六年级奥数工程问题教师版

合集下载

六年级 工程问题(综合)奥数 教案

六年级 工程问题(综合)奥数 教案

工程问题(综合)知识梳理教学重、难点作业完成情况典题探究例1. 甲、乙、丙三人合修一堵围墙,甲、乙合修6天完成了,乙、丙合修2天完成余下工程的,剩下的再由甲、乙、丙三人合修5天完成,现领工资共180元,按工作量分配,甲、乙、丙应各领多少元?例2. 一项工程,甲单独完成要30天,乙单独完成要45天,丙单独完成要90天。

现由甲、乙、丙三个合作完成此工程。

在工作过程中甲休息了2天,乙休息了3天,丙没有休息,最后把这项工程完成了。

问这项工程前后一共用了多少天?例3. 一项工程,乙队先单独做4天,继而甲、丙两队合做6天,剩下的工程甲队又独做9天才全部完成。

已知乙队完成的是甲队完成的,丙队完成的是乙队完成的2倍。

甲、乙、丙三队独做,各需要多少天完成?例4. 一个水池装了一根进水管和3根粗细相同的出水管。

单开一根进水管20分钟可将水池注满,单开一根出水管45分钟可将水池的水放完。

现在水池中有池水,4根水管一起打开,多少分钟后水池的水还剩下?例5. 2个蟹将和4个虾兵能打扫龙宫的,8个蟹将和10虾兵在同样的时间里就能打扫完全部龙宫,如果单让蟹将去打扫与单让虾兵去打扫进行比较,那么要打扫完全部龙宫,虾兵比蟹将要多几个?例6. 一批工人到甲、乙两上工地进行清理工作,甲工地的工作量是乙工地工作量的倍。

上午去甲工地人数是去乙工地人数的3倍,其他工人到乙工地,到傍晚时,甲工地的工作已做完,乙工地的工作还需4名工人再做一天。

那么这批工人有多少人?例7. 一个空水池有甲、乙两根进水管和一根排水管,单开甲管需5分钟注满水池,单开乙管需10分钟注满水池,满池水如果单开排水管需要6分钟流尽。

某次池中无水,打开甲管若干分钟后,发现排水管未关上,随即关上排水管,同时打开乙管。

又过了同样时间,水池的注了水。

如果继续注满水池,前后一共花了多少时间?例8. 一件工作,甲做了5小时以后由乙来做,再做3小时可以完成。

乙做9小时后由甲来做,也是再做3小时可以完成,那么甲做1小时后由乙来做,再做多少小时可以完成?演练方阵A档(巩固专练)1. 一项工程,甲、乙两队合作20天完成,乙丙两队合作60天完成,丙丁两队合作30完成,甲丁合作天完成?2. 甲乙两队合作一项工程,计划在24天内完成.如果甲队做6天,乙队做4天,只能做完全工程的20%,两队单独做完全工程各需要天.3. 一条公路,甲队独修24天完成,乙队独修30天完成.甲乙两队合修若干天后,乙队停工休息,甲队继续修了6天完成,乙队修了天.4. 某市举办菊展,新建一个喷水池.单开甲管1小时可将喷水池注满,单开乙管40分钟可将水注满,两管同时齐开分钟后,共注水吨.喷水池能装水吨.5.一项工作,两个师傅和三个徒弟合作需天完成,如果三个师傅2个徒弟合作需要天完成,如果一名师傅单独做需天完成.6.加工一批零件,甲独做需3天完成,乙独做需4天完成,两人同时加工,完成任务时,甲比乙多做24个,这批零件共有个.7.一项建筑工程,由甲建筑队单独承建要一年半,乙建筑队单独承建要一年零三个月,现在两队合作半年,剩下的由乙队继续完成还要个月.(假设每月实际工作天数一样)8.甲、乙、丙三人合修一围墙.甲、乙合修6天修好围墙的,乙、丙合修2天修好余下的,剩下的三人又合修了5天才完成.共得工资180元,按各人所完成的工作量的多少来合理分配,每人应得元.9.原计划用24个工人挖一定数量的土方,按计划工作5天后,因为调走6人,于是剩下的工人每天比原定工作量多挖1方土才能如期完成任务,原计划每人每天挖土方.10.一个水池,底部安有一个常开的排水管,上部安有若干个同样粗细的进水管,当打开4个进水管时,需要5小时才能注满水池,当打开2个进水管时,需要15小时才能注满水池;现在需要在2小时内将水池注满,那么至少要打开个进水管.B档(提升精练)1.抄一份书稿,甲每天的工作效率等于乙、丙二人每天的工作效率的和;丙每天的工作效率相当于甲、乙二人每天工作效率之和的;如果三人合抄只需8天就完成了,那么乙一人单独抄需多少天才能完成?2.一项工程,甲独做需10天,乙独做需15天,如果两人合作,甲的工作效率就要降低,只能完成原来的,乙只能完成原来的,现在要8天完成这项工程,两人合作天数尽可能少,那么两人要合作多少天?3.一空水池有甲、乙两根进水管和一根排水管.单开甲管需5分钟注满水池,单开乙管需10分钟注满水池,满池水如果单开排水管需6分钟流尽.某次池中没有水,打开甲管若干分钟后,发现排水管未关上,随即关上排水管,同时打开乙管,又过了同样长的时间,水池的1/4注了水.如果继续注满水池,前后一共要花多少时间?4.有一个蓄水池装有9根水管,其中一根为进水管,其余8根为相同的出水管,进水管以均匀的速度不停地向这个蓄水池注水.后来有人想打开出水管,使池内的水全部排光(这时池内已注入一些水).如果把8根出水管全部打开,需3小时把池内的水全部排光;如果仅打开5根出水管,需6小时把池内的水全部排光.问要想在4.5小时内把池内的水全部排光,需同时打开几根出水管?5.师徒三人合作承包一项工程,4天能够全部完成.已知师傅单独做所需天数与两个徒弟合作所需天数相等;而师傅与乙徒弟合作所需天数的2倍与甲徒弟单独做完所需的天数相等.那么甲徒弟单独做,完成这项工程需要多少天?乙徒弟单独做,完成这项工程需要多少天?6.甲、乙、丙三人从三月一日开始合作一项工程,甲每天的工作量是乙每天工作量的3倍,乙每天的工作量是丙每天工作量的2倍.三人合作5天完成全工程的后,甲休3天,乙休2天,丙没有休息,问这项工程是在几月几日完成的?7.一个蓄水池装了一根进水管和三根放水速度一样的出水管.单开一根进水管20分钟可注满空池.单开一根出水管,45分钟可以放完满池水.现有池的水,如果四管齐开,多少分钟后池水还剩?8.蓄水池有甲、丙两条进水管,和乙丁两条排水管.要灌满一池水,单开甲管需要3小时,单开丙管需要5小时,要排光一池水,单开乙管需要4小时,单开丁管需要6小时.现在池内有池水.如果按甲、乙、丙、丁、甲、乙……的顺序,轮流各开一小时,多少时间后水开始溢出水池?C档(跨越导练)1.一项工程,甲2小时完成了,乙5小时完成了剩下的,余下的部分由甲、乙合作完成,甲共工作了______小时。

