角形的外角的性质可得出:三角形的外角大于任何一个与它不相邻的内角.,所以∠BAC +∠ABC=90°,所以(∠BAC +∠ABC)=45°. 因为BD 平分∠ABC ,AP 平分∠BAC , ∠BAP=∠BAC ,∠ABP=∠ABC , 即∠BAP +∠ABP=45°,所以∠APB=180°-45°=135°.(法2)因为∠C=90°,所以∠BAC +∠ABC=90°,所以(∠BAC +∠ABC)=45°, 因为BD 平分∠ABC ,AP 平分∠BAC ,∠DBC=∠ABC ,∠PAC=∠BAC , 所以∠DBC +∠PAD=45°.所以∠APB=∠PDA +∠PAD =∠DBC +∠C +∠PAD=∠DBC +∠PAD +∠C =45°+90°=135°.3.解:(1)∠A+∠D=∠B+∠C ;(2)由(1)得,∠1+∠D=∠3+∠P ,∠2+∠P=∠4+∠B ,∴∠1-∠3=∠P -∠D ,∠2-∠4=∠B -∠P ,又∵AP 、CP 分别平分∠DAB 和∠BCD ,∴∠1=∠2,∠3=∠4,∴∠P -∠D=∠B -∠P ,即2∠P=∠B+∠D ,∴∠P=(40°+30°)÷2=35°.(3)2∠P=∠B+∠D .4.B解析:延长DC ,与AB 交于点E .根据三角形的外角等于不相邻的两内角和,可得∠ACD=50°+∠AEC=50°+∠ABD+10°,整理得∠ACD -∠ABD=60°.设AC 与BP 相交于点O ,则∠AOB =∠POC ,∴∠P+∠ACD=∠A+∠ABD ,即∠P=50°-(∠ACD -∠ABD )=20°.故选B .2121212121212121212。

与三角形有关的角练习题(含答案)

与三角形有关的角练习题(含答案)

第十一章三角形11.2 与三角形有关的角1.关于三角形内角的叙述错误的是A.三角形三个内角的和是180°B.三角形两个内角的和一定大于60°C.三角形中至少有一个角不小于60°D.一个三角形中最大的角所对的边最长2.下列叙述正确的是A.钝角三角形的内角和大于锐角三角形的内角和B.三角形两个内角的和一定大于第三个内角C.三角形中至少有两个锐角D.三角形中至少有一个锐角3.在一个三角形中,一个外角是其相邻内角的3倍,那么这个外角是A.150°B.135°C.120°D.100°4.已知△ABC中,∠A=20°,∠B=∠C,那么△ABC是A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形5.在不等边三角形中,最小的角可以是A.80°B.65°C.60°D.59°6.等腰三角形底角的外角比顶角的外角大30°,则这个三角形各内角度数是__________.7.等腰三角形一腰上的高与另一腰的夹角为50°,则这个等腰三角形的底角度数为__________.8.如图,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=__________.9.若直角三角形的一个锐角为50°,则另一个锐角的度数是___________.10.求直角三角形两锐角平分线所夹的锐角的度数.11.一个零件的形状如图所示,按规定A∠、C∠应等于90︒,B∠应分别是21︒、32︒,检验工人量得∠=︒,就断定这个零件不合格,这是为什么呢?148BDC12.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是A.3 B.4 C.6 D.513.如图,在△ACB中,∠ACB=100°,∠A=20°,D是AB上一点.将△ABC沿CD折叠,使B点落在AC 边上的B′处,则∠ADB′等于A.25°B.30°C.35°D.40°14.一个三角形三个内角的度数之比为2∶3∶7,这个三角形一定是A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形15.如图,在△ABC中,∠ABC、∠ACB的平分线BE、CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC= ___________.16.如图,将纸片△ABC沿DE折叠,点A落在点F处,已知∠1+∠2=100°,则∠A=___________.17.如图,△ABC中,AD是高,AE是∠BAC的平分线,∠B=70°,∠DAE=18°,则∠C的度数是___________.18.如图,∠BCD为△ABC的外角,已知∠A=70°,∠B=35°,则∠BCD=___________.19.如图,AD是△ABC边BC上的高,BE平分∠△ABC交AD于点E.若∠C=60°,∠BED=70°.求∠ABC 和∠BAC的度数.20.如图,△ABC中,∠A=40°,∠B=76°,CE平分∠ACB,CD⊥AB于点D,DF⊥CE于点F,求∠CDF 的度数.21.如图,在△ABC中,D为AB边上一点,E为BC边上一点,∠BCD=∠BDC.(1)若∠BCD=70°,求∠ABC的度数;(2)求证:∠EAB+∠AEB=2∠BDC.22.如图,在ABC∠=∠,△中,AD是BC边上的高,E是AB上一点,CE交AD于点M,且DCM MAE 求证:AEM△是直角三角形.23.(2018•黄石)如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=A.75°B.80°C.85°D.90°24.(2018•宿迁)如图,点D在△ABC边AB的延长线上,DE∥BC.若∠A=35°,∠C=24°,则∠D的度数是A.24°B.59°C.60°D.69°25.(2018•眉山)将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是A.45°B.60°C.75°D.85°26.(2018•滨州)在△ABC中,若∠A=30°,∠B=50°,则∠C=__________.27.(2018•淄博)已知:如图,△ABC是任意一个三角形,求证:∠A+∠B+∠C=180°.28.(2018•宜昌)如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC 的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.1.【答案】B【解析】A正确,根据三角形内角和定理可知,三角形三个内角的和是180°;C正确,三角形中至少有一个角不小于60°,否则三角形内角之和将小于180°;D正确,一个三角形中最大的角所对的边最长,不符合题意;B错误,三角形两个内角的和可能小于60°,如三角形的三个内角可以依次为20°,20°,140°,故B错误,故选B.4.