《与三角形有关的角》练习题
《与三角形有关的角》习题精选
![《与三角形有关的角》习题精选](https://img.taocdn.com/s3/m/8f2b4f8eddccda38376baff2.png)
《与三角形有关的角》习题精选习题一一、选择题:1.如果三角形的三个内角的度数比是2:3:4,则它是( )A.锐角三角形 B.钝角三角形 C.直角三角形 D.钝角或直角三角形2.下列说法正确的是( )A.三角形的内角中最多有一个锐角 B.三角形的内角中最多有两个锐角C.三角形的内角中最多有一个直角 D.三角形的内角都大于60°3.已知三角形的一个内角是另一个内角的,是第三个内角的,则这个三角形各内角的度数分别为( )A.60°,90°,75° B.48°,72°,60°C.48°,32°,38° D.40°,50°,90°4.已知△ABC中,∠A=2(∠B+∠C),则∠A的度数为( )A.100° B.120° C.140° D.160°5.已知三角形两个内角的差等于第三个内角,则它是( )A.锐角三角形 B.钝角三角形 C.直角三角形 D.等边三角形6.设α,β,γ是某三角形的三个内角,则α+β,β+γ,α+γ中 ( )A.有两个锐角、一个钝角 B.有两个钝角、一个锐角C.至少有两个钝角 D.三个都可能是锐角7.在△ABC中,∠A=∠B=∠C,则此三角形是( )A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形二、填空题:1.三角形中,若最大内角等于最小内角的2倍,最大内角又比另一个内角大20º,则此三角形的最小内角的度数是________.2.在△ABC中,若∠A+∠B=∠C,则此三角形为_______三角形;若∠A+∠B<∠C,则此三角形是_____三角形.3.已知等腰三角形的两个内角的度数之比为1:2,则这个等腰三角形的顶角为_______.4.在△ABC中,∠B,∠C的平分线交于点O,若∠BOC=132º,则∠A=_______度.5.如图,已知∠1=20º,∠2=25º,∠A=35º,则∠BDC的度数为________.三、基础训练:1.如图,在△ABC中,AD⊥BC于D,AE平分∠BAC(∠C>∠B),试说明∠EAD=(∠C−∠B).2.在△ABC中,已知∠B−∠A=5°,∠C−∠B=20°,求三角形各内角的度数.四、提高训练:如图所示,已知∠1=∠2,∠3=∠4,∠C=32º,∠D=28º,求∠P的度数.五、探索发现:如图,将△ABC沿EF折叠,使点C落到点C′处,试探求∠1,∠2与∠C的关系.六、中考题与竞赛题:(2001·天津)如图所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=158°,则∠EDF=________度.答案:一、1.A 2.C 3.B 4.B 5.C 6.C 7.B二、1.40° 2.直角钝角 3.36°或90° 4.84 5.80°三、1.解:∵AD⊥BC,∴∠BDA=90º,∴∠BAD=90º−∠B,又∵AE 平分∠BAC,∴∠BAE=∠BAC=(180º−∠B−∠C),∴∠EAD=∠BAD−∠BAE=90º−∠B−(180º−∠B−∠C)=90º−∠B−90º+∠B+∠C=∠C−∠B=(∠C−∠B).2.∠A=50º,∠B=55º,∠C=75º.四、∠P=30°五、解:∵∠1=180º−2∠CEF,∠2=180º−2∠CFE,∴∠1+∠2=360º−2(∠CEF+∠CFE)=360º−2(180º−∠C)=360º−360º+2∠C=2∠C.六、68.习题二一、选择题:1.若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( )A.直角三角形 B.锐角三角形 C.钝角三角形 D.无法确定2.如果三角形的一个外角和与它不相邻的两个内角的和为180º,那么与这个外角相邻的内角的度数为( )A.30° B.60° C.90° D.120°3.已知三角形的三个外角的度数比为2:3:4,则它的最大内角的度数为( ) A.90° B.110° C.100° D.120°4.已知等腰三角形的一个外角是120º,则它是( )A.等腰直角三角形 B.一般的等腰三角形 C.等边三角形 D.等腰钝角三角形5.如图(1)所示,若∠A=32º,∠B=45º,∠C=38º,则∠DFE等于( )A.120° B.115° C.110° D.105°(1) (2)(3)6.如图(2)所示,在△ABC中,E,F分别在AB,AC上,则下列各式不能成立的是( )A.∠BOC=∠2+∠6+∠A B.∠2=∠5−∠A C.∠5=∠1+∠4 D.∠1=∠ABC+∠4二、填空题:1.三角形的三个外角中,最多有_______个锐角.2.如图(3)所示,∠1=_______.3.如果一个三角形的各内角与一个外角的和是225º,则与这个外角相邻的内角是____度.4.已知等腰三角形的一个外角为150º,则它的底角为_____.5.如图,∠ABC,∠ACB的内角平分线交于点O,∠ABC 的内角平分线与∠ACB的外角平分线交于点D,∠ABC与∠ACB的相邻外角平分线交于点E,且∠A=60º,则∠BOC=_______,∠D=_____,∠E=________.6.如图,∠A=50º,∠B=40º,∠C=30º,则∠BDC=________.三、基础训练:如图,在△ABC中,∠A=70º,BO,CO分别平分∠ABC和∠ACB,求∠BOC的度数.四、提高训练:如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63º,求∠DAC的度数.五、探索发现:如图,在△ABC中,∠A=α,△ABC的内角平分线或外角平分线交于点P,且∠P=β,试探求下列各图中α与β的关系,并选择一个加以说明.六、中考题与竞赛题:(2004·吉林)如图所示,∠CAB的外角等于120º,∠B等于40º,则∠C 的度数是_______.答案:一、1.C 2.C 3.C 4.C 5.B 6.C二、1.1 2.120° 3.95 4.30°或75° 5.120° 30° 60° 6.120°三、∠BOC=125°四、∠DAC=24°五、(1)β = 90º+α;(2)β =α;(3)β = 90º−α (说明略)六、80º.。
八上数学《与三角形有关的角》练习题
![八上数学《与三角形有关的角》练习题](https://img.taocdn.com/s3/m/52776cd0fd0a79563d1e7225.png)
1 八上《与三角形有关的角》练习题1.△ABC 中,∠A=50°,∠B=60°,则∠C=________.2.已知三角形的三个内角的度数之比为1:2:3,则这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定3.△ABC 中,∠A=∠B+∠C ,则∠A=______度.4.根据下列条件,能确定三角形形状的是( )(1)最小内角是20°; (2)最大内角是100°; (3)最大内角是89°;(4)三个内角都是60°; (5)有两个内角都是80°.A .(1)、(2)、(3)、(4)B .(1)、(3)、(4)、(5)C .(2)、(3)、(4)、(5)D .(1)、(2)、(4)、(5)5.如图,∠1+∠2+∠3+∠4=______度.6.三角形中最大的内角不能小于_______度,最小的内角不能大于______度.7.△ABC 中,∠A 是最小的角,∠B 是最大的角,且∠B=4∠A ,求∠B 的取值范围.8.如图2,在△ABC 中,∠BAC=4∠ABC=4∠C ,BD ⊥AC 于D ,求∠ABD 的度数.综合创新作业9.(综合题)如图3,在△ABC 中,∠B=66°,∠C=54°,AD 是∠BAC 的平分线,DE 平分∠ADC 交AC 于E ,则∠BDE=_________.10.(应用题)如图是一个大型模板,设计要求∠ADC=130°,现在已测得∠A=40°,∠B=60°,∠C=100°。
该模板是否合格?11.(创新题)如图,△ABC 中,AD 是BC 上的高,AE 平分∠BAC ,∠B=75°,•∠C=45°,求∠DAE 与∠AEC 的度数.12.如图,已知,在直角△ABC 中,∠C=90°,BD 平分∠ABC 且交AC 于D .(1)若∠BAC=30°,求证:AD=BD ;(2)若AP 平分∠BAC 且交BD 于P ,求∠BPA 的度数.13.(易错题)在△ABC 中,已知∠A=13∠B=15∠C ,求∠A 、∠B 、∠C 的度数. 培优作业14.(1)如图,在△ABC 中,∠A=40°,∠ABC 和∠ACB•的平分线交于点D ,求∠BDC 的度数.(2)在(1)中去掉∠A=42°这个条件,请探究∠BDC 和∠A 之间的数量关系.15.(开放题)如图,在直角三角形ABC 中,∠BAC=90°,作BC 边上的高AD ,•图中出现多少个直角三角形?又作△ABD 中AB 边上的高DD 1,这时,图中共出现多少个直角三角形?按照同样的方法作下去,作出D 1D 2,D 2D 3,…,当作出D n-1D n 时,图中共出现多少个直角三角形?BA C D。
八年级上册数学11.2与三角形有关的角练习题(含答案)
![八年级上册数学11.2与三角形有关的角练习题(含答案)](https://img.taocdn.com/s3/m/3428b1c6760bf78a6529647d27284b73f242361b.png)
八年级上册数学11.2与三角形有关的角练习题(含答案)八年级上册数学11.2与三角形有关的角练习题(含答案)题1:已知三角形ABC,∠B=60°,BM⊥AC于M,且AM=2,MC=4,请计算AC的长度。
解:由于∠B=60°,且三角形ABC为直角三角形,可以计算出BM 的长度。
根据勾股定理,可得AB=√(AM^2+BM^2)=√(2^2+4^2)=√(4+16)=√20=2√5。
由此可知BC=2AB=2*2√5=4√5。
因此,AC=√(AM^2+MC^2)=√(2^2+4^2)=√(4+16)=√20=2√5。
题2:在三角形ABC中,∠B=90°,BD是BC的中线,且∠ADB=30°,请计算∠ACD的度数。
解:由于∠B=90°,且BD是BC的中线,可以得知∠DBC=90°/2=45°。
又∠ADB=30°,因此∠BDC=∠ADB+∠DBC=30°+45°=75°。
根据三角形内角和定理,得知∠ACD=180°-∠BDC=180°-75°=105°。
题3:已知∠A=60°,在三角形ABC中,以下哪两条边相等?A. AB=BCB. BC=ACC. AB=ACD. 无法确定解:由于∠A=60°,根据等角对应定理可得∠B=60°。
根据等角定理可知,∠A=∠B,故可以得出结论AB=BC。
题4:已知三角形ABC,∠A=45°,∠B=30°,请计算∠C的度数。
解:∠A=45°,∠B=30°,可计算出∠C的度数。
根据三角形内角和定理,得知∠C=180°-∠A-∠B=180°-45°-30°=105°。
题5:已知三角形ABC,AC=10,BC=6,且∠A=60°,求三角形ABC的面积。
人教版八年级上册数学《与三角形有关的角》同步练习(含答案)
![人教版八年级上册数学《与三角形有关的角》同步练习(含答案)](https://img.taocdn.com/s3/m/27ee802d182e453610661ed9ad51f01dc2815789.png)
与三角形有关的角一 、选择题1.已知ABC ∆的三个内角为A ∠,B ∠,C ∠,令B C α∠=∠+∠,C A β∠=∠+∠,A B γ∠=∠+∠,则α∠,β∠,γ∠中锐角的个数至多为( )A .1个B .2个C .3个D .0个 2.如图,()A B C D E F G ∠+∠+∠+∠+∠+∠+∠=A .100︒B .120︒C .150︒D .180︒二 、填空题3.如图,ABC △中,ABC DBE EBC ACD DCE ECB ∠=∠=∠∠=∠=∠,,若145BEC ∠=︒,则BDC ∠等于 .4.如下图,求A B C D ∠+∠+∠+∠= .5.如图所示,点E 和D 分别在ABC ∆的边BA 和CA 的延长线上,若3050D B ∠=︒∠=︒,CF 、EF 分别平分ACB ∠和AED ∠,则F ∠的度数为 .GFEDCBAGFEDCBAED CBA 120︒100︒D CB A6.⑴如图,点P 是ABD ∠与ACD ∠的角平分线的交点,若60A ∠=︒,120D ∠=︒,则______BPC ∠=⑵如图,点P 是ABD ∠与ACD ∠的角平分线的交点,若40A ∠=︒,35P ∠=︒,则______D ∠=7.如右图所示,在ABC ∆中,CD 、BE 是外角平分线,BD 、CE 是内角平分线,BE 、CE 交于E ,BD 、CD 交于D ,试探索D ∠与E ∠的关系: .8.如图,在ABC △中,BD CD ,是ABC ACB ∠∠,的角平分线,连接AD ,125BDC ∠=︒,求ADB ∠的度数9.已知三角形的三个内角分别为α、β、γ,且αβγ≥≥,2αγ=,则β的取值范围是 .P DCBA DP CBA DCBA10.ABC ∆中,A ∠是最小角,B ∠是最大角,且25B A ∠=∠,若B ∠的最大值是m ︒,最小值是n ︒.则m n += .11.如下图,CGE α∠=,则A B C D E F ∠+∠+∠+∠+∠+∠= .12.如图,ABC △中,90C ∠=︒,13BAD BAE ∠=∠,13ABD ABF ∠=∠,则D ∠= .三 、解答题13.如下图,求C D ∠+∠的度数.14.如图,BF 是ABD ∠的角平分线,CE 是ACD ∠角的平分线,BE 与CF 交于G ,若140BDC ∠=︒,110BGC ∠=︒,求A ∠的度数.15.(1)若4030A B ∠=︒∠=︒,,求C D ∠+∠的度数(2)若BP CP 、为ABC ACD ∠∠、的角平分线,P ∠与A ∠和D ∠之间的关系αGFEDCBAFE DCB A70︒30︒E DCBA16.如右图所示,BD 是ABC ∠的角平分线,CD 是ABC ∆的外角平分线,BD 、CD交于点D ,若70A ∠=︒,求D ∠.17.如图,在三角形ABC 中,42A ∠=︒,ABC ∠和ACB ∠的三等分线分别交于D 、E ,求BDC ∠的度数.18.如图所示,已知70A ∠=︒,40B ∠=︒,20C ∠=︒,求BOC ∠度数.19.如图,求A B C D E ∠+∠+∠+∠+∠的度数.20.如图,P 是ABC △内一点,求证:BPC ∠>A ∠DCBAPDCBAABC D EF21.如下图所示,在ABC ∆中,90ACB ∠=︒,D 、E 为AB 上两点,若AE AC =,45DCE ∠=︒,求证:BC BD =.22.已知三角形有一个内角是(180)x -度,最大角与最小角之差是24︒.求x 的取值范围.PCBA54321E D CB A与三角形有关的角答案解析一 、选择题1.A;实际是问至多有几个顶点所对应的外角是锐角,即至多有几个内角是钝角.总结:一个三角形的内角至多有311⎧⎪⎨⎪⎩锐角个直角个钝角个 ;至少有2个锐角.2.D;如图,连接EF AC ,,则有G D GAD GCA ∠+∠=∠+∠,()()EFC AEF EAC ACF EAD CAD GCF GCA ∠+∠=∠+∠=∠+∠+∠+∠ ()()()()EAD GCF CAD GCA EAD GCF G D =∠+∠+∠+∠=∠+∠+∠+∠所以A B C D E F G ∠+∠+∠+∠+∠+∠+∠()()()EAD GCF G D B AEB CFB =∠+∠+∠+∠+∠+∠+∠ ()()EFC AEF B AEB CFB =∠+∠+∠+∠+∠()()180EFC CFB AEB AEF B EFB FEB B =∠+∠+∠+∠+∠=∠+∠+∠=︒二 、填空题3.110︒;根据燕尾形,故E A ABE ACE ∠=∠+∠+∠,2A E D ∠+∠=∠,35x y +=︒4.220︒.5.40︒;1()=402F D B ∠=∠+∠︒【解析】对顶八字形的应用 6.⑴90BPC ∠=︒;⑵30D ∠=︒7.D E ∠=∠;∵1122D AE A ∠=∠∠=∠,,∴D E ∠=∠ 8.35︒;两内角平分线的应用,1902A BDC ∠+︒=∠,又三内角平分线交于一点9.4572β︒︒≤≤;由题意可得2(180)3αβ=︒-,1803βγ︒-=,解不等式组yxED CBA2180(180)33βββ︒-︒-≥≥, 得:4572β︒︒≤≤.10.175;25A B ∠=∠,依题意得2718055B B B ∠︒-∠∠≤≤,解得75100B ︒∠︒≤≤,故175m n +=.11.2α.12.90︒;()()1118018033DAB ABD BAE ABD CAB ABC ∠+∠=∠+∠=︒-∠+︒-∠,90CAB ABC ∠+∠=︒三 、解答题13.180180100C D CED AEB A B ∠+∠=︒-∠=∠︒-∠=∠+∠=︒ 14.延长BD 交AC 于H ,则BDC HCD DHC ∠=∠+∠∵DHC A ABH ∠=∠+∠∴BDC A ABH HCD ∠=∠+∠+∠①∵BGC GFC FCG ∠=∠+∠,GFC A ABF ∠=∠+∠ ∴BGC A ABF FCG ∠=∠+∠+∠ ∴2222BGC A ABF FCG ∠=∠+∠+∠ 即22BGC A ABH ACD ∠=∠+∠+∠② ②-①得2BGC BDC A ∠-∠=∠ ∴211014080A ∠=⨯︒-︒=︒15.(1)70C D ∠+∠=︒.(2)如图⑤,x A y P +∠=+∠,x P y D +∠=+∠,化简可得2P A D ∠=∠+∠x x yy⑤DPCBA【解析】对顶八字形,需要掌握A B C D ∠+∠=∠+∠,第二问便是这个结论的应用16.∵ACE A ABC ∠=∠+∠∵12DCE ACE ∠=∠,12DBC ABC ∠=∠ ∴12DCE A DBC ∠=∠+∠ ∵DCE D DBC ∠=∠+∠∴12D DBC A DBC ∠+∠=∠+∠,即1352D A ∠=∠=︒.17.设ABC ∠的三分之一为x ,ACB ∠的三分之一为y ,因为三角形内角和为180︒, 所以有:3342180x y ++=︒, 即180423x y ︒-︒+=,所以180421802883BDC ︒-︒∠=︒-⨯=︒. 18.法1:如图(1),延长BO 交AC 于D ,求得130BOC ∠=法2:如图(2),连接BC ;法3:如图(3),连接AO 并延长到点D .本题的一个重要结论:如例题所示图形,BOC A B C ∠=∠+∠+∠ 19.连接BC ,∵EFD CFB ∠=∠(对顶角相等)∴E D FCB FBC ∠+∠=∠+∠(等量减等量差相等)∴ACB ABC ACD ABE FCB FBC ∠+∠=∠+∠+∠+∠(等量代换) ∵180A ABC ACB ∠+∠+∠=︒(三角形内角和定义) ∴180A B C D E ∠+∠+∠+∠+∠=︒(等量代换)20.图中没有三角形的外角,可适当引辅助线构造外角,再比较.延长BP 交AC 于D .则有BPC PDC ∠>∠,且PDC A ∠>∠,所以BPC A ∠>∠.21.如图,∵245∠=︒,AE AC =,∴523453∠=∠+∠=︒+∠.∴43A ∠=∠+∠,15(453)(90)345445B A A ∠=∠-∠=︒+∠-︒-∠=∠+∠-︒=∠-︒.∴4145BCD ∠=∠+∠︒=∠, ∴BC BD =.22.①若(180)x -度为最大角,则最小角为(156)x -度,那么,156180(180)(156)180x x x x ------≤≤,解得104112x ≤≤;②设(180)x -度是中间角,则121801222x x x --+≤≤,112128x ≤≤; ③设(180)x -度为最小角,则180180(180)(204)204x x x x ------≤≤,解得128136x ≤≤,综合⑴、⑵、⑶得x 的范围是104136x ≤≤.A PCBD。
