一次函数章节测试B(含答案)

合集下载

人教B版高中数学必修一一次函数测试题及答案.doc

人教B版高中数学必修一一次函数测试题及答案.doc

高中数学学习材料马鸣风萧萧*整理制作一、选择题1、下列函数(1)y=πx (2)y=2x-1 (3)y=1x (4)y=2-1-3x 中,是一次函数的有( )(A )4个 (B )3个 (C )2个 (D )1个 2、下面哪个点不在函数32+-=x y 的图像上( )(A )(-5,13) (B )(0.5,2) (C )(3,0) (D )(1,1)3、直线y=kx+b 在坐标系中的位置如图,则( ) (第13题图)(A )1,12k b =-=- (B )1,12k b =-= (C )1,12k b ==- (D )1,12k b ==4、下列一次函数中,随着增大而减小而的是 ( ) (A )x y 3= (B )23-=x y (C )x y 23+= (D )23--=x y5、已知一次函数y=kx+b 的图象如图所示,则k ,b 的符号是( )(A) k>0,b>0 (B) k>0,b<0(C) k<0,b>0 (D) k<0,b<0 二、填空6、已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是 。

7、若函数y= -2x m+2是正比例函数,则m 的值是 。

8、已知一次函数y=kx+5的图象经过点(-1,2),则k= 。

9、已知y 与x 成正比例,且当x =1时,y =2,则当x=3时,y=____ 。

10、点P (a ,b )在第二象限,则直线y=ax+b 不经过第 象限。

11、已知一次函数y=kx-k+4的图象与y 轴的交点坐标是(0,-2),那么这个一次函数的表达式是______________。

12、已知点A(-21,a), B(3,b)在函数y=-3x+4的象上,则a 与b 的大小关系是____ 。

13、地面气温是20℃,如果每升高100m,气温下降6℃,则气温t (℃)与高度h (m )的函数关系式是__________。

新人教版八年级数学下册《一次函数》章节测试题及答案

新人教版八年级数学下册《一次函数》章节测试题及答案

新人教版八年级数学下册《一次函数》章节测试题及答案新人教版八年级数学下册《一次函数》章节测试题及答案一、选择题1.若点A(2,4)在函数y=kx-2的图象上,则下列各点在此函数图象上的是().A.(3,1)B.(-3,8)C.(8,14)D.(-1,4)2.变量x,y有如下关系:①x+y=10 ②y=-5x ③y=|x-3|④y^2=8x。

其中y是x的函数的是A.①B.①②C.①②③D.①②③④3.下列各曲线中不能表示y是x的函数是().A. B. C. D.4.已知一次函数y=2x+a与y=-x+b的图象都经过A(-2,1),且与y轴分别交于B、C两点,则△ABC的面积为().A.4 B.5 C.6 D.75.已知正比例函数y=(k+5)x,且y随x的增大而减小,则k的取值范围是A。

k>5 B。

k<5 C。

k>-5 D。

k<-56.在平面直角坐标系xoy中,点M(a,1)在一次函数y=-x+3的图象上,则点N(2a-1,a)所在的象限是A.一象限B.二象限C.四象限D.不能确定7.如果通过平移直线y=x/(x+5)得到y=-x/(x+5)的图象,那么直线y=5必须().A.向上平移5个单位 B.向下平移5个单位 C.向上平移3个单位 D.向下平移3个单位8.经过一、二、四象限的函数是A。

y=7 B。

y=-2x C。

y=7-2x D。

y=-2x-79.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则函数y=kx-k的图象大致是10.若方程x-2=0的解也是直线y=(2k-1)x+10与x轴的交点的横坐标,则k的值为A.2B.0C.-2D.±211.根据如图的程序,计算当输入x=3时,输出的结果y=.输入y=-x+5(x>1)y=x+5(x≤1)输出12.已知直线y=2x与直线y=-2x+4相交于点A.有以下结论:①点A的坐标为A(1,2);②当x=1时,两个函数值相等;③当x<1时,y1<y2④直线y=2x与直线y=2x-4在平面直角坐标系中的位置关系是平行.其中正确的是A.①③④B.②③C.①②③④D.①②③二、填空题13.已知y=(m-2)x^n-1+3是关于x的一次函数,则m,n分别为:m=2,n=2.14.当直线y=2x+b与直线y=kx-1平行时,k=2,b=-1.15.汽车行驶前,油箱中有油55升,已知每百千米汽车耗油10升,油箱中的余油量Q(升)与它行驶的距离s(百千米)之间的函数关系式为Q=55-10s;为了保证行车安全,油箱中至少存油5升,则汽车最多可行驶450千米。

《一次函数》测试题及答案

《一次函数》测试题及答案

《一次函数》测试题(3)(从中选用题目)一、选择题1. 一根蜡烛长20cm,点燃后每小时燃烧5cm燃烧时剩下的高度h(cm)与时间t(小时)的关系图象表示为……………………………………………()A. B. C. D.2. 已知y-3与x成正比例,且x=2时,y=7。

则。

则y与x的函数关系式为() A. y=2x+3 B. y=2x-3 C. y-3=2x+3 D. y=3x-33. 下列说法错误的是……………………………………………………()A.一次函数的特殊情况是正比例函数B. 一次函数的图象是一条直线C. 一次函数中,y随x的增大而增大,则k>0D. 一次函数中,y随x的减小而减小,则k<04. 如图,函数y1=ax+b与y2=bx+a正确的图象为……………………()y15. A、B两地相距30千米,甲从A地出发以每小时5千米的速度向目的地B行走,则甲与B地间的距离s(千米)与甲行走的时间t(小时)间的函数关系是()A. s=5t (t≥0) B. s=5t (0≤t≤6)C. s=30+5t (0≤t≤6)D. s=30-5t (0≤t≤6)6. 下列四个命题中,成正比例关系的是………………………………()A.y随x增大而增大B. 粮食产量随肥料的增加而增加B.正方形面积随边长的增大而增加D. 圆的周长随半径的增大而增加7. 若一次函数y=kx+b的图象经过第二、三、四象限,则k、b的取值范围是()A. k>0,b>0B. k>0,b<0C. k<0,b<0D. k<0,b>08. 关于函数y=kx+b(k、b都是不等于0的常数,k>0),下列说法正确的是()A.y与x成正比例B.y与kx成正比例C.y与x+b成正比例D.y-b与x成正比例9.若直线m nx y -=不经过第四象限,则………………………………()A.m>,n<0B.m<0,n<0C.m<0,n>0D.m>0,n≤010. 函数y=kx+b(k<0,b>0)的图象可能是下列图形中的…………()A. B. C. D.11. 如图,不可能是关于)3(--=mmxy的图象的是………………()o x o x o x o xA. B. C. D.12. 一次函数n mx y +-=的图象经过第二、三、四象限,则化简22)(n n m +-所得的结果是…( ) A. m B. -m C.2m -n D. m -2n13. 以固定的速度v 0(米/秒),向上抛一个小球,小球的高度h (米)与小球运动的时间t (秒)之间的关系式是209.4t t v h -=,在这个关系式中,常量、变量分别是( ) A. 常量4.9,变量t 、h B. 常量v 0,变量t 、hC. 常量v 0、-4.9,变量t 、hD. 常量4.9,变量v 0、t 、h14. 当x >0时,y 与x 的关系式为y=2x ,当x ≤0时,y 与x 的关系式为y=-2x ,则它的图象大致为……………………………………………………( )o xA. B. C. D.15. 已知A (-1,1)、B (2,3),若要在x 轴上找一点P ,使AP+BP 最短,由此得点P 的坐标为( ) A. (0,0)B. (25-,0)C. (-1,0) D. (41-,0) 16. 直线3-=mx y 中,y 随x 增大而减小,与直线x=1,x=3和x 轴围成的面积为8,则m 的值为( ) A. 27 B. 21- C. -2 D. 以上答案都不对 17. y 与3x 成正比例,且x=8时,y=16,则y=-64时,x 等于……( )A. -2B. -512C. -32D. -6418. 下列说法错误的是( )A. y=5x -1中,y+1与x 成正比例B. y=6x 2中,y 与x 2成正比例C. y=x 4-中,y 与x 1成正比例D. y=x 21-中,y 与x 成正比例 19. 下列说法不正确的是…( )A. 一次函数不一定是正比例函数B. 不是一次函数就一定不是正比例函数C. 正比例函数是一次函数特例D. 不是正比例函数就不是一次函数二、填空题1. 若函数y 1=ax +b 与y 2=3x -2h 的图象交于x 轴上一点,那么h=________ 。