【答案】A【解析】因为三角形内角和为180°,根据题意可得:∠B=∠C=80°,所以△ABC是锐角三角形.故选A.5.【答案】D【解析】在不等边三角形中,最小的角要小于60°,否则三内角的和大于180°.故选D.6.【答案】80°,50°,50°【解析】如图所示,AB=AC,∠1=∠2+30°.∵AB=AC,∴∠B=∠ACB,∵∠1、∠2分别是△ABC的外角,∴∠1=∠B+∠BAC,∠2=∠B+∠ACB,∵∠1=∠2+30°,∴∠1–∠2=∠B+∠BAC–∠B–∠ACB=∠BAC–∠ACB=30°①,∵∠B=∠ACB,∴∠B+ ∠ACB+∠A=180°,∴2∠ACB+∠BAC=180°,∴∠BAC=180°–2∠ACB,代入①得,180°–2∠ACB–∠ACB= 30°,解得,∠ACB=50°,∴∠B=50°,∠BAC=180°–∠B–∠ACB=180°–50°–50°=80°,∴这个三角形各个内角的度数分别是80°,50°,50°.故答案为:80°,50°,50°.7.【答案】70°或20°【解析】如图①,∵AB=AC,∠ABD=50°,BD⊥AC,∴∠A=40°,∴∠ABC=∠C=(180°–40°)÷2=70°;如图②:∵AB=AC,∠ABD=50°,BD⊥AC,∴∠BAC=50°+90°=140°,∴∠ABC=∠C=(180°–140°)÷2=20°,故答案为:70°或20°.9.【答案】40°【解析】因为三角形内角和为180°,一个直角为90°,一个锐角为50°,所以另一个锐角的度数为180°–90°–50°=40°.故答案为:40°.10.【解析】如图,△ACB 为直角三角形,C 为直角,AD ,BE 分别是∠CAB 和∠ABC 的角平分线,AD ,BE 相交于点F , ∵∠ACB =90°,∴∠CAB +∠ABC =90°, ∵AD ,BE 分别是∠CAB 和∠ABC 的角平分线, ∴∠FAB +∠FBA =21∠CAB +21∠ABC =45°, ∴∠DFB =∠FAB +∠FBA =45°,即直角三角形两锐角平分线所夹的锐角为45°.11.【解析】如图,延长CD 交AB 于点E .因为CDB∠是BDE△的一个外角,∴CDB B BED∠=∠+∠.因为BED∠是AEC△的一个外角,所以BED C A∠=∠+∠.所以902132143148CDB A B C∠=∠+∠+∠=︒+︒+︒=︒≠︒.所以可以判定这个零件不合格.12.【答案】A【解析】如图,过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD,可得12×4×2+12×AC×2=7.解得AC=3.故选A.13.【答案】D【解析】∵在△ACB中,∠ACB=100°,∠A=20°,∴∠B=180°–100°–20°=60°,∵△CDB′由△CDB翻折而成,∴∠CB′D=∠B=60°,∵∠CB′D是△AB′D的外角,∴∠ADB′=∠CB′D–∠A=60°–20°=40°.故选D.15.【答案】120°【解析】∵∠ABC=42°,∠A=60°,∠ABC+∠A+∠ACB=180°.∴∠ACB=180°–42°–60°=78°.又∵∠ABC、∠ACB的平分线分别为BE、CD,∴∠FBC=12∠ABC=21°,∠FCB=12∠ACB=39°.又∵∠FBC+∠FCB+∠BFC=180°,∴∠BFC=180°–21°–39°=120°.故答案为:120°.18.【答案】105°【解析】∠BCD=∠A+∠B=70°+35°=105°.故答案为:105°.19.【解析】∵AD是△ABC的高,∴∠ADB=90°,又∵180∠+∠+∠=︒,∠BED=70°,DBE ADB BED∴18020DBE ADB BED∠=︒-∠-∠=︒.∵BE平分∠ABC,∴∠ABC=2∠DBE=40°.又∵∠BAC+∠ABC+∠C=180°,∠C=60°,∴∠BAC=180°–∠ABC–∠C=80°.20.【解析】∵∠A=40°,∠B=76°,∴∠ACB=180°–40°–76°=64°,∵CE平分∠ACB,∴∠ACE=∠BCE=32°,∴∠CED=∠A+∠ACE=72°,∴∠CDE=90°,DF⊥CE,∴∠CDF+∠ECD=∠ECD+∠CED=90°,∴∠CDF=72°.21.【解析】(1)∵∠BCD=70°,∴∠BCD=∠BDC=70°,∴∠ABC=180°–70°–70°=40°.(2)∵∠EAB+∠AEB=180°–∠ABC,∠BCD+∠BDC=180°–∠ABC,即2∠BCD=180°–∠ABC,∴∠EAB+∠AEB=2∠BDC.22.【解析】∵AD是BC边上的高,∴90∠+∠=︒.DMC DCM又∵DMC AMEAME MAE∠+∠=︒,∠=∠,∴90∠=∠,DCM MAE即AEM△是直角三角形.23.【答案】A【解析】∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°-25°=5°,∵△ABC中,∠C=180°-∠ABC-∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选A.24.【答案】B【解析】∵∠A=35°,∠C=24°,∴∠DBC=∠A+∠C=59°,∵DE∥BC,∴∠D=∠DBC=59°,故选B.25.【答案】C【解析】如图,∵∠ACD=90°,∠F=45°,∴∠CGF=∠DGB=45°,则∠α=∠D+∠DGB=30°+45°=75°,故选C.26.【答案】100°【解析】∵在△ABC中,∠A=30°,∠B=50°,∴∠C=180°-30°-50°=100°.故答案为:100°.27.【解析】如图,过点A作EF∥BC,∵EF∥BC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°,即∠A+∠B+∠C=180°.28.【解析】(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°-∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分线,∴∠CBE=12∠CBD=65°.(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°-65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.。