与三角形有关的角练习题
![与三角形有关的角练习题](https://img.taocdn.com/s3/m/5d32e10753ea551810a6f524ccbff121dd36c567.png)
与三角形有关的角练习题一、选择题1、一个三角形的两个内角分别是55°和65°,不可能是这个三角形外角的是()A.115°B.120°C.125°D.130°2、如图,∠1+∠2+∠3+∠4=()A.100°B.200°C.280°D.300°3、在△ABC中,AD⊥BC于D,且AD将∠BAC分成的两个小角度分别为20°和50°,则此三角形一定是()A.锐角三角形B.钝角三角形C.直角三角形D.以上都不对4、如图∠2+α=180°,则下列式子中值为180°的是()A.α+β+γB.α+β-γC.β+γ-αD.α-β+γ5、如图,△ABC中,∠A=70°,∠B=60°,点D在BC的延长线上,则∠ACD等于()A.100°B. 120°C. 130°D. 150°6、如图,已知AC∥ED,∠C=26°,∠CBE=37°,则∠BED的度数是()A.63°B.83°C.73°D.53°二、解答题1、如图,一个顶角为40°的等腰三角形纸片,剪去顶角后,得到一个四边形,则∠1+∠2=_______.2、如图,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=158°,则∠EDF的度数为________.3、如图,AF、AD分别是△ABC的高和角平分线,∠B=36°,∠C=76°,求∠DAF的度数.4、如图,C岛在A岛的北偏东52°方向,B岛在A岛的北偏东82°方向,C岛在B岛的北偏西38°方向,从C岛看A、B两岛的视角∠ACB是多少度?5、如图,D是△ABC的BC边上的一点,且∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.6、一个零件的形状如图,按规定∠A应等于90°,∠B、∠C应分别是21°和32°.检验工人量得∠BDC=148°,就断定这个零件不合格,这是为什么呢?7、如图,已知△ABC中,BD、CE分别是∠ABC、∠ACB的平分线,BD、CE交于点O,∠A=70°.(1)若∠ACB=34°,求∠BOC的度数;(2)当∠ACB的大小改变时,∠BOC的大小是否发生变化?为什么?8、如图,△ABC中,CD是∠ACB的角平分线,CE是AB边上的高,若∠A=40°,∠B=72°.(1)求∠DCE的度数;(2)试写出∠DCE与∠A、∠B的之间的关系式.(不必证明)。
与三角形有关的角练习题
![与三角形有关的角练习题](https://img.taocdn.com/s3/m/6c653794370cba1aa8114431b90d6c85ec3a8807.png)
与三角形有关的角练习题角是数学中的重要概念,与几何形状紧密相关。
在本文中,我们将探讨与三角形有关的角的练习题。
通过这些练习题,我们可以加深对三角形和角的理解,并提升解题能力。
下面是一些练习题,让我们一起来解答吧!题目一:三角形角的求解1. 已知三角形ABC,其中∠A=30°,∠B=45°,求解∠C的度数。
2. 已知三角形DEF,其中∠D=60°,∠E=75°,求解∠F的度数。
3. 已知三角形XYZ,其中∠X=90°,∠Y=60°,求解∠Z的度数。
题目二:三角形角的性质1. 三角形ABC中,∠A=60°,∠B=70°,∠C=50°。
判断该三角形的类型(锐角、钝角或直角)。
2. 三角形DEF中,∠D=45°,∠E=45°,∠F=90°。
判断该三角形的类型。
3. 三角形XYZ中,∠X=120°,∠Y=30°,∠Z=30°。
判断该三角形的类型。
题目三:三角形角的关系1. 已知三角形ABC,其中∠A=50°,∠B=70°。
则∠C的度数为多少?2. 已知三角形DEF,其中∠D=90°,∠E=30°。
则∠F的度数为多少?3. 已知两个角的度数为55°和70°,它们能组成一个三角形吗?题目四:三角形角的计算1. 已知三角形ABC,其中∠A=60°,∠B=45°,求解∠C的度数。
2. 三角形DEF中,∠D=135°,∠E=30°,求解∠F的度数。
3. 已知三角形XYZ,其中∠X=45°,∠Y=45°,求解∠Z的度数。
通过以上的练习题,我们可以巩固三角形角的知识,并能够更熟练地解决与三角形有关的问题。
在解题过程中,我们要熟练运用三角形角的性质和关系,灵活运用角的计算方法。
与三角形有关的角练习题(含答案)
![与三角形有关的角练习题(含答案)](https://img.taocdn.com/s3/m/6afdfad1581b6bd97f19eaea.png)
第十一章三角形11.2 与三角形有关的角1.关于三角形内角的叙述错误的是A.三角形三个内角的和是180°B.三角形两个内角的和一定大于60°C.三角形中至少有一个角不小于60°D.一个三角形中最大的角所对的边最长2.下列叙述正确的是A.钝角三角形的内角和大于锐角三角形的内角和B.三角形两个内角的和一定大于第三个内角C.三角形中至少有两个锐角D.三角形中至少有一个锐角3.在一个三角形中,一个外角是其相邻内角的3倍,那么这个外角是A.150°B.135°C.120°D.100°4.已知△ABC中,∠A=20°,∠B=∠C,那么△ABC是A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形5.在不等边三角形中,最小的角可以是A.80°B.65°C.60°D.59°6.等腰三角形底角的外角比顶角的外角大30°,则这个三角形各内角度数是__________.7.等腰三角形一腰上的高与另一腰的夹角为50°,则这个等腰三角形的底角度数为__________.8.如图,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=__________.9.若直角三角形的一个锐角为50°,则另一个锐角的度数是___________.10.求直角三角形两锐角平分线所夹的锐角的度数.11.一个零件的形状如图所示,按规定A∠、C∠应等于90︒,B∠应分别是21︒、32︒,检验工人量得∠=︒,就断定这个零件不合格,这是为什么呢?148BDC12.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是A.3 B.4 C.6 D.513.如图,在△ACB中,∠ACB=100°,∠A=20°,D是AB上一点.将△ABC沿CD折叠,使B点落在AC 边上的B′处,则∠ADB′等于A.25°B.30°C.35°D.40°14.一个三角形三个内角的度数之比为2∶3∶7,这个三角形一定是A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形15.如图,在△ABC中,∠ABC、∠ACB的平分线BE、CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC= ___________.16.如图,将纸片△ABC沿DE折叠,点A落在点F处,已知∠1+∠2=100°,则∠A=___________.17.如图,△ABC中,AD是高,AE是∠BAC的平分线,∠B=70°,∠DAE=18°,则∠C的度数是___________.18.如图,∠BCD为△ABC的外角,已知∠A=70°,∠B=35°,则∠BCD=___________.19.如图,AD是△ABC边BC上的高,BE平分∠△ABC交AD于点E.若∠C=60°,∠BED=70°.求∠ABC 和∠BAC的度数.20.如图,△ABC中,∠A=40°,∠B=76°,CE平分∠ACB,CD⊥AB于点D,DF⊥CE于点F,求∠CDF 的度数.21.如图,在△ABC中,D为AB边上一点,E为BC边上一点,∠BCD=∠BDC.(1)若∠BCD=70°,求∠ABC的度数;(2)求证:∠EAB+∠AEB=2∠BDC.22.如图,在ABC∠=∠,△中,AD是BC边上的高,E是AB上一点,CE交AD于点M,且DCM MAE 求证:AEM△是直角三角形.23.(2018•黄石)如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=A.75°B.80°C.85°D.90°24.(2018•宿迁)如图,点D在△ABC边AB的延长线上,DE∥BC.若∠A=35°,∠C=24°,则∠D的度数是A.24°B.59°C.60°D.69°25.(2018•眉山)将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是A.45°B.60°C.75°D.85°26.(2018•滨州)在△ABC中,若∠A=30°,∠B=50°,则∠C=__________.27.(2018•淄博)已知:如图,△ABC是任意一个三角形,求证:∠A+∠B+∠C=180°.28.(2018•宜昌)如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC 的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.1.【答案】B【解析】A正确,根据三角形内角和定理可知,三角形三个内角的和是180°;C正确,三角形中至少有一个角不小于60°,否则三角形内角之和将小于180°;D正确,一个三角形中最大的角所对的边最长,不符合题意;B错误,三角形两个内角的和可能小于60°,如三角形的三个内角可以依次为20°,20°,140°,故B错误,故选B.4.【答案】A【解析】因为三角形内角和为180°,根据题意可得:∠B=∠C=80°,所以△ABC是锐角三角形.故选A.5.【答案】D【解析】在不等边三角形中,最小的角要小于60°,否则三内角的和大于180°.故选D.6.【答案】80°,50°,50°【解析】如图所示,AB=AC,∠1=∠2+30°.∵AB=AC,∴∠B=∠ACB,∵∠1、∠2分别是△ABC的外角,∴∠1=∠B+∠BAC,∠2=∠B+∠ACB,∵∠1=∠2+30°,∴∠1–∠2=∠B+∠BAC–∠B–∠ACB=∠BAC–∠ACB=30°①,∵∠B=∠ACB,∴∠B+ ∠ACB+∠A=180°,∴2∠ACB+∠BAC=180°,∴∠BAC=180°–2∠ACB,代入①得,180°–2∠ACB–∠ACB= 30°,解得,∠ACB=50°,∴∠B=50°,∠BAC=180°–∠B–∠ACB=180°–50°–50°=80°,∴这个三角形各个内角的度数分别是80°,50°,50°.故答案为:80°,50°,50°.7.【答案】70°或20°【解析】如图①,∵AB=AC,∠ABD=50°,BD⊥AC,∴∠A=40°,∴∠ABC=∠C=(180°–40°)÷2=70°;如图②:∵AB=AC,∠ABD=50°,BD⊥AC,∴∠BAC=50°+90°=140°,∴∠ABC=∠C=(180°–140°)÷2=20°,故答案为:70°或20°.9.【答案】40°【解析】因为三角形内角和为180°,一个直角为90°,一个锐角为50°,所以另一个锐角的度数为180°–90°–50°=40°.故答案为:40°.10.【解析】如图,△ACB 为直角三角形,C 为直角,AD ,BE 分别是∠CAB 和∠ABC 的角平分线,AD ,BE 相交于点F , ∵∠ACB =90°,∴∠CAB +∠ABC =90°, ∵AD ,BE 分别是∠CAB 和∠ABC 的角平分线, ∴∠FAB +∠FBA =21∠CAB +21∠ABC =45°, ∴∠DFB =∠FAB +∠FBA =45°,即直角三角形两锐角平分线所夹的锐角为45°.11.【解析】如图,延长CD 交AB 于点E .因为CDB∠是BDE△的一个外角,∴CDB B BED∠=∠+∠.因为BED∠是AEC△的一个外角,所以BED C A∠=∠+∠.所以902132143148CDB A B C∠=∠+∠+∠=︒+︒+︒=︒≠︒.所以可以判定这个零件不合格.12.【答案】A【解析】如图,过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD,可得12×4×2+12×AC×2=7.解得AC=3.故选A.13.【答案】D【解析】∵在△ACB中,∠ACB=100°,∠A=20°,∴∠B=180°–100°–20°=60°,∵△CDB′由△CDB翻折而成,∴∠CB′D=∠B=60°,∵∠CB′D是△AB′D的外角,∴∠ADB′=∠CB′D–∠A=60°–20°=40°.故选D.15.【答案】120°【解析】∵∠ABC=42°,∠A=60°,∠ABC+∠A+∠ACB=180°.∴∠ACB=180°–42°–60°=78°.又∵∠ABC、∠ACB的平分线分别为BE、CD,∴∠FBC=12∠ABC=21°,∠FCB=12∠ACB=39°.又∵∠FBC+∠FCB+∠BFC=180°,∴∠BFC=180°–21°–39°=120°.故答案为:120°.18.【答案】105°【解析】∠BCD=∠A+∠B=70°+35°=105°.故答案为:105°.19.【解析】∵AD是△ABC的高,∴∠ADB=90°,又∵180∠+∠+∠=︒,∠BED=70°,DBE ADB BED∴18020DBE ADB BED∠=︒-∠-∠=︒.∵BE平分∠ABC,∴∠ABC=2∠DBE=40°.又∵∠BAC+∠ABC+∠C=180°,∠C=60°,∴∠BAC=180°–∠ABC–∠C=80°.20.【解析】∵∠A=40°,∠B=76°,∴∠ACB=180°–40°–76°=64°,∵CE平分∠ACB,∴∠ACE=∠BCE=32°,∴∠CED=∠A+∠ACE=72°,∴∠CDE=90°,DF⊥CE,∴∠CDF+∠ECD=∠ECD+∠CED=90°,∴∠CDF=72°.21.【解析】(1)∵∠BCD=70°,∴∠BCD=∠BDC=70°,∴∠ABC=180°–70°–70°=40°.(2)∵∠EAB+∠AEB=180°–∠ABC,∠BCD+∠BDC=180°–∠ABC,即2∠BCD=180°–∠ABC,∴∠EAB+∠AEB=2∠BDC.22.【解析】∵AD是BC边上的高,∴90∠+∠=︒.DMC DCM又∵DMC AMEAME MAE∠+∠=︒,∠=∠,∴90∠=∠,DCM MAE即AEM△是直角三角形.23.【答案】A【解析】∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°-25°=5°,∵△ABC中,∠C=180°-∠ABC-∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选A.24.【答案】B【解析】∵∠A=35°,∠C=24°,∴∠DBC=∠A+∠C=59°,∵DE∥BC,∴∠D=∠DBC=59°,故选B.25.【答案】C【解析】如图,∵∠ACD=90°,∠F=45°,∴∠CGF=∠DGB=45°,则∠α=∠D+∠DGB=30°+45°=75°,故选C.26.【答案】100°【解析】∵在△ABC中,∠A=30°,∠B=50°,∴∠C=180°-30°-50°=100°.故答案为:100°.27.【解析】如图,过点A作EF∥BC,∵EF∥BC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°,即∠A+∠B+∠C=180°.28.【解析】(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°-∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分线,∴∠CBE=12∠CBD=65°.(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°-65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.。
与三角形有关的角练习题
![与三角形有关的角练习题](https://img.taocdn.com/s3/m/47a230fe4693daef5ef73d13.png)
16:在△ABC中,∠1是它的一个外角,E 为边AC上的一点,延长BC到D,连接DE。 求证:∠1>∠2 D
证明: ∵∠1是△ABC的一个外角 (已知) ∴∠1>∠3(外角定理)
∵∠3是△CDE的一个外角
A
2 5
C
3 1
E
4
(外角定义)
∴ ∠3>∠2 (外角定理) ∴∠1>∠2 (不等式性质)
B
F
与三角形有关的角 练习题
1.等腰三角形的一个内角是30°,那么 这个三角形另两角的度数 是______ _. 75° 75°或30° 120 ° 2.过△ABC的顶点C作AB的垂线,如果 这条垂线将∠ACB分为40°和20°两个 角,• 那么∠A,∠B中较大的角的度数是 70° _______ . 3.一个三角形中,最多有_____ 3 个锐角, 2个锐角,最多有_____钝 最少有_____ 1 角.