北师大版八年级数学上册《第4章一次函数》单元测试含答案

北师大版八年级数学上册《第4章一次函数》单元测试含答案

第4章一次函数一、选择题(共26小题)1.2021年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()A.B.C.D.2.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是()A. B.C.D.3.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的函数图象,那么符合小明行驶情况的图象大致是()A.B.C.D.4.均匀地向如图的容器中注满水,能反映在注水过程中水面高度h随时间t变化的函数图象是()A.B. C. D.5.如图,某个函数的图象由线段AB和BC组成,其中点A(0,),B(1,),C(2,),则此函数的最小值是()A.0 B.C.1 D.6.某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系.下列说法错误的是()A.小强从家到公共汽车站步行了2公里B.小强在公共汽车站等小明用了10分钟C.公共汽车的平均速度是30公里/小时D.小强乘公共汽车用了20分钟7.货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t (小时)之间的函数图象是()A. B. C.D.8.如图,在矩形中截取两个相同的正方形作为立方体的上下底面,剩余的矩形作为立方体的侧面,刚好能组成立方体.设矩形的长和宽分别为y和x,则y与x的函数图象大致是()A.B.C.D.9.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A.B.C.D.10.如图,挂在弹簧称上的长方体铁块浸没在水中,提着弹簧称匀速上移,直至铁块浮出水面停留在空中(不计空气阻力),弹簧称的读数F(N)与时间t(s)的函数图象大致是()A.B. C. D.11.函数y=的图象为()A.B.C.D.12.匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是下图中的()A.B.C.D.13.如果两个变量x、y之间的函数关系如图所示,则函数值y的取值范围是()A.﹣3≤y≤3B.0≤y≤2C.1≤y≤3D.0≤y≤314.甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙两人进行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点15.如图所示的容器内装满水,打开排水管,容器内的水匀速流出,则容器内液面的高度h随时间x变化的函数图象最接近实际情况的是()A.B.C.D.16.如图,匀速地向此容器内注水,直到把容器注满,在注水过程中,下列图象能大致反映水面高度h随注水时间t变化规律的是()A.B. C.D.17.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系用图象刻画出来,大致图象是()A.B.C.D.18.汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()A.B.C.D.19.小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了小明在散步过程汇总离家的距离s(米)与散步所用时间t(分)之间的函数关系,根据图象,下列信息错误的是()A.小明看报用时8分钟B.公共阅报栏距小明家200米C.小明离家最远的距离为400米D.小明从出发到回家共用时16分钟20.园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图,则休息后园林队每小时绿化面积为()A.40平方米B.50平方米C.80平方米D.100平方米21.图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时22.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打6折,设购买种子数量为x千克,付款金额为y元,则y与x的函数关系的图象大致是()A. B.C.D.23.若函数,则当函数值y=8时,自变量x的值是()A.± B.4 C.±或4 D.4或﹣24.已知函数y=,当x=2时,函数值y为()A.5 B.6 C.7 D.825.一家电信公司提供两种手机的月通话收费方式供用户选择,其中一种有月租费,另一种无月租费.这两种收费方式的通话费用y(元)与通话时间x(分钟)之间的函数关系如图所示.小红根据图象得出下列结论:①l1描述的是无月租费的收费方式;②l2描述的是有月租费的收费方式;③当每月的通话时间为500分钟时,选择有月租费的收费方式省钱.其中,正确结论的个数是()A.0 B.1 C.2 D.326.如图,是一台自动测温记录仪的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()A.凌晨4时气温最低为﹣3℃B.14时气温最高为8℃C.从0时至14时,气温随时间增长而上升D.从14时至24时,气温随时间增长而下降二、填空题(共4小题)27.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数关系是y=x+32,如果某一温度的摄氏度数是25℃,那么它的华氏度数是℉.28.放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分钟)的函数关系如图所示,则小明的骑车速度是千米/分钟.29.已知函数,那么=.30.如图,根据所示程序计算,若输入x=,则输出结果为.第4章一次函数参考答案与试题解析一、选择题(共26小题)1.2021年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()A.B.C.D.【考点】函数的图象.【专题】动点型.【分析】根据在电脑上打字录入这篇文稿,录入字数增加,因事暂停,字数不变,继续录入并加快了录入速度,字数增加,变化快,可得答案.【解答】解:A.暂停后继续录入并加快了录入速度,字数增加,故A不符合题意;B.字数先增加再不变最后增加,故B不符合题意错误;C.开始字数增加的慢,暂停后再录入字数增加的快,故C符合题意;D.中间应有一段字数不变,不符合题意,故D错误;故选:C.【点评】本题考查了函数图象,字数先增加再不变最后增加的快是解题关键.2.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是()A. B.C.D.【考点】函数的图象.【分析】根据匀速行驶,可得路程随时间匀速增加,根据原地休息,路程不变,根据加速返回,可得路程随时间逐渐减少,可得答案.【解答】解:由题意,得以400米/分的速度匀速骑车5分,路程随时间匀速增加;在原地休息了6分,路程不变;以500米/分的速度骑回出发地,路程逐渐减少,故选:C.【点评】本意考查了函数图象,根据题意判断路程与时间的关系是解题关键,注意休息时路程不变.3.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的函数图象,那么符合小明行驶情况的图象大致是()A.B.C.D.【考点】函数的图象.【分析】由于开始以正常速度匀速行驶,接着停下修车,后来加快速度匀驶,所以开始行驶路S是均匀减小的,接着不变,后来速度加快,所以S变化也加快变小,由此即可作出选择.【解答】解:因为开始以正常速度匀速行驶﹣﹣﹣停下修车﹣﹣﹣加快速度匀驶,可得S先缓慢减小,再不变,在加速减小.故选:D.【点评】此题主要考查了学生从图象中读取信息的能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.4.均匀地向如图的容器中注满水,能反映在注水过程中水面高度h随时间t变化的函数图象是()A.B. C. D.【考点】函数的图象.【分析】由于三个容器的高度相同,粗细不同,那么水面高度h随时间t变化而分三个阶段.【解答】解:最下面的容器较粗,第二个容器最粗,那么第二个阶段的函数图象水面高度h随时间t的增大而增长缓慢,用时较长,最上面容器最小,那么用时最短.故选A.【点评】此题主要考查了函数图象,解决本题的关键是根据容器的高度相同,每部分的粗细不同得到用时的不同.5.如图,某个函数的图象由线段AB和BC组成,其中点A(0,),B(1,),C(2,),则此函数的最小值是()A.0 B.C.1 D.【考点】函数的图象.【分析】根据函数图象的纵坐标,可得答案.【解答】解:由函数图象的纵坐标,得故选:B.【点评】本题考查了函数图象,利用了有理数大大小比较.6.某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系.下列说法错误的是()A.小强从家到公共汽车站步行了2公里B.小强在公共汽车站等小明用了10分钟C.公共汽车的平均速度是30公里/小时D.小强乘公共汽车用了20分钟【考点】函数的图象.【分析】根据图象可以确定小强离公共汽车站2公里,步行用了多长时间,等公交车时间是多少,两人乘公交车运行的时间和对应的路程,然后确定各自的速度.【解答】解:A、依题意得小强从家到公共汽车步行了2公里,故选项正确;B、依题意得小强在公共汽车站等小明用了10分钟,故选项正确;C、公交车的速度为15÷=30公里/小时,故选项正确.D、小强和小明一起乘公共汽车,时间为30分钟,故选项错误;故选D.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.7.货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t (小时)之间的函数图象是()A. B.C. D.【考点】函数的图象.【专题】压轴题.【分析】根据出发前都距离乙地180千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180千米;经过三小时,货车到达乙地距离变为零,故而得出答案.【解答】解:由题意得出发前都距离乙地180千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180千米,经过三小时,货车到达乙地距离变为零,故C符合题意,故选:C.【点评】本题考查了函数图象,理解题意并正确判断辆车与乙地的距离是解题关键.8.如图,在矩形中截取两个相同的正方形作为立方体的上下底面,剩余的矩形作为立方体的侧面,刚好能组成立方体.设矩形的长和宽分别为y和x,则y与x的函数图象大致是()A.B.C.D.【考点】函数的图象.【专题】压轴题.【分析】立方体的上下底面为正方形,立方体的高为x,则得出y﹣x=2x,再得出图象即可.【解答】解:正方形的边长为x,y﹣x=2x,∴y与x的函数关系式为y=x,故选:B.【点评】本题考查了一次函数的图象和综合运用,解题的关键是从y﹣x等于该立方体的上底面周长,从而得到关系式.9.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A.B.C.D.【考点】函数的图象.【分析】生活中比较运动快慢通常有两种方法,即比较相同时间内通过的路程多少或通过相同路程所用时间的多少,但统一的方法是直接比较速度的大小.【解答】解:根据题中信息可知,相同的路程,跑步比漫步的速度快;在一定时间内没有移动距离,则速度为零.故小华的爷爷跑步到公园的速度最快,即单位时间内通过的路程最大,打太极的过程中没有移动距离,因此通过的路程为零,还要注意出去和回来时的方向不同,故B符合要求.故选B.【点评】此题考查函数图象问题,关键是根据速度的物理意义和比较物体运动快慢的基本方法.10.如图,挂在弹簧称上的长方体铁块浸没在水中,提着弹簧称匀速上移,直至铁块浮出水面停留在空中(不计空气阻力),弹簧称的读数F(N)与时间t(s)的函数图象大致是()A.B. C. D.【考点】函数的图象.【专题】压轴题.【分析】开始一段的弹簧称的读数保持不变,当铁块进入空气中的过程中,弹簧称的读数逐渐增大,直到全部进入空气,重量保持不变.【解答】解:根据铁块的一点过程可知,弹簧称的读数由保持不变﹣逐渐增大﹣保持不变.故选:A.【点评】本题考查了函数的概念及其图象.关键是根据弹簧称的读数变化情况得出函数的图象.11.函数y=的图象为()A.B.C.D.【考点】函数的图象.【专题】压轴题.【分析】从x<0和x>0两种情况进行分析,先化简函数关系式再确定函数图象即可.【解答】解:当x<0时,函数解析式为:y=﹣x﹣2,函数图象为:B、D,当x>0时,函数解析式为:y=x+2,函数图象为:A、C、D,故选:D.【点评】本题考查的是函数图象,利用分情况讨论思想把函数关系式进行正确变形是解题的关键,要能够根据函数的系数确定函数的大致图象.12.匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是下图中的()A.B.C.D.【考点】函数的图象.【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【解答】解:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为C.故选C.【点评】此题考查函数图象的应用,需注意容器粗细和水面高度变化的关联.13.如果两个变量x、y之间的函数关系如图所示,则函数值y的取值范围是()A.﹣3≤y≤3B.0≤y≤2C.1≤y≤3D.0≤y≤3【考点】函数的图象.【分析】根据图象,找到y的最高点是(﹣2,3)及最低点是(1,0),确定函数值y的取值范围.【解答】解:∵图象的最高点是(﹣2,3),∴y的最大值是3,∵图象最低点是(1,0),∴y的最小值是0,∴函数值y的取值范围是0≤y≤3.故选:D.【点评】本题考查了函数的图象,解答本题的关键是会观察图象,找到y的最高点及最低点.14.甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙两人进行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点【考点】函数的图象.【分析】根据给出的函数图象对每个选项进行分析即可.【解答】解:从图象可以看出,甲、乙两人进行1000米赛跑,A说法正确;甲先慢后快,乙先快后慢,B说法正确;比赛到2分钟时,甲跑了500米,乙跑了600米,甲、乙两人跑过的路程不相等,C说法不正确;甲先到达终点,D说法正确,故选:C.【点评】本题考查的是函数的图象,从函数图象获取正确的信息是解题的关键.15.如图所示的容器内装满水,打开排水管,容器内的水匀速流出,则容器内液面的高度h随时间x变化的函数图象最接近实际情况的是()A.B.C.D.【考点】函数的图象.【分析】根据容器内的水匀速流出,可得相同时间内流出的水相同,根据圆柱的直径越长,等体积的圆柱的高就越低,可得答案.【解答】解:圆柱的直径较长,圆柱的高较低,水流下降较慢;圆柱的直径变长,圆柱的高变低,水流下降变慢;圆柱的直径变短,圆柱的高变高,水流下降变快.故选:A.【点评】本题考查了函数图象,利用了圆柱的直径越长,等体积的圆柱的高就越低.16.如图,匀速地向此容器内注水,直到把容器注满,在注水过程中,下列图象能大致反映水面高度h随注水时间t变化规律的是()A.B. C.D.【考点】函数的图象.【分析】由于三个容器的高度相同,粗细不同,那么水面高度h随时间t变化而分三个阶段.【解答】解:最下面的容器容器最小,用时最短,第二个容器最粗,那么第二个阶段的函数图象水面高度h随时间t的增大而增长缓慢,用时较长,最上面容器较粗,那么用时较短.故选B.【点评】此题主要考查了函数图象,解决本题的关键是根据容器的高度相同,每部分的粗细不同得到用时的不同.17.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系用图象刻画出来,大致图象是()A.B.C.D.【考点】函数的图象;中心投影.【专题】压轴题;数形结合.【分析】根据中心投影的性质得出小红在灯下走的过程中影长随路程之间的变化,进而得出符合要求的图象.【解答】解:∵小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l 与行走的路程S之间的变化关系应为:当小红走到灯下以前:l随S的增大而减小;当小红走到灯下以后再往前走时:l随S的增大而增大,∴用图象刻画出来应为C.故选:C.【点评】此题主要考查了函数图象以及中心投影的性质,得出l随S的变化规律是解决问题的关键.18.汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()A.B.C.D.【考点】函数的图象.【分析】汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,所以前1小时路程随时间增大而增大,后来以100千米/时的速度匀速行驶,路程的增加幅度会变大一点.据此即可选择.【解答】解:由题意知,前1小时路程随时间增大而增大,1小时后路程的增加幅度会变大一点.故选:C.【点评】本题主要考查了函数的图象.本题的关键是分析汽车行驶的过程.19.小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了小明在散步过程汇总离家的距离s(米)与散步所用时间t(分)之间的函数关系,根据图象,下列信息错误的是()A.小明看报用时8分钟B.公共阅报栏距小明家200米C.小明离家最远的距离为400米D.小明从出发到回家共用时16分钟【考点】函数的图象.【分析】A.从4分钟到8分钟时间增加而离家的距离没变,所以这段时间在看报;B.4分钟时散步到了报栏,据此知公共阅报栏距小明家200米;C.据图形知,12分钟时离家最远,小明离家最远的距离为400米;D.据图知小明从出发到回家共用时16分钟.【解答】解:A.小明看报用时8﹣4=4分钟,本项错误;B.公共阅报栏距小明家200米,本项正确;C.据图形知,12分钟时离家最远,小明离家最远的距离为400米,本项正确;D.据图知小明从出发到回家共用时16分钟,本项正确.故选:A.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.20.园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图,则休息后园林队每小时绿化面积为()A.40平方米B.50平方米C.80平方米D.100平方米【考点】函数的图象.【分析】根据图象可得,休息后园林队2小时绿化面积为160﹣60=100平方米,然后可得绿化速度.【解答】解:根据图象可得,休息后园林队2小时绿化面积为160﹣60=100平方米,每小时绿化面积为100÷2=50(平方米).故选:B.【点评】此题主要考查了函数图象,关键是正确理解题意,从图象中找出正确信息.21.图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时【考点】函数的图象.【专题】行程问题.【分析】结合图象得出张强从家直接到体育场,故第一段函数图象所对应的y轴的最高点即为体育场离张强家的距离;进而得出锻炼时间以及整个过程所用时间.由图中可以看出,体育场离张强家2.5千米;平均速度=总路程÷总时间.【解答】解:A、由函数图象可知,体育场离张强家2.5千米,故A选项正确;B、由图象可得出张强在体育场锻炼30﹣15=15(分钟),故B选项正确;C、体育场离张强家2.5千米,体育场离早餐店距离无法确定,因为题目没说体育馆,早餐店和家三者在同一直线上,故C选项错误;D、∵张强从早餐店回家所用时间为95﹣65=30(分钟),距离为1.5km,∴张强从早餐店回家的平均速度1.5÷0.5=3(千米/时),故D选项正确.故选:C.【点评】此题主要考查了函数图象与实际问题,根据已知图象得出正确信息是解题关键.22.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打6折,设购买种子数量为x千克,付款金额为y元,则y与x的函数关系的图象大致是()A. B.C.D.【考点】函数的图象.【分析】根据玉米种子的价格为5元/千克,如果一次购买2千克以上种子,超过2千克的部分的种子的价格打6折,可知2千克以下付款金额为y元随购买种子数量为x千克增大而增大,超过2千克的部分打6折,y仍随x的增大而增大,不过增加的幅度低一点,即可得到答案.【解答】解:可知2千克以下付款金额为y元随购买种子数量为x千克增大而增大,超过2千克的部分打6折,y仍随x的增大而增大,不过增加的幅度低一点,故选:B.【点评】本题主要考查了函数的图象,关键是分析出分两段,每段y都随x的增大而增大,只不过快慢不同.23.若函数,则当函数值y=8时,自变量x的值是()A.± B.4 C.±或4 D.4或﹣【考点】函数值.【专题】计算题.【分析】把y=8直接代入函数即可求出自变量的值.。