《 与三角形有关的角》同步专题提升训练(附答案)2021-2022学年八年级数学人教版上册

《 与三角形有关的角》同步专题提升训练(附答案)2021-2022学年八年级数学人教版上册

2021-2022学年人教版八年级数学上册《11.2与三角形有关的角》同步专题提升训练(附答案)一.选择题1.如图,直线AB∥CD,∠B=50°,∠D=20°,则∠E的度数是()A.20°B.30°C.50°D.70°2.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P=()A.70°B.80°C.90°D.100°3.如图,AB⊥AC,CD、BE分别是△ABC的角平分线,AG∥BC,AG⊥BG,下列结论:①∠BAG=2∠ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB=135°.其中正确的结论是()A.①③B.②④C.①③④D.①②③④4.适合条件∠A=∠B=∠C的△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形5.将一副三角尺按如图摆放,点E在AC上,点D在BC的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=45°,∠F=60°,则∠CED的度数是()A.15°B.20°C.25°D.30°6.如图,在△ABC中,∠ACB=100°,∠A=20°,D是AB上一点,将△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.40°B.20°C.55°D.30°7.如图,∠1,∠2,∠3,∠4恒满足关系式是()A.∠1+∠2=∠3+∠4B.∠1+∠2=∠4﹣∠3C.∠1+∠4=∠2+∠3D.∠1+∠4=∠2﹣∠38.如图,△ABC中,AD为△ABC的角平分线,BE为△ABC的高,∠C=70°,∠ABC=48°,那么∠3是()A.59°B.60°C.56°D.22°二.填空题9.如图,∠A=70°,∠B=15°,∠D=20°,则∠BCD的度数是.10.如图,在△ABC中,BI平分∠ABC,CI平分∠ACB,∠BIC=130°,则∠A=.11.如图,点M是△ABC两个内角平分线的交点,点N是△ABC两个外角平分线的交点,如果∠CMB:∠CNB=3:2,那么∠CAB=度.12.一副分别含有30°和45°的两个直角三角板,拼成如图图形,其中∠C=90°,∠B=45°,∠E=30°.则∠BFD的度数是.13.如图,∠A+∠B+∠C+∠D+∠E+∠F=度.14.如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=度.15.如图,在△ABC中,∠C=50°,按图中虚线将∠C剪去后,∠1+∠2等于.三.解答题16.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)求∠AFC的度数;(2)求∠EDF的度数.17.已知如图∠B=∠C,∠1=∠2,∠BAD=40°,求∠EDC度数.18.如图所示,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=50°,∠C=70°,求∠DAC、∠BOA的度数.19.已知如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:;(2)仔细观察,在图2中“8字形”的个数:个;(3)在图2中,若∠D=40°,∠B=36°,试求∠P的度数;(4)如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系.(直接写出结论即可)20.已知:如图,△ABC中,∠BAD=∠EBC,AD交BE于F.(1)试说明:∠ABC=∠BFD;(2)若∠ABC=35°,EG∥AD,EH⊥BE,求∠HEG的度数.参考答案一.选择题1.解:∵AB∥CD,∴∠BMD=∠B=50°,又∵∠BMD是△CDE的外角,∴∠E=∠BMD﹣∠D=50°﹣20°=30°.故选:B.2.解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∵∠ABP=20°,∠ACP=50°,∴∠ABC=2∠ABP=40°,∠ACM=2∠ACP=100°,∴∠A=∠ACM﹣∠ABC=60°,∠ACB=180°﹣∠ACM=80°,∴∠BCP=∠ACB+∠ACP=130°,∵∠PBC=20°,∴∠P=180°﹣∠PBC﹣∠BCP=30°,∴∠A+∠P=90°,故选:C.3.解:∵AB⊥AC.∴∠BAC=90°,∵∠BAC+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=90°∵CD、BE分别是△ABC的角平分线,∴2∠FBC+2∠FCB=90°∴∠FBC+∠FCB=45°∴∠BFC=135°故④正确.∵AG∥BC,∴∠BAG=∠ABC∵∠ABC=2∠ABF∴∠BAG=2∠ABF故①正确.∵AB⊥AC,∴∠ABC+∠ACB=90°,∵AG⊥BG,∴∠ABG+∠GAB=90°∵∠BAG=∠ABC,∴∠ABG=∠ACB故③正确.故选:C.4.解:∵∠A=∠B=∠C,∴∠B=2∠A,∠C=3∠A,∵∠A+∠B+∠C=180°,即6∠A=180°,∴∠A=30°,∴∠B=60°,∠C=90°,∴△ABC为直角三角形.故选:B.5.解:∵∠B=90°,∠A=45°,∴∠ACB=45°.∵∠EDF=90°,∠F=60°,∴∠DEF=30°.∵EF∥BC,∴∠EDC=∠DEF=30°,∴∠CED=∠ACB﹣∠EDC=45°﹣30°=15°.故选:A.6.解:∵∠A+∠B+∠ACB=180°,∠ACB=100°,∠A=20°,∴∠B=60°,根据翻折不变性可知:∠CB′D=∠B=60°,∵∠DB′C=∠A+∠ADB′,∴60°=20°+∠ADB′,∴∠ADB′=40°,故选:A.7.解:∵∠6是△ABC的外角,∴∠1+∠4=∠6,﹣﹣﹣(1);又∵∠2是△CDF的外角,∴∠6=∠2﹣∠3,﹣﹣﹣(2);由(1)(2)得:∠1+∠4=∠2﹣∠3.故选:D.8.解:∵BE为△ABC的高,∴∠AEB=90°∵∠C=70°,∠ABC=48°,∴∠CAB=62°,∵AF是角平分线,∴∠1=∠CAB=31°,在△AEF中,∠EF A=180°﹣31°﹣90°=59°.∴∠3=∠EF A=59°,故选:A.二.填空题9.解:连接AC,并延长到E,∵∠A=70°,∠B=15°,∠D=20°,∴∠BCE=∠B+∠BAC,∠ECD=∠D+∠CAD,∴∠BCD=∠BCE+∠ECD=∠B+∠D+∠BAD=70°+15°+20°=105°,故答案为:105°.10.解:∵BI平分∠ABC,CI平分∠ACB,∴∠IBC=,∠ICB=∠ACB,∴∠IBC+∠ICB=(∠ABC+∠ACB),∵∠BIC=130°,∴∠IBC+∠ICB=180°﹣130°=50°,∴∠ABC+∠ACB=50°×2=100°,∴∠A=180°﹣100°=80°.故答案为:80°.11.解:由题意得:∠NCM=∠NBM=×180°=90°,∴可得:∠CMB+∠CNB=180°,又∠CMB:∠CNB=3:2,∴∠CMB=108°,∴(∠ACB+∠ABC)=180°﹣∠CMB=72°,∴∠CAB=180°﹣(∠ACB+∠ABC)=36°.故答案为:36°.12.解:∵△CDE中,∠C=90°,∠E=30°,∴∠CDF=60°,∵∠CDF是△BDF的外角,∠B=45°,∴∠BFD=∠CDF﹣∠B=60°﹣45°=15°.故答案为:15°.13.解:如右图所示,∵∠AHG=∠A+∠B,∠DNG=∠C+∠D,∠EGN=∠E+∠F,∴∠AHG+∠DNG+∠EGN=∠A+∠B+∠C+∠D+∠E+∠F,又∵∠AHG、∠DNG、∠EGN是△GHN的三个不同的外角,∴∠AHG+∠DNG+∠EGN=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为:360°.14.解:∵∠A=40°,∠B=72°,∴∠ACB=68°,∵CE平分∠ACB,CD⊥AB于D,∴∠BCE=34°,∠BCD=90°﹣72°=18°,∵DF⊥CE,∴∠CDF=90°﹣(34°﹣18°)=74°.故答案为:74.15.解:∵△ABC中,∠C=50°,∴∠A+∠B=180°﹣∠C=130°,∵∠A+∠B+∠1+∠2=360°,∴∠1+∠2=360°﹣130°=230°,故答案为:230°.三.解答题16.解:(1)∵△ABD沿AD折叠得到△AED,∴∠BAD=∠DAF,∵∠B=50°,∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF=110°;(2)∵∠B=50°,∠BAD=30°,∴∠ADB=180°﹣50°﹣30°=100°,∠ADC=50°+30°=80°,∵△ABD沿AD折叠得到△AED,∴∠ADE=∠ADB=100°,∴∠EDF=∠ADE﹣∠ADC=100°﹣80°=20°.17.解:△ABD中,由三角形的外角性质知:∠ADC=∠B+∠BAD,即∠EDC+∠1=∠B+40°;①同理,得:∠2=∠EDC+∠C,已知∠1=∠2,∠B=∠C,∴∠1=∠EDC+∠B,②②代入①得:2∠EDC+∠B=∠B+40°,即∠EDC=20°.18.解:∵AD⊥BC∴∠ADC=90°∵∠C=70°∴∠DAC=180°﹣90°﹣70°=20°;∵∠BAC=50°,∠C=70°∴∠BAO=25°,∠ABC=60°∵BF是∠ABC的角平分线∴∠ABO=30°∴∠BOA=180°﹣∠BAO﹣∠ABO=180°﹣25°﹣30°=125°.19.解:(1)结论:∠A+∠D=∠C+∠B;(2)结论:六个;(3)由∠D+∠1+∠2=∠B+∠3+∠4①(∵∠AOD=∠COB),由∠1=∠2,∠3=∠4,∴40°+2∠1=36°+2∠3∴∠3﹣∠1=2°(1)由∠ONC=∠B+∠4=∠P+∠2,②∴∠P=∠B+∠4﹣∠2=36°+2°=38°;(4)由①∠D+2∠1=∠B+2∠3,由②2∠B+2∠3=2∠P+2∠1①+②得:∠D+2∠B+2∠1+2∠3=∠B+2∠3+2∠P+2∠1∠D+2∠B=2∠P+∠B.∴∠P=.20.解:(1)∵∠BFD=∠ABF+∠BAD,∠ABC=∠ABF+∠FBC,∵∠BAD=∠EBC,∴∠ABC=∠BFD;(2)∵∠BFD=∠ABC=35°,∵EG∥AD,∴∠BEG=∠BFD=35°,∵EH⊥BE,∴∠BEH=90°,∴∠HEG=∠BEH﹣∠BEG=55°。