10.如图5,△ABC中,AB=AC, 点D在AC边上,且BD=BC=AD,则 ∠A的度数为( B ) A.30° B.36° C.45° D.70°
11.如图6,∠A=50°,BD, CD分别是∠B,∠C的平分 线,则∠ BDC 等于( ) C A.65° B.100° C.115° D.130°
4.如图1, ∠1=31°∠2=52°∠3= 60°,则∠42+∠3+∠4+ ∠5+∠6的度数是 360° . _______
6.如图3,△ABC中,∠C=90°, ∠CAB,∠CBA的平分线相交于点D,• BD• 的延长线交AC于E,则∠ADE的度数是 ________ . 45°
解: ∵AF是△ABC的高 ∴∠CAF=90°- ∠C
=90°- 76°= 14°
八年级上册数学同步练习题库:与三角形有关的角(选择题:一般)
![八年级上册数学同步练习题库:与三角形有关的角(选择题:一般)](https://img.taocdn.com/s3/m/ae9bb7545fbfc77da369b10c.png)
与三角形有关的角(选择题:一般)1、将一幅三角尺按如图所示的方式折叠在一起,则∠α的度数是()A.45° B.60° C.75° D.120°2、如图,AB∥CD,∠A+∠E=75°,则∠C为()A.60° B.65° C.75° D.80°3、如图,某同学在课桌上无意中将一块三角板叠放在直尺上,则∠1+∠2等于()A.60° B.75° C.90° D.105°4、如图,△ABC中,∠A=α°,BO、CO分别是∠ABC、∠ACB的9平分线,则∠BOC的度数是()A. 2α°B. (α+60 )°C. (α + 90 )°D. (α + 90 )°5、三个内角之比是1:5:6的三角形是()A.锐角三角形 B.直角三角形C.钝角三角形 D.等腰直角三角形6、利用反证法证明“直角三角形至少有一个锐角不小于”,应先假设A.直角三角形的每个锐角都小于B.直角三角形有一个锐角大于C.直角三角形的每个锐角都大于D.直角三角形有一个锐角小于7、如图,已知a∥b,∠1=120°,∠2=90°,则∠3的度数是()A.120° B.130° C.140° D.150°8、如图,A,B,C,D,E,F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E 的度数是()A.180° B.270° C.360° D.540°9、已知△ABC的三个内角∠A、∠B、∠C满足关系式∠B+∠C=∠A,则此三角形()A. 一定有一个内角为45°B. 一定有一个内角为60°C. 一定是直角三角形D. 一定是钝角三角形10、如图,若∠A=27°,∠B=45°,∠C=38°,则∠DFE等于()A.120° B.115° C.110° D.105°11、如图,图中x的值为()A.50 B.60 C.70 D.7512、如图,已知BE,CF分别为△ABC的两条高,BE和CF相交于点H,若∠BAC=50°,则∠BHC为()A.115° B.120° C.125° D.130°13、如果一个三角形的三个内角都不相等,那么最小角一定小于()A.60° B.45° C.30° D.59°14、如图,在△ABC中,D是BC上一点,若∠B=∠C=∠BAD,∠DAC=∠ADC,∠BA C的度数为()A.36度 B.72度 C.98度 D.108度15、将一副三角尺按如图所示的方式放置,使含30∘角的三角尺的短直角边和含45∘角的三角尺的一条直角边重合,则∠1的度数是().A.30∘ B.45∘ C.60∘ D.75∘16、如图,若∠A=60°,∠C=90°,AC=20 m,则AB=( )A.25 m B.30 m C.20 m D.40 m17、如图,将含30°角的三角板的直角顶点放在直尺的一边上,若∠1=35°,则∠2的度数为()A.80° B.65° C.60° D.55°18、已知△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠B等于()A.40° B.60° C.80° D.90°19、如图,在中,于.则的大小是()A.20° B.30° C.40° D.50°20、如图,图中∠1的度数为( )A.40° B.50°C.60° D.70°21、在△ABC中,∠A=40°,∠B=60°,则∠C=()A.40° B.80° C.60° D.100°22、若一个三角形三个内角的度数之比是2∶3∶7,则这个三角形一定是( )A.直角三角形 B.锐角三角形 C.钝角三角形 D.不能确定23、在三个内角互不相等的△ABC中,最小的内角为∠A,则在下列四个度数中,∠A最大可取( ) A.30° B.59° C.60° D.89°24、一个正方形和一个等边三角形的位置如图所示,若∠2=50°,则∠1=( )A.50° B.60° C.70° D.80°25、如图所示,已知AB∥CD,∠A=55°,∠C=20°,则∠P的度数是()A.55° B.75° C.35° D.125°26、如图,∠1,∠2,∠3,∠4的关系为( )A.∠1+∠2=∠4-∠3 B.∠1+∠2=∠3+∠4C.∠1-∠2=∠4-∠3 D.∠1-∠2=∠3-∠427、如图,CE是△ABC的外角∠ACD的平分线.若∠B=35°,∠ACE=60°,则∠A=( )A.35° B.95° C.85° D.75°28、若三角形的三个外角的度数之比为2∶3∶4,则与之对应的三个内角的度数之比为( ) A.4∶3∶2 B.3∶2∶4 C.5∶3∶1 D.3∶1∶529、如图,在△ABC中,∠ACB=70°,∠1=∠2,则∠BPC的度数为( )A.110° B.70° C.130° D.不能确定30、如图,若AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,且∠A=71°,则∠A2017A2018B2017=().A. B. C. D.31、将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()A.30° B.45° C.60° D.75°32、在△ABC中,若∠C=∠A+∠B,则△ABC是()A.等边三角形 B.锐角三角形 C.直角三角形 D.钝角三角形33、如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC+∠ABD=90°;④∠BDC=∠BAC.其中正确的结论有()A. 1个B. 2个C. 3个D. 4个34、如图,∠BDC=98°,∠C=38°,∠A=37°,∠B的度数是()A.33° B.27° C.37° D.23°35、如图,在△ABC中,∠BAC=x°,∠B=2x°,∠C=3x°,则∠BAD=()A.150° B.145° C.155° D.160°36、如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=().A.360° B.250° C.180° D.140°37、如图所示,∠A,∠1,∠2的大小关系是()A.∠2>∠1>∠A B.∠A>∠1>∠2 C.∠A>∠2>∠1 D.∠2>∠A>∠138、如图,BD=CF,FD⊥BC于点D,DE⊥AB于点E,BE=CD,若∠AFD=145°,则∠EDF的度数为()A.45° B.55° C.35° D.65°39、如图所示,∠的度数是()A.10° B.20° C.30° D.40°40、如图,已知AB⊥BD,AC⊥CD,∠A=40°,则∠D的度数为()A.40° B.50° C.60° D.70°41、在下列条件中:①②③④中,能确△ABC是直角三角形的定条件有A.①② B.③④ C.①③④ D.①②③42、如图,AC⊥BD,∠1=∠2,∠D=35°,则∠BAD的度数是().A. B. C. D.43、在△ABC中,∠B﹣∠A=50°,∠B是∠A的3.5倍,则△ABC是( )A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定44、用反证法证明“在一个三角形中,至少有一个内角小于或等于60°”应先假设:在一个三角形中()A.至多有一个内角大于或等于60° B.至多有一个内角大于60°C.每一个内角小于或等于60° D.每一个内角大于60°45、如图,在ABC中,A=80,ABC与ACD的平分线交于点A1,得A1;A1BC与A1CD的平分线相交于点A2,得A2;……;A7BC与A7CD的平分线相交于点A8,得A8,则A8的度数为()A. B. C. D.46、在△ABC中,∠B,∠C的平分线交于点O,D是外角与内角平分线交点,E是外角平分线交点,若∠BOC=120°,则∠D=( )A.15° B.20° C.25° D.30°47、如图,∠BAC=90°,AD⊥BC,则图中互余的角有()A.2对 B.3对 C.4对 D.5对48、下列叙述中:如图,五角星的顶点为A、B、C、D、E,∠A+∠B+∠C+∠D+∠E的度数为()A. 90°B. 180°C. 270°D. 360°49、在△ABC中,∠B,∠C的平分线交于点O,D是外角与内角平分线交点,E是外角平分线交点,若∠BOC=120°,则∠D=( )度A.15° B.20° C.25° D.30°50、在△ABC中,∠A=30°,∠B=75°,则△ABC是()A.直角三角形 B.钝角三角形 C.等边三角形 D.等腰三角形51、已知△ABC中,∠A、∠B、∠C对应的比例如下,其中能判定△ABC是直角三角形的是()A. 2:3:4B. 4:3:5C. 1:2:3D. 1:2:252、适合条件2∠A=2∠B=∠C的三角形是()A.直角三角形 B.锐角三角形C.钝角三角形 D.不能确定53、如图,AD∥BC,AC⊥AB,∠C=62°,则∠DAB的度数为()A.28° B.30° C.38° D.48°54、等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为30°,则这个等腰三角形的顶角为()A.60°或120° B.30°或150° C.30°或120° D.60°55、下列说法正确的是()A.经过两点可以画无数条直线B.两条射线组成的图形叫做角C.正多边形的各边都相等,各角都相等D.两个锐角的和一定大于直角56、如图,于点,若,则等于()A.110° B.100° C.80° D.70°57、在下列条件中:①∠A+∠B=∠C;②∠A=∠B=2∠C;③∠A∶∠B∶∠C=1∶2∶3,能确定△ABC为直角三角形的条件有()A.1个 B.2个 C.3个 D.0个58、根据下列条件不能判断△ABC是直角三角形的是()A.∠B="50°" ,∠C=40° B.∠B=∠C=45C.∠A,∠B,∠C的度数比为5:3:2 D.∠A-∠B=90°59、一个三角形的三个内角中()A.至少有一个等于90度 B.至少有一个大于90度C.可能只有一个小于90度 D.不可能都小于60度60、满足下列条件的△ABC中,不是直角三角形的是()A.∠A:∠B:∠C=3:4:5 B.∠B+∠A=∠CC.∠A=∠B=∠C D.一个外角等于与它相邻的内角61、已知△ABC中,∠A=20°,∠B=∠C,那么△ABC是( )A.锐角三角形 B.直角三角形C.钝角三角形 D.等边三角形62、下列命题是真命题的是()A.同旁内角互补B.直角三角形的两锐角互余C.三角形的一个外角等于它的两个内角之和D.三角形的一个外角大于内角63、如图,将一块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠2=80°,那么∠1的度数为()A.60° B.50° C.40° D.30°64、用反证法证明命题:在一个三角形中,至少有一个内角不大于60°.证明的第一步是()A.假设三个内角都不大于60°B.假设三个内角都大于60°C.假设三个内角至多有一个大于60°D.假设三个内角至多有两个大于60°65、如图,BC⊥AE于点C,CD∥AB,∠B=40°,则∠ECD的度数是()A.70° B.60° C.50° D.40°66、点P是△ABC内一点,连结BP并延长交AC于D,连结PC,则图中∠1、∠2、∠A 的大小关系是()A.∠A>∠2>∠1 B.∠A>∠2>∠1C.∠2>∠1>∠A D.∠1>∠2>∠A67、如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC等于()A.95° B.120° C.135° D.无法确定68、如图所示,在△ABC中,CD、BE分别是AB、AC边上的高,并且CD、BE 交于点P,若∠A=50°,则∠BPC等于()A、90°B、130°C、100°D、150°69、如图,等于()A.90 ° B.180° C.360° D.270°70、如图,在△ABC中,∠A=50°,点D、E分别在AB、AC上,则∠1+∠2等于()A.130° B.230° C.180° D.310°参考答案1、C2、C3、C4、D5、B6、A7、D8、A9、C10、C11、B12、D13、A14、D15、D16、D17、B18、C19、A20、D21、B22、C23、B24、C25、C26、A27、C28、C29、A30、C31、D32、C33、C34、D35、A36、B.37、A38、B39、A40、A41、D42、B43、C44、D45、C46、D47、C48、B49、D50、D51、C52、A53、A54、A55、C56、A57、B58、D59、D60、A61、A62、B63、B64、B65、C66、D67、C68、B69、B70、B【解析】1、试题解析:∵图中是一副直角三角板,∴∠A=30°,∠ACE=∠B=45°,∴α=30°+45°=75°.故选C.2、试题分析:根据三角形外角性质求出∠EOB,根据平行线性质得出∠C=∠EOB,代入即可得出答案.∵∠A+∠E=75°,∴∠EOB=∠A+∠E=75°,∵AB∥CD,∴∠C=∠EOB=75°,考点:平行线的性质.3、试题解析:如图所示:∵∠1与∠4是对顶角,∠2与∠3是对顶角,∴∠1=∠4,∠2=∠3,∴此三角形是直角三角形,∴∠3+∠4=90°,即∠1+∠2=90°.故选C.4、∵∠A=α°,∴∠ABC+∠ACB=180°-∠A=180°-α,∵BO,CO分别是∠ABC,∠ACB的平分线,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=×(180°-α)=90°-α,∴∠BOC=180°-(∠OBC+∠OCB)=180°-(90°-α)=α+90°.故选D.【点睛】主要利用三角形的内角和定理和角平分线的定义,熟练掌握定理和概念是解题的关键.5、试题分析:根据三角形的内角和定理求得各个角的度数,再进一步判断三角形的形状.三角形的三个内角分别是 180°×=15°,180°×=75°,180°×=90°.所以该三角形是直角三角形.考点:三角形内角和定理.6、分析:熟记反证法的步骤,从命题的反面出发假设出结论,直接得出答案即可.详解:用反证法证明命题“在直角三角形中,至少有一个锐角不小于45°”时,应先假设直角三角形的每个锐角都小于45°.故选:A.点睛:此题主要考查了反证法的步骤,熟记反证法的步骤:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.7、解:如图,延长∠1的边与直线b相交.∵a∥b,∴∠4=180°﹣∠1=180°﹣120°=60°,由三角形的外角性质,可得∠3=90°+∠4=90°+60°=150°.故选D.8、连接AC.∵在△ABC中,∠1+∠2+∠3+∠4+∠B=180°;在△AOC和△DOE中, ∠2+∠4=∠D+∠E;∴∠1+∠D+∠3+∠E+∠B=180°,即∠1+∠B+∠3+∠D+∠E=180°.