北师大版八年级上册第六章一次函数全章复习测试及答案

北师大版八年级上册第六章一次函数全章复习测试及答案

【知识建构】【本章测评】一次函数(时间100分钟,满分100分)一、选择题(每小题3分,共计30分)1.下列函数中,是一次函数的是( ) A .y =3x B .y =x 2+3 C .y =3x -1 D .y =11x - 解析:根据一次函数的定义解题,若两个变量x ,y 间的关系式可以表示成y =kx +b(k 、b 为常数,k ≠0的形式,则称y 是x 的一次函数,其中x 是自变量,y 是因变量.当b =0时,则y =kx(k ≠0)称y 是x 的正比例函数.函数是一次函数必须符合下列两个条件: (1)关于两个变量x ,y 的次数是1次; (2)必须是关于两个变量的整式. 答案:选C .2.下列函数中,不是正比例函数的是( 7.D ) A .(0)xy k k=> B .y=kx (k<0) C .y=kx (k>0)D .23(3)y x x x =-+解析:根据一次函数的定义解题,若两个变量x ,y 间的关系式可以表示成y =kx +b(k 、b 为常数,k ≠0的形式,则称y 是x 的一次函数,其中x 是自变量,y 是因变量.当b =0时,则y =kx(k ≠0)称y 是x 的正比例函数.本题中不是正比例函数的是23(3)y x x x =-+.故答案:选D . 3.一次函数y =23x +2中,当x =9时,y 值为( )A.-4 B.-2 C.6 D.8解析:把x=9带入y=23x+2,求得y=8,故选D.答案:选D.4.如果点P(-1,3)在过原点的一条直线上,那么这条直线是()A.y=-3x B.y=13x C.y=3x-1 D.y=1-3x解析:因为这条直线经过原点,所以可设其表达式为y=kx,把点P(-1,3)带入求出k=-3即可.答案:选A.5.当x逐渐增大,y反而减小的函数是()A.y=x B.y=0.001x C.y=13D.y=-5x解析:根据一次函数y=kx+b(k≠0)与正比例函数y=kx(k≠0)的性质:当k>0时,y随x的增大而增大.当k<0时,y随x的增大而减小.函数y=x中,k=1>0,y随x的增大而增大;函数y=0.001x中,k=0.001>0,y随x的增大而增大;函数y=31的图象是平行于x轴的一条直线;函数y= y=-5x中,k=-5<0,y随x的增大而减小.故选D.答案:选D.6.函数y=-mx(m>0)的图象是( )解析:因为函数y=-mx(m>0)为正比例函数,所以其图象经过原点.又因为m>0,则-m<0,所以y随x的增大而减小,其图象经过二、四象限.故选A.答案:选A.7.一次函数y=kx+b的图象经过第一、三、四象限,则( )A.k>0,b>0 B.k>0,b<0C.k<0,b>0 D.k<0,b<0解析:根据直线y=kx+b(k≠0)在坐标平面内的位置与k、b的关系:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限.b>0时,直线与y 轴正半轴相交;b=0时,直线过原点;b<0时,直线与y 轴负半轴相交. 本题如图1所示:图1故选B . 答案:选B .8.已知变量y 与x 之间的函数关系的图象如图 2,它的解析式是()图2解析:从函数图象上可以看出,这条线段经过点(3,0)和(0,2),所以可以设其函数关系式为y=kx+2.再把点(3,0)带入求得k=32-,所以其函数关系式为y=32-x+2.且自变量的取值范围为0≤x ≤3.故选C .答案:选C .9.某市自来水公司年度利润表如图3,观察该图表可知,下列四个说法中错误的是( ) A .1996年的利润比1995年的利润增长-2145.33万元 B .1997年的利润比1996年的利润增长5679.03万元 C .1998年的利润比1997年的利润增长315.51万元 D .1999年的利润比1998年的利润增长-7706.77万元解析:从图象中获得的信息可得:1999年的利润比1998年的利润增长8652.01-(-945.30)=-9597.31.故选D .)30(232≤≤+-=x x y A 223+-=x y B)30(223≤≤+-=x x y C 232+-=x yD答案:选D .10.若函数y =2x +3与y =3x -2b 的图象交x 轴于同一点,则b 的值为( ) A .-3B .-23 C .9 D .-49解析:本题可先求函数y =2x +3与x 轴的交点,当y =0时,x =-23,即:交点(-23,0).再把交点(-23,0)代入函数y =3x -2b ,求得b =-49.故选D . 答案:选D .二、填空题(每空3分,共计21分)11.已知一次函数y =kx +5过点P (-1,2),则k =_________;函数y 随自变量x 的增大而_________.解析:把点P (-1,2)代入一次函数y =kx +5,求得k =3;因为k =3>0,所以函数y 随自变量x 的增大而增大答案:3 增大12.已知一次函数y =2x +4的图象经过点(m ,8),则m =_________.解析:要求m 的值,实质是求当y =8时,x =?把y =8代入一次函数y =2x +4,求得x =2,所以m =2.答案:213.已知y 与x+1成正比例,当x=5时,y=12,则y 关于x 的函数解析式是________. 解析:设所求的函数解析式为y=k(x+1)① 将x=5,y=12代入①,得 12=k(5+1),所以k=2. 答案:y=2x+214.某林场现有森林面积为1560平方千米,计划今后每年增加160平方千米的树林,那么森林面积y (平方千米)与年数x 的函数关系式为______,6年后林场的森林面积为______.解析:森林面积=每年增加的面积×年数+现有森林面积,所以y =160x +1560,6年后林场的森林面积为:160×6+1560=2520平方千米.答案:y =160x +1560 2520平方千米15.长沙向北京打长途电话,设通话时间x (分),需付电话费y (元),通话3分以内话费为3.6元.请你根据如图4所示的y 随x 的变化的图象,找出通话5分钟需付电话费____元.图4解析:要找出通话5分钟需付电话费,实质是求当x =5时,y =?从y 随x 的变化的图象中可以看出,当x =5时,y =6.答案:6三、解答题(本题共计49分)16.(6分)如图5下面有三个关系式和三个图象,哪一个关系式与哪一个图象能够表示同一个一次函数?(1)y =1-x 2; (2)a +b =3; (3)s=2t图5解析:(1)中,的图象是一次函数的图象,而y =1-x 2不是一次函数;(2)函数a +b =3可变形为b =-a +3,当a =3时,b =0,当a =0时,b =3,即:其图象经过点(3,0)和(0,3),所以符合要求;(3)先把函数s=2t 变形为t =21s ,当s=1时,t =21,即:其图象经过点(1,21),所以它不符合要求;答案:(2)符合要求17.(7分)已知y 是x 的一次函数 (1)根据下表写出函数表达式;分别把x =4,9,31代入(1)中所求关系式,求出相应的y 值.根据题意,设y =kx +b把(1,1),(3,5)代入上式,得 1=k +b① 5=3k +b②由①得,b =1-k 由②得,b =5-3k 所以1-k =5-3k 所以k =2 把k =2代入①,得b =-1 所以y =2x -1 当x =4时,y =7 当x =9时,y =17 当x =31时,y =61答案:y=2x-1,当x=4时,y=7 当x=9时,y=17当x=31时,y=6118.(8分)作出函数y=1-x的图象,并回答下列问题.(1)随着x值的增加,y值的变化情况是_________;(2)图象与y轴的交点坐标是_________,与x轴的交点坐标是_________;(3)当x_________时,y≥0.解析:因为函数y=1-x是一次函数,其图象是一条直线,所以可用两点确定一条直线的方法画这个函数的图象.取(0,1)、(1,0)较简便,如图.(1)根据一次函数y=kx+b(k≠0)与正比例函数y=kx(k≠0)的性质:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.函数y=1-x中,k=-1<0,y随x的增大而减小;(2)求图象与y轴的交点坐标,只须把x =0代入y=1-x中,求出y即可;与x轴的交点坐标,只须把y =0代入y=1-x中,求出x即可;(3)从图象中可以看出当x≤1时,y≥0.答案:函数图象如图6所示:图6(1)因为k<0所以随着x的增加,y的值逐渐减小;(2)图象与y轴的交点坐标是(0,1),与x轴的交点坐标是(1,0);(3)当x≤1时,y≥0.19.(8分)小明和小亮进行百米赛跑,小明比小亮跑得快.如果两人同时起步,小明肯定赢.现在小明让小亮先跑若干米.如图7中l1,l2分别表示两人的路程与小明追赶时间的关系.图7(1)哪条线表示小明的路程与时间的关系? (2)小明让小亮先跑了多少米? (3)谁将赢得这场比赛?解析:(1)因为小明后跑,小亮先跑,所以当x =0时,小明跑的路程为0,故l 2 表示小明的路程与时间的关系;(2)观察图象可知,小明让小亮先跑了10米;(3) 观察图象可知,当S=100米时,小明的时间小于小亮的时间,所以小明将赢得这场比赛.答案:(1) l 2 表示小明的路程与时间的关系; (2)观察图象可知,小明让小亮先跑了10米; (3)小明将赢得这场比赛.20.(10分)某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡,使用这两种卡租书,租书金额y (元)与租书时间x (天)之间的关系如图8所示.图8(1)分别写出用租书卡和会员卡租书的金额y (元)与租书时间x (天)之间的函数关系式. (2)两种租书方式每天租书的收费分别是多少元?(x ≤100)解析:(1)观察图象可知,用租书卡的金额与租书时间之间的函数图象经过点(0,0),和(100,50),为正比例函数,可设其函数关系式为y =kx ,把点(100,50)代入求得k =21,即:函数关系式为y =21x ;用会员卡租书的金额与租书时间之间的函数图象是一次函数,可设其函数关系式为y =kx +b ,其图象经过点(0,20)和(100,50),代入可得b =20,k =103,即:函数关系式为y =103x +20;(2)用租书卡的方式租书,每天租书的收费为50÷100=0.5元;用会员卡的方式租书,每天租书的收费为(50-20)÷100=0.3元.答案:(1)用租书卡时,y 与x 间的关系式为y =kx 当x =100,y =50时,k =21 所以y =21x 用会员卡时,y 与x 间的关系式为y =kx +b 因为(0,20),(100,50)在直线上, 所以b =20. 100k +b =50. 因为b =20,所以k =103,所以y =103x +20 (2)用租书卡的方式租书,每天租书的收费为50÷100=0.5(元) 用会员卡的方式租书,每天租书的收费为(50-20)÷100=0.3(元)21:(10分)有一批货,如果月初出售,可获利1000元,并可将本利和再去投资,到月末获利1.5%;如果月末售出这批货,可获利1200元,但要付50元保管费.(1)请表示出这批货物的成本a (元)与月初出售到月末的获利额p (元)之间的关系; (2)请问这批货在月初还是月末售出好?【解析】本题为决策性问题,一般先列出算式或建立函数关系式(变量之间的关系式),通过算式大小的比较或确定函数最值来作出相应的决策.【答案】(1)月初出售到月末的可获利润:(认真审题,理解题意是关键) p=1000+(a+1000)×1.5%=0.015a+1015即这批货物的成本a (元)与月初出售到月末的获利额p (元)之间的关系为: p=0.015a+1015.(2)如果月末售出这批货可获利润: q=1200-50=1150(元),由p -q=0.015a+1015-1150=0.015×(a -9000),所以当a>9000时,月初出售好;当a=9000时,月初、月末出售一样;当a<9000时,月末出售好.。