11.2 与三角形有关的角 同步练习1(含答案)

11.2 与三角形有关的角 同步练习1(含答案)

11.2 与三角形有关的角 同步练习一一.填空题1. 在∆ABC 中,⑴ 若∠A =50°,∠B =70°,则∠C =⑵ 若∠A =30°,∠B :∠C =3:2 ,则∠B =⑶ 若∠A =∠B =∠C ,则∠C =⑷ 若∠A =80°,∠B =∠C ,则∠C =⑸ 若∠A =80°,∠B –∠C =40°,则∠C = ,∠B =⑹ 若∠A +∠B =100°,∠C =2∠A ,,则∠A = ∠B =2. 在∆ABC 中,若∠A =∠B +∠C ,则这个三角形是 三角形.3. 在∆ABC 中,∠A +∠B =2 ∠C ,∠A –∠B =30°,则∠A = ,∠C = .4. 直角三角形中,两个锐角之差为20°,则这两个锐角度数分别为 .5. 如图,在∆ABC 中,∠ACB =90°,CD 是AB 上的高,则与∠A 相等的角是 , 与∠B 相等的角是 .二.选择题1.三角形中最大的内角不能小于( )A. 30°B.45°C.60°D.90°2.适合条件∠A =∠B =21∠C 的∆ABC 是( ) A. 锐角三角形 B. 直角三角形 C. 钝角三角形 D. 不能确定3.如图:∠A =25°∠B =60°∠BEF =65°则∠D 等于( ) A. 30° B.35° C.40° D.45°三.解答题1.已知三角形的一个角是第二个角的1.5倍,第三个角比这两个角的和大30°,求这三个角的度数。

2.如图:AD是BC上的高,AE平分∠BAC,∠B=75°,∠C=45°,求∠DAE的度数.3.如图:在∆ABC中,BO,CO平分∠ABC和∠ACB,若∠A=50°,求∠BOC的度数.参考答案一.1.(1)60º(2)90º(3)60º(4)50º(5)30 º,70º(6)40º,60º2.直角三角形 3. 75º,60º 4. 55º,35º 5. ∠DCB,∠ACD二.1.C2.B3.A三.1.30º,45º,105º 2. 15º 3. 115º。

人教版数学 八年级上册 11.2 与三角形有关的角 课后练习题

人教版数学 八年级上册 11.2 与三角形有关的角 课后练习题

一、单选题1. 把一把直尺与一块三角板如图放置,若,则的度数为()A.B.C.D.2. 如图,下列条件:①;②;③;④;其中能判定直线的有()A.1个B.2个C.3个D.4个3. 满足下列条件的三角形中,不是直角三角形的是()A.∠A﹣∠B=∠C B.∠A=9°,∠B=81°C.∠A=2∠B=3∠C D.∠A:∠B:∠C=3:4:74. 在中,若那么这个三角形的形状是()A.等腰三角形B.等边三角形C.直角三角形D.钝角三角形5. 如图,已知直线∥,,,则()A.B.C.D.二、填空题6. 三角形的内角和为__________度.7. 如图,在△ABC中,∠A=80°,∠ABC和∠ACD的平分线交于点E,则∠E=_____.8. 一副三角尺的摆放位置如图所示,则的度数是________.三、解答题9. 如图①,已知BE为△ABC的角平分线,CD为△ABC外角∠ACF的平分线,CD 与BE的延长线交于点D;(1)①若∠A=60°,∠ABC=70°,则∠D=°;②若∠A=60°,∠ACB=70°,则∠D=°;(2)当∠ABC和∠ACB在变化,而∠A始终保持不变,则∠D是否发生变化?由此你能得出什么结论(用含∠A的式子表示∠D)?请证明你的结论.(3)如图②,BP平分∠ABD,CP平分∠ACD,CP交BP于点P,其它条件不变,请直接写出∠P与∠A的关系(用含∠A的式子表示∠P).10. 如图,已知直角△ABC中,∠BAC=90°,∠B=56°,AD⊥BC,DE∥CA.求∠ADE 的度数.11. 如图,在△ABC中.(1)画出BC边上的高AD和中线AE;(2)若∠B=30°,∠BAC=20°,求∠CAD的度数.。

(完整版)八年级上册数学11.2与三角形有关的角练习题(含答案)

(完整版)八年级上册数学11.2与三角形有关的角练习题(含答案)