故选A9、试题解析:∵∠A+∠B+∠C=180°,∠B+∠C=∠A,∴2∠A=180°,∴∠A=90°,即△ABC一定是直角三角形;故选C.10、试题分析:因为∠A=27°,∠C=38°,所以∠AEB=∠A+∠C=65°,又因∠B=45°,所以∠DFE=∠B+∠AEB=110°,故选C.11、根据三角形的一个外角等于不相邻两内角的和,可得方程:x+(x+10)=x+70,解得x=60,因此可知答案为60.故选:B.12、∵BE为△ABC的高,∠BAC=50°,∴∠ABE=90°-50°=40°,∵CF为△ABC的高,∴∠BFC=90°,∴∠BHC=∠ABE+∠BFC=40°+90°=130°.故选D.13、假设,最小角度大于或等于60°,则另外两个角一定也大于60°,那么此三角形内角和大于180°,故假设不成立,所以此三角形的最小角一定要小于60°.故选A.14、∵∠ADC=∠B+∠BAD,∠B=∠C=∠BAD,∠ADC=∠DAC,∴∠B+∠C+∠BAD+∠DAC=180°,∴5∠B=180°,解得∠B=36°,∴∠BAC=180°-2∠B=108°.故选D.15、如图,由题意可知:∠D=30°,∠A=∠B=45°,∠DFE=∠OFA=90°,∴∠DOB=∠AOF=90°-45°=45°,∴∠1=∠D+∠DOB=30°+45°=75°.故选D.点睛:解这类有关一副三角尺的问题需注意两点:(1)三角尺中各个角的度数是固定的,两个90°的角,两个45°的角,一个30°的角,一个60°的角;(2)通过三角形内角和及三角形外角的性质把未知角和已知角联系起来.16、∵∠A=60°,∠C=90°,∴∠B=30°,又∵AC=20m,∴AB=20×2=40m,故选:D.17、如图,∵∠1=35°,∠3=30°,∴∠4=115°,∵∠2+∠4=180°,∴∠2=65°.故选B.18、解得∠B=80°,,∠C=60°,所以选C.19、试题解析:∵AB=AC,BD=CD,∠BAD=20°,∴∠CAD=∠BAD=20°,AD⊥BC,∴∠ADC=90°,∵DE⊥AC,∴∠ADE=90°-∠CAD=70°,∴∠EDC=∠ADC-∠ADE=90°-70°=20°.故选A.20、三角形的一个外角等于与它不相邻的两个内角的和,可得:130°=60°+∠1,∴∠1=70°.故选:D.21、根据三角形的内角和定理得:.故选B.22、试题解析::∵一个三角形三个内角的度数之比为2:3:7,∴这个三角形的最大角为:180°×=105°,∴这个三角形一定是钝角三角形.故选C.23、试题解析:180°÷3=60°,∵不等边三角形的最小内角为∠A,∴∠A<60°,∴0°<∠A<60°,则∠A最大可取59°.故选B.24、如图所示:∵∠2=∠ABC,∠2=50°,∴∠ABC=50°,∵大三角形等边三角形,∴∠A=60,又∵∠A+∠ABC+∠ACB=180°,∴∠ACB=(180-50-60)°=70°,又∵∠1=∠ACB,∴∠ACB=70°.故选C.25、∵AB∥CD,∠A=55°,∴∠1=∠A=55°,∴∠P=∠1−∠C=55°−20°=35°.故选:C..26、如下图,由三角形外角的性质可得:∠5=∠2+∠3,∠4=∠1+∠5,∴∠4=∠1+∠2+∠3,∠1+∠2=∠4-∠3.故选A.27、∵CE平分∠ACD,∠ACE=60°,∴∠ACD=60°2=120°,又∵∠ACD=∠A+∠B,∴∠A=∠ACD-∠B=120°-35°=85°.故选C.28、∵三角形三个外角的度数之比为为2:3:4,而这三个外角的和为360°,∴这三个外角分别为:80°、120°、160°,∴与这三个外角相邻的内角度数分别为:100°、60°、20°,∴对应的三个内角的度数之比为:100:60:20=5:3:1.故选C.29、如图,延长CP交AB于点D,由三角形外角的性质可得:∠CPB=∠CDB+∠PBD,∠CDB=∠1+∠A,∴∠CPB=∠1+∠A+∠PBD,又∵∠1=∠2,∴∠CPB=∠2+∠A+∠PBD=∠A+∠ABC,又∵∠A+∠ABC=180°-∠ACB=180°-70°=110°,∴∠CPB=110°.故选A.30、试题解析:∵在中,是的外角,同理可得,故选C.31、试题解析:∵∠2=90°-45°=45°(直角三角形两锐角互余),∴∠3=∠2=45°,∴∠1=∠3+30°=45°+30°=75°.故选D.32、试题解析:∵在△ABC中,∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,解得∠C=90°,、∴△ABC是直角三角形.故选C.33、①∵AD平分△ABC的外角∠EAC,∴∠EAD=∠DAC,∵∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,故①正确。
《 与三角形有关的角》同步专题提升训练(附答案)2021-2022学年八年级数学人教版上册
![《 与三角形有关的角》同步专题提升训练(附答案)2021-2022学年八年级数学人教版上册](https://img.taocdn.com/s3/m/2af9542dd5bbfd0a7856732b.png)
2021-2022学年人教版八年级数学上册《11.2与三角形有关的角》同步专题提升训练(附答案)一.选择题1.如图,直线AB∥CD,∠B=50°,∠D=20°,则∠E的度数是()A.20°B.30°C.50°D.70°2.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P=()A.70°B.80°C.90°D.100°3.如图,AB⊥AC,CD、BE分别是△ABC的角平分线,AG∥BC,AG⊥BG,下列结论:①∠BAG=2∠ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB=135°.其中正确的结论是()A.①③B.②④C.①③④D.①②③④4.适合条件∠A=∠B=∠C的△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形5.将一副三角尺按如图摆放,点E在AC上,点D在BC的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=45°,∠F=60°,则∠CED的度数是()A.15°B.20°C.25°D.30°6.如图,在△ABC中,∠ACB=100°,∠A=20°,D是AB上一点,将△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.40°B.20°C.55°D.30°7.如图,∠1,∠2,∠3,∠4恒满足关系式是()A.∠1+∠2=∠3+∠4B.∠1+∠2=∠4﹣∠3C.∠1+∠4=∠2+∠3D.∠1+∠4=∠2﹣∠38.如图,△ABC中,AD为△ABC的角平分线,BE为△ABC的高,∠C=70°,∠ABC=48°,那么∠3是()A.59°B.60°C.56°D.22°二.填空题9.如图,∠A=70°,∠B=15°,∠D=20°,则∠BCD的度数是.10.如图,在△ABC中,BI平分∠ABC,CI平分∠ACB,∠BIC=130°,则∠A=.11.如图,点M是△ABC两个内角平分线的交点,点N是△ABC两个外角平分线的交点,如果∠CMB:∠CNB=3:2,那么∠CAB=度.12.一副分别含有30°和45°的两个直角三角板,拼成如图图形,其中∠C=90°,∠B=45°,∠E=30°.则∠BFD的度数是.13.如图,∠A+∠B+∠C+∠D+∠E+∠F=度.14.如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=度.15.如图,在△ABC中,∠C=50°,按图中虚线将∠C剪去后,∠1+∠2等于.三.解答题16.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)求∠AFC的度数;(2)求∠EDF的度数.17.已知如图∠B=∠C,∠1=∠2,∠BAD=40°,求∠EDC度数.18.如图所示,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=50°,∠C=70°,求∠DAC、∠BOA的度数.19.已知如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:;(2)仔细观察,在图2中“8字形”的个数:个;(3)在图2中,若∠D=40°,∠B=36°,试求∠P的度数;(4)如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系.(直接写出结论即可)20.已知:如图,△ABC中,∠BAD=∠EBC,AD交BE于F.(1)试说明:∠ABC=∠BFD;(2)若∠ABC=35°,EG∥AD,EH⊥BE,求∠HEG的度数.参考答案一.选择题1.解:∵AB∥CD,∴∠BMD=∠B=50°,又∵∠BMD是△CDE的外角,∴∠E=∠BMD﹣∠D=50°﹣20°=30°.故选:B.2.解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∵∠ABP=20°,∠ACP=50°,∴∠ABC=2∠ABP=40°,∠ACM=2∠ACP=100°,∴∠A=∠ACM﹣∠ABC=60°,∠ACB=180°﹣∠ACM=80°,∴∠BCP=∠ACB+∠ACP=130°,∵∠PBC=20°,∴∠P=180°﹣∠PBC﹣∠BCP=30°,∴∠A+∠P=90°,故选:C.3.解:∵AB⊥AC.∴∠BAC=90°,∵∠BAC+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=90°∵CD、BE分别是△ABC的角平分线,∴2∠FBC+2∠FCB=90°∴∠FBC+∠FCB=45°∴∠BFC=135°故④正确.∵AG∥BC,∴∠BAG=∠ABC∵∠ABC=2∠ABF∴∠BAG=2∠ABF故①正确.∵AB⊥AC,∴∠ABC+∠ACB=90°,∵AG⊥BG,∴∠ABG+∠GAB=90°∵∠BAG=∠ABC,∴∠ABG=∠ACB故③正确.故选:C.4.解:∵∠A=∠B=∠C,∴∠B=2∠A,∠C=3∠A,∵∠A+∠B+∠C=180°,即6∠A=180°,∴∠A=30°,∴∠B=60°,∠C=90°,∴△ABC为直角三角形.故选:B.5.解:∵∠B=90°,∠A=45°,∴∠ACB=45°.∵∠EDF=90°,∠F=60°,∴∠DEF=30°.∵EF∥BC,∴∠EDC=∠DEF=30°,∴∠CED=∠ACB﹣∠EDC=45°﹣30°=15°.故选:A.6.解:∵∠A+∠B+∠ACB=180°,∠ACB=100°,∠A=20°,∴∠B=60°,根据翻折不变性可知:∠CB′D=∠B=60°,∵∠DB′C=∠A+∠ADB′,∴60°=20°+∠ADB′,∴∠ADB′=40°,故选:A.7.解:∵∠6是△ABC的外角,∴∠1+∠4=∠6,﹣﹣﹣(1);又∵∠2是△CDF的外角,∴∠6=∠2﹣∠3,﹣﹣﹣(2);由(1)(2)得:∠1+∠4=∠2﹣∠3.故选:D.8.解:∵BE为△ABC的高,∴∠AEB=90°∵∠C=70°,∠ABC=48°,∴∠CAB=62°,∵AF是角平分线,∴∠1=∠CAB=31°,在△AEF中,∠EF A=180°﹣31°﹣90°=59°.∴∠3=∠EF A=59°,故选:A.二.填空题9.解:连接AC,并延长到E,∵∠A=70°,∠B=15°,∠D=20°,∴∠BCE=∠B+∠BAC,∠ECD=∠D+∠CAD,∴∠BCD=∠BCE+∠ECD=∠B+∠D+∠BAD=70°+15°+20°=105°,故答案为:105°.10.解:∵BI平分∠ABC,CI平分∠ACB,∴∠IBC=,∠ICB=∠ACB,∴∠IBC+∠ICB=(∠ABC+∠ACB),∵∠BIC=130°,∴∠IBC+∠ICB=180°﹣130°=50°,∴∠ABC+∠ACB=50°×2=100°,∴∠A=180°﹣100°=80°.故答案为:80°.11.解:由题意得:∠NCM=∠NBM=×180°=90°,∴可得:∠CMB+∠CNB=180°,又∠CMB:∠CNB=3:2,∴∠CMB=108°,∴(∠ACB+∠ABC)=180°﹣∠CMB=72°,∴∠CAB=180°﹣(∠ACB+∠ABC)=36°.故答案为:36°.12.解:∵△CDE中,∠C=90°,∠E=30°,∴∠CDF=60°,∵∠CDF是△BDF的外角,∠B=45°,∴∠BFD=∠CDF﹣∠B=60°﹣45°=15°.故答案为:15°.13.解:如右图所示,∵∠AHG=∠A+∠B,∠DNG=∠C+∠D,∠EGN=∠E+∠F,∴∠AHG+∠DNG+∠EGN=∠A+∠B+∠C+∠D+∠E+∠F,又∵∠AHG、∠DNG、∠EGN是△GHN的三个不同的外角,∴∠AHG+∠DNG+∠EGN=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为:360°.14.解:∵∠A=40°,∠B=72°,∴∠ACB=68°,∵CE平分∠ACB,CD⊥AB于D,∴∠BCE=34°,∠BCD=90°﹣72°=18°,∵DF⊥CE,∴∠CDF=90°﹣(34°﹣18°)=74°.故答案为:74.15.解:∵△ABC中,∠C=50°,∴∠A+∠B=180°﹣∠C=130°,∵∠A+∠B+∠1+∠2=360°,∴∠1+∠2=360°﹣130°=230°,故答案为:230°.三.解答题16.解:(1)∵△ABD沿AD折叠得到△AED,∴∠BAD=∠DAF,∵∠B=50°,∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF=110°;(2)∵∠B=50°,∠BAD=30°,∴∠ADB=180°﹣50°﹣30°=100°,∠ADC=50°+30°=80°,∵△ABD沿AD折叠得到△AED,∴∠ADE=∠ADB=100°,∴∠EDF=∠ADE﹣∠ADC=100°﹣80°=20°.17.解:△ABD中,由三角形的外角性质知:∠ADC=∠B+∠BAD,即∠EDC+∠1=∠B+40°;①同理,得:∠2=∠EDC+∠C,已知∠1=∠2,∠B=∠C,∴∠1=∠EDC+∠B,②②代入①得:2∠EDC+∠B=∠B+40°,即∠EDC=20°.18.解:∵AD⊥BC∴∠ADC=90°∵∠C=70°∴∠DAC=180°﹣90°﹣70°=20°;∵∠BAC=50°,∠C=70°∴∠BAO=25°,∠ABC=60°∵BF是∠ABC的角平分线∴∠ABO=30°∴∠BOA=180°﹣∠BAO﹣∠ABO=180°﹣25°﹣30°=125°.19.解:(1)结论:∠A+∠D=∠C+∠B;(2)结论:六个;(3)由∠D+∠1+∠2=∠B+∠3+∠4①(∵∠AOD=∠COB),由∠1=∠2,∠3=∠4,∴40°+2∠1=36°+2∠3∴∠3﹣∠1=2°(1)由∠ONC=∠B+∠4=∠P+∠2,②∴∠P=∠B+∠4﹣∠2=36°+2°=38°;(4)由①∠D+2∠1=∠B+2∠3,由②2∠B+2∠3=2∠P+2∠1①+②得:∠D+2∠B+2∠1+2∠3=∠B+2∠3+2∠P+2∠1∠D+2∠B=2∠P+∠B.∴∠P=.20.解:(1)∵∠BFD=∠ABF+∠BAD,∠ABC=∠ABF+∠FBC,∵∠BAD=∠EBC,∴∠ABC=∠BFD;(2)∵∠BFD=∠ABC=35°,∵EG∥AD,∴∠BEG=∠BFD=35°,∵EH⊥BE,∴∠BEH=90°,∴∠HEG=∠BEH﹣∠BEG=55°。
7.2与三角形有关的角 习题精选
![7.2与三角形有关的角 习题精选](https://img.taocdn.com/s3/m/a17482ee102de2bd96058841.png)