《一次函数》整章测试题及答案

《一次函数》整章测试题及答案

《一次函数》整章测试题班级_________ 姓名__________ 一、精心选一选,慧眼识金!(每小题3分,共24分)1.被誉为“沙漠之舟”的骆驼,其体温随着气温的变化而变化.在这个问题中,自变量是( ) A.骆驼 B.沙漠 C.气温 D.体温2.下列函数(1)y=3πx (2)y=8x -6 (3)y=1x (4)y=12 -8x (5)y=5x 2-4x+1中,是一次函数的有( )A.4个B.3个C.2个D.1个 3.函数282-+--=x x x y 的自变量x 的取值范围为( ) A .x ≥2且 x ≠8 B .x >2 C .x ≥2 D .x ≠8. 4.在下列各图象中,y 不是x 函数的是( )5.已知点(-6,y 1),(8,y 2)都在直线y= - 12 x -6上,则y 1 y 2大小关系是( )A.y 1 >y 2B.y 1 =y 2C.y 1 <y 2D.6.已知一次函数y=kx+b 的图象如图所示,则k,b 的符号是( )A.k>0,b>0B.k>0,b<0C.k<0,b>0 7.如果弹簧的长度y cm 与所挂物体的质量x(kg)图象如图所示,那么弹簧不挂物体时的长度是( ) A.9 cm B.10cm C.10.5cmD.11cm8.在同一平面直角坐标系中,若一次函数533-=+-=x y x y 与图象交于点M ,则点M的坐标为【 】 A .(1-,4) B .(1-,2) C .(2,1-) D .(2,1)题图AB 9.如图,点P 是等边△ABC 的边上的一个作 匀速运动的动点,其由点A 开始沿AB 边运动到 B 再沿BC 边运动到C 为止,设运动时间为t , △ACP 的面积为S ,S 与t 的大致图象是【 】二、耐心填一填,一锤定音!(每小题3分,共24分)9. 一次函数(26)5y m x =-+中,y 随x 增大而减小,则m 的取值范围是 . 10.在平面直角坐标系中,将直线y=2x -1向上平移动4个单位长度后,所得直线的解析式为 .11.若点A (m ,3)在函数y=5x -7的图象上,则m 的值为 .12.一次函数y= -4x+12的图象与x 轴交点坐标是 ,与y 轴交点坐标是 ,图象与坐标轴所围成的三角形面积是 .13.请你写出同时具备下列两个条件的一次函数表达式(写出一个即可) . ⑴ y 随着x 的增大而减小; ⑵ 图象经过点(2,-8). 三、用心做一做,马到成功!(本大题共52分)18.(本题9分)右图是某汽车行驶的路程S(km)与时间t(分钟) 的函数关系图。

人教版初中八年级数学下册第十九章《一次函数》经典测试卷(含答案解析)(2)

人教版初中八年级数学下册第十九章《一次函数》经典测试卷(含答案解析)(2)