【精品原创】六年级奥数培优教程讲义第10讲-一般工程问题(教师版)

【精品原创】六年级奥数培优教程讲义第10讲-一般工程问题(教师版)

第10讲 工程问题了解工作量、工作时间及工作效率的意思;能够从题目中找出工作量、工作时间及工作效率;理解三者之间的关系,并用三者关系解题。

工程问题指的是与工程建造有关的数学问题。

然而其内容已不仅是工程方面的,还包括水管注水、行路等许多方面。

工程问题常涉及到工作量、工作效率和工作时间,且这三者之间具有如下关系式: 工作量=工作效率×工作时间工作时间=工作量÷工作效率工作效率=工作量÷工作时间工作量指工作的多少,它可以是全部工作量,一般用单位“1”表示;也可是部分工作量,常用分数表示。

例如,工程的一半表示成12,工程的三分之一表示成13。

工作效率指工作的快慢,也就是单位时间里所干的工作量。

工作效率的单位是一个复合单位,用“工作量/天”或“工作量/时”等表示。

但在不引起误会的情况下,一般不写工作效率的单位。

工程问题可分为两类:一类是已知具体工作量,另一类是未给具体工作量。

在解答工程问题时,我们要遵循以下原则:一是工作量没有具体给出的,可设工作量为单位“1”;二是由于工作总量为“1”,那么,参与这项工作的每个人(队)单独做的工作效率可用此人(队)单独做的工作时间的倒数表示。

知识梳理教学目标考点一:用“组合法”解工程问题在解答工程问题时,如果对题目提供的条件孤立、分散、静止地看,则难以找到明确的解题途径,若用“组合法”把具有相依关系的数学信息进行恰当组合,使之成为一个新的基本单位,便会使隐蔽的数量关系立刻明朗化,从而顺利找到解题途径例1、一项工程,甲、乙两队合作15天完成,若甲队做5天,乙队做3天,只能完成工程的7 30,乙队单独完成全部工程需要几天?【解析】此题已知甲、乙两队的工作效率和是115,只要求出甲队或乙队的工作效率,则问题可解,然而这正是本题的难点,用“组合法”将甲队独做5天,乙队独做3天,组合成甲、乙两队合作了3天后,甲队独做2天来考虑,就可以求出甲队2天的工作量730-115×3=130,从而求出甲队的工作效率。