与三角形有关的角习题精选(一)一、选择题1.若一个三角形的三个内角互不相等,则它的最小角必小于()A.45B.60C.30D.12.下列命题中,不正确的为()A.钝角三角形是斜三角形B.在一个三角形中至多有一个内角不小于60C.三角形的没有公共顶点的两个外角的和大于平角D.三角形的外角中,最小的一个是钝角,那它一定是锐角三角形3.以下命题正确的是:()A.三角形三个外角的和是360B.三角形一个外角大于它的两个内角的和C.三角形的外角都不大于90D.三角形中的内角没有大于120的4.下列说法正确的是()A.一个钝角三角形一定不是等腰三角形,也不是等边三角形B.一个等腰三角形一定是锐角三角形,或直角三角形C.一个直角三角形一定不是等腰三角形,也不是等边三角形D.一个等边三角形一定不是钝角三角形,也不是直角三角形5.三角形的三个外角中,钝角的个数最少是:()A.3 B.2 C.1 D.0∆中,AD是BC边上中线,AE是BD边的中线,AF是DC边的中线,且AB<AC,则下列6.如图,ABC结论中错误的是:()∠∠∠∠A.1>2>3>CB.BE=ED=DF=FC∠∠∠∠C.1>4+5+CD.AE=AF7.锐角三角形中,两个锐角的和必大于()A.120 B.110 C.100 D.908.如图,在△ADE中,引线段EB与EC,下列各等式中,正确的是()A.A+1+7=D+3+6∠∠∠∠∠∠B.1+5=2+7∠∠∠∠C.6+A=2+7∠∠∠∠D.A+5+7=2+8+6∠∠∠∠∠∠9.若一个三角形的三个外角的度数之比为2:3:4,则与之对应的三个内角的度数之比为()A.4:3:2 B.3:2:4C.5:3:1 D.3:1:510.如图,已知1=60,A+B+C+D+E+F∠∠∠∠∠∠∠()A.360 B.540。
C.240 D.280。
11.a , b ,c 是ABC ∆的三边长,且22(a b)(b c)+=+,则ABC ∆一定是 ( )A .等腰三角形B .直角三角形 C.锐角三角形 D .钝角三角形12.已知等腰三角形周长为20,则腰长x 的范围是( ) A .0<x<10 B .5<x<10 C .0<x<5 D .0<x<20 二、填空题13.在ABC ∆中是的2倍,比还大12,则这个三角形是_________三角形。
与三角形有关的角、多边形及内角和专项复习题
![与三角形有关的角、多边形及内角和专项复习题](https://img.taocdn.com/s3/m/69ce9dd570fe910ef12d2af90242a8956becaaaf.png)
与三角形有关的角、多边形及内角和专项复习题一、选择题(共17小题)1.已知,△ABC中,∠A:∠B:∠C=6:3:1,则△ABC是()A.钝角三角形B.直角三角形C.锐角三角形D.形状无法判断2.如图所示,在△ABC中,CD、BE分别是AB、AC边上的高,并且CD、BE交于点P,若∠A=60°,则∠BPC等于()A.90°B.120°C.150°D.160°3.如图:∠ACE是△ABC的外角,BD平分∠ABC,CD平分∠ACE,且BD、CD交于点D.若∠A=70°,则∠D等于()A.30°B.35°C.40°D.50°4.如图,一副具有30°和45°角的直角三角板,按如图所示叠放在一起,则图中∠α的度数是()A.40°B.45°C.65°D.75°5.一副三角尺如图摆放,DE∥AB,CB与AE交于O点,∠D=45°,∠B=30°,则∠COA 的度数是()A.45°B.60°C.75°D.90°6.把一块直尺与一块三角板如图放置,若∠2=134°,则∠1的度数为()A.34°B.44°C.54°D.64°7.如图,在△ABC中,∠B=85°,∠ACD=40°,AB∥CD,则∠ACB的度数为()A.90°B.85°C.60°D.55°8.如图,已知AB∥CD,AC⊥AB,点P是AB上的一点,连结CP,将△ACP沿CP所在直线折叠,点A落在点M处,连结MB,MD.若∠B=∠D,∠CMD=∠PMB+12°,则∠ACP=()A.24°B.24.5°C.25°D.25.5°9.一副三角尺如图摆放,则α的大小为()A.105°B.120°C.135°D.150°10.如图,已知∠A=60°,∠B=40°,∠C=30°,则∠D+∠E等于()A.30°B.40°C.50°D.60°11.如图,在△ABC中,∠A=90°,BE,CD分别平分∠ABC和∠ACB,且相交于F,EG ∥BC,CG⊥EG于点G,则下列结论①∠CEG=2∠DCA;②CA平分∠BCG;③∠ADC∠A;⑤∠DFE=135°,其中正确的结论是()=∠GCD;④∠DFB=12A.①②③B.①③④C.①③④⑤D.①②③④12.如图,直线a∥b,Rt△ABC如图放置,若∠1=28°,∠2=80°,则∠B的度数为()A.62°B.52°C.38°D.28°13.如图,在六边形ABCDEF中,∠F AB和∠ABC的平分线交于点P,若∠C+∠D+∠E+∠F=500°,则∠P的大小是()A.50°B.55°C.60°D.70°14.如图,在正五边形ABCDE中,连接AD,则∠1的度数为()A.30°B.36°C.45°D.72°15.一个多边形的内角和不可能是()A.1800°B.540°C.720°D.810°16.如图,已知∠1+2+∠3+∠4=280°,那么∠5的度数为()A.70°B.80°C.90°D.100°17.若n边形的内角和是五边形的外角和的3倍,则n的值为()A.6B.7C.8D.9二、填空题(共11小题)18.如图,在四边形ABCD中,∠A=110°,∠C=80°.将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=.19.如图,小明从A点出发,前进6m到点B处后向右转20°,再前进6m到点C处后又向右转20°,…,这样一直走下去,他第一次回到出发点A时,一共走了m.20.如图,△ABC中,∠A=30°,BE平分∠ABC,CE平分∠ACD,则∠E=.21.如图,已知点P为△ABC三条内角平分线AD、BE、CF的交点,作DG⊥PC于G,若∠BAC=70°,∠ACB=60°,则∠PDG等于.22.如图,在锐角△ABC中,∠BAC>∠C,BD、BE分别是△ABC的高和角平分线,点F 在CA的延长线上,FH⊥BE交BD于点G,交BC于点H,下列结论:①∠DBE=∠F;(∠BAC﹣∠C);④∠BGH=∠ABD+∠EBH.其中②2∠BEF=∠BAF+∠C;③∠F=12正确的是(填序号).23.将一副三角尺按如图所示的方式叠放,则∠1的度数为.24.如图是由一副三角板拼凑得到的,图中的∠ABC的度数为.25.如图所示,在△ABC中,∠A=70°,内角∠ABC和外角∠ACD的平分线交于点E,则∠E=.26.如图,三角形ABC中,∠A=64°,∠B=90°,∠C=26°.点D是AC边上的定点,点E在BC边上运动,沿DE折叠三角形CDE,点C落在点G处.当三角形DEG的三边与三角形ABC的三边有一组边平行时,∠ADG=.27.如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,∠B=50°,∠E=65°,则①∠1=∠3;②∠CAD+∠2=180°;③如果∠2=40°,则有BC∥AD;④如果∠2=30°,则有AC∥DE,上述结论中正确的是.(填写序号)28.如图,直线a∥直线b,Rt△ABC的直角顶点A落在直线a上,点B落在直线b上,若∠1=18°,∠2=32°,则∠ABC的大小为.三、解答题(共11小题)29.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E,点F为AC延长线上的一点,连接DF.(1)求∠CBE的度数;(2)若∠F=25°,求证:BE∥DF.(3)若BE∥DF,探究∠A、∠F有怎样的数量关系.(直接写答案,不用证明)30.(1)如图1,在△ABC中,∠ACB=90°,∠E=35°,CD是AB边上的高,若△ABC 的外角∠BAG的平分线交射线CD于点F,延长F A和BC相交于点E.求∠F的度数.(2)如图2,AN是△ABC的外角∠BAG的平分线,延长BC和NA相交于点M,点D 在边AB上,且∠ACD=∠B,∠BAC的平分线AE交CD于点F.试猜想∠M与∠CFE 的数量关系,并给予证明.31.如图,在△ABC中,∠C=90°,顶点B在直线PQ上,顶点A在直线MN上,BC平分∠PBA,AC平分∠MAB.(1)求证:PQ∥MN;(2)求∠QBC+∠NAC的度数.32.如图,在△ABC中,CD、CE分别是△ABC的高和角平分线,∠BAC=α,∠B=β(α>β).(1)若α=76°,β=32°,求∠DCE的度数;(2)试用α、β的代数式表示∠DCE的度数.33.如图,在Rt△ABC中,∠ACB=90°,∠A=36°,△ABC的外角∠CBD的平分线BE 交AC的延长线于点E,F为AC延长线上的一点,连接DF.(1)求∠CBE的度数.(2)若∠F=27°,求证:BE∥DF.34.如图,在△ABC中,AE平分∠BAC,∠B=80°,∠C=60°;求∠BAC,∠CEA的度数.35.如图,在△ABC中,∠B=40°,∠C=54°,AD和AE分别是高和角平分线,求∠DAE 的度数.36.阅读下列材料并解答问题:在一个三角形中,如果一个内角的度数是另一个内角度数的3倍,那么这样的三角形我们称为“3倍角三角形”.例如:一个三角形三个内角的度数分别是120°,40°,20°,这个三角形就是一个“3倍角三角形”.反之,若一个三角形是“3倍角三角形”,那么这个三角形的三个内角中一定有一个内角的度数是另一个内角度数的3倍.(1)如图①,已知∠MON=60°,在射线OM上取一点A,过点A作AB⊥OM交ON 于点B,判断△AOB是不是“3倍角三角形”,为什么?(2)在(1)的条件下,以A为端点画射线AC,交线段OB于点C(点C不与点O、点B重合),若△AOC是“3倍角三角形”,求∠ACB的度数;(3)如图②,点D在△ABC的边上,连接DC,作∠ADC的平分线交AC于点E,在DC上取一点F,使得∠EFC+∠BDC=180°,∠DEF=∠B,若△BCD是“3倍角三角形”,直接写出∠B的度数.37.如图.四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,BE、CD 交于G点,求证:(1)∠ABC+∠ADC=180°;(2)BG∥DF.38.如图,四边形ABCD中,AE平分∠BAD,DE平分∠ADC.(1)若∠B+∠C=120°,则∠AED的度数=.(直接写出结果)(2)根据(1)的结论,猜想∠AED与∠B+∠C之间的关系,并证明你的结论.39.求下列图中x的值.。
(完整版)八年级上册数学11.2与三角形有关的角练习题(含答案)
![(完整版)八年级上册数学11.2与三角形有关的角练习题(含答案)](https://img.taocdn.com/s3/m/e8624f3bda38376baf1faeff.png)
11.2与三角形有关的角练习题姓名: _______________ 级:__________________ 号: _________________一、选择题1、在二一中,一-…,则匚上的度数为()A.汀B. C •汕 D.2、如图,已知直线AB// CD / C=115,/ A=25,则/ E=()A. 70 °B. 80 °C. 90 °D. 1003、如图8, AB=BC=CDJ/ A=15 ,贝U/ECD=( )A.30 °B.45°C.60°D.754、如图,在△ ABC中, AC=DODB / ACI=100°,贝U / B等于( )A. 50°B. 40°C. 25°D. 20°5、如图,△ ABC中,一1 「」,点D E分别在AB AC上,则一[—二】的大小为()C、-打6、 7、 A. 110B .C .D .A .B .C . 105°D . 30° 或 75A. B . C . D .10、如图,AD 是Z EAC 的平分线,AD// BC Z B=30° ,则Z C 为(A.B. C.D 120第11题11、如图, 已知△ ABC 的两条高 BE CF 相交于点O, -1—〔「, A. 95o B . 130o C . 140o D . 150o则一I--的度数为( 12、如图,A. 60"7080B120'如图,已知匸丘丿匸二,Z 仁13C o,Z 2=30^,则Z C=如下图所示,已知:/ AEC 的度数为110°,则/ A +Z B +Z C +Z D 的度数为(已知等腰三角形的一个角为75°,则其顶角为(9、如图,已知-上…匚,若一二’,一三一尤’,已知」打与石二相交于点匸,I '「J ,如果—三二,—二二Y ,则二的大小为BBB第12题13、如图,在△ ABC中,/ C= 90o,/ B= 40o, AD是角平分线,则/ ADC等于A. 25oB. 50oC. 65oD. 70o/ C= 54° ,AD 平分/ BAC 交BC于D, DE// AB 交AC于E,第14题A. 20 B . C . D. 2515、如图,在△ ABC中,/ B= 46 则/ ADE的大小是(A.45B.54C.40D.50o第15题第16题第18题16、如图7-7 , C在AB的延长线上,CE丄AF于E,交FB于D, 的若/ F=40°,Z C=20O,则/ FBA度数为().A. B. C. D.第13题14、如图,直线a / b,直角三角形如图放置,/ DCB=90 .若/ 1+Z B=70° ,则/2的度数为()17、适合条件一 -一「一「的三角形ABC>(A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形18、如图1,若/ 1=110°,/ 2=135°,则/ 3 等于A. 55°B. 65°C. 75°D. 85°19、如图,在△ ABC中,/ A=60°,/ ABC=50 , / B、/ C的平分线相交于F,过点F作DE// BC, 交AB于D,交AC于E,那么下列结论正确的是()③/ BDF=130 ; A.①② ④/CFI40 ° ;B •③④ C.①③D.①②③第19题21、如图,/ 1=2,/ 2=25°,/ A=35°20、如图,△ ABC 中,/ BA(=60°,Z ABC / ACB 的平分线交于E , D 是AE 延长线上一点,且/ BD(=120°.下列结论:①/BE(=120°;②DB=DE ③/ DB 匡/ DCE 其中正确结论的个数为( )A. 0、填空题第21题 第22题 第23题22、如下图, / A = 27° , / CBE= 96° , / C = 30° , 则/ ADE 的度数是 度23、如图,/ -1,/ 2,/ 3的大小关系是.C24、如图,/:A=50°,/ ACD=38,/ ABE=32,则/ BFC= .25、如图,已知DABC边BC延长线上一点,DF丄AB于F交AC于E,/ A=35°,Z D=50°,则/ ACM 度数为_________________ .第30题26、 如图,已知△ ABC 中,AD 是BC 边上的高,AE 是/ BAC 勺平分线,若/ B=42°,Z 0=70°, 则/DAW __________ ° . 27、 厶ABC 中,/ A :Z B :Z C=1 : 2 : 3,则厶 ABC 是 ________ 三角形.28、 如图,/ ABC 中,/ A = 40 °,/ B = 72 °,CE 平分/ ACB CDLAB 于 D, DF 丄CE 则/CDF = ________________ 度。
与三角形有关的角试题
![与三角形有关的角试题](https://img.taocdn.com/s3/m/fe79497152d380eb62946d73.png)
21B A C M 与三角形有关的角1.三角形的三边关系:三角形的任意两边之和大于第三边;任意两边之差小于第三边.2、三角形的内角和定理定理:三角形的内角和等于180°.推论:直角三角形的两个锐角互余。
.3.三角形外角的性质 (1)三角形的一个外角等于它不相邻的两个内角之和.(2)三角形的一个角大于与它不相邻的任何一个内角.注意:(1)它不相邻的内角不容忽视;(2)作CM ∥AB 由于B 、C 、D 共线∴∠A=∠1,∠B=∠2.即∠ACD=∠1+∠2=∠A+∠B.那么∠ACD>∠A.∠ACD>∠B 。