一、选择题1.已知函数y kx b =+的图象如图所示,则函数y bx k =-的图象大致是( )A .B .C .D .B 解析:B【分析】根据函数y kx b =+在坐标系中得位置可知0,0k b >>,然后根据系数的正负即可判断函数y bx k =-的位置.【详解】函数y kx b =+的图像经过一、二、三象限,0,0k b ∴>>,0k -<∴∴函数y bx k =-的图像经过一、三、四象限,故选:B .【点睛】本题考查了一次函数与系数的关系,根据函数在坐标系中的位置得出系数的正负是解题关键.2.在平面直角坐标系中,横坐标和纵坐标都是整数的点叫整点,已知直线()1:20l y mx m =+<与直线2:4l y x =-,若两直线与y 轴围成的三角形区域内(不含三角形的边)有且只有三个整点,则m 的取值范围是( )A .21m -<<-B .21m -≤<-C .322m -≤<-D .322m -<≤-D 解析:D【分析】由1l 过(1,0)时区域内由两个整点求出m=-2,由1l 过(2,-1)时区域内有三个整点求出32m =-,综合求出区域内有三个整点可求出322m -<≤-. 【详解】当()1:20l y mx m =+<过(1,0)时区域内由两个整点,此时m+2=0,m=-2,当()1:20l y mx m =+<过(2,-1)时区域内有三个整点,此时122m -=+,32m =-, 两直线与y 轴围成的三角形区域内(不含三角形的边)有且只有三个整点,322m -<≤-. 故选择:D .【点睛】本题考查数形结合思想求区域整点问题,掌握利用区域三角形边界整点来解决问题是关键.3.甲乙两地相距3600m ,小王从甲地匀速步行到乙地,同时,小张从乙地沿同一路线匀速步行前往甲地,两人之间的路程(m)y 与小王步行的时间(min)x 之间的函数关系如图中的折线段AB BC CD --所示,已知小张先走完全程.结合图象,得到以下四个结论:①小张的步行速度是100m/min ;②小王走完全程需要36分钟;③图中B 点的横坐标为22.5;④图中点C 的纵坐标为2880.其中错误..的个数是( ) A .1 B .2C .3D .4B解析:B【分析】根据小张先走完全程可知,各个节点的意义,A 代表刚开始时两人的距离,B 代表两人相遇,C 代表小张到达终点,D 代表小王到达终点,根据这些节点的意义进行分析即可判断结论的正确与否.【详解】解:由图可知,点C 表示小张到达终点,用时36min ,点D 表示小王到达终点,用时45min ,故②错误;∴小张的步行速度为:360036100(/min)m ÷=,故①正确;小王的步行速度为:36004580(/min)m ÷=,点B 表示两人相遇,∴3600(10080)20(min)÷+=,∴两人20min 相遇,(20,0)B ,故③错误;∵362016(min)-=,∴从两人相遇到小张到终点过了16min ,∴16(10080)2880()m ⨯+=,∴小张到达终点时,两人相距2880m ,∴点C 的纵坐标为2880,故④正确,∴错误的是②③,故选:B .【点睛】本题考查一次函数的应用.解答本题的关键是明确题意,利用数形结合的思想解答. 4.已知一次函数2y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()2,4-B .()2,4--C .()2,4D .()0,4A 解析:A【分析】根据函数解析式知函数图象过点(0,2),由一次函数y 随x 的增大而减小,得到函数图象经过第一、二、四象限,且第一、四象限内点的纵坐标小于2,第二象限内点的纵坐标大于2,即可得到答案.【详解】∵一次函数2y kx =+,当x=0时y=2,∴函数图象过点(0,2),∵一次函数y 随x 的增大而减小,∴函数图象经过第一、二、四象限,且第一、四象限内点的纵坐标小于2,第二象限内点的纵坐标大于2,故选:A .【点睛】此题考查一次函数的性质,熟记一次函数的性质并熟练解决问题是解题的关键. 5.关于x 的正比例函数y kx =与一次函数y kx x k =+-的大致图像不可能是( ) A . B .C .D .D解析:D【分析】分k >0、k <0两种情况找出函数y=kx 及函数y=kx+x-k 的图象经过的象限,以及图象的变化趋势对照四个选项即可得出结论.【详解】解:设过原点的直线为l 1:y=kx ,另一条为l 2:y=kx+x-k ,当k <0时,-k >0,|k|>|k+1|,l 1的图象比l 2的图象陡,当k <0,k+1>0时,l 1:y kx =的图象经过二、四象限,l 2:y=kx+x-k 的图象经过一、二、三象限,故选项A 正确,不符合题意;当k <0,k+1<0时,l 1:y kx =的图象经过二、四象限,l 2:y=kx+x-k 的图象经过一、二、四象限,故选项B 正确,不符合题意;当k >0,k+1>0,-k <0时,l 1:y kx =的图象经过一、三象限,l 2:y=kx+x-k 的图象经过一、三、四象限,l 1的图象比l 2的图象缓,故选项C 正确,不符合题意;而选项D 中,,l 1的图象比l 2的图象陡,故选项D 错误,符合题意;【点睛】本题考查了正比例函数的图象及一次函数的图象,分k >0、k <0两种情况找出两函数图象经过的象限以及|k|的大小与函数图象的缓陡的关系是解答此题的关键.6.如图,在平面直角坐标系中点A 的坐标为()0,6,点B 的坐标为3,52⎛⎫-⎪⎝⎭,将AOB 沿x 轴向左平移得到A O B ''',若点B '的坐标为19,52⎛⎫-⎪⎝⎭,点A '落在直线y kx =上,则k 的值为( )A .43-B .34-C .34D .611-B 解析:B【分析】确定向左平移的距离为319()822---=,确定点A '的坐标为(-8,6),将其代入y=kx 中,得k=6(8)-=34-. 【详解】∵点B 的坐标为3,52⎛⎫- ⎪⎝⎭,将AOB 沿x 轴向左平移得到A O B ''',且点B '的坐标为19,52⎛⎫- ⎪⎝⎭, ∴向左平移的距离为319()822---=, ∵点A 的坐标为()0,6,∴点A '的坐标为(-8,6),∵点A '落在直线y kx =,∴6= -8k ,解得k=34-,.【点睛】本题考查了平移的基本规律,正比例函数解析式的确定,熟记平移的规律是解题的关键. 7.已知直线()1:0l y kx b k =+≠与直线()2:30l y mx m =-<在第三象限交于点M ,若直线1l 与x 轴的交点为()10B ,,则k 的取值范围是( ) A .33k -<<B .03k <<C .04k <<D .30k -<<B解析:B【分析】 由直线1l 与x 轴的交点为()10B ,可得直线1l 轴的表达式为y =kx−k ,则1l 与y 轴交点(0,−k ),再由直线()2:30l y mx m =-<在第三象限交于点M 得出(0,−k )在原点和点(0,−3)之间,即可求解.【详解】解:∵直线()1:0l y kx b k =+≠与x 轴的交点为B (1,0),∴k +b =0,则b =−k ,∴y =kx−k ,直线()2:30l y mx m =-<与y 轴的交点坐标为(0,−3),则1l 与y 轴交点(0,−k )在原点和点(0,−3)之间,即:−3<−k <0,解得:0<k <3,故选:B .【点睛】本题考查了一次函数与一元一次不等式,解题的关键是掌握一次函数的图象与性质并能利用数形结合的思想确定1l 与y 轴交点位置.8.函数2y x x =+-()P x,y 一定在第( )象限 A .第一象限B .第二象限C .第三象限D .第四象限B解析:B【分析】由二次根式和分式有意义的条件,得到0x <,然后判断得到0y >,即可得到答案.【详解】解:根据题意,则 ∵00x x -≥⎧⎪⎨-≠⎪⎩,解得:0x <, ∴20x >,10x >-, ∴210y x x=+>-, ∴点(,)P x y 一定在第二象限;故选:B .【点睛】本题考查了二次根式和分式有意义的条件,以及判断点所在的象限,解题的关键是熟练掌握所学的知识进行解题.9.下列图象中,不可能是关于x 的一次函数y =px ﹣(p ﹣3)的图象的是( ) A . B . C . D .D 解析:D【分析】先根据一次函数的增减性、与y 轴的交点可得一个关于p 的一元一次不等式组,再找出无解的不等式组即可得.【详解】A 、由图象知,0(3)0p p >⎧⎨-->⎩,解得03p <<,即它可能是关于x 的一次函数(3)y px p =--的图象,此项不符题意;B 、由图象知,0(3)0p p >⎧⎨--=⎩,解得3p =,即它可能是关于x 的一次函数(3)y px p =--的图象,此项不符题意;C 、由图象知,0(3)0p p <⎧⎨-->⎩,解得0p <,即它可能是关于x 的一次函数(3)y px p =--的图象,此项不符题意;D 、由图象知,0(3)0p p <⎧⎨--<⎩,不等式组无解,即它不可能是关于x 的一次函数(3)y px p =--的图象,此项符合题意;故选:D .【点睛】本题考查了一次函数的图象与性质、一元一次不等式组,熟练掌握一次函数的图象与性质是解题关键.10.某一次函数的图象经过点()1,2,且y 随x 的增大而增大,则这个函数的表达式可能是( )A .24y x =+B .31y x =-C .31y x =-+D .24y x =-+B 解析:B【分析】设一次函数关系式为y kx b =+,y 随x 增大而增大,则0k >;图象经过点(1,2),可得k 、b 之间的关系式.综合二者取值即可.【详解】解:设一次函数关系式为y kx b =+,图象经过点(1,2),2k b ∴+=; y 随x 增大而增大,0k ∴>.即k 取正数,满足2k b +=的k 、b 的取值都可以.故选:B .【点睛】本题考查了待定系数法求一次函数解析式及一次函数的性质,为开放性试题,答案不唯一.只要满足条件即可.二、填空题11.已知一次函数6y x =-+的图象上有两点()11,A y -,()22,A y ,则1y 与2y 的大小关系是______.【分析】一次函数中k=-1<0y 将随x 的增大而减小根据-1<2即可得出答案【详解】解:∵在一次函数中k=-1<0y 将随x 的增大而减小又∵-1<2∴y1>y2故答案为:y1>y2【点睛】本题考查一次函解析:12y y >【分析】一次函数6y x =-+中,k=-1<0,y 将随x 的增大而减小,根据-1<2即可得出答案.【详解】解:∵在一次函数6y x =-+中,k=-1<0,y 将随x 的增大而减小,又∵-1<2,∴y 1>y 2.故答案为:y 1>y 2.【点睛】本题考查一次函数的图象性质的应用,注意:一次函数y=kx+b (k 、b 为常数,k≠0),当k>0,y 随x 增大而增大;当k <0时,y 将随x 的增大而减小.12.已知点)(,A m n 在一次函数53y x =+的图像上,则53n m -+的值是______.6【分析】将点代入一次函数中得n-5m=3即可代入求值【详解】∵点在一次函数的图像上∴5m+3=n ∴n-5m=3∴=3+3=6故答案为:6【点睛】此题考查一次函数图象上点坐标特点已知式子的值求代数式解析:6【分析】将点)(,A m n 代入一次函数53y x =+中得n-5m=3,即可代入求值.【详解】∵点)(,A m n 在一次函数53y x =+的图像上,∴5m+3=n ,∴n-5m=3,∴53n m -+=3+3=6,故答案为:6.【点睛】此题考查一次函数图象上点坐标特点,已知式子的值求代数式的值,掌握函数图象上点坐标特点是解题的关键.13.如图,已知,,a b c 分别是Rt ABC △的三条边长,90C ∠=︒,我们把关于x 的形如a b y x c c =+的一次函数称为“勾股一次函数”;若点351,5P ⎛⎫ ⎪ ⎪⎝⎭在“勾股一次函数”的图象上,且Rt ABC △的面积是10,则c 的值是_________.【分析】依据题意得到三个关系式:a+b=cab=10a2+b2=c2运用完全平方公式即可得到c 的值【详解】解:∵点在勾股一次函数的图象上把代入得:即∵分别是的三条边长的面积为10∴故∴∴故解得:故答解析:52【分析】依据题意得到三个关系式:a+b=355c ,ab=10,a 2+b 2=c 2,运用完全平方公式即可得到c 的值.【详解】解:∵点35(1)5P ,在“勾股一次函数”a b y x c c =+的图象上,把35(1)5P ,代入得: 355a b c c=+,即355a b c +=, ∵,,a b c 分别是Rt ABC 的三条边长,90C ∠=︒,Rt ABC 的面积为10,∴1102ab =,222+=a b c ,故20ab =, ∴22()2a b ab c +-=,∴22352205c c ⎛⎫-⨯= ⎪ ⎪⎝⎭,故24405c =, 解得:52c =.故答案为:52.【点睛】此类考查了一次函数图象上点的坐标特征以及勾股定理的应用,根据题目中所给的材料结合勾股定理和乘法公式是解答此题的关键.14.如图,在平面直角坐标系中,点()1,1P a -在直线22y x =+与直线24y x =+之间(不在两条直线上),则a 的取值范围是_________. 【分析】先分别计算出P 在直线和直线上时a 的值然后结合题意即可解答【详解】解:当P 在直线y=2x+2上时a-1=2+2解得a=5;当P 在直线y=2x+4上时a-1=2+4解得a=7则当时点P 在两直线之解析:57a <<【分析】先分别计算出P 在直线22y x =+和直线24y x =+上时a 的值,然后结合题意即可解答.【详解】解:当P 在直线y=2x+2上时,a-1=2+2,解得a=5;当P 在直线y=2x+4上时,a-1=2+4,解得a=7则当57a <<时,点P 在两直线之间.故答案为:57a <<.【点睛】本题主要考查了一次函数与一元一次不等式,掌握一次函数图象经过的点,必能使解析式左右相等成为解答本题的关键.15.如图,一次函数483y x =-+的图象与,x y 轴交于点,A B ,点B 关于x 轴的对称点为C ,动点,P Q 分别在线段,BC AB 上(P 不与,B C 重合),且APQ ABO ∠=∠,当APQ 是以AQ 为底边的等腰三角形时,点P 的坐标是________.【分析】由一次函数的图象与轴交于点可得A (60)B (08)由勾股定理AB=由点B 与点C 关于x 轴对称可求C (0-8)AB=AC=10可证△BPQ ≌△CAP(AAS)由性质可得PB=CA=10由线段和差解析:(0,2)-【分析】由一次函数483y x =-+的图象与,x y 轴交于点,A B ,可得A (6,0),B (0,8),由勾股定理2222OA +OB =6+8=10,由点B 与点C 关于x 轴对称,可求C (0,-8),AB=AC=10,可证△BPQ ≌△CAP(AAS),由性质可得PB=CA=10,由线段和差OP=BP-OB=2即可.【详解】解:∵一次函数483y x =-+的图象与,x y 轴交于点,A B , ∴x=0,y=8;y=0,48=03x -+,解得x=6, ∴A (6,0),B (0,8),∴2222OA +OB =6+8=10,∵点B 与点C 关于x 轴对称,∴C (0,-8),AB=AC=10,∵∠QPA=∠ABC=∠ACB ,∴∠BPQ+∠APC=108°-∠QPA ,∵∠PAC+∠APC=180°-∠BCA=180°-∠QPA ,∴∠BPQ=∠CAP ,∵PQ=PA ,∴△BPQ ≌△CAP(AAS),∴PB=CA=10,∴OP=BP-OB=10-8=2,P(0,-2),故答案为:(0,-2).【点睛】本题考查一次函数的性质,勾股定理的应用,轴对称性质,等腰三角形的性质,三角形全等的判定与性质,掌握一次函数的性质,勾股定理的应用,轴对称性质,等腰三角形的性质,三角形全等的判定与性质,解题关键发现并会利用一线三等角构造全等.16.如图,在平面直角坐标系xOy 中,一次函数12y x b =--与正比例函数32y x =的图象交于点()2,A m ,与x 轴交于点B (5,0),则△OAB 的面积是________.【分析】先求出A 点坐标再过点A 作AC ⊥OB 垂足为C 用三角形面积公式即可求出面积【详解】解:把点代入得解得∴A 点坐标为(23)过点A 作AC ⊥OB 垂足为C ∵点B 坐标为(50)∴S △OAB=故答案为:【点解析:152【分析】先求出A 点坐标,再过点A 作AC ⊥OB ,垂足为C ,用三角形面积公式即可求出面积.【详解】解:把点()2,A m 代入32m x =,得 322m =⨯, 解得,3m =,∴A 点坐标为(2,3),过点A 作AC ⊥OB ,垂足为C ,∵点B 坐标为(5,0),∴S △OAB =111553222OB AC ⨯⨯=⨯⨯=, 故答案为:152.【点睛】本题考查了求正比例函数图象上点的坐标和利用坐标求三角形面积,解题关键是求出A 点坐标.17.矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为()6,8,点D 是OA 的中点,点E 在线段AB 上,当CDE ∆的周长最小时,点E 的坐标是_______.