(完整word版)六年级奥数《工程问题》讲义

(完整word版)六年级奥数《工程问题》讲义

工程问题工程问题是将一般的工作问题分数化,换句话说从分率的角度研究工作总量、工作时间(完成丁作总量所需的时间)、工作效率(,单位时间内完成的工作於)三者之间关系的问题•它的特点是将工作总量看成单位“1”,用分率表示工作效率,对做工的问题进行分析解答.T•程问题的三个基本数址关系式是:工作效率X工作时间=工作总量. 工作总就十工作时间=工作效率. 工作总量一工作效率=丁作时间.V —件工程,甲、乙合做需6天完成,乙.丙合做需9天完成•甲、丙合做需15天完成•现在甲.乙、丙三人合做需要多少天完成?分析先求出三人合做一天完成这件工程的几分之几•再求三人合做需要多少天完成.解1+ [(¥ + + +需)十2]= 5 天).答甲、乙.丙三人合做需要5器天完成.冷<2卩一项工作,甲、乙合做要12天完成•若甲先做3天后,再由乙工作8天,共完成这件工作的卷如果这件工作由甲、乙单独做•甲需要多少天?乙需要多少天?分析把甲先做3天后再由乙工作8天共完成这件工作的立•看作甲、乙合作3天再由乙单砂做5天“完成这件T作的寻•又这件工作甲、乙台做要12夭完成"则甲、乙合做1天完成这件工作的越3天完成这件工作的备x 3 =与前述进行比较知•乙5 天完成这件工作的5 1 1———■12 4 6-解乙单独完成这件工作的天数「壬(辛*5)=30(天儿甲单独完成这件匸作的天数士 1 -=-(吉一点)=20(天).答这件工作由甲、乙单独做•甲需要20夭,乙需宴30天.亠(】)做一件工程•甲独做需要12小时完成,乙独做需要]8小时兀成■甲、乙合做1小时肩,然后由甲工作1小时,再由乙工作]小时两人如此交替工作'完成任务还需多少时间?<2)加工一批零件'甲、乙两人合做]小时势完成了这批零件的器乙、丙两人接着生产1小时•又完成了為甲、丙又合做2小时,完成了剩下的任务.甲•乙、丙三人合做■还妄多少小时完成?'?晅»有—水池,装有甲、乙两个注水管.下面装有丙管放水■池空时•单开卬管5分钟可注满.单开乙管10分钟可注满;水池装潢水肩.单开丙管15分钟可将水放完.如果在池空时•将甲、乙、丙三管齐开分钟启关闭乙管*还要多少分钟可注满水池?分析三管齐开2分钟肩的T作量是1 —(辛+吉一吉)x2.*[1_(言+壽_養餐2]斗(吉一吉)="分九答2分钟后关闭乙管.还妄4分钟可注满水池.密一份穡件.甲单独打字需6小时完成•乙单独打字需K)小时完成.现在甲单独打若干小时后•因有事由乙接着打完,共用了7小时.那么甲打字用了多少小时?分析乙7小时共打字盖幻=岳送样就差—磊=磊的稿件.因此甲每小时比乙多打全部稿件的吉一霁=磊*磊*点=4号(小时人*答甲打字用了4寺小时2再单独做4夭•还剩下这项工程的着没有完成,求甲、乙两队工作效卒之比.(2)甲、乙两项工程分别由一*二队来完成.在晴天•一队完成甲工程需要12天,二队完成乙工程需姜15天卡在雨天”一队的工作效率要下降40%•二队的工作效率耍下降10%.结果两队同时完成这两项工程•那么•在施工的日子卑•雨天有多少天?g;有卬、乙两项工程•张师傅单独完成甲丁程需寰9天,单独完成乙1 [程需要12天;王师傅单独完成甲工程需要3天. E独完成乙H 程需要15天.如果两人合作完成这两项丁程.最少需要多少天?分折由题目条件知,王师傅擅长做甲工程,所以让王师傅先做甲丁程,张师傅先做乙工程.等王师傅做完甲工程再和张师傅做乙工程.解3+(】_誇)+(吉+養)=3十5 = 8(天》.答两人合作完成这两项工程,堆少需要8天.0 <34某地要修筑-条公路,甲丁•程队单独干需要io天完成,乙工程队单独干需要15天完成*如果两队合作*他们的工作效率就要降低■甲队只能完成原来的壬,乙队只能完成原来的壽.现在if划8天完成这项工程,且要求两队合作天数尽可能少*那么两队要合作多少天?分析根据题意•甲、乙及甲.乙合做的工作效率分别为霁、1 tJL 1 4 1 9 7运及10X J +l5X l0 =50*此3种情况中乙的效率最低,甲、乙合做的效率最高,要使甲、乙合作天数尽可能的少.则必须甲尽可能地多做.如果全是甲做怡天可完成磊X8 =磊=£的工作虽尚有*的匚作没有完成■这部分工作要由甲、乙合做比甲多做的部分来完成.* (1~]^x8h(io x f+n x w~^)1 2=1■十韵=5(天〉.答两队要合作5天.(1) 一项工程•甲、乙合做全工程的晋^剩下的由甲单独完成. 甲一共做了10.5天”这项工程由甲单独做需要15天,如果由乙单独做•需要多少天?(2) 师徒三人合作承包一项工程显天能够全部完成.已知师傅单•独做所需的夭数与两个徒弟合作做所需的天数相等宇而师傅与乙徒第合作做所需的天数的2倍与甲徒弟单独做完所需的天数相等•那么甲徒弟单独做,完成这项丁程需要多少天?乙徒弟单独做,完成这项工程需要多少天?练习题1 完成一项工作"噩耍甲队干5天,乙队干6天•或者甲队干7 天•乙臥干2天.如果甲.乙两队独立完成该工程各需多少天?O 一个水池•甲.乙两个水管同时打开击小时可以灌满水池:若甲管打开8小时后关闭+然后打幵乙管,再工作3小时也可以灌满水池.问:甲管先工作2小时后关闭,乙管再工作儿小时可以港满全水池?3 一件工作甲5小时完成了吉”乙£小时完成了剩下的一半,余T的部分由甲、乙合作,还需要多少小时?O 甲、乙合作完战一项工作,由于配合得好舟甲的工作效率比单独做时提高壽■乙的工作效率比单独做时提高+•甲.乙合作6小时完成了这项任务.如果甲单独做需羹H小时,那么乙单独做需要多少小时?5某工程如果由第一、二、三小队合干,需12天才能完成;由第一.三、五小队合干,需7天才能完成*由第二、四.五小队合干•需圧天才能完成*曲第一、三、四小队合干•需42天才能完成■那么这五个小队一起合干,需要多少天才能完成这项工程?0 一批工人到甲、乙两个工地进行清理工作•甲T:地的「作绘是乙工地工作址的L5倍.上午去甲工地的人数是去乙匚地人数的3倍■下午这批工人中有召的人去甲工地•其他工人到乙工地.到傍晚时•甲工地的工作已做完农乙工地的工作还需4名工人再做1天・那么,这批工人有多少人?。

工程问题奥数思维拓展 小学数学六年级上册人教版(含答案)

工程问题奥数思维拓展 小学数学六年级上册人教版(含答案)