11.2与三角形有关的角练习题姓名: _______________ 级:__________________ 号: _________________一、选择题1、在二一中,一-…,则匚上的度数为()A.汀B. C •汕 D.2、如图,已知直线AB// CD / C=115,/ A=25,则/ E=()A. 70 °B. 80 °C. 90 °D. 1003、如图8, AB=BC=CDJ/ A=15 ,贝U/ECD=( )A.30 °B.45°C.60°D.754、如图,在△ ABC中, AC=DODB / ACI=100°,贝U / B等于( )A. 50°B. 40°C. 25°D. 20°5、如图,△ ABC中,一1 「」,点D E分别在AB AC上,则一[—二】的大小为()C、-打6、 7、 A. 110B .C .D .A .B .C . 105°D . 30° 或 75A. B . C . D .10、如图,AD 是Z EAC 的平分线,AD// BC Z B=30° ,则Z C 为(A.B. C.D 120第11题11、如图, 已知△ ABC 的两条高 BE CF 相交于点O, -1—〔「, A. 95o B . 130o C . 140o D . 150o则一I--的度数为( 12、如图,A. 60"7080B120'如图,已知匸丘丿匸二,Z 仁13C o,Z 2=30^,则Z C=如下图所示,已知:/ AEC 的度数为110°,则/ A +Z B +Z C +Z D 的度数为(已知等腰三角形的一个角为75°,则其顶角为(9、如图,已知-上…匚,若一二’,一三一尤’,已知」打与石二相交于点匸,I '「J ,如果—三二,—二二Y ,则二的大小为BBB第12题13、如图,在△ ABC中,/ C= 90o,/ B= 40o, AD是角平分线,则/ ADC等于A. 25oB. 50oC. 65oD. 70o/ C= 54° ,AD 平分/ BAC 交BC于D, DE// AB 交AC于E,第14题A. 20 B . C . D. 2515、如图,在△ ABC中,/ B= 46 则/ ADE的大小是(A.45B.54C.40D.50o第15题第16题第18题16、如图7-7 , C在AB的延长线上,CE丄AF于E,交FB于D, 的若/ F=40°,Z C=20O,则/ FBA度数为().A. B. C. D.第13题14、如图,直线a / b,直角三角形如图放置,/ DCB=90 .若/ 1+Z B=70° ,则/2的度数为()17、适合条件一 -一「一「的三角形ABC>(A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形18、如图1,若/ 1=110°,/ 2=135°,则/ 3 等于A. 55°B. 65°C. 75°D. 85°19、如图,在△ ABC中,/ A=60°,/ ABC=50 , / B、/ C的平分线相交于F,过点F作DE// BC, 交AB于D,交AC于E,那么下列结论正确的是()③/ BDF=130 ; A.①② ④/CFI40 ° ;B •③④ C.①③D.①②③第19题21、如图,/ 1=2,/ 2=25°,/ A=35°20、如图,△ ABC 中,/ BA(=60°,Z ABC / ACB 的平分线交于E , D 是AE 延长线上一点,且/ BD(=120°.下列结论:①/BE(=120°;②DB=DE ③/ DB 匡/ DCE 其中正确结论的个数为( )A. 0、填空题第21题 第22题 第23题22、如下图, / A = 27° , / CBE= 96° , / C = 30° , 则/ ADE 的度数是 度23、如图,/ -1,/ 2,/ 3的大小关系是.C24、如图,/:A=50°,/ ACD=38,/ ABE=32,则/ BFC= .25、如图,已知DABC边BC延长线上一点,DF丄AB于F交AC于E,/ A=35°,Z D=50°,则/ ACM 度数为_________________ .第30题26、 如图,已知△ ABC 中,AD 是BC 边上的高,AE 是/ BAC 勺平分线,若/ B=42°,Z 0=70°, 则/DAW __________ ° . 27、 厶ABC 中,/ A :Z B :Z C=1 : 2 : 3,则厶 ABC 是 ________ 三角形.28、 如图,/ ABC 中,/ A = 40 °,/ B = 72 °,CE 平分/ ACB CDLAB 于 D, DF 丄CE 则/CDF = ________________ 度。

人教版八年级数学上学期同步练习与三角形有关的角(含答案解析)

人教版八年级数学上学期同步练习与三角形有关的角(含答案解析)

11.2与三角形有关的角专题一利用三角形的内角和求角度1.如图,在^ ABGK /ABC的平分线与/ACB的外角平分线相交于D 点,/ A=50° ,则0=( )A. 15B. 20C. 25D. 302.如图,已知:在直角△ ABC, / C=90 BD平分/ABC且交AC于D.若AP平分/BAC且交BD于P,求/BPA的度数.B 03.已知:如图1,线段AB、CD相交于点O,连接AD、CB ,如图2,在图1的条件下,ZDAB和ZBCD的平分线AP和CP相交于点P, 并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,请直接写出/A、ZB、/C、/D之间的数量关系:__________ ;(2)在图2中,若/ D=40° , / B=30° ,试P的度数;(写出解答过程)(3)如果图2中/D和/B为任意角,其他条件不变,试写出/ P与/ D、/B 之间的数量关系.(直接写出结论即可)专题二利用三角形外角的性质解决问题4.如图,ABD, ZACD的角平分线交于点P,若/ A=50° /D=10 , 则/P的度数为(A. 15B. 20C. 25D. 305.如图,△ AB的,CD是dCB的角平分线,CE是AB边上的高, 若/ A=40 , / B=72 .(1)求/DCE的度数;(2)试写出/DCE与小、ZB的之间的关系式.(不必证明)6.如图:(1)求证:/BDC=zA+zB+zC;(2)如果点D与点A分别在线段BC的两侧,猜想/BDC、小、/ ABD、/ACD这4个角之间有怎样的关系,并证明你的结论.状元笔记【知识要点】1.三角形内角和定理三角形三个内角的和等于180 .2.直角三角形的性质及判定性质:直角三角形的两个锐角互余.判定:有两个角互余的三角形是直角三角形.3.三角形的外角及性质外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.性质:三角形的外角等于与它不相邻的两个内角的和.【温馨提示】1.三角形的外角是一边与另一边的延长线组成的角,而不是两边延长线组成的角.2.三角形的外角的性质中的内角一定是与外角不相邻的内角.【方法技巧】1.在直角三角形中已知一个锐角求另一个锐角时,可直接使用“直角三角形的两个锐角互余”.2.由三角形的外角的性质可得出:三角形的外角大于任何一个与它不相邻的内角.参考答案:1. C 解析::ABC的平分线与/ACB的外角平分线相交于点D,/1=1zACE, Z2=1zABC ,又.\D=/1—Z2, zA= zACE —/ABC , 2 2 ZD=1/A=25° .故置. 23 C E2.解:(法1) 因为/ C=90° ,所以BAC + /ABC=90 , 1所以1 (zBAC + / ABC)=45 .因为BD平分/ABC, AP平分/BAC ,zBAP= 1 zBAC , ZABP= 1 zABC , 2 2即/BAP + / ABP=45 ,所以 / APB=180 — 45 =135 .(法2)因为/ C=90 ,所以BAC + /ABC=90 ,所以 1 (zBAC + / ABC)=45° ,因为BD平分/ABC , AP平分/BAC ,zDBC= 1 ZABC , zPAC= 1 zBAC , 2 2所以/DBC + / PAD=45 .所以ZAPB= 2PDA + ZPAD = zDBC + ZC+ /PAD= zDBC + ZPAD + Z C =45 + 90 =135 .3.解:(1) zA+zD=zB+/C;(2)由(1)得,/1 + zD=z3+zP, Z2+zP=z4+zB, /.1-Z3=zP-zD, z2-z4=zB-zP,又〈AP、CP分别平分/DAB和/BCD,「.1=2 /3=4/.P-zD=zB-ZP,即2zP= zB+zD,・•・P= (40 +30 ) + 2=35 .(3) 2zP= zB+zD.4. B解析:延长DC,与AB交于点E.根据三角形的外角等于不相邻的两内角和,可得/ ACD=50 +/AEC=50 +/ABD+10整理得/ACD —/ABD=60 .设AC 与BP 相交于点O,则“OB=/POC,「. /P+1 "CD= "+1 ZABD ,即 / P=50 」(ZACD-ZABD) =20 .故 2 2 2选B.5.解:(1) .「/ A=40 , / B=72 ,・•. / ACB=68 ..CD 平分ZACB, 1・•・DCB= 1 / ACB=34 . 2 ..CE是AB边上的高,・•./ECB=90 — / B=90 — 72 =18 ・•./ DCE=34 — 18 =16 .,、,一 1 ,一,、(2) ZDCE= 1 (ZB—小).6.(1)证明:延长BD交AC于点E, ・. BEC是△ ABE的外角,・•.BEC= zA+zB.vBDC是4CED的外角,・•. BDC= ZC+ zDEC= ZC+ ZA+ zB.⑵ 猜想:/BDC+/ACD+zA+ZABD=360证明:/BDC+zACD+zA+zABD= z3+ N+/6+/5+ z4+Z1=(Z3+/2+ Z1) + (/6+Z5+ z4)=180 +180 =360 .。