(6)【分析】如图作点D 关于直线AB 的对称点H 连接CH 与AB 的交点为E 此时△CDE 的周长最小先求出直线CH 解析式再求出直线CH 与AB 的交点即可解决问题【详解】解:如图作点D 关于直线AB 的对称点H 连接解析:(6,83)【分析】如图,作点D 关于直线AB 的对称点H ,连接CH 与AB 的交点为E ,此时△CDE 的周长最小,先求出直线CH 解析式,再求出直线CH 与AB 的交点即可解决问题.【详解】解:如图,作点D 关于直线AB 的对称点H ,连接CH 与AB 的交点为E ,此时△CDE 的周长最小.∵D (3,0),A (6,0),B (6,8),∴H (9,0),C (0,8),设直线CH 解析式为8y kx =+,∴098k =+, ∴89k =-, ∴直线CH 解析式为y =−89x +8, ∴x =6时,y =83, ∴点E 坐标(6,83). .【点睛】本题考查矩形的性质、坐标与图形的性质、轴对称−最短问题、一次函数等知识,解题的关键是利用轴对称找到点E 位置,学会利用一次函数解决交点问题,属于中考常考题型. 18.已知一次函数3y x 的图像经过点(,)P a b 和(,)Q c d ,那么()()b c d a c d ---的值为____________.-9【分析】根据一次函数图象上的点的坐标特征将点P (ab )和Q (cd )代入一次函数的解析式求出a−bc−d 的值然后整体代入所求的代数式并求值【详解】解:∵一次函数y =x +3的图象经过点P (ab )和Q解析:-9.【分析】根据一次函数图象上的点的坐标特征,将点P (a ,b )和Q (c ,d )代入一次函数的解析式,求出a−b 、c−d 的值,然后整体代入所求的代数式并求值.【详解】解:∵一次函数y =x +3的图象经过点P (a ,b )和Q (c ,d ),∴点P (a ,b )和Q (c ,d )满足一次函数的解析式y =x +3,∴b =a +3,d =c +3,∴b−a =3,c−d =−3;∴()()b c d a c d ---=(b−a )(c−d )=3×(−3)=-9;故答案为:-9.【点睛】本题考查了一次函数图象上点的坐标特征,经过函数的某点一定在函数的图象上,并且一定满足函数的解析式.19.在计算机编程中有这样一个数字程序:对于二个数a ,b 用min{,}a b 表示这两个数中较小的数.例如:min{1,2}1-=-,则min{1,22}x x +-+的最大值为________.【分析】分别画出函数的图象根据图象可知在时有最大值求出此时的值即可【详解】解:令函数联立得函数图象如下根据函数图象可知当时min{x+1-2x+2}的最大值为故答案为:【点睛】本题考查一次函数与一元 解析:43 【分析】分别画出函数1y x =+,22y x =-+的图象,根据图象可知min{1,22}x x +-+在13x =时有最大值,求出此时的值即可.【详解】解:令函数1y x =+,22y x =-+, 联立122y x y x =+⎧⎨=-+⎩得1343x y ⎧=⎪⎪⎨⎪=⎪⎩, 函数图象如下,根据函数图象可知,当时13x =,min{x+1,-2x+2}的最大值为43, 故答案为:43.【点睛】本题考查一次函数与一元一次不等式.掌握数形结合思想,能借助图形分析是解题关键.20.平面直角坐标系中,点A坐标为(),将点A沿x轴向左平移a个单位后恰好落在正比例函数y=-的图象上,则a的值为__________.【分析】根据点的平移规律可得平移后点的坐标是(2-a3)代入计算即可【详解】解:∵A坐标为(23)∴将点A沿x轴向左平移a个单位后得到的点的坐标是(2-a3)∵恰好落在正比例函数的图象上∴解得:a=【分析】根据点的平移规律可得平移后点的坐标是,3),代入y=-计算即可.【详解】解:∵A坐标为3),∴将点A沿x轴向左平移a个单位后得到的点的坐标是-a,3),∵恰好落在正比例函数y=-的图象上,∴)3a-=,解得:.【点睛】此题主要考查了正比例函数图象上点的坐标特点,以及点的平移规律,关键是要懂得左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加..三、解答题21.已知直线l1:y=kx+b经过点A(12,2)和点B(2,5).(1)求直线l1的表达式;(2)求直线l1与坐标轴的交点坐标.解析:(1)y=2x+1;(2)(0,1)和(﹣12,0)【分析】(1)由待定系数法可求得直线l1的解析式;(2)令x=0可求得其与y轴的交点坐标,令y=0,可求得其与x轴的交点坐标.【详解】解:(1)∵直线l1:y=kx+b经过点A(12,2)和点B(2,5).∴12225k b k b ⎧+=⎪⎨⎪+=⎩,解得21k b =⎧⎨=⎩, 即y=2x+1;(2)令x=0,则y=1;令y=0,则x=-12, ∴直线l 1与坐标轴的交点坐标为(0,1)和(-12,0). 【点睛】本题考查待定系数法求一次函数的解析式,一次函数的上点的坐标特征,熟练掌握待定系数法是解题的关键.22.某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.设每天安排x 人生产乙产品.(1)根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.写出乙每件产品可获利润y (元)与x 之间的函数关系式.(2)若乙产品每件利润为100元,且每天生产件数不少于2件且不多于10件,该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W (元)的最大值及相应的x 值.解析:(1)()13025y x x =-≥;(2)当x =8时,可获得的最大利润为2510元.【分析】(1)根据乙产品的利润和数量之间的关系,可得出y 与x 之间的函数关系式;(2)根据每天甲、丙两种产品的产量相等得到m 与W 之间的关系式,再利用一次函数的性质求解即可.【详解】解:(1)在乙每件120元获利的基础上,每增加1件,当天平均每件利润减少2元,则乙产品的每件利润为120-2(x-5)=130-2x .∴y =130﹣2x (x ≥5).(2)设该企业安排m 人生产甲产品,则安排2m 人生产丙产品,安排(65-3m )人生产乙产品,依题意,得:W=15×2m+30×2m+100(65-3m)=-210m+6500,∵2≤65-3m≤10, 解得:118212≤≤m , 又∵k=-210<0, ∴W 随m 的增大而减小,∵m 是非负整数,∴取m=19时,W 最大值=-210×19+6500=2510,∴x=65-3m=65-57=8(人),答:安排19人生产甲产品,安排38人生产丙产品,安排8人生产乙产品时,可获得的最大利润为2510元.【点睛】本题考查一次函数的实际应用,解题的关键是理解题意,理清题中的数量关系.23.每年“双11"天猫商城都会推出各种优惠活动进行促销,今年,王阿姨的“双11“到来之前准备在两家天期店铺中选择一家购买原价均为1000元/条的被子2条和原价均为600元/个的颈椎枕若干个,已如网家店铺在活动明间分别给子以下优惠:A店铺:"双11"当天购实所有商品可以享受8折优惠:B店铺:买2条被子,赠送1个预椎枕、同时“双11"当天下单,还可立减160元;设购买颈椎枕x(个),若王阿姨在“双11"当天下单,A,B两个店铺优惠后所付金额分别为y A(元)、y B(元).(1)试分别表示y A、y B与x的函数关系式;(2)王阿姨准备在”双11"当天购买4个颈椎枕,通过计算说明在哪家店铺购买更省钱?解析:(1)y A=480x+1600,y B=600x+1240;(2)在A店铺购买更省钱.【分析】(1)根据两个店铺的优惠方案即可得到结果;x 代入到(1)的式子中,即可得解;(2)把4【详解】(1)解:由题意得:.y A=1000×2×0.8+0.8×600x=480x+1600;y B=1000×2+600(x-1)-160=600x+1240;(2)解:当x=4时,y a=480×4+1600=3520;y B=600×4+1240=3640;∵3520<3640,∴在A店铺购买更省钱.【点睛】本题主要考查了一次函数的应用,准确理解题意列式计算是解题的关键.24.天府七中科创小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,经过7min同时到达C 点,乙机器人始终以60m/min的速度行走,如图是甲、乙两机器人之间的距离y(m)与他们的行走时间x(min)之间的图象,请结合图象,回答下列问题.(1)A、B两点之间的距离是________m,甲机器人前2min的速度为________m/min.(2)若前3min 甲机器人的速度不变,求出前3min ,甲、乙两机器人之间的距离y (m )与他们的行走时间x (min )之间的关系式.(3)若前3min 甲机器人的速度依然不变,当两机器人相距不超过28m 时,求出时间a 的取值范围.解析:(1)70,95;(2)3570y x =-;(3)1.2 2.8t ≤≤或4.67t ≤≤.【分析】(1)根据图象结合题意,即可得出A 、B 两点之间的距离是70m .设甲机器人前2min 的速度为xm/min ,根据2分钟甲追上乙列出方程,即可求解;(2)先求出F 点的坐标,再设线段EF 所在直线的函数解析式为y =kx +b ,将()2,0E 、()3,35F 两点的坐标代入,利用待定系数法即可求解;(3)设()0,70D ,()2,0E ,根据图象可知两机器人相距28m 时有三个时刻(0~2,2~3,4~7)分别求出DE 所在直线的解析式、GH 所在直线的解析式,再令28y =,列出方程求解即可.【详解】(1)由题意可知,A 、B 两点之间的距离是70m ,设甲机器人前2min 的速度为m /min x ,根据题意得2(60)70x -=,解得95x =.(2)若前3min 甲机器人的速度不变,由(1)可知,前3min 甲机器人的速度95m/min , 则点F 纵坐标为:(32)(9560)35-⨯-=,即()3,35F ,设线段EF 所在直线的函数解析为:y kx b =+,将()2,0E ,()3,35F 代入,得20335k b k b +=⎧⎨+=⎩,解得3570k b '=⎧⎨=-⎩, 则线段EF 所在直线的函数解析式为:3570y x =-.(3)如图:设()0,70D ,()7,0H ,∵()0,70D ,()2,0E ,∴线段DE 所在直线的函数解析式为:3570y x =-+,()4,35G ,()7,0H ,∴线段GH 所在直线的函数解析式为:3524533y x =-+, 设两机器人出发min t 时相距28m ,由题意得:357028t -+=或357028t -=,或352452833t -+=, 解得: 1.2t =或28t =.或 4.6t =, 1.2 2.8t ∴≤≤或4.67t ≤≤时,两机器人相距不超过28m .【分析】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.25.某草莓种植基地迎来了收获旺季.草莓的销售有两种形式,即直接销售和加工销售,假设当天都能销售完并且没有损耗.已知直接销售是4元/kg ,加工销售是15元/kg ,该基地聘用采摘工人与加工工人共20人,每人每天可采摘60kg 或加工30 kg 草莓.(1)设采摘工人x 人,剩下的工人加工草莓,若基地一天的总销售额为y 元,请列出y 与x 的函数表达式;(2)为了使得一天的销售额最大,如何分配工人?试求出销售额的最大值.解析:(1)y =-90x +6600;(2)安排7名工人采摘,13名工人加工,最大值是5970元【分析】(1)根据题意可以列出相应的函数关系式,注意加工之前必须先采摘才可以; (2)根据题意和(1)中的函数解析式可以解答本题.【详解】解:(1)由题意可得,y =[60x -(20-x )×30]×4+30(20-x )×15=-90x +6600,即y 与x 的函数关系式是y =-90x +6600;(2)∵60x ≥30(20-x ),∴x ≥203, ∵x 是整数且x ≤20,∴7≤x ≤20,∵y =-90x +6600,-90<0,∴当x =7时,y 取得最大值,此时y =-90×7+6600=5970,20-x =13,答:安排7名工人采摘,13名工人加工,才能使一天的销售收入最大,最大值是5970元.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用一次函数的性质解答.26.在平面直角坐标系中,已知一次函数4y kx =+与12y x b =-+的图象都经过()2,0A -,且分别与y 轴交于点B 和点C .(1)求,k b 的值;(2)设点D 在直线12y x b =-+上,且在y 轴右侧,当ABD ∆的面积为15时,求点D 的坐标. 解析:(1)2,k =1b =-;(2)()4,3D -.【分析】(1)依据一次函数4y kx =+与12y x b =-+的图象都经过点A (−2,0),将点A 的坐标分别代入两个一次函数表达式,即可得到k 和b 的值; (2)根据解析式求得B 、C 两点的坐标,然后依据S △ABC +S △BCD =15,即可得到点D 的横坐标,进而得出点D 的坐标.【详解】()1将()20A -,代入4y kx =+,得:240k -+= 解得2k =.将()20A -,代入12y x b =-+,得:10b +=, 解得:1b =-. ()2如图,过D 作DE y ⊥轴于E ,在24y x =+中,令0x =,则4y =,所以点B 的坐标为()04,. 在112y x =--中, 令0x =,则1y =-. 所以点C 的坐标为()01-,. 所以5BC =.15ABD ABC BCD S S S ∆∆∆=+=,即1111255152222AO BC DE BC DE ⨯+⨯=⨯⨯+⨯⨯=. 解得4DE =在112y x =--中,令4x =,得3y =-. 所以点D 的坐标为()43-,. 【点睛】本题主要考查了一次函数的图象问题,关键是掌握一次函数图象上点的坐标特征,并弄清题意,学会综合运用其性质解决问题.27.去年我县某学校计划租用6辆客车送240名师生到县学生实训基地参加社会实践活动.现有甲、乙两种客车,它们的载客量和租金如下表.设租用甲种客车x 辆,租车总费用为y 元.(2)求出自变量的取值范围;(3)选择怎样的租车方案所需的费用最低?最低费用多少元?解析:(1)y =﹣80x +1680;(2)0≤x ≤2且x 为整数;(3)租甲种客车2辆,乙种客车4辆费用最低,最低费用为1520元.【分析】(1)根据题意和表格中的数据,可以得到y (元)与x (辆)之间函数关系式; (2)根据题意和表格中的数据,可以计算出自变量的取值范围;(3)根据一次函数的性质和x 的取值范围,可以得到选择怎样的租车方案所需的费用最低,最低费用多少元.【详解】解:(1)由题意可得,y =200x +280(6﹣x )=﹣80x +1680,即y (元)与x (辆)之间函数关系式是y =﹣80x +1680;(2)由题意可得,30x +45(6﹣x )≥240,解得,x ≤2,又∵x ≥0,∴自变量的取值范围是0≤x ≤2且x 为整数;(3)由(1)知y =﹣80x +1680,故y 随x 的增大而减小,∵0≤x ≤2且x 为整数,∴当x =2时,y 取得最小值,此时y =1520,6﹣x =4,即租甲种客车2辆,乙种客车4辆费用最低,最低费用为1520元.【点睛】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.28.某单位急需用车,但又不准备买车,他们准备和一个个体车主或一个出租车公司其中的一家签定月租车合同,设汽车每月行驶x 千米,应付给个体车主的月费用是1y 元,应付给出租车公司的月租费用是2y 元,1y ,2y 分别与x 之间的函数关系图象如图,观察图象回答下列问题:(1)求1y ,2y 分别与x 之间的函数关系式;(2)每月行驶的路程等于多少时,租两家的费用相同?(3)如果这个单位估计每月行驶的路程为2400千米,那么这个单位租哪一家的车合算,并说明理由?解析:(1)143y x =,2210003y x =+;(2)当每月行驶1500千米时,租两家的费用相同;(3)当每月行驶的路程为2400千米时,选择出租车公司合算.【分析】 (1)1y 是正比例函数,2y 是一次函数,利用待定系数法求解即可;(2)根据函数图象分析即可;(3)当路程为2400千米时,求出1y ,2y ,比较大小即可;【详解】解:(1)设11y k x =,根据题意,得120001500k =,解得143k =, ∴143y x =, 设22y k x b =+,根据题意,得,1000b =,①220001500k b =+②,将①代入②得223=k , ∴2210003y x =+; (2)当每月行驶1500千米时,租两家的费用相同.。