工程问题奥数思维拓展-小学数学六年级上册人教版一.填空题(共10小题)1.一项工程如由甲、乙合作需要8天完成,现由甲先做3天,乙再做5天,才完成工程的,那么由乙单独做需天完成.2.某工程需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期4天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,则规定日期为天.3.某工程队修建一条铁路隧道,当完成任务的时,工程队采用新设备,使修建速度提高了20%,同时为了保养新设备,每天工作时间缩短为原来的,前后共用185天完工,由以上条件可推知,如果不采用新设备,完工共需天.4.一项工程,甲队单独做10天完成,已知甲队2天的工作量等于乙队3天的工作量,那么两队合作天能完成.5.一项机械加工作业,用4台A型机床,5天可以完成;用4台A型机床和2台B型机床3天可以完成;用3台B型机床和9台C型机床,2天可以完成,若3种机床各取一台工作5天后,剩下A、C型机床继续工作,还需要天可以完成作业.6.一项工程甲单做要6小时完成,乙单独做要10小时完成,如果按照甲、乙、甲、乙…顺序交替工作,每次工作1小时,那么要分钟才能完成.7.一艘轮船从长江三峡大坝到上海要4个昼夜,而从上海到三峡大坝逆流而上需要6个昼夜.如果从三峡大坝放一个漂流瓶顺水漂到上海要昼夜.8.一项工程,甲单独做要12小时,乙单独做要15小时,如果按照甲、乙、甲、乙的顺序每小时轮换一次地轮流工作,完成这项工作一共需要小时.9.一个蓄水池有两根进水管和一根放水管,单开一根进水管20分钟能放满一池水,单开一根放水管15分钟能放完一池水,现在满满一池水,先开一根进水管和放水管,当水池还剩下水时,然后再打开另外一根进水管,15分钟后关闭放水管,直到水池重新放满水,则这个过程中共用时分钟.10.某工程队预计30天修完一条水渠,现由16人修12天后完成工程的,如果要提前6天完成,还要增加人.二.应用题(共14小题)11.市政工程队维修一条道路,由甲、乙两个组合作完成。

(完整word版)六年级奥数第5、6次课:工程问题(教师版)

(完整word版)六年级奥数第5、6次课:工程问题(教师版)

【我生命中最最最重要的朋友们,请你们认真听老师讲并且跟着老师的思维走。

学业的成功重在于考点的不断过滤,相信我赠予你们的是你们学业成功的过滤器。

谢谢使用!!!】工程问题一、考点、热点回顾1顾名思义,工程问题指的是与工程建造有关的数学问题。

其实,这类题目的内容已不仅仅是工程方面的问题,也括行路、水管注水等许多内容。

在分析解答工程问题时,一般常用的数量关系式是:工作量=工作效率x工作时间,工作时间=工作量十工作效率,工作效率=工作量十工作时间。

工作量指的是工作的多少,它可以是全部工作量,一般用数1表示,也可以是部分工程量,常用分数表示。

例如,工程的一半義示成、工程的三分之一表示为*。

2、工作效率指的是干工作的快慢,其意义是单位时间里所干的工作量。

单位时间的选取,根据题目需要,可以是天,也可以是时、分、秒等。

3、工作效率的单位是一个复合单位,表示成“工作量/天”,或“工作量/时”等。

但在不引起误会的情况下,一般不写工作效率的单位。

、典型例题例1、单独干某项工程,甲队需100天完成,乙队需150天完成。

甲、乙两队合干50天后, 剩下的工程乙队干还需多少天?分析与解:以全部工程量为单位1。

甲队单独干需100天,甲的工作效率是疵;同理,乙队的工作效率是舟。

两队合干的工作裁率是(备十吕評由细工作量=工作数率X工作吋间J 50天的工作量是(丄+丄小。

丄丄丄k100 1507 2 3 6剩下的工作量是由岀工作时间二工作量亠工作嫌率J剩下的工作量由乙駅干还需例2、某项工程,甲单独做需36天完成,乙单独做需45天完成。

如果开工时甲、乙两队合做,中途甲队退出转做新的工程,那么乙队又做了18天才完成任务。

问:甲队干了多少天?22分析:将题目的条件倒过来想,变为“乙队先干 18天,后面的工作甲、乙两队合干需多少天? ”这样一来,问题就简单多了。

㈱〔1-存1*护令 I1 ?^ = 7^20 = 12 (天〕o答:甲队干了 12天。

全国通用版 六年级春季奥数培优讲义 6-05-真题汇编-工程问题-教师专用

全国通用版 六年级春季奥数培优讲义 6-05-真题汇编-工程问题-教师专用

第5讲 工程问题【学习目标】1、复习工程问题;2、熟悉小升初的常见题型。

【知识梳理】1、基础公式:(1)工作量=工作效率×工作时间;(2)工作时间=工作量÷工作效率;(3)工作效率=工作量÷工作时间。

2、常用方法:(1)分工法;(2)比例法。

【典例精析】1、修一条公路,计划每天修60米,实际每天多修15米,结果提前4天修完,一共修了多少米?60×4÷15=16(天)(60+15)×16=1200(米)2、有一批零件由甲、乙两人合作完成,原计划甲比乙多做50个,结果乙实际做的比计划少70个,比甲实际做的总数的53多10个,这批零件共有多少个? 70×2+50=190(个)(190+10)÷(1-53)=500(个) 500-190+500=810(个)3、一项工程,甲单独做40天完成,乙单独做60天完成。

现在两人合作,中间甲因病休息了若干天,所以经过27天才完成。

甲休息了多少天?27-22=5(天)4、单独完成某路段维修工程,甲队需10天,乙队需15天,丙队需20天。

开始三个队一起开工,因工作需要甲队中途撤走了,结果一共用了6天完成这一工程。

问:甲队实际工作了几天?5、加工一批零件,甲、乙两人合作需要12天完成,现在由甲先做3天,然后由乙做2天,还6、加工一批服装,原计划甲、乙两车间在25天合作完成,甲、乙合作10天后,甲单独做8天,接着乙又单独做14天,这样共完成全部任务的81%,已知甲比乙每天多做10套,求计划加工多少套服装?7、甲、乙、丙合作一项工程,4天干了整个工程的31,这4天内,除丙外,甲休息了2天,乙休息了3天,之后三人合作完成,甲的效率是丙的3倍,乙的效率是丙的2倍,问工程前后一共用了多少天?解:设丙的工效是x ,4+4=8(天)8、甲、乙、丙三人去完成植树任务,已知甲植1棵树的时间,乙可以植2棵树,丙可以植3棵树,他们先一起工作了5天,完成全部任务的31,然后丙休息了8天,乙休息了3天,甲没休息,最后一起完成任务。