例1.如图,已知∠1=20o ,∠2=25o ,∠A=35o ,则∠BDC 的度数为________例2.在△ABC 中,∠A=∠B=∠C ,则此三角形是(??)A .锐角三角形?????B .直角三角形???C .钝角三角形???D .等腰三角形例3、探索发现:.如图,在△ABC 中,∠A=α,△ABC 的内角平分线或外角平分线交于点P ,且∠P=β,试探求下列各图中α与β的关系,并选择一个加以说明.⑴.β=180°-(∠B+∠C)/2=90°+α/2.⑵.∠B/2+∠C+(180°-∠C)/2+β=180°.α=180°-∠B -∠C.算得β=α/2.⑶β=180°-[(180°-∠B)/2+(180°-∠C)/2]=90°-α/2.例4.如图,在△ABC 中,AD ⊥BC 于D ,AE 平分∠BAC(∠C>∠B),试说明∠EAD=(∠C ?∠B).解:(1)∵∠1=∠2,∴∠1=∠BAC ,又∵∠BAC=180°-(∠B+∠C ),∴∠1=[180°-(∠B+∠C )]=90°-(∠B+∠C ),∴∠EDF=∠B+∠1=∠B+90°-(∠B+∠C )=90°+(∠B-∠C ),又∵EF ⊥BC ,∴∠EFD=90°, ∴∠DEF=90°-∠EDF=90°-[90°+(∠B-∠C )]=(∠C-∠B );(2)当点E 在AD 的延长线上时,其余条件都不变,(1)中探索所得的结论仍成立。
初中数学八年级上册与三角形有关的角练习题含答案
![初中数学八年级上册与三角形有关的角练习题含答案](https://img.taocdn.com/s3/m/726961f2af45b307e87197d1.png)
初中数学八年级上册与三角形有关的角练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 给定下列条件,不能判定三角形是直角三角形的是()A.∠A:∠B:∠C=2:3:5B.∠A−∠C=∠BC.∠A=∠B=2∠CD.∠A=12∠B=13∠C2. 在△ABC中,若∠A=60∘,∠B=95∘,则∠C的度数为()A.24∘B.25∘C.30∘D.35∘3. 关于三角形的三个内角,下面说法错误的是()A.必有一内角不少于60∘B.必有一内角不大于60∘C.最少有两个锐角D.最多有两个锐角4. 下列各组数中不能作为直角三角形三边长的是()A.√1,√2,√3B.7,24,25C.6,8,10D.1,2,35. 给出五种图形:①矩形;②菱形;③等腰三角形(腰与底边不相等);④等边三角形;⑤平行四边形(不含矩形,菱形).其中,能用完全重合的含有30∘角的两块三角板拼成的图形是()A.②③B.②③④C.①③④⑤D.①②③④⑤6. 在一个直角三角形中,有一个锐角等于40∘,则另一个锐角的度数是()A.40∘B.50∘C.60∘D.70∘7. 在△ABC中,∠A:∠B:∠C=2:3:5,则△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形8. 如图,在△ABC中,∠ABC,∠ACB的平分线交于点O,D是∠ACB外角与内角∠ABC 平分线交点,E是∠ABC,∠ACB外角平分线交点,若∠BOC=120∘,则∠D=()度.A.15∘B.20∘C.25∘D.30∘9. 如果一个三角形的两个外角之和为270∘,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定10. 如图所示,一块试验田的形状是三角形(设其为△ABC),管理员从BC边上的一点D出发,沿DC⇒CA⇒AB⇒BD的方向走了一圈回到D处,则管理员从出发到回到原处在途中身体()A.转过90∘B.转过180∘C.转过270∘D.转过360∘11. 如图,在△ABC中,∠A=30∘,若∠B=∠C,则∠B的度数是________度.12. 如图,一副三角板叠在一起放置,最小锐角的顶点D恰好放在等腰直角三角板的斜边AB上,BC与DE交于点M.如果∠ADF=100∘,那么∠BMD为________度.13. 在△ABC中,若∠C=90∘,∠B=35∘,则∠A的度数为________.14. 在Rt△ABC中,∠C=90∘,∠A=70∘,则∠B=________.15. 在直角三角形中,已知一个锐角为25∘,则另一个锐角的度数为________.16. 如图△ABC中,∠A:∠B=1:2,DE⊥AB于E,且∠FCD=75∘,则∠D=________.17. 在Rt△ABC中,锐角∠A的平分线与锐角∠B的平分线相交于点D,则∠ADB=________.18. 如图,∠1、∠2是△ABC的外角,已知∠1+∠2=260∘,求∠A的度数是________.19. 如图,已知△ABC的内角∠A=a,分别作内角∠ABC与外角∠ACD的平分线,两条平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…以此类推得到∠A2016,则∠A2016的度数是________.20. 如图,在△ABC中,∠ABC和∠ACB的外角平分线交于D,∠A=50∘,那么∠D=________.21. 如图,在△ABC中,D是BC上一点,∠1=∠2,∠3=∠4,∠BAC=80∘,求∠DAC 的度数.22. 如图,在△ABC中,D,E是边AC,BC上的点,AE和BD交于点F,已知∠CAE= 20∘,∠C=40∘,∠CBD=30∘ .(1)求∠AFB的度数;(2)若∠BAF=2∠ABF,求∠BAF的度数.23. 如图,AC⊥BD,∠1=∠2,∠D=35∘,求∠BAD的度数.24. 如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠ABC=70∘,∠C=30∘,求∠DAE和∠AOB.25. 如图,AD、AE分别为△ABC的高和角平分线,∠B=35∘,∠C=45∘,求∠DAE的度数.26. 如图所示,在△ABC中,∠A=40∘,BD是角平分线,CE⊥AB于E,∠BDC=70∘,BD,CE交于点F,求∠BFC和∠ACB的度数.27. 如图,D是△ABC中BC边延长线上一点,DF⊥AB于F,交AC于E,∠A=40∘,∠D=30∘,求∠ACB的度数.28. 在△ABC中,∠C=90∘,∠B=55∘,点D在边BC上,点E在CA的延长线上,连接DE,∠E=25∘,求∠BFD的度数.29. 如图在直角三角形ABC中,∠ACB=90∘,斜边AB的高为CD,若AC=3,BC=4,AB=5,(1)求S△ABC;(2)求CD.30. 如图,在直角△ABC中,∠C=90∘,BD平分∠ABC交AC于点D,AP平分∠BAC交BD于点P.(1)∠APD的度数为________;(2)若∠BDC=58∘,求∠BAP的度数.31. 如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=69∘,求∠DAC的度数.32. 如图,已知在△ABC中,AB>AC,∠AEF=∠AFE,延长EF于BC的延长线交于点(∠ACB−∠B).G点,求证:∠G=1233. 如图所示,已知在△ABC中,AD⊥BC于D,AE平分∠BAC,若∠B=28∘,∠DAE=16∘,求∠C的度数.34. 当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.(1)已知一个“特征三角形”的“特征角”为100∘,求这个“特征三角形”的最小内角的度数;(2)是否存在“特征角”为120∘的三角形,若不存在,请说明理由.35. 已知:如图,△ABC中,∠A=45∘,E是∠ABC的平分线与∠ACB的外角平分线的交点.求∠E的度数.36. 如图,∠B=60∘,∠BAC=80∘,AD⊥BC,AE平分∠BAC,求∠DAE的度数.37. 已知△ABC中,∠ACD是外角,BE平分∠ABC,CE平分∠ACD,∠BEC=52∘,求∠EAC的度数.38. 如图,点P是△ABC内的一点,连接BP、CP.求证:∠BPC>∠BAC.39. 在△ABC中,∠A=12∠B=13∠C,求△ABC各内角的度数.40. 已知∠ACD=150∘,∠B=120∘,求∠A.参考答案与试题解析初中数学八年级上册与三角形有关的角练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】C【考点】三角形内角和定理【解析】根据三角形的内角和等于180∘求出三角形的最大角,进而得出结论.【解答】×180∘=90∘,解:A,最大角∠C=52+3+5是直角三角形,不符合题意;B,由∠A−∠C=∠B,可得∠B+∠C=∠A,则最大角∠A=180∘÷2=90∘,是直角三角形,不符合题意;x,C,设∠A=∠B=x,则∠C=12x=180∘,解得x=72∘,所以x+x+12则最大角∠A=∠B=72∘,是锐角三角形,符合题意;D,设∠A=x,则∠B=2x,∠C=3x,所以x+2x+3x=180∘,解得x=30∘,则最大角∠C=3×30∘=90∘,是直角三角形,不符合题意.故选C.2.【答案】B【考点】三角形内角和定理【解析】此题暂无解析【解答】解:根据三角形的内角和定理可得:∠C=180∘−∠A−∠B=180∘−60∘−95∘=25∘.故选B.3.【答案】D【考点】三角形内角和定理【解析】本题考查了三角形的内角和定理的应用.【解答】解:根据三角形的内角和等于180∘,一个三角形的三个内角中至少有两个锐角,可以有三个锐角.故选D.4.【答案】A【考点】直角三角形的性质【解析】此题暂无解析【解答】此题暂无解答5.【答案】C【考点】直角三角形的性质【解析】当把完全重合的含有30∘角的两块三角板拼成的图形有三种情况:①当把60度角对的边重合,且两个直角的顶角也重合时,所成的图形是等边三角形;②当把30度角对的边重合,且两个直角的顶角也重合时,所成的图形是等腰三角形;③当斜边重合,且一个三角形的30度角的顶点与另一个三角形60度角的顶点重合时,所成的图形是矩形,矩形也是平行四边形.【解答】解:如图,把完全重合的含有30∘角的两块三角板拼成的图形有四种情况:分别有等边三角形,等腰三角形(腰与底边不相等),矩形,平行四边形.故选C.6.【答案】B【考点】直角三角形的性质【解析】根据直角三角形两锐角互余列式计算即可得解.【解答】解:∵直角三角形中,一个锐角等于40∘,∴另一个锐角的度数=90∘−40∘=50∘.故选:B.7.【答案】A【考点】三角形内角和定理【解析】根据三角形的内角和定理及三个内角的比例关系即可解答.【解答】解:设∠A=2x,∠B=3x,∠C=5x2x+3x+5x=180∘解得:x=18∘∴ ∠A=36∘,∠B=54∘,∠C=90∘∴ ABC为直角三角形,故答案为:A.8.【答案】D【考点】三角形的外角性质三角形内角和定理三角形的角平分线【解析】根据角平分线的定义有∠ABC=2∠OBC,∠ACB=2∠0CB,根据三角形内角和定理得∠A,再根据三角形内角2∠OBC+2∠OCB+∠A=180∘,即有∠OCB+∠OBC=90∘−12∠A,即可得到和定理得到∠OCB+∠OBC+∠BOC=180∘,于是有∠BOC=90∘+12∠BOC的度数,三角形外角的性质有∠FCD=∠D+∠DBC,∠ACF=∠ABC+∠A,则∠A,于是得到∠D,然后根据三角形的2∠D+2∠DBC=∠ABC+∠A,即可得到∠D=12内角和即可得到结论.【解答】解:∵BO平分∠ABC,CO平分∠ACB,∴∠ABC=2∠OBC,∠ACB=2∠OCB,又∵∠ABC+∠ACB+∠A=180∘,∴2∠OCB+2∠OBC+∠A=180∘,∴∠OCB+∠OBC=90∘−1∠A,2又∵∠OCB+∠OBC+∠BOC=180∘,∴90∘−1∠A+∠BOC=180∘,2∴∠BOC=90∘+1∠A,2而∠BOC=120∘,∴∠A=60∘,∵∠DCF=∠D+∠DBC,∠ACF=∠ABC+∠A,BD平分∠ABC,DC平分∠ACF,∴∠ACF=2∠DCF,∠ABC=2∠DBC,∴2∠D+2∠DBC=∠ABC+∠A,∴2∠D=∠A,即∠D=1∠A.2∵∠A=60∘,∴∠D=30∘,故选D.9.【答案】B【考点】三角形的外角性质【解析】先根据邻补角求出∠BAC+∠BCA,再根据三角形内角和定理求出即可.【解答】解:如图:∵∠EAC+∠FCA=270∘,∴∠BAC+∠ACB=180∘−∠EAC+180∘−∠FCA=360∘−(∠EAC+∠FCA)=90∘,∴∠B=180∘−(∠BAC+∠ACB)=90∘,即△ABC是直角三角形.故选B.10.【答案】D【考点】三角形的外角性质【解析】由题意可得,管理员从出发到回到原处正好走过转过的角度是三角形的外角和360∘.【解答】解:管理员正面朝前行走,转过的角的和正好为三角形的外角和360∘.故选D.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】75【考点】三角形内角和定理【解析】根据三角形内角和定理即可求得结论.【解答】解:∵∠A+∠B+∠C=180∘,∵∠A=30∘,∠B=∠C,∴∠B=180∘−∠A=75∘.2故答案为:75.12.【答案】85【考点】三角形内角和定理【解析】先根据∠ADF=100∘求出∠MDB的度数,再根据三角形内角和定理得出∠BMD的度数即可.【解答】解:∵∠ADF=100∘,∠EDF=30∘,∴∠MDB=180∘−∠ADF−∠EDF=180∘−100∘−30∘=50∘,∴∠BMD=180∘−∠B−∠MDB=180∘−45∘−50∘=85∘.故答案为:85.13.【答案】55∘【考点】三角形内角和定理【解析】根据直角三角形的性质解答即可.【解答】解:∵在△ABC中,∠C=90∘,∠B=35∘,∴∠A=180∘−90∘−35∘=55∘.故答案为:55∘.14.【答案】20∘【考点】直角三角形的性质【解析】此题暂无解析【解答】解:根据直角三角形的两锐角互余可得,∵∠C=90∘,∠A=70∘,∴∠B=90∘−∠A=20∘.故答案为:20∘.15.【答案】65∘【考点】直角三角形的性质【解析】直角三角形两个锐角和为90∘,即可得另一个锐角度数.【解答】解:由题意得,在直角三角形中,两个锐角和为90∘,∴另一个锐角的度数为:90∘−25∘=65∘.故答案为:65∘.16.【答案】40∘【考点】直角三角形的性质【解析】先根据∠FCD=60∘及三角形内角与外角的性质及∠A:∠B=1:2可求出∠A的度数,再由DE⊥AB及三角形内角和定理解答可求出∠AFE的度数,再根据三角形内角和定理即可求出答案.【解答】解:∵∠FCD=75∘,∴∠A+∠B=75∘,∵∠A:∠B=1:2,∴∠A=13×75∘=25∘,∵DE⊥AB于E,∴∠AFE=90∘−∠A=90∘−25∘=65∘,∴∠CFD=∠AFE=65∘,∵∠FCD=75∘,∴∠D=180∘−∠CFD−∠FCD=180∘−65∘−75∘=40∘.故答案为:40∘17.【答案】135∘【考点】三角形内角和定理直角三角形的性质【解析】根据三角形内角和定理求出∠CAB+∠CBA,再根据角平分线的定义求出∠DAB+∠DBA,然后利用三角形内角和定理列式进行计算即可得解.【解答】解:在Rt△ABC中,∠CAB+∠CBA=180∘−90∘=90∘,∵锐角∠A的平分线与锐角∠B的平分线相交于点D,∴∠DAB+∠DBA=12(∠CAB+∠CBA)=12×90∘=45∘,在△ABD中,∠ADB=180∘−(∠DAB+∠DBA)=180∘−45∘=135∘.故答案为:135∘.18.【答案】80∘【考点】三角形的外角性质【解析】根据三角形外角性质得出∠A+∠ACB+∠A+∠ABC=260∘,根据三角形内角和定理得出∠A+∠ACB+∠ABC=180∘,即可得出答案.【解答】∵∠1、∠2是△ABC的外角,∠1+∠2=260∘,∴∠A+∠ACB+∠A+∠ABC=260∘,∵∠A+∠ACB+∠ABC=180∘,∴∠A=80∘,19.【答案】α22016【考点】三角形的外角性质三角形内角和定理【解析】根据角平分线的定义可得∠A1BC=12∠ABC,∠A1CD=12∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可求出∠A1的度数,同理求出∠A2,可以发现后一个角等于前一个角的12,根据此规律即可得解.