人教版2021年八年级上册11.2《与三角形有关的角》同步练习 word版,含答案

人教版2021年八年级上册11.2《与三角形有关的角》同步练习  word版,含答案

人教版2021年八年级上册11.2《与三角形有关的角》同步练习一.选择题1.如图,在△ABC中,∠B=50°,∠C=70°,直线DE经过点A,∠DAB=50°,则∠EAC的度数是()A.40°B.50°C.60°D.70°2.如图,∠A、∠1、∠2的大小关系是()A.∠A>∠1>∠2B.∠2>∠1>∠A C.∠A>∠2>∠1D.∠2>∠A>∠13.如图,已知直线l1、l2、l3两两相交,且l1⊥l3,若α=50°,则β的度数为()A.120°B.130°C.140°D.150°4.在下列条件:①∠A+∠B=∠C,②∠A:∠B:∠C=5:3:2,③∠A=90°﹣∠B,④∠A=2∠B=3∠C中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个5.如图,CF是△ABC的外角∠ACM的平分线,且CF∥AB,∠ACF=50°,则∠B的度数为()A.80°B.40°C.60°D.50°6.如图,在△ABC中,∠ACB=90°,∠A=25°,点D在AB边上,将△ABC沿CD折叠,使得B点落在AC边上的B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.40°7.如图,点C是∠BAD内一点,连CB、CD,∠A=80°,∠B=10°,∠D=40°,则∠BCD的度数是()A.110°B.120°C.130°D.150°8.如图,△ABC中,角平分线AD、BE、CF相交于点H,过H点作HG⊥AC,垂足为G,那么∠AHE和∠CHG 的大小关系为()A.∠AHE>∠CHG B.∠AHE<∠CHG C.∠AHE=∠CHG D.不一定二.填空题9.如图,∠1=115°,∠2=50°,那么∠3=.10.△ABC中,∠C=90°,∠A=54°,则∠B=.11.如图,在△ABC中,∠A=30°,∠B=50°,CD平分∠ACB,则∠ADC的度数是.12.如图,∠CAD和∠CBD的平分线相交于点P.请写出∠C、∠D、∠P的数量关系.13.如图,若BO、CO分别是∠ABC、∠ACB的三等分线,也就是∠OBC=∠ABC,∠OCB=∠ACB,∠A=72°,则∠BOC=°.14.如图,在△ABC中,∠A=70°,∠ABC的角平分线与△ABC的外角角平分线交于点E,则∠E=度.15.如图,BA1和CA1分别是△ABC的内角平分线和外角平分线,BA2是∠A1BD的角平分线,CA2是∠A1CD的角平分线,BA3是∠A2BD的角平分线,CA3是∠A2CD的角平分线,若∠A1=α,则∠A2021为.三.解答题16.已知:如图,在Rt△ABC中,∠BAC=90°,D是BC延长线上一点,AD=AB,求证:∠BAD=2∠ACB.17.如图,F A⊥EC,垂足为E,∠F=40°,∠C=20°,求∠FBC的度数.18.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E.(1)若∠B=35°,∠E=25°,求∠BAC的度数;(2)证明:∠BAC=∠B+2∠E.19.如图,在△ABC中,∠ACB=90°,∠A=29°,CD是边AB上的高,E是边AB延长线上一点.求:(1)∠CBE的度数;(2)∠BCD的度数.20.在△ABC中,CD平分∠ACB交AB于点D,AH是△ABC边BC上的高,且∠ACB=70°,∠ADC=80°,求:(1)∠BAC的度数.(2)∠BAH的度数.21.互动学生课堂上,某小组同学对一个课题展开了探究.小亮:已知,如图三角形ABC,点D是三角形ABC内一点,连接BD,CD,试探究∠BDC与∠A、∠1、∠2之间的关系.小明:可以用三角形内角和定理去解决.小丽:用外角的相关结论也能解决.(1)请你在横线上补全小明的探究过程:∵∠BDC+∠DBC+∠BCD=180°,()∴∠BDC=180°﹣∠DBC﹣∠BCD,(等式性质)∵∠A+∠1++∠DBC+∠BCD=180°,∴∠A+∠1+∠2=180°﹣﹣∠BCD,∴∠BDC=∠A+∠1+∠2.()(2)请你按照小丽的思路完成探究过程.22.△ABC中,三个内角的平分线交于点O,过点O作∠ODC=∠AOC,交边BC于点D.(1)如图1,若∠ABC=50°,求∠BOD的度数;(2)如图1,若∠ABC=n°,求∠BOD的度数;(3)如图2,作∠ABC外角∠ABE的平分线交CO的延长线于点F.求证:BF∥OD;(4)若∠F=∠ABC=40°,将△BOD绕点O顺时针旋转一定角度α后得△B'OD'(0°<α<360°),B'D'所在直线与FC平行,请直接写出所有符合条件的旋转角度α的值.参考答案一.选择题1.解:∵∠B=50°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣70°=60°,∵∠DAB=50°,∠DAB+∠BAC+∠EAC=180°,∴∠EAC=180°﹣∠DAB﹣∠BAC=180°﹣50°﹣60°=70°,故选:D.2.解:∵∠1是三角形的一个外角,∴∠1>∠A,又∵∠2是三角形的一个外角,∴∠2>∠1,∴∠2>∠1>∠A.故选:B.3.解:如图,根据对顶角相等得:∠1=∠α=50°,∵l1⊥l3,∴∠2=90°.∵∠β是三角形的外角,∴∠β=∠1+∠2=50°+90°=140°,故选:C.4.解:①∵∠A+∠B=∠C,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形;②∵∠A:∠B:∠C=5:3:2,设∠A=5x,则∠B=3x,∠C=2x,∴5x+2x+3x=180,解得:x=18°,∴∠5=18°×5=90°,∴△ABC是直角三角形;③∵∠A=90°﹣∠B,∴∠A+∠B=90°,∴∠C=180°﹣90°=90°,∴△ABC是直角三角形;④∵3∠C=2∠B=∠A,∴∠A+∠B+∠C=∠A+∠A+∠A=180°,∴∠A=()°,∴△ABC为钝角三角形.∴能确定△ABC是直角三角形的有①②③共3个,故选:C.5.解:∵CF∥AB,∴∠B=∠FCM,∵CF平分∠ACM,∠ACF=50°,∴∠FCM=∠ACF=50°,∴∠B=50°,故选:D.6.解:∵在△ABC中,∠ACB=90°,∠A=25°,∴∠B=180°﹣90°﹣25°=65°,∵△CDB′是由△CDB翻折而来,∴∠DB′C=∠B=65°,∵∠DB′C是△AB′D的外角,∴∠ADB′=∠DB′C﹣∠A=65°﹣25°=40°.