六年级奥数试题及答案:工程问题【三篇】

六年级奥数试题及答案:工程问题【三篇】

六年级奥数试题及答案:工程问题【三篇】导读:本文六年级奥数试题及答案:工程问题【三篇】,仅供参考,如果觉得很不错,欢迎点评和分享。

【第一篇】一项建筑工程,由甲建筑队单独承建要一年半,乙建筑队单独承建要一年零三个月,现在两队合作半年,剩下的由乙队继续完成还要()个月.(假设每月实际工作天数一样)考点:工程问题.分析:把这项工程看做“1”,则甲乙单独完成的工作效率分别是,于是可求出他们合作半年的工作量,也就能求剩余的工作量,进而可求剩余的工作时间.解:他们合作半年的工作量是;剩余的工作量是;剩余的工作时间是;故应填:4.点评:此题主要考查工作量、工作时间、工作效率之间的关系,关键是先求出剩余的工作量.【第二篇】甲、乙、丙三人合修一围墙.甲、乙合修6天修好围墙的1/3,乙、丙合修2天修好余下的1/4,剩下的三人又合修了5天才完成.共得工资180元,按各人所完成的工作量的多少来合理分配,每人应得()元.分析:要求每人分得的钱数,因为按各人所完成的工作量的多少来合理分配工资,所以必须知道每人完成的工作量.要求每人完成的工作量,就要知道每人的工作效率;由题意得甲、乙、丙工作效率之和为;乙、丙合修2天修好余下的1/4,可得乙、丙工作效率之和:;甲的工作效率为;同理可求出乙的工作效率.然后求出各自的工作量.【第三篇】原计划用24个工人挖一定数量的土方,按计划工作5天后,因为调走6人,于是剩下的工人每天比原定工作量多挖1方土才能如期完成任务,原计划每人每天挖土()方.考点:工程问题.分析:方法一:调走6人还剩18人,那么18个人还干24个人的活,即3个人干4个人的活,每个人要多干原来的三分之一的活,而多三分之一就是要多挖1方土,所以每个人要挖3方土;方法二:假设每人每天挖x方,完成任务的天数为y天,那么共有24xy方土需要挖,5天内挖了24×5x方土,5天后剩下24x(y-5)方土没挖,这时只有24-6=18人了,则有24x(y-5)=18(x+1)×(y-5),解此不定方程即可.解:方法一:调走人后每人每天多干原来的几分之几:24÷(24-6)-1=1/3,原计划每人每天挖土的方数:1÷(1/3)=3(方).方法二:设每人每天挖x方,完成任务的天数为y天,则共有24xy方土需要挖,5天内挖了24×5x方土,所以24x(y-5)=18(x+1)×(y-5),根据题意得出y必须大于5,所以24x=18x+18,6x=18,x=3,答:原计划每人每天挖土3方.故答案为:3.点评:此题为工程问题,分析题干,从求调走人后每人每天多干原来的几分之几去思考,一步步解答,同时注意别陷入计算按计划工作5天后工作量的误区.。

小学奥数 工程问题(一).教师版

小学奥数 工程问题(一).教师版

工程问题(一)教学目标1.熟练掌握工程问题的基本数量关系与一般解法;2.工程问题中常出现单独做,几人合作或轮流做,分析时一定要学会分段处理;3.根据题目中的实际情况能够正确进行单位“1”的统一和转换;4.工程问题中的常见解题方法以及工程问题算术方法在其他类型题目中的应用.知识精讲工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,是培养学生抽象逻辑思维能力的重要工具。

工程问题是把工作总量看成单位“1”的应用题,它具有抽象性,学生认知起来比较困难。

在教学中,让学生建立正确概念是解决工程应用题的关键。

一.工程问题的基本概念定义:工程问题是指用分数来解答有关工作总量、工作时间和工作效率之间相互关系的问题。

工作总量:一般抽象成单位“1”工作效率:单位时间内完成的工作量三个基本公式:工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率;二、为了学好分数、百分数应用题,必须做到以下几方面:① 具备整数应用题的解题能力,解决整数应用题的基本知识,如概念、性质、法则、公式等广泛应用于分数、百分数应用题;② 在理解、掌握分数的意义和性质的前提下灵活运用;③ 学会画线段示意图.线段示意图能直观地揭示“量”与“百分率”之间的对应关系,发现量与百分率之间的隐蔽条件,可以帮助我们在复杂的条件与问题中理清思路,正确地进行分析、综合、判断和推理;④ 学会多角度、多侧面思考问题的方法.分数、百分数应用题的条件与问题之间的关系变化多端,单靠统一的思路模式有时很难找到正确解题方法.因此,在解题过程中,要善于掌握对应、假设、转化等多种解题方法,不断地开拓解题思路.三、利用常见的数学思想方法:如代换法、比例法、列表法、方程法等抛开“工作总量”和“时间”,抓住题目给出的工作效率之间的数量关系,转化出与所求相关的工作效率,最后再利用先前的假设“把整个工程看成一个单位”,求得问题答案.一般情况下,工程问题求的是时间.例题精讲模块一、工程问题基本题型【例 1】一项工程,甲单独做需要28天时间,乙单独做需要21天时间,如果甲、乙合作需要多少时间?【考点】工程问题【难度】1星【题型】解答【解析】将整个工程的工作量看作“1”个单位,那么甲每天完成总量的128,乙每天完成总量的121,两人合作每天能完成总量的111282112+=,所以两人合作的话,需要111212÷=天能够完成.【答案】12【例 2】一项工程,甲单独做需要30天时间,甲、乙合作需要12天时间,如果乙单独做需要多少时间?【考点】工程问题【难度】1星【题型】解答【解析】将整个工程的工作量看作“1”个单位,那么甲每天完成总量的130,甲、乙合作每天完成总量的112,乙单独做每天能完成总量的111123020-=,所以乙单独做112020÷=天能完成.【答案】20【巩固】一项工程,甲单独做需要21天时间,甲、乙合作需要12天时间,如果乙单独做需要多少时间?【考点】工程问题【难度】1星【题型】解答【解析】将整个工程的工作量看作“1”个单位,那么甲每天完成总量的121,甲、乙合作每天完成总量的112,乙单独做每天能完成总量的111122128-=,所以乙单独做28天能完成.【答案】128【例 3】甲乙两名打字员,打字速度一样快,甲30分钟打了A材料的14,乙40分钟打了B 材料的27。