一次函数单元测试题含答案

一次函数单元测试题含答案

一次函数单元测试题含答案一次函数单元测试题一、填空(每小题3分,共30分)1.下列函数中,是一次函数的有( 3 )。

2.弹簧不挂物体时的长度是 (C) 10.5cm。

3.下列函数中,自变量x的取值范围是x≥2的是 (A) y=2-x。

4.若把一次函数y=2x-3,向下平移3个单位长度,得到图象解析式是 (B) y=2x-6.5.若函数y=kx+b的图象如图所示,那么当y>0时,x的取值范围是:( B ) x>2.6.一次函数y=1/kx+b与y=2x+a的图象如图6,则下列结论①k0;③当x<3时,y1<y2中,正确的个数是 (2)。

7.已知点(-4,y1),(2,y2)都在直线y=-2x+2上,则y1、y2大小关系是 (C) y1<y2.8.一次函数y=kx+b满足kb>0且y随x的增大而减小,则此函数的图象不经过 (A) 第一象限。

9.若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是 (D) 0<k<3.10.如图3,一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为 (D) y=-x-2.二.填空(每小题4分,共32分)11、一次函数解析式为y=-2x+7.13、若解方程x+2=3x-2得x=1,则当x<1时直线y=x+2上的点在直线y=3x-2上相应点的上方。

14、若一次函数y=kx+b交于y轴的负半轴,且y的值随x的增大而增大,则k<0,b<0.15、已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组{x-y-3=0,2x-y+2=0}的解是(-1,-4)。

16、如果直线y=-2x+k与两坐标轴所围成的三角形面积是16,则k的值为4.17、直线y=(m-1)x+m2+1与y轴的交点坐标是(0,5),且直线经过第一、二、四象限,则m=2.18、已知y+2与x-1成正比例函数,且x=4时y=6,则y与x之间的函数关系式为y=1.5(x-1)。

第5章 一次函数 浙教版数学八年级上册单元测试B卷(含解析)(困难)

第5章 一次函数 浙教版数学八年级上册单元测试B卷(含解析)(困难)

第五章、一次函数单元测试(难度:困难)满分100分一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列说法不正确的是()A.正方形面积公式S=a2中有两个变量:S,aB.圆的面积公式S=πr2中的π是常量C.在一个关系式中,用字母表示的量可能不是变量D.如果a=b,那么a,b都是常量2.(3分)下列曲线中不能表示y是x的函数的是()A.B.C.D.3.(3分)以固定的速度v0(m/s)向上抛出一个小球,小球的高度h(m)与小球运动的时间t(s)之间的关系式是h=v0t﹣4.9t2,在这个关系式中,常量、变量分别为()A.常量为4.9,变量为t,hB.常量为v0,变量为t,hC.常量为﹣4.9,v0,变量为t,hD.常量为4.9,变量为v0,t,h4.(3分)已知y1,y2均为关于x的函数,当x=a时,函数值分别为A1,A2,若对于实数a,当0<a<1时,都有﹣1<A1﹣A2<1,则称y1,y2为亲函数,则以下函数y1和y2是亲函数的是()A.y1=x2+1,y2=B.y1=x2+1,y2=2x﹣1C.y1=x2﹣1,y2=D.y1=x2﹣1,y2=2x﹣15.(3分)按照如图所示的运算程序计算函数y的值,若输入x的值是5,则输出y的值是14,若输入x的值是﹣4,则输出y的值是()A.﹣14B.﹣13C.﹣6D.﹣46.(3分)小聪某次从家出发去公园游玩的行程如图所示,他离家的路程为s米,所经过的时间为t分钟.下列选项中的图象,能近似刻画s与t之间关系的是()A.B.C.D.7.(3分)定义新运算:a⊕b=,例如:3⊕4=,3⊕(﹣4)=,则函数y=5⊕x(x≠0)的图象大致是()A.B.C.D.8.(3分)如图1,在矩形ABCD中,动点P从点B出发,沿B→C→D→A方向匀速运动至点A停止.已知点P的运动速度为1cm/s,设点P的运动时间为x(s),△P AB的面积为y(cm2),若y关于x的函数图象如图2所示,则矩形对角线AC的长为()A.5B.6C.8D.109.(3分)一次函数y1=ax+b与y2=cx+d的图象如图所示,下列结论中正确的有()①对于函数y=ax+b来说,y随x的增大而减小②函数y=ax+d的图象不经过第一象限③④d<a+b+cA.1个B.2个C.3个D.4个10.(3分)如图,已知直线AB:y=分别交x轴、y轴于点B、A两点,C(3,0),D、E分别为线段AO和线段AC上一动点,BE交y轴于点H,且AD=CE.当BD+BE 的值最小时,则H点的坐标为()A.(0,4)B.(0,5)C.D.二.填空题(共7小题,满分28分,每小题4分)11.(4分)若关于x的函数y=kx﹣2k+3﹣x+5(x≠0)是一次函数,则k=.12.(4分)新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[1,m﹣3]的一次函数是正比例函数,则关于x的方程+=1的解为.13.(4分)当﹣2≤x≤4时,直线y=kx+b经过点(0,﹣2),且与两坐标轴所围成的三角形面积为3,则k的值为.14.(4分)如图,在平面直角坐标系中,点A1的坐标是(0,﹣1),点A1,A2,A3,A4,A5…所在直线与x轴交于点B0(﹣2,0),点B1,B2,B3,B4…都在x轴上,△A1B1B2,△A2B2B3,△A3B3B4,…都是等腰直角三角形,则等腰直角三角形A2022B2022B2023的腰长A2022B2022为.15.(4分)甲、乙两车分别从A,B两地同时相向匀速行驶,当乙车到达A地后,继续保持原速向远离B的方向行驶,而甲车到达B地后立即掉头,并保持原速与乙车同向行驶,经过12小时后两车同时到达距A地300千米的C地(中途休息时间忽略不计).设两车行驶的时间为x(小时),两车之间的距离为y(千米),y与x之间的函数关系如图所示,则当乙车到达A地时,甲车距A地千米.16.(4分)如图,直线y=2x+1与y轴交于点A,直线上一点B(m,3),在x轴上存在一点P,使P A+PB最小.(1)点P的坐标为.(2)P A+PB=.17.(4分)如图,在平面直角坐标系xOy中,点B(﹣1,4),点A(﹣7,0),点P是直线y=x﹣2上一点,且∠ABP=45°,则点P 的坐标为.三.解答题(共6小题,满分42分,每小题7分)18.(7分)为了抗击新冠疫情,我市甲、乙两厂积极生产了某种防疫物资共400吨,甲厂的生产量是乙厂的2倍少80吨.这批防疫物资将运往A地220吨,B地180吨,运费如表(单位:元/吨).目的地A B生产甲3045乙2535(1)求甲、乙两厂各生产了这批防疫物资多少吨?(2)设这批物资从甲厂运往A地a吨,全部运往A,B两地的总运费为w元.求w与a 之间的函数关系式,并设计使总运费最少的调运方案,求出最少总运费.19.(7分)周末早晨,小明父子两人同时从家出发跑步锻炼身体.小明跑步速度快,跑了一段时间后立即以一定的速度按原路返回,与爸爸相遇后,父子两人按小明返回时的速度返回家中.下面的图象反映的是父子两人离家的距离和离家的时间的关系,观察图象回答问题:(1)小明去广场时的速度是米/分;爸爸去广场时的速度是米/分;父子两返回时的速度是米/分;(2)a表示的数字是;(3)直接写出运动过程中父子两人何时相距200米.20.(7分)如图,在平面直角坐标系中,点A的坐标为(﹣1,2).(1)将点A向右平移5个单位长度,再向上平移2个单位长度,得到点B,则点B的坐标是;点C与点A关于原点O成中心对称,则点C的坐标是;(2)一次函数的图象经过B,C两点,求直线BC的函数表达式;(3)设直线BC与x轴交于点D,点P在x轴上,且满足△PBD的面积为6,求点P的坐标.21.(7分)如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣1),B(1,3)两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的表达式;(2)求△AOB的面积.22.(7分)点P是平面直角坐标系中的一点且不在坐标轴上,过点P向x轴,y轴作垂线段,若垂线段的长度的和为4,则点P叫做“垂距点”,例如:如图中的P(1,3)是“垂距点”.(1)在点A(2,2),B(,﹣),C(﹣1,5),是“垂距点”的为;(2)若D(m,m)为“垂距点”,求m的值;(3)若过点(2,3)的一次函数y=kx+b(k≠0)的图象上存在“垂距点”,则k的取值范围是.23.(7分)如图1,已知▱ABCD,AB∥x轴,AB=6,点A的坐标为(1,﹣4),点D的坐标为(﹣3,4),点B在第四象限,点P是▱ABCD边上的一个动点.(1)若点P在边BC上,PD=CD,求点P的坐标.(2)若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=x﹣1上,求点P 的坐标.(3)若点P在边AB,AD,CD上,点G是AD与y轴的交点,如图2,过点P作y轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将△PGM沿直线PG翻折,当点M的对应点落在坐标轴上时,求点P的坐标.(直接写出答案)。