故选:D.7.解:延长BC交AD于E,∵∠BED是△ABE的一个外角,∠A=80°,∠B=10°,∴∠BED=∠A+∠B=90°,∵∠BCD是△CDE的一个外角∴∠BCD=∠BED+∠D=130°,故选:C.8.解:∵AD、BE、CF为△ABC的角平分线∴可设∠BAD=∠CAD=x,∠ABE=∠CBE=y,∠BCF=∠ACF=z,∴2x+2y+2z=180°即x+y+z=90°∵在△AHB中,∠AHE=x+y=90°﹣z,在△CHG中,∠CHG=90°﹣z,∴∠AHE=∠CHG.故选:C.二.填空题9.解:∵∠1=115°,∠2=50°,∴∠3=∠1﹣∠2=65°,故答案为:65°.10.解:∵在Rt△ABC中,∠C=90°,∴∠A+∠B=90°,∵∠A=54°,∴∠B=90°﹣54°=36°,故答案为:36°.11.解:∵∠A=30°,∠B=50°,∠A+∠B+∠ACB=180°,∴∠ACB=180°﹣30°﹣50°=100°,∵CD平分∠ACB,∴∠BCD=∠ACB=×100°=50°,∴∠ADC=∠BCD+∠B=50°+50°=100°,故答案为:100°.12.解:∵∠BF A=∠P AC+∠P,∠BF A=∠PBC+∠C,∴∠P AC+∠P=∠PBC+∠C,∵∠CAD和∠CBD的平分线相交于点P,∴∠P AC=∠CAD,∠PBC=∠CBD,∴∠CAD+∠P=∠CBD+∠C①,同理:∠CAD+∠D=∠CBD+∠P②,①﹣②,得∠P﹣∠D=∠C﹣∠P,整理得,2∠P=∠D+∠C,故答案为:2∠P=∠D+∠C.13.解:∵∠A=72°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣72°=108°,∵∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=×108°=36°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣36°=144°,故答案为:144.14.解:∵BE和CE分别是∠ABC和∠ACD的角平分线,∴∠EBC=∠ABC,∠ECD=∠ACD,又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠ECD=(∠A+∠ABC)=∠A+∠ECD,∵∠ECD是△BEC的一外角,∴∠ECD=∠EBC+∠E,∴∠E=∠ECD﹣∠EBC=∠A+∠EBC﹣∠EBC=∠A=×70°=35°,故答案为:35.15.解:∵A1B是∠ABC的平分线,A1C是∠ACD的平分线,∴∠A1BC=∠ABC,∠A1CD=∠ACD,又∵∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,∴(∠A+∠ABC)=∠ABC+∠A1,∴∠A1=∠A,同理理可得∠A2=∠A1,∠A3=∠A2,……则∠A2021=∠A1=.故答案为:.三.解答题16.证明:∵AD=AB,∴∠B=∠D,设∠B=∠D=α,∴∠BAD=180°﹣∠B﹣∠D=180°﹣2α=2(90°﹣α),∵∠BAC=90°,∴∠ACB=90°﹣∠B=90°﹣α,∴∠BAD=2∠ACB.17.解:在△AEC中,F A⊥EC,∴∠AEC=90°,∴∠A=90°﹣∠C=70°.∴∠FBC=∠A+∠F=70°+40°=110°.18.(1)解:∵∠B=35°,∠E=25°,∴∠ECD=∠B+∠E=60°,∵CE平分∠ACD,∴∠ACE=∠ECD=60°,∴∠BAC=∠ACE+∠E=85°;(2)证明:∵CE平分∠ACD,∴∠ECD=∠ACE,∵∠BAC=∠E+∠ACE,∴∠BAC=∠E+∠ECD,∵∠ECD=∠B+∠E,∴∠BAC=∠E+∠B+∠E,∴∠BAC=2∠E+∠B.19.解:(1)∵∠ACB=90°,∠A=29°,∠CBE是△ABC的外角,∴∠CBE=∠ACB+∠A=90°+29°=119°;(2)∵CD是AB边上的高,∴∠ADC=90°.∴∠A+∠ACD=90°.∵∠ACB=∠ACD+∠BCD=90°,∠A=29°,∴∠BCD=∠A=29°.20.解:(1)∵CD平分∠ACB,∠ACB=70°,∴∠ACD=∠ACB=35°,∵∠ADC=80°,∴∠BAC=180°﹣∠ACD﹣∠ADC=180°﹣35°﹣80°=65°;(2)由(1)知,∠BAC=65°,∵AH⊥BC,∴∠AHC=90°,∴∠HAC=90°﹣∠ACB=90°﹣70°=20°,∴∠BAH=∠BAC﹣∠HAC=65°﹣20°=45°.21.解:(1)∵∠BDC+∠DBC+∠BCD=180°,(三角形内角和定理)∴∠BDC=180°﹣∠DBC﹣∠BCD,(等式性质)∵∠A+∠1+∠2+∠DBC+∠BCD=180°,∴∠A+∠1+∠2=180°﹣∠DBC﹣∠BCD,∴∠BDC=∠A+∠1+∠2 (等量代换),故答案为:三角形内角和定理;∠2;∠DBC;等量代换;(2)如图,延长BD交AC于E,由三角形的外角性质可知,∠BEC=∠A+∠1,∠BDC=∠BEC+∠2,∴∠BDC=∠A+∠1+∠2.22.(1)解:∵∠ABC=50°,∴∠BAC+∠BCA=130°,∵△ABC的三个内角的平分线交于点O,∴∠OBD=25°,∠OAC+∠OCA=65°,∴∠AOC=115°,∵∠ODC=∠AOC,∴∠ODC=115°,∵∠ODC是△OBD的一个外角,∴∠BOD=∠ODC﹣∠OBD=115°﹣25°=90°.(2)解:∵∠ABC=n°,∴∠BAC+∠BCA=180°﹣n°,∵△ABC的三个内角的平分线交于点O,∴∠OBD=n°,∠OAC+∠OCA=90°﹣n°,∴∠AOC=180°﹣(90°﹣n°)=90°+n°,∵∠ODC=∠AOC,∴∠ODC=90°+n°,∵∠ODC是△OBD的一个外角,∴∠BOD=∠ODC﹣∠OBD=90°+n°﹣n°=90°.(3)证明:由(2)得,∠BOD=90°,∵BO平分∠ABC,BF平分∠ABE,∴∠ABF=∠ABE,∠ABO=∠ABC,∴∠FBO=∠ABE+∠ABC=90°,由(2)得,∠BOD=90°,∴∠FBO=∠BOD,∴BF∥OD.(4)∵∠F=∠ABC=40°,∠FBO=∠BOD=90°,∴∠OBD=∠OB'D'=20°,∠FOB=50°,∴∠ODB=∠OD'B'=70°,∠DOC=180°50°﹣90°=40°,、如图(1),∵D'B'∥FC,∴∠OD'B'=∠D'OC=70°,∴∠DOD'=∠D'OC﹣∠DOC=70°﹣40°=30°,即α=30°,如图(2),∵D'B'∥FC,∴∠OD'B'=∠D'OF=70°,∴α=∠FOD'+∠FOB+∠DOB=70°+50°+90°=210°,∴旋转角α为30°或210°时,B'D'所在直线与FC平行.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第11章《三角形》