工程问题奥数思维拓展(试题)-小学数学六年级上册人教版(含答案)

工程问题奥数思维拓展(试题)-小学数学六年级上册人教版(含答案)

工程问题奥数思维拓展(试题)-小学数学六年级上册人教版一.填空题(共9小题)1.一件工作,甲的工作效率是乙丙工作效率之和,乙的工作效率是甲丙之和的.如果三人合作1天就可以完成,那么乙单独完成需要天.2.如果2个熟练工和4个新手一天可做完一批零件的,8个熟练工和10个新手一天就能把这批零件做完.若这批零件全部由新手一天做完,则应要新手个.3.一批工人到甲、乙两个工地进行清理工作,甲工地的工作量是乙工地的工作量的1倍.上午去甲工地的人数是去乙工地人数的3倍,下午这批工人中有的人去甲工地,其他工人到乙工地.到傍晚时,甲工地的工作已做完,乙工地的工作还需4名工人再做1天,那么这批工人有人.4.用计算机录入一份书稿,甲单独做10天可完成,乙单独做15天可以完成.现在由甲、乙二人合做,由于乙中途生病休息了若干天,结果一共用了8天才完成任务.那么,乙中途休息了天.5.某一个工程甲单独做50天可以完成,乙单独做75天可以完成,现在两人合作,但途中乙因事离开了几天,从开工后40天把这个工程做完,则乙中途离开了天.6.一项工程,甲工程队做需30天完成,每天工程费用万元;乙工程队做需40天完成,每天工程费用万元.为了在20天内完成,安排甲、乙两队共同参与这项工程,如果两队工作的天数可以不一样,那么,两队共同完成这项工程的总费用至少需要万元.7.甲、乙、丙三个人生产一批玩具,甲生产的个数是乙、丙两人生产个数之和的,乙生产的个数是甲、丙两人生产个数之和的,丙生产了40个.这批玩具共有个.8.运送一批货物,甲车3次运这批货物的,若运,乙车只需2次.两车合运,每次运这批货物的.9.师徒三人合作承包一项工程,4天能全部完成.已知师傅单干所需天数与两个徒弟合做所需天数相等;而师傅与乙徒弟合做所需天数的2倍与甲徒弟单独完成所需天数相等.那么乙徒弟单独做完这项工程需天.二.应用题(共12小题)10.一件工程,甲、乙合作需6天完成,乙、丙合作需9天完成,甲、丙合作需15天完成,现在甲、乙、丙合作,需多少天完成?11.甲乙两个队伍完成一项工程修地铁,甲队150天修完,乙队180天修完,在维修的过程中甲队干5天休息2天,乙队干6天休息1天,问甲乙合作几天完成?12.为“雪顿”节做一顶藏式帐篷,师傅单独完成要用30天,徒弟单独完成,要多用半个月.如果按照师、徒、师、徒、…的顺序每人轮流工作一天,这顶帐篷多少天才能做完.13.甲、乙两个车间织布,原计划每天共织700m,现技术改进,甲车间每天多织布100m,乙车间的日产量提高一倍,这样,两车间一天共织了1020m。

最新小学六年级奥数教案—05工程问题一名师优秀教案

最新小学六年级奥数教案—05工程问题一名师优秀教案

小学六年级奥数教案—05工程问题一小学六年级奥数教案—05工程问题一本教程共30讲工程问题(一)顾名思义,工程问题指的是与工程建造有关的数学问题。

其实,这类题目的内容已不仅仅是工程方面的问题,也括行路、水管注水等许多内容。

在分析解答工程问题时,一般常用的数量关系式是:工作量=工作效率×工作时间,工作时间=工作量?工作效率,工作效率=工作量?工作时间。

工作量指的是工作的多少,它可以是全部工作量,一般用数1表示,也可工作效率指的是干工作的快慢,其意义是单位时间里所干的工作量。

单位时间的选取,根据题目需要,可以是天,也可以是时、分、秒等。

工作效率的单位是一个复合单位,表示成“工作量/天”,或“工作量/时”等。

但在不引起误会的情况下,一般不写工作效率的单位。

例1 单独干某项工程,甲队需100天完成,乙队需150天完成。

甲、乙两队合干50天后,剩下的工程乙队干还需多少天,分析与解:以全部工程量为单位1。

甲队单独干需100天,甲的工作效例2 某项工程,甲单独做需36天完成,乙单独做需45天完成。

如果开工时甲、乙两队合做,中途甲队退出转做新的工程,那么乙队又做了18天才完成任务。

问:甲队干了多少天,分析:将题目的条件倒过来想,变为“乙队先干18天,后面的工作甲、乙两队合干需多少天,”这样一来,问题就简单多了。

答:甲队干了12天。

例3 单独完成某工程,甲队需10天,乙队需15天,丙队需20天。

开始三个队一起干,因工作需要甲队中途撤走了,结果一共用了6天完成这一工程。

问:甲队实际工作了几天,分析与解:乙、丙两队自始至终工作了6天,去掉乙、丙两队6天的工作量,剩下的是甲队干的,所以甲队实际工作了例4 一批零件,张师傅独做20时完成,王师傅独做30时完成。