【解答】解:∵A1B是∠ABC的平分线,A1C是∠ACD的平分线,∴∠A1BC=12∠ABC,∠A1CD=12∠ACD,又∵∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,∴12(∠A+∠ABC)=12∠ABC+∠A1,∴∠A1=12∠A,∵∠A=α,∴∠A1=α2;同理可得∠A2=12∠A1=12⋅12α=α22,∴∠A n=α2n,∴∠A2016=α22016.故答案为:α22016 20.【答案】65∘【考点】三角形的外角性质三角形内角和定理三角形的角平分线【解析】先根据外角平分线的性质求出∠DBC 、∠DCB 与∠A 的关系,再由三角形内角和定理解答即可.【解答】解:∵ BD 、CD 是∠ABC 和∠ACB 外角的平分线,∴ ∠CBD =12(∠A +∠ACB),∠BCD =12(∠A +∠ABC),∵ ∠ABC +∠ACB =180∘−∠A ,∠BDC =180∘−∠CBD −∠BCD=180∘−12(∠A +∠ACB +∠A +∠ABC) =180∘−12(2∠A +180∘−∠A) =90∘−12∠A .=65∘.故答案为:65∘.三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 )21.【答案】解:∵ ∠BAC =80∘,∴ ∠2+∠3=100∘. ①∵ ∠1=∠2,∴ ∠4=∠3=∠1+∠2=2∠2. ②把②代入①得:3∠2=100∘,解得∠2=1003∘,∴ ∠DAC =80∘−1003∘=1403∘.【考点】三角形的外角性质三角形内角和定理 【解析】根据三角形的内角和定理和三角形的外角性质即可解决.【解答】解:∵ ∠BAC =80∘,∴ ∠2+∠3=100∘. ①∵ ∠1=∠2,∴ ∠4=∠3=∠1+∠2=2∠2. ②把②代入①得:3∠2=100∘,解得∠2=1003∘,∴ ∠DAC =80∘−1003∘=1403∘.22.【答案】解:(1)∵ ∠AEB =∠C +∠CAE =40∘+20∘=60∘,∴ ∠AFB =∠CBD +∠AEB =30∘+60∘=90∘.(2)由(1)可知,∠AFB =90∘,又∠BAF =2∠ABF ,∴ 3∠ABF =90∘,∴ ∠ABF =30∘,∴ ∠BAF =2∠ABF =60∘ .【考点】三角形的外角性质三角形内角和定理【解析】无无【解答】解:(1)∵ ∠AEB =∠C +∠CAE =40∘+20∘=60∘,∴ ∠AFB =∠CBD +∠AEB =30∘+60∘=90∘.(2)由(1)可知,∠AFB =90∘,又∠BAF =2∠ABF ,∴ 3∠ABF =90∘,∴ ∠ABF =30∘,∴ ∠BAF =2∠ABF =60∘ .23.【答案】解:∵ AC ⊥BD ,∠1=∠2,∴ ∠1=45∘,∠ACB =90∘.∵ ∠D =35∘,∴ ∠CAD =55∘,∴ ∠BAD =∠1+∠CAD =100∘.【考点】三角形内角和定理【解析】利用三角形的内角和定理和已知条件易求∠,∠CAD 的度数,进而可求出∠BAD 的度数.【解答】解:∵ AC ⊥BD ,∠1=∠2,∴ ∠1=45∘,∠ACB =90∘.∵ ∠D =35∘,∴ ∠CAD =55∘,∴ ∠BAD =∠1+∠CAD =100∘.24.【答案】解:(1)∵ ∠ABC =70∘,∠C =30∘,∴∠BAC=180∘−∠ABC−∠C=80∘,∵AE、BF分别是∠BAC、∠ABC的平分线,∴∠CAE=12∠BAC=40∘,∠CBF=12∠ABC=35∘,∴∠AED=∠CAE+∠C=40∘+30∘=70∘,∵AD⊥BC,∴∠DAE=90∘−∠AED=20∘;(2)∵∠AOB=∠AED+∠CBF,∴∠AOB=70∘+35∘=105∘.【考点】三角形内角和定理三角形的外角性质【解析】(1)先根据三角形内角和定理计算出∠BAC=180∘−∠ABC−∠C=80∘,再根据角平分线的性质得到∠CAE=12∠BAC=40∘,利用三角形外角性质得∠AED=∠CAE+∠C= 70∘,进一步求得∠DAE;(2)利用三角形外角的性质得出∠AOB=∠AED+∠CBF进行计算.【解答】解:(1)∵∠ABC=70∘,∠C=30∘,∴∠BAC=180∘−∠ABC−∠C=80∘,∵AE、BF分别是∠BAC、∠ABC的平分线,∴∠CAE=12∠BAC=40∘,∠CBF=12∠ABC=35∘,∴∠AED=∠CAE+∠C=40∘+30∘=70∘,∵AD⊥BC,∴∠DAE=90∘−∠AED=20∘;(2)∵∠AOB=∠AED+∠CBF,∴∠AOB=70∘+35∘=105∘.25.【答案】解:在△ABC中,∵AE平分∠BAC,∴∠CAE=12∠BAC,∵∠B=35∘,∠C=45∘,∴∠BAC=100∘,∠DAC=45∘,∴∠CAE=50∘,∴∠DAE=∠CAE−∠DAC=5∘.【考点】三角形内角和定理【解析】根据三角形内角和定理求得∠BAC的度数,则依据角平分线的定义求得角∠EAC,然后在直角△ACD中,求得∠DAC的度数,则∠DAE=∠CAE−∠DAC即可求解.【解答】解:在△ABC中,∵AE平分∠BAC,∴∠CAE=12∠BAC,∵∠B=35∘,∠C=45∘,∴∠BAC=100∘,∠DAC=45∘,∴∠CAE=50∘,∴∠DAE=∠CAE−∠DAC=5∘.26.【答案】解:∵∠A=40∘,∠BDC=70∘,∴∠ABD=∠BDC−∠A=30∘,∵BD是角平分线,∴∠ABC=60∘,∴∠ACB=180∘−∠A−∠ABC=80∘,∵CE⊥AB于E,∠ABD=30∘,∴∠BFC=∠ABD+∠BEF=120∘.【考点】三角形内角和定理三角形的外角性质【解析】根据三角形外角的性质得到∠ABD=∠BDC−∠A.利用角平分线的定义得到∠ABC,利用三角形的内角和得出∠ACB;根据三角形外角的性质得到∠BFC=∠ABD+∠BEF.【解答】解:∵∠A=40∘,∠BDC=70∘,∴∠ABD=∠BDC−∠A=30∘,∵BD是角平分线,∴∠ABC=60∘,∴∠ACB=180∘−∠A−∠ABC=80∘,∵CE⊥AB于E,∠ABD=30∘,∴∠BFC=∠ABD+∠BEF=120∘.27.【答案】解:在△DFB中,∵DF⊥AB,∴∠DFB=90∘,∵∠D=30∘,∠DFB+∠D+∠B=180∘,∴∠B=60∘.在△ABC中,∠A=40∘,∠B=60∘,∴∠ACB=180∘−∠A−∠B=80∘.所以∠ACB的度数是80度.【考点】三角形内角和定理【解析】在直角三角形DFB中,根据三角形内角和定理,求得∠B的度数;再在△ABC中求∠ACB的度数即可.【解答】解:在△DFB中,∵DF⊥AB,∴∠DFB=90∘,∵∠D=30∘,∠DFB+∠D+∠B=180∘,∴∠B=60∘.在△ABC中,∠A=40∘,∠B=60∘,∴∠ACB=180∘−∠A−∠B=80∘.所以∠ACB的度数是80度.28.【答案】解:∵∠C=90∘,∠E=25∘,∴∠EDC=65∘,∴∠BFD=∠EDC−∠B=10∘.【考点】三角形的外角性质直角三角形的性质【解析】根据三角形内角和定理求出∠EDC的度数,根据三角形的外角的性质计算即可.【解答】解:∵∠C=90∘,∠E=25∘,∴∠EDC=65∘,∴∠BFD=∠EDC−∠B=10∘.29.【答案】解:(1)∵直角三角形ABC中,∠ACB=90∘,斜边AB的高为CD,AC=3,BC=4,∴S△ABC=12AC⋅BC=12×3×4=6;(2)∵在直角三角形ABC中,∠ACB=90∘,斜边AB的高为CD,AB=5,∴S△ABC=12AB⋅CD=12×5CD=6CD=125.【考点】直角三角形的性质【解析】根据已知条件,利用直角三角形的面积公式解答.【解答】解:(1)∵直角三角形ABC中,∠ACB=90∘,斜边AB的高为CD,AC=3,BC=4,∴S△ABC=12AC⋅BC=12×3×4=6;(2)∵在直角三角形ABC中,∠ACB=90∘,斜边AB的高为CD,AB=5,∴S△ABC=12AB⋅CD=12×5CD=6CD=125.30.45∘.(2)∵∠BDC=58∘,∴∠DBC=90∘−∠BDC=32∘,∵BD平分∠ABC,∴∠ABD=∠DBC=32∘,∴∠BAP=∠APD−∠ABD=45∘−32∘=13∘.【考点】直角三角形的性质【解析】(1)先利用三角形内角和定理,得出∠ABC+∠BAC=90∘,再由角平分线的定义得到∠BAP+∠ABP=45∘,然后根据三角形外角的性质得出∠APD=∠BAP+∠ABP,即可求解;(2)先利用三角形内角和定理的推论,得出∠DBC=32∘,再由角平分线的定义得到∠ABD=∠DBC=32∘,然后根据三角形外角的性质得出∠BAP=∠APD−∠ABD,即可求解.【解答】解:(1)∵∠C=90∘,∴∠ABC+∠BAC=90∘,∴12(∠BAC+∠ABC)=45∘.∵BD平分∠ABC,AP平分∠BAC,∴∠BAP+∠ABP=12∠BAC+12∠ABC=12(∠BAC+∠ABC)=45∘.∴∠APD=∠BAP+∠ABP=45∘;(2)∵∠BDC=58∘,∴∠DBC=90∘−∠BDC=32∘,∵BD平分∠ABC,∴∠ABD=∠DBC=32∘,∴∠BAP=∠APD−∠ABD=45∘−32∘=13∘.31.【答案】解:∵∠1=∠2,∠3=∠4,又∠3=∠1+∠2,∴∠3=∠4=∠1+∠2=2∠1.在△ADC中,∠DAC+∠3+∠4=180∘,∴∠DAC+4∠1=180∘.∵∠BAC=∠1+∠DAC=69∘,∴∠1+180∘−4∠1=69∘,解得∠1=37∘,∴∠DAC=69∘−37∘=32∘.【考点】三角形内角和定理三角形的外角性质无【解答】解:∵∠1=∠2,∠3=∠4,又∠3=∠1+∠2,∴∠3=∠4=∠1+∠2=2∠1.在△ADC中,∠DAC+∠3+∠4=180∘,∴∠DAC+4∠1=180∘.∵∠BAC=∠1+∠DAC=69∘,∴∠1+180∘−4∠1=69∘,解得∠1=37∘,∴∠DAC=69∘−37∘=32∘.32.【答案】证明:由三角形的外角性质得,∠AEF=∠B+∠G,∠CFG=∠ACB−∠G,∵∠AFE=∠CFG,∠AEF=∠AFE,∴∠B+∠G=∠ACB−∠G,∴∠G=1(∠ACB−∠B).2【考点】三角形的外角性质【解析】根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠AEF、∠CFG,根据对顶角相等可得∠AFE=∠CFG,然后列出等式整理即可得证.【解答】证明:由三角形的外角性质得,∠AEF=∠B+∠G,∠CFG=∠ACB−∠G,∵∠AFE=∠CFG,∠AEF=∠AFE,∴∠B+∠G=∠ACB−∠G,∴∠G=1(∠ACB−∠B).233.【答案】解:∵AD⊥BC,∴∠B+∠BAD=90∘,∴∠BAD=90∘−∠B=90∘−28∘=62∘,∴∠BAE=∠BAD−∠EAD=62∘−16∘=46∘,∵AE平分∠BAC,∴∠BAC=2∠BAE=2×46∘=92∘,∴∠C=180∘−∠B−∠BAC=180∘−28∘−92∘=60∘.【考点】三角形内角和定理【解析】在Rt△ABD中可求得∠BAD,则可求得∠BAE,根据角平分线的定义可求得∠BAC,在△ABC中由三角形内角和定理可求得∠C.【解答】解:∵AD⊥BC,∴∠B+∠BAD=90∘,∴∠BAD=90∘−∠B=90∘−28∘=62∘,∴∠BAE=∠BAD−∠EAD=62∘−16∘=46∘,∵AE平分∠BAC,∴∠BAC=2∠BAE=2×46∘=92∘,∴∠C=180∘−∠B−∠BAC=180∘−28∘−92∘=60∘.34.【答案】解:(1)设三角形的三个内角为α,β,γ,∵α=2β,且α+β+γ=180∘,∴当α=100∘时,β=50∘,则γ=30∘,∴这个“特征三角形”的最小内角的度数30∘.(2)不存在.设三角形的三个内角为α,β,γ,∵α=2β,且α+β+γ=180∘,∴当α=120∘时,β=60∘,则γ=0∘,此时不能构成三角形,∴不存在“特征角”为120∘的三角形.【考点】三角形内角和定理【解析】(1)设三角形的三个内角为α、β、γ,根据特征角的定义可得α=2β,然后利用三角形的内角和定理求出γ,即可得解;(2)根据特征角的定义和三角形的内角和定理分别求出α、β、γ,然后判断即可.【解答】解:(1)设三角形的三个内角为α,β,γ,∵α=2β,且α+β+γ=180∘,∴当α=100∘时,β=50∘,则γ=30∘,∴这个“特征三角形”的最小内角的度数30∘.(2)不存在.设三角形的三个内角为α,β,γ,∵α=2β,且α+β+γ=180∘,∴当α=120∘时,β=60∘,则γ=0∘,此时不能构成三角形,∴不存在“特征角”为120∘的三角形.35.【答案】解:∵EB是∠ABC的平分线,EC是∠ACB的外角平分线,∴∠EBC=12∠ABC,∠ECD=12∠ACD,∴∠E=∠ECD−∠EBC=12×(∠ACD−∠ABC)=12∠A=22.5∘.【考点】三角形的外角性质【解析】根据角平分线的定义得到∠EBC=12∠ABC,∠ECD=12∠ACD,根据三角形的外角的性质计算即可.【解答】解:∵EB是∠ABC的平分线,EC是∠ACB的外角平分线,∴∠EBC=12∠ABC,∠ECD=12∠ACD,∴∠E=∠ECD−∠EBC=12×(∠ACD−∠ABC)=12∠A=22.5∘.36.【答案】解:∵AE平分∠BAC,∴∠BAE=12∠BAC=12×80∘=40∘,∵AD⊥BC,∴∠ADE=90∘,∴∠AEC=∠ADE+∠DAE=∠B+∠BAE,即90∘+∠DAE=60∘+40∘,解得∠DAE=10∘.【考点】三角形的外角性质【解析】根据角平分线的定义可得∠BAE=12∠BAC,根据垂直的定义可得∠ADE=90∘,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式表示出∠AEC即可得解.【解答】解:∵AE平分∠BAC,∴∠BAE=12∠BAC=12×80∘=40∘,∵AD⊥BC,∴∠ADE=90∘,∴∠AEC=∠ADE+∠DAE=∠B+∠BAE,即90∘+∠DAE=60∘+40∘,解得∠DAE=10∘.37.【答案】解:过点E作EF⊥BD于点F,作EG⊥AC于点G,作EH⊥BA于点H,∵△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,∴EH=EF,EG=EF,∴EH=EG,∴AE是∠CAH的平分线,∵∠BEC=52∘,∴∠BAC=2∠BEC,∴∠BAC=104∘,∴∠CAH=76∘,∵BE平分∠ABC,CE平分∠ACD,∴∠ACD=2∠ECD,∠ABC=2∠EBC,∵∠ECD=∠BEC+∠EBC,∠ACD=∠ABC+∠BAC,∴∠BEC=12∠BAC=52∘,∠EAC=12∠CAH=38∘.【考点】三角形的外角性质【解析】过点E作EF⊥BD于点F,作EG⊥AC于点G,作EH⊥BA于点H,求出∠CAH的度数,求出∠BAC,根据三角形的外角性质求出∠BAC=2∠BEC,即可求出答案.【解答】解:过点E作EF⊥BD于点F,作EG⊥AC于点G,作EH⊥BA于点H,∵△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,∴EH=EF,EG=EF,∴EH=EG,∴AE是∠CAH的平分线,∵∠BEC=52∘,∴∠BAC=2∠BEC,∴∠BAC=104∘,∴∠CAH=76∘,∵BE平分∠ABC,CE平分∠ACD,∴∠ACD=2∠ECD,∠ABC=2∠EBC,∵∠ECD=∠BEC+∠EBC,∠ACD=∠ABC+∠BAC,∴∠BEC=12∠BAC=52∘,∠EAC=12∠CAH=38∘.38.【答案】证明:延长BP交AC于点D,∵∠BPC是△DPC的外角,∴∠BPC>∠CDP,∵∠CDP是△ABD的外角,∴∠CDP>∠BAC,∴∠BPC>∠BAC.【考点】三角形的外角性质【解析】延长BP交AC于点D,根据∠BPC是△DPC的外角可知∠BPC>∠CDP,由∠CDP是△ABD的外角,可知∠CDP>∠BAC,故可得出结论.【解答】证明:延长BP交AC于点D,∵∠BPC是△DPC的外角,∴∠BPC>∠CDP,∵∠CDP是△ABD的外角,∴∠CDP>∠BAC,∴∠BPC>∠BAC.39.【答案】解:∵△ABC中,∠A=12∠B=13∠C,∴设∠A=x,则∠B=2x,∠C=3x,∵∠A+∠B+∠C=180∘,∴x+2x+3x=180∘,解得x=30∘,∴∠A=30∘,∠B=60∘,∠C=90∘.【考点】三角形内角和定理【解析】设∠A=x,则∠B=2x,∠C=3x,再根据三角形内角和定理求出x的值,进而可得出结论.【解答】解:∵△ABC中,∠A=12∠B=13∠C,∴设∠A=x,则∠B=2x,∠C=3x,∵∠A+∠B+∠C=180∘,∴x+2x+3x=180∘,解得x=30∘,∴∠A=30∘,∠B=60∘,∠C=90∘.40.【答案】解:∵∠ACD=∠A+∠B,∠ACD=150∘,∠B=120∘,∴∠A=∠ACD−∠B=30∘.【考点】三角形的外角性质【解析】据三角形外角性质得出∠ACD=∠A+∠B,代入求出即可.【解答】解:∵∠ACD=∠A+∠B,∠ACD=150∘,∠B=120∘,∴∠A=∠ACD−∠B=30∘.。