同步练习
(§11.2 与三角形有关的角)
班级学号姓名得分
1.填空:
(1)三角形的内角和性质是____________________________________________________.
(2)三角形的内角和性质是利用平行线的______与______的定义,
通过推理得到的.它的推理过程如下:
已知:△ABC,
求证:∠BAC+∠ABC+∠ACB=______.
证明:过A点作______∥______,
则∠EAB=______,∠FAC=______.
(___________,___________)
∵∠EAF是平角,
∴∠EAB+______+______=180°.( )
∴∠ABC+∠BAC+∠ACB=∠EAB+∠______+∠______.( )
即∠ABC+∠BAC+∠ACB=______.
2.填空:
(1)三角形的一边与_________________________________________叫做三角形的外角.因此,三角形的任意一个外角与和它相邻的三角形的一个内角互为______.
(2)利用“三角形内角和”性质,可以得到三角形的外角性质?
如图,∵∠ACD是△ABC的外角,
∴∠ACD与∠ACB互为______,
即∠ACD=180°-∠ACB.①
又∵∠A+∠B+∠ACB=______,
∴∠A+∠B=______.②
由①、②,得∠ACD=______+______.
∴∠ACD>∠A,∠ACD>∠B
由上述(2)的说理,可以得到三角形外角的性质如下:
三角形的一个外角等于____________________________________________________.
三角形的一个外角大于____________________________________________________. 3.(1)已知:如图,∠1、∠2、∠3分别是△ABC的外角,
求:∠1+∠2+∠3.
(2)结论:三角形的外角和等于______.
4.已知:如图,BE与CF相交于A点,试确定∠B+∠C与∠E+∠F 之间的大小关系,并说明你的理由.
5.已知:如图,CE⊥AB于E,AD⊥BC于D,∠A=30°,求∠C的度数.
6.依据题设,写出结论,想一想,为什么?
已知:如图,△ABC中,∠ACB=90°,则:
(1)∠A+∠B=______.即∠A与∠B互为______;
(2)若作CD⊥AB于点D,可得∠BCD=∠______,∠ACD=∠______.
7.填空:
(1)△ABC中,若∠A+∠C=2∠B,则∠B=______.
(2)△ABC中,若∠A∶∠B∶∠C=2∶3∶5,则∠A=______,∠B
=______,∠C=______.
(3)△ABC中,若∠A∶∠B∶∠C=1∶2∶3,则它们的相应邻补角的比为______.
(4)如图,直线a∥b,则∠A=______度.
(5)已知:如图,DE⊥AB,∠A=25°,∠D=45°,则∠ACB=______.
(6)已知:如图,∠DAC=∠B,∠ADC=115°,则∠BAC=______.
(7)已知:如图,△ABC中,∠ABC=∠C=∠BDC,∠A=∠ABD,则∠A=______
(8)在△ABC中,若∠B-∠A=15°,∠C-∠B=60°,则∠A=
______,∠B=______,∠C=______.
8.已知:如图,一轮船在海上往东行驶,在A处测得灯塔C位于北偏东60°,在B处测得灯塔C位于北偏东25°,求∠ACB.
9.已知:如图,在△ABC中,AD、AE分别是△ABC的高和角平分线.
(1)若∠B=30°,∠C=50°,求∠DAE的度数.
(2)试问∠DAE与∠C-∠B有怎样的数量关系?说明理由.
10.已知:如图,O是△ABC内一点,且OB、OC分别平分∠ABC、∠ACB.
(1)若∠A=46°,求∠BOC;
(2)若∠A=n°,求∠BOC;
(3)若∠BOC=148°,利用第(2)题的结论求∠A.
11.已知:如图,O是△ABC的内角∠ABC和外角∠ACE的平分线的交点.
(1)若∠A=46°,求∠BOC;
(2)若∠A=n°,用n的代数式表示∠BOC的度数.
12.类比第10、11题,若O是△ABC外一点,OB、OC分别平分△ABC 的外角∠CBE、∠BCF,若∠A=n°,画出图形并用n的代数表示∠BOC.
13.如图,点M是△ABC两个内角平分线的交点,点N是△ABC两个外角平分线的交点,如果∠CMB;∠CNB=3∶2
求∠CAB的度数.
14.如图,已知线段AD、BC相交于点Q,DM平分∠ADC,BM平分∠ABC,且∠A=27°,∠M=33°,求∠C的度数.
参考答案
1.(1)三角形的内角和等于180°,(2)性质、平角,说理过程(略)
2.略.
3.∠1+∠2+∠3=360°,360°.
4.∠B +∠C =∠E +∠F .(此图中的结论为常用结论) 5.30°
6.(1)90°,余角,(2)∠A ,∠B
7.(1)60°.(2)36°,54°,90°.(3)5∶4∶3.(4)39°.
(5)110°. (6)115°.(7)36°.(8)30°,45°,105°.
8.35°. 9.(1)10°;(2)).(21
B C DAE ∠-∠=∠
10.(1)113°,(2),21
90o οn + (3)116°.
11.(1)23°.(2).21ο
n BOC =∠
证明:∵OB 平分∠ABC ,OC 平分∠ACE ,
∴.21
,21
ABC OBC ACE OCE ∠=∠∠=∠
∴.21
21
)(21
οn A ABC ACE OBC OCF BOC =∠=∠-∠=∠-∠=∠
12.)(2
1180)32(180FCB EBC BOC ∠+∠-=∠+∠-=∠οο
)]()[(21180o ABC A ACB A ∠+∠+∠+∠-=
)180(21180o
o A ∠+-=
A ∠-=21
90ο
.21
90o οn -=
13.36°.
14.39°.
由本练习中第4题结论可知:
∠C +∠CDM =∠M +∠MBC ,
即①.21
21
ABC M ADC C ∠+∠=∠+∠
同理,②.21
21
ABC A ADC M ∠+∠=∠+∠
由①、②得),(21
C A M ∠+∠=∠
因此∠C=39°.。

相关文档
最新文档