如果两人同时做,那么完成任务时张师傅比王师傅多做60个零件。

这批零件共有多少个, 分析与解:这道题可以分三步。

首先求出两人合作完成需要的时间,例5 一水池装有一个放水管和一个排水管,单开放水管5时可将空池灌满,单开排水管7时可将满池水排完。

六年级奥数工程问题(教师版)

六年级奥数工程问题(教师版)

六年级奥数工程问题(教师版)————————————————————————————————作者:————————————————————————————————日期:工程问题一:基本类型工程问题中的某项工程一般不给出具体的数量,首先,在解题时关键要把“一项工程”看作单位“1”,工作效率就用完成单位“1”所需的工作时间的倒数来表示;其次,在解答时要抓住三个基本数量:工作效率、工作时间和工作总量,并结合有关工程问题的三个基本数量关系式来列式解答。

模型一:工作效率(和)×工作时间=工作总量模型二:工作总量÷工作效率(和)=工作时间模型三:工作总量÷工作时间=工作效率(和)(一)先合作,后独作例1、一条公路,甲队独修需24天完成,乙队独修需30天完成。

甲、乙两队合修若干天后,乙队停工休息,甲队继续修了6天完成,乙队修了多少天?(A)设乙x天(1/24+1/30)x+1/24*6=1 x=10例2、修一条公路,甲队单独修20天可以修完,乙队单独修30天可以修完。

现两队合修,中途甲队休息2.5天,乙队休息若干天,这样一共14天才修完。

乙队休息了几天?(B级)(二)丙先帮甲,再帮乙例3、搬运一个仓库的货物,甲需10小时,乙需12小时,丙需15小时。

有同样的仓库A和B,甲在A仓库,乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又去帮助乙搬运,最后同时搬完两个仓库的货物。

丙帮助甲搬运了几小时?(B级)(三)甲乙合作,中途有人休息例4、一项工程,如果单独做,甲需10天完成,乙需15天完成,丙需20天完成。

现在三人合作,中途甲先休息1天,乙再休息3天,而丙一直工作到完工为止。

这样一共用了几天时间?(B级)(四)独做化合做例5、甲乙合做一项工程,24天完成。

如果甲队做6天,乙队做4天,只能完成工程的1/5,两队单独做完成任务各需多少天?(B级)(五)合做变独做例6、一项工程,甲先独做2天,然后与乙合做7天,这样才完成全工程的一半。

六年级《工程问题》奥数教案

六年级《工程问题》奥数教案

( 六年级 ) 备课教员:第四讲 工程问题一、教学目标: 知识目标 1. 认识工程问题的结构特点。

2. 掌握它的数量关系、解题思路和解题方法。

3. 并能正确解答工程问题的基本题。

能力目标 1. 初步培养学生的分析概括能力和迁移类推能力。

2. 运用所学知识解决实际问题的能力。

情感目标 1. 通过课堂教学中引用国家发展建设中的图片, 渗透学生爱国思想,培养学生民族自豪感。

二、教学重点: 1. 工程问题的结构特点、解题思路和解题方法。

三、教学难点: 1. 理解用“单位1”表示工作总量,用单位时间完成工作总量 的几分之一表示工作效率。

四、教学准备: PPT五、教学过程:第一课时(50分钟)一、导入(5分)【设计意图:通过一组中国古代大型工程的图片和相关了解,渗透学生的爱国思想,培养学生民族自豪感。

再通过几个简单的问题,对工程问题的基本结构和解题思想做一个复习】师:这节课一开始,老师就想要考考大家。

同学们知道中国古代三大工程是什 么吗?生:长城、故宫……师:有的同学们猜到了,但是都没有完全猜对。

那老师给大家降低一些难度, 先给大家看图片,再由大家来猜,举手抢答哦!(出示PPT ,说出正确的名词后,再请一名同学或老师来读下面的介绍文字) 师:我们的古人是不是很厉害,很伟大?生:是。

师:但是在他们的伟大背后却付出了几代人甚至更多代人的努力,甚至付出生命的代价。

我们要学习这种艰苦奋斗的精神,好好学习,将来祖国的建设 需要你们。

那么回到我们的课堂,我们今天要来学习“工程问题”。

【板书课题:工程问题】师:我们再来看几个简单的问题?(出示PPT )师:修完一段路需要5天,每天修这段路的多少?生:51。

师:每天修一段路的51,修完这段路需要多少天? 生:5天。

师:都是怎么计算的?生:第一个问题是:1÷5=51,第二个问题是:1÷51=5(天)。

师:我们在做工程问题的时候经常把工作总量看作单位“1”,那么这里工作总量是?生:一段路。

六年级工程问题(综合)奥数教案

六年级工程问题(综合)奥数教案

工程问题(综合)知识梳理教课重、难点作业达成状况典题研究例 1. 甲、乙、丙三人合修一堵围墙,甲、乙合修 6 天达成了,乙、丙合修 2 天达成余下工程的,剩下的再由甲、乙、丙三人合修 5 天达成,现领薪资共 180 元,按工作量分派,甲、乙、丙应各领多少元?例 2. 一项工程,甲独自达成要30 天,乙独自达成要乙、丙三个合作达成此工程。