省优《与三角形有关的角》自我小测
![省优《与三角形有关的角》自我小测](https://img.taocdn.com/s3/m/605b93b93c1ec5da51e27044.png)
11.2 与三角形有关的角根底稳固1.在△ABC 中,∠B =40°,∠C =80°,那么∠A 的度数为( )A .30° B.40°C .50° D.60°2.在三角形的三个内角中:①最少有两个锐角;②最多有一个直角;③最多有一个钝角.上述说法正确的有( )A .0个B .1个C .2个D .3个3.如以下图,AB ⊥BD ,AC ⊥CD ,∠A =45°,那么∠D 的度数为( )A .45° B.55° C.65° D .35°4.适合条件12A B C ∠=∠=∠的三角形是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定 5.如图,∠1是△ABC 的一个外角,直线DE ∥BC ,分别交AB ,AC 于点D ,E ,∠1=120°,那么∠2的度数是______.6.如图,∠1=100°,∠2=140°,那么∠3=__________.7.在△ABC 中,∠A =2∠B =75°,那么∠C =__________.能力提升8.如图,在Rt △ADB 中,∠D =90°,C 为AD 上一点,那么x 可能是( )A.10° B.20° C.30° D.40°9.如图,AB∥CD,那么( )A.∠1=∠2+∠3B.∠1=2∠2+∠3C.∠1=2∠2-∠3D.∠1=180°-∠2-∠310.把一副三角板按如以下图的方式放置,那么两条斜边所形成的钝角α=__________.11.BD,CE是△ABC的高,直线BD,CE相交所成的角中有一个角为50°,那么∠BAC=__________.12.在如以下图的五角星中,求∠A+∠B+∠C+∠D+∠E的和.参考答案1.D 点拨:由三角形内角和定理,得∠A=180°-∠B-∠C=180°-40°-80°=60°. 2.D 点拨:三角形三个内角的和为180°,所以三个角中最多有一个直角或钝角,因此也至少有两个锐角,所以三种说法都正确.3.A 点拨:由题图和得∠A+∠B=∠D+∠C,∠B=∠C=90°,所以∠D=∠A=45°. 4.B 点拨:设∠A=∠B=x,那么∠C=2x,根据三角形内角和定理可得:x+x+2x=180°,解得x=45°,所以∠C=2x=90°,故三角形为直角三角形.5.30°点拨:因为∠1+∠ACB=180°,∠1=120°,所以∠ACB=60°.又因为DE∥BC,所以∠AED=∠ACB=60°.在△ADE中,∠A+∠2+∠AED=180°,∠A=90°,所以∠2=180°-90°-60°=30°.6.60°点拨:∠4=180°-∠1=180°-100°=80°,∠5=180°-∠2=180°-140°=40°.由三角形内角和定理,得∠3=180°-∠4-∠5=180°-80°-40°=60°.7.67.5°点拨:由∠A=2∠B=75°可知∠A=75°,∠B=37.5°,所以∠C=180°-75°-37.5°=67.5°.8.B 点拨:因为∠ACB是△BDC的一个外角,所以6x应该大于90°且小于180°.因只有20°在此范围内,所以x可能是20°,应选B.9.A 点拨:因为AB∥CD,所以∠3=∠ABD.因为∠1=∠2+∠ABD,所以∠1=∠2+∠3.应选A.10.165°点拨:如以下图,∠α=∠A+∠ADE,∠ADE=∠B+∠E,所以∠α=∠A+∠B+∠E=45°+90°+30°=165°.11.50°或130°点拨:有两种可能,一种是锐角三角形,如图(1),此时相交的角中∠EFB =50°,根据三角形内角和及高的定义,在△BEF中,∠ABF=180°-90°-50°=40°,在△ABD中,∠BAC=180°-90°-40°=50°;另一种是钝角三角形,如图(2)所示,此时∠CFB=50°,根据三角形内角和及高的定义,在△BEF中,∠1=180°-90°-50°=40°.因为∠BAC是△ADB的一个外角,所以∠BAC=∠BDC+∠1=90°+40°=130°.12.解:如以下图,因为∠1是△BDF的一个外角,所以∠1=∠B+∠D.同理:∠2=∠C+∠E.在△AGF中,因为∠A+∠1+∠2=180°,所以∠A+∠B+∠C+∠D+∠E=180°.[教学反思]学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。
八年级数学上册与三角形有关的角同步练习含解析
![八年级数学上册与三角形有关的角同步练习含解析](https://img.taocdn.com/s3/m/33f4f51b590216fc700abb68a98271fe910eafc6.png)
与三角形有关的角一、单选题(共10小题)1.将一副直角三角板按如图所示的位置摆放,使得它们的直角边互相垂直,则1∠的度数是()A.95︒B.100︒C.105︒D.110︒【答案】C【解析】根据题意求出2∠、4∠,根据对顶角的性质、三角形的外角性质计算即可.【详解】由题意得,2454903060,-,∠=︒∠=︒︒=︒3245∴∠=∠=︒,由三角形的外角性质可知,134105∠=∠+∠=︒,故选C.【点睛】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.2.一把直尺和一块三角板ABC(含30、60︒角)如图所示摆放,直尺一边与三角板的两直角边分别交于点D和点E,另一边与三角板的两直角边分别交于点F 和点A ,且50CED ∠=︒,那么BFA ∠的大小为( )A .145︒B .140︒C .135︒D .130︒【答案】B 【解析】先利用三角形外角性质得到∠FDE=∠C+∠CED=140°,然后根据平行线的性质得到∠BFA 的度数.【详解】9050140FDE C CED ∠=∠+∠=︒+︒=︒,∵DE AF ,∴140BFA FDE ∠=∠=︒.故选:B .【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等. 3.如图,AB CD ∥,75B ︒∠=,27E ︒∠=,则D ∠的度数为( )A .45︒B .48︒C .50︒D .58︒【答案】B【解析】根据平行线的性质解答即可.【详解】解:AB CD ∥, 1B ∴∠=∠,1D E ∠=∠+∠,752748D B E ︒︒︒∴∠=∠-∠=-=,故选:B .【点睛】本题考查平行线的性质,关键是根据平行线的性质解答.4.(2019·哈尔滨市萧红中学初一期末)如图,D 是AB 上一点,E 是AC 上一点,BE ,CD 相交于点F,62A ∠=︒,35ACD ∠=︒,20ABE ∠=︒,则BFC ∠的度数是( ).A .117°B .120°C .132°D .107°【答案】A 【解析】根据题意得∠BDC=97∘,再证明∠EFC=∠BFD.再根据外角和定理,即可计算出∠BFC 的度数.【详解】在△ACD 中,∵∠A=62°,∠ACD=35°∴∠BDC=∠A+∠ACD=62°+35°=97°; 在△BDF 中,∵∠BDC+∠ABE+∠BFD=180°,∠ABE=20°,∴∠BFD=180°−97°−20°=63°,∴∠EFC=∠BFD=63°(对顶角相等)。
11.2 《与三角形有关的角》测试题练习题常考题试卷及答案
![11.2 《与三角形有关的角》测试题练习题常考题试卷及答案](https://img.taocdn.com/s3/m/53ab70380975f46526d3e116.png)
11.2 与三角形有关的角一、单选题(共18题;共36分)1.将两个含30º和45º的直角三角板如图放置,则∠a的度数是().A. 10°B. 15°C. 20°D. 25°2.如图,AB∥CD,∠A=70°,∠C=40°,则∠E等于()A. 30°B. 40°C. 60°D. 70°3.如图,∠ACD是△ ABC的一个外角,CE平分∠ACD,F为CA延长线上的一点,FG // CE,交AB于点G,若∠1=70°,∠2=36°,则∠3=()A. 36°B. 40°C. 34°D. 70°4.如图,一把直尺的边缘AB 经过一块三角板 DCB 的直角顶点B,交斜边CD 于点A,直尺的边缘EF 分别交CD、BD 于点E、F,若∠D=60°,∠ABC=20°,则∠1 的度数为()A. 25°B. 40°C. 50°D. 80°5.如图,AB∥CD,BC平分∠ABD,∠1=50°,则∠2的度数是()A. 50°B. 60°C. 70°D. 80°6.若等腰三角形的一个角为40∘,则该等腰三角形的顶角为()A. 40∘B. 70∘C. 100∘D. 40∘或100∘7.如图,在△ABC中,D是BC延长线上一点,∠B=50°,∠ACD= 110°,则∠A=().A. 50∘B. 60∘C. 70∘D. 80∘8.如图所示,AB∥CD,∠E=37°,∠C=20°,则∠EAB的度数为()A. 57°B. 60°C. 63°D. 123°9.将一副三角板(∠A=30°,∠E=45°)按如图所示方式摆放,使得BA//EF,则∠AOF等于()A.75°B.90°C.105°D.115°10.如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为()A. 120°B. 180°C. 240°D. 300°11.如图,在ΔABC中,AD⊥BC,AE平分∠BAC,若∠BAE=30°,∠CAD=20°,则∠B的度数为()A. 30°B. 40°C. 50°D. 60°12.如图所示,被纸板遮住的三角形是()A.直角三角形B. 锐角三角形C. 钝角三角形D. 以上三种情况都有可能13.如图,△ABC中,∠ABC=∠ACB,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC等于()A. 110°B. 120°C. 130°D. 140°14.在△ABC中,∠C=90°,∠B=50°,则∠A=()A. 60°B. 30°C. 50°D. 40°15.如图,在△ABC中,∠ABC=50°,AD,CD分别平分∠BAC,∠ACB,则∠ADC等于()A.125°B.105°C.115°D.100°16.如图,∠ABC与∠ACB的角平分线BO,CO相交于点O,∠A=100°,则∠BOC=A. 60°B. 100°C. 130°D. 140°17.一个三角形的两个内角分别为55°和65°,这个三角形的外角不可能是()A. 115°B. 120°C. 125°D. 130°18.三角形中,若一个角等于其他两个角的差,则这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰三角形二、填空题(共12题;共13分)19.如图,若△OAD≌△OBC,且∠O=75o,∠C=10o,则∠OAD=________°.20.如图,△ABC与△A′B′C′关于直线l对称,且∠A=102°,∠C′=25°,则∠B的度数为________21.如图,D是AB上一点,E是AC上一点,BE、CD相交于点F,∠A=62°,∠ACD=35°,∠ABE=20°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∵ 1 DEC D (三角形的一个外角等于和它不相邻的两个内角的和)
∴ 1 DEC D 50 43 93
(4)解: 3 4 B BAC . 1 2 B ACB (三角形的一个外角等于
和它不相邻的两个内角的和)
∵ 3 4 1 2 (已知) ∴ 2 3 1 ( B BAC B ACB )
2 又∵ BAC ACB 90 (直角三角形两个锐角互余) ∴ 2 3 1 (90 90 90 ) 135
(5)如图,已知 A 27 , CBE 96 , C 30 ,求 ADE 的大小 .
(6)如图,已知 FD BC 于 D,DE AB 于 E. AFD 155 , B 的大小 .
C .求 EDF
(7)如图,已知 AB // CD , 1 F , 2 E ,求 EOF 的度数 .
(8)如图, ABC 的一个内角平分线与一个外角平分线交于点 B 70 ,求 D 的度数 .
解答题
(1)如图,已知 DE // BC , C 60 , ADE 70 ,求 A , B 的度数 .
(2)如图,已知 AD 是 ABC 的角平分线, B 各内角的度数 .
BAD , ADC 80 ,求 ABCห้องสมุดไป่ตู้
(3)如图,已知 DF AB , A 40 , D 43 .求 1的大小 .
(4)如图,已知 ABC 中, B 90 , 1 2 , 3 4 ,求 D 的大小 .
2 ∵ D 2 3 180 (三角形内角和定理)
∴ D 180 ( 2 3) 180 135 45
(5)解: DEC CBE C 180 (三角形内角和定理) ∴ DEC A ADE (三角形的一个外角等于和它不相邻的两个内角的和) ∴ ADE DEC A 54 27 27 (6)解: AFD FDC C (三角形的一个外角等于和它不相邻的两个内角的
∴ ABE DCF 180
ABE 1 F
D C F 2 E (三角形的一个外角等于和它不相邻的两个
内角的和)
又∵ 1 F 2 E (已知)
∴ ABE 2 F D C F 2 E
∴ ABE DCF 2( F E) 180
∴F ∵F
E 90 E EOF 180 (三角形内角和定理)
∴ EOF 180 ( F E) 180 90 90
D, CAB 48 ,
参考答案:
(1)解: DE // BC (已知)
∴ ADE B 70 (两直线平行,同位角相等)
又∵ A B C 180 (三角形内角和定理)
A 180 B C 180 60 70 50
(2)解:∵ B BAD (已知)
ADC ∴B
B BAD 80 (三角形的一个外角等于和它不相邻的两个内的和) BAD 40
AD 为 ABC 的角平分线 .
∴ BAC 2 BAD 2 45 80
B BAC C 180 (三角形内角和定理)
∴ C 180 B BAC 180 40 80 60
(3)解: DF AB (已知)
∴ A AEF 90 (直角三角形两个锐角互余)
∴ AEF 90 A 90 40 50
∴ DEC AEF 50 (对顶角相等)
(8)解: CAB B ACB 180 (三角形内角和定理)
∴ ACB 180 CAB B 180 48 70 62
ACD 1 ACB 1 62 31
2
2
2 DAB B ACB (三角形一个外角等于和它不相邻的两个内角的和)
∴ DAB 1 (70 62 ) 66 2
D DAB BAC ACD 180 (三角形内角和定理)
∴ D 180 DAB BAC ACD 180 66 48 35
和)
其中, AFD 155 , FDC 90 (已知)
∴ C 65 ∴ B C 65
B EDF 90 (直角三角形两个锐角互余)
EDB EDF 90
∴ EDF B 65
(7)解: AB // CD (已知)
∴ ABE DCE , DCF ABF (两直线平行,同位角相等)
DCE ABF 180 (两直线平行,同旁内角互补)