在工作过程中甲歇息了后把这项工程达成了。

问这项工程前后一共用了多少天?45 天,丙独自达成要90 天。

现由甲、2 天,乙歇息了 3 天,丙没有歇息,最例 3. 一项工程,乙队先独自做 4 天,既而甲、丙两队合做 6 天,剩下的工程甲队又独做 9 天才所有达成。

已知乙队达成的是甲队达成的,丙队达成的是乙队达成的 2 倍。

甲、乙、丙三队独做,各需要多少天达成?例 4. 一个水池装了一根进水管和 3 根粗细相同的出水管。

单开一根进水管注满,单开一根出水管 45 分钟可将水池的水放完。

此刻水池中有池水,多少分钟后水池的水还剩下?20 分钟可将水池4 根水管一同翻开,例 5. 2 个蟹将和 4 个虾兵能打扫龙宫的,8 个蟹将和10 虾兵在相同的时间里就能打扫完整部龙宫,假如单让蟹将去打扫与单让虾兵去打扫进行比较,那么要打扫完整部龙宫,虾兵比蟹将要多几个?例 6. 一批工人到甲、乙两上工地进行清理工作,甲工地的工作量是乙工地工作量的倍。

上午去甲工地人数是去乙工地人数的 3 倍,其余工人到乙工地,到夜晚时,甲工地的工作已做完,乙工地的工作还需 4 名工人再做一天。

那么这批工人有多少人?例 7. 一个空水池有甲、乙两根进水管和一根排水管,单开甲管需 5 分钟注满水池,单开乙管需 10 分钟注满水池,满池水假如单开排水管需要 6 分钟流尽。

某次池中无水,翻开甲管若干分钟后,发现排水管未关上,随即关上排水管,同时翻开乙管。

又过了相同时间,水池的注了水。

假如持续注满水池,前后一共花了多少时间?例 8. 一件工作,甲做了 5 小时此后由乙来做,再做 3 小时能够达成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级奥数工程问题教
师版
标准化管理部编码-[99968T-6889628-J68568-1689N]
工程问题
一:基本类型
工程问题中的某项工程一般不给出具体的数量,首先,在解题时关键要把“一项工程”看作单位“1”,工作效率就用完成单位“1”所需的工作时间的倒数来表示;其次,在解答时要抓住三个基本数量:工作效率、工作时间和工作总量,并结合有关工程问题的三个基本数量关系式来列式解答。

模型一:工作效率(和)×工作时间=工作总量
模型二:工作总量÷工作效率(和)=工作时间
模型三:工作总量÷工作时间=工作效率(和)
(一)先合作,后独作
例1、一条公路,甲队独修需24天完成,乙队独修需30天完成。

甲、乙两队合修若干天后,乙队停工休息,甲队继续修了6天完成,乙队修了多少天(A)
例2、修一条公路,甲队单独修20天可以修完,乙队单独修30天可以修完。

现两队合修,中途甲队休息天,乙队休息若干天,这样一共14天才修完。

乙队休息了几天(B级)
(二)丙先帮甲,再帮乙
例3、搬运一个仓库的货物,甲需10小时,乙需12小时,丙需15小时。

有同样的仓库A和B,甲在A仓库,乙在B仓库同时开始搬运货物,丙开
始帮助甲搬运,中途又去帮助乙搬运,最后同时搬完两个仓库的货物。

丙帮助甲搬运了几小时(B级)
(三)甲乙合作,中途有人休息
例4、一项工程,如果单独做,甲需10天完成,乙需15天完成,丙需20天完成。

现在三人合作,中途甲先休息1天,乙再休息3天,而丙一直工作到完工为止。

这样一共用了几天时间(B级)
(四)独做化合做
例5、甲乙合做一项工程,24天完成。

如果甲队做6天,乙队做4天,只能完成工程的1/5,两队单独做完成任务各需多少天(B级)
(五)合做变独做
例6、一项工程,甲先独做2天,然后与乙合做7天,这样才完成全工程的一半。

已知甲、乙工作效率的比是2:3。

如果由乙单独做,需要多少天才能完成(B)
三:综合类型
1、加工一批零件,甲独做需3天完成,乙独做需4天完成,两人同时加工,完成任务时,甲比乙多做24个,这批零件共有多少个
2、一项工程,甲乙两队合作需12天完成,乙丙两队合作需15天完成,甲丙两队合作需20天完成,如果由甲乙丙三队合作需几天完成
3、师徒二人合作生产一批零件,6天可以完成任务。

师傅先做5天后,因事外出,由徒弟来接着做3天,共完成任务的7/10。

如果每人单独做这批零件各需几天
4、一项工程,甲单独做12天可以完成.如果甲单独做3天,余下工作由乙去做,乙再用6天可以做完.问若甲单独做6天,余下工作乙要做几天
5、一条水渠,甲乙两队合挖30天完工.现在合挖12天后,剩下的由乙队挖,又用24天挖完.这条水渠由乙单独挖,需要多少天
6、一项工程,甲乙两队合作6天完成5/6。

已知单独做,甲完成1/3与乙完成1/2的时间相等。

问单独做,甲乙各需要多少天
7、一件工作甲先做6小时,乙接着做12小时可以完成.甲先做8小时,乙接着做6小时也可以完成.如果甲做3小时后由乙接着做,还需要多少小时完成
8、筑路队预计30天修一条公路.先由18人修12天只完成全部工程的
1/3,如果想提前6天完工,还需增加多少人
9、一件工作,甲5小时先完成了1/4,乙6小时又完成了剩下任务的一半,最后余下的部分由甲、乙合作,还需要多少时间才能完成
10、有一项工程,甲、乙两队合作6天能完成5/6,已知单独做,甲完成1/3与乙完成1/2所需要的时间相等。

问单独做甲、乙各需多少天
11、一件工作,甲单独做20小时完成,乙单独做12小时完成,丙单独做15小时完成,若先由甲、丙合做5小时,然后由甲、乙合做,问还需几天完成
12、小李和小张同时开始制作同一种零件,每人每分钟能做一个零件,但小李每制作3个零件要休息1分钟,小张每制作4个零件要休息分钟。

现在他们要共同完成制作300个零件的任务,需要多少分钟
13、师徒两人共加工零件168个,师傅加工一个零件用5分钟,徒弟加工一个零件用9分钟,完成任务时,两人各加工零件多少个。

相关文档
最新文档