【精选】人教版八年级下册数学第十九章《一次函数》测试卷(含答案)

【精选】人教版八年级下册数学第十九章《一次函数》测试卷(含答案)

【精选】人教版八年级下册数学第十九章《一次函数》测试卷(含答案)一、选择题(每题3分,共30分)1.寒冷的冬天里我们在利用空调制热调控室内温度的过程中,空调的每小时用电量随开机设置温度的高低而变化,这个问题中自变量是( ) A .每小时用电量 B .室内温度 C .开机设置温度 D .用电时间2.【2022·恩施州】函数y =x +1x -3的自变量x 的取值范围是( )A .x ≠3B .x ≥3C .x ≥-1且x ≠3 D.x ≥-13.【教材P 82习题T 7变式】下列图象中,表示y 是x 的函数的是( )4.一个正比例函数的图象经过点(2,-1),则它的解析式为( )A .y =-2xB .y =2xC .y =-12xD .y =12x5.把直线y =x 向上平移3个单位长度,下列点在该平移后的直线上的是( )A .(2,2)B .(2,3)C .(2,4)D .(2,5)6.【2022·邵阳】在直角坐标系中,已知点A ⎝ ⎛⎭⎪⎫32,m ,点B ⎝⎛⎭⎪⎪⎫72,n 是直线y =kx+b (k <0)上的两点,则m ,n 的大小关系是( ) A .m <n B .m >n C .m ≥n D .m ≤n7.【2021·海南】李叔叔开车上班,最初以某一速度匀速行驶,中途停车加油耽误了几分钟,为了按时到单位,李叔叔在不违反交通规则的前提下加快了速度,仍保持匀速行驶,则汽车行驶的路程y(千米)与行驶的时间t(小时)的函数关系的大致图象是( )8.表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab≠0)的图象可能是( )9.【2021·安徽】某品牌鞋子的长度y cm与鞋子的“码”数x之间满足一次函数关系.若22码鞋子的长度为16 cm,44码鞋子的长度为27 cm,则38码鞋子的长度为( )A.23 cm B.24 cm C.25 cm D.26 cm10.【传统文化】北京冬奥会开幕式上,以“二十四节气”为主题的倒计时短片,用“中国式浪漫”美学惊艳了世界,下图是一年中部分节气所对应的白昼时长示意图,给出下列结论:①从立春到大寒,白昼时长先增大再减小;②夏至时白昼时长最长;③春分和秋分,昼夜时长大致相等.其中正确的是( )A.①②B.②③C.②D.③二、填空题(每题3分,共24分)11.函数y=(m-2)x|m|-1+m+2是关于x的一次函数,则m=________. 12.【开放题】【2022·上海】已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:______________.13.若一个正比例函数的图象经过A(3,6),B(m,-4)两点,则m=________.14.如图,直线y=x+2与直线y=ax+4相交于点A(1,3),则关于x的不等式ax+4≥x+2的解集为__________.(第14题) (第17题) (第18题)15.关于x的一次函数y=(2-m)x-3m的图象经过第一、三、四象限,则m的取值范围为__________.16.声音在空气中传播的速度简称音速,科学研究发现声音在空气中传播的速度(m/s)与气温(℃)有关,下表列出了一组不同气温时的音速:用y(m/s)表示音速,用x(℃)表示气温,则y与x之间的关系式为____________.17.【教材P97图19.2-8变式】如图,AB,CB表示某工厂甲、乙两车间产品的总量y(t)与生产时间x(天)之间的函数图象,第30天结束时,甲、乙两车间产品总量为________t.18.【2022·天津四十三中模拟】日常生活中常用的二维码是由许多大小相同的黑白两色小正方形按某种规律组成的一个大正方形,图①是一个20×20格式(即黑白两色小正方形个数的和是400)的二维码,左上角、左下角、右上角是三个相同的7×7格式的正方形,将其中一个放大后如图②,除这三个正方形外,图①中其他的黑色小正方形个数y与白色小正方形个数x正好满足图③所示的函数图象,则图①所示的二维码中共有个白色小正方形.三、解答题(19,20题每题12分,其余每题14分,共66分)19.【教材P107复习题T4(2)改编】一次函数的图象经过(-2,1)和(1,4)两点.(1)求这个一次函数的解析式;(2)当x=3时,求y的值.20.如图,已知直线l1:y1=2x+1与坐标轴交于A、C两点,直线l2:y2=-x -2与坐标轴交于B、D两点,两线的交点为P点.(1)求P点的坐标;(2)求△APB的面积;(3)利用图象求当x取何值时,y1>y2.21.【立德树人】【2022·成都】随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18 km/h,乙骑行的路程s(km)与骑行的时间t(h)之间的关系如图所示.(1)直接写出当0≤t≤0.2和t>0.2时,s与t之间的函数解析式;(2)何时乙骑行在甲的前面?22.【数学建模】【2022·云南】某学校要购买甲、乙两种消毒液,用于预防新型冠状病毒.若购买9桶甲消毒液和6桶乙消毒液,则一共需要615元;若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元.(1)每桶甲消毒液、每桶乙消毒液的价格分别是多少元?(2)若该校计划购买甲、乙两种消毒液共30桶,其中购买甲消毒液a桶,且甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍.怎样购买,才能使总费用W最少?并求出最少费用.。

沪科版数学八年级上册 第十二章 一次函数 单元测试(含答案)

沪科版数学八年级上册  第十二章 一次函数 单元测试(含答案)

第 十二 章 一次函数(时间:120分钟满分:150分)题 号一二三四五六七八总 分得 分一、选择题(本大题共10 小题,每小题4分,满分40 分)1.函数 y =x−3x中,自变量x 的取值范围是 ( )A. x≠0B. x≥3C. x≥3且x≠0D. x>3且x≠02.若正比例函数的图象经过点(-1,2),则这个图象必经过点 ( )A.(1,2)B.(-1,-2)C.(2,-1)D.(1,-2)3.函数 y =k (x−k )(k <0)的图象不经过 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知函数y =−x +3,,当x=a 时,y=5;当x=b 时,y=-5;当x=c 时,y =3,则a ,b ,c 的大小关系是( )A.a >b >cB. a>c>bC. b>a>cD. b>c>a5.直线 y =2x 向下平移2 个单位得到的直线是 ( ) A.y =2x (x +2) B.y =2(x−2) C.y =2x−2 D.y =2x +26.如图,在下列平面直角坐标系中,一次函数 y =12kx−2k 的图象只可能是( )7.如图,下列方程组的解可以用两直线 l₁,l₂的交点坐标表示的是 ( )A.{x−y =1,2x−y =1 B.{x−y =−1,2x−y =1 C.{x−y =3,2x−y =1 D.{x−y =−3,2x−y =−18.如图,函数 y 1=|x|,y 2=13x +43.当 y₁>y₂时,x 的取值范围是 ( )A. x< -1B.−1<x <2C.x <−1或x>2D.x >29.小高从家门口骑车去单位上班,先走平路到达点 A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是 ( )A.12 分钟B.15分钟C.25分钟D.27 分钟10.如图,在平面直角坐标系中,在边长为1 的正方形ABCD 的边上有一动点 P 沿A→B→C→D→A 运动一周,则点 P 的纵坐标y 与点 P 走过的路程s 之间的函数关系用图象表示大致是 ( )二、填空题(本大题共4 小题,每小题5分,满分20分)11.已知一次函数 y =(4m +1)x−(m +1),,当m 满足 时,直线在y 轴上的截距小于0.12.一次函数 y =2x−6的函数值为0,则 x =.13.甲、乙两人以相同路线前往距离单位10 千米的培训中心参加学习.图中 l 甲,l 乙分别表示甲、乙两人前往目的地所走的路程s(千米)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/时;③乙的平均速度为1507千米/时;④乙出发6分钟后追上甲.其中正确的有 .(填所有正确的序号)14.已知一次函数 y =ax +b (a ,b 是常数),x 与y 的部分对应值如下表:x -2-10123y642-2-4那么方程ax+b=0的解是 ;不等式。

人教版初中八年级数学下册第十九章《一次函数》测试(含答案解析)

人教版初中八年级数学下册第十九章《一次函数》测试(含答案解析)

一、选择题1.若正比例函数y =(m ﹣2)x 的图象经过点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是( )A .m >0B .m <0C .m >2D .m <22.如图①,E 为矩形ABCD 的边AD 上一点,点P 从点B 出发沿折线B E D --运动到点D 停止,点Q 从点B 出发沿BC 运动到点C 停止,它们的运动速度都是1/cm s .现P ,Q 两点同时出发,设运动时间为()x s ,BPQ 的面积为2()y cm ,若y 与x 的对应关系如图②所示,则矩形ABCD 的面积是( )A .296cmB .284cmC .272cmD .256cm 3.已知函数y kx b =+的图象如图所示,则函数y bx k =-的图象大致是( )A .B .C .D . 4.若一次函数y kx b =+(k b ,都是常数)的图象经过第一、二、四象限,则一次函数y bx k =+的图象大致是( )A .B .C .D .5.如图①,在长方形MNPQ 中,动点R 从点N 出发,沿着N P Q M →→→方向运动至点M 处停止.设点R 运动的路程为,x MNR ∆的面积为y ,如果y 关于x 的函数图象如图②所示,那么下列说法错误的是( )A .5MN =B .长方形MNPQ 的周长是18C .当6x =时,10y =D .当8y =时,10x =6.如图,已知在平面直角坐标系xOy 中.以(О为圆心,适当长为半径作圆弧,与x 轴交于点A ,与y 轴交于点,B 再分别以A B 、为圆心.大于12AB 长为半径作圆弧,两条圆弧在第四象限交于点C .以下四组x 与y 的对应值中,能够使得点(),1P x y -在射线OC 上的是( )A .2和1-B .2和2-C .2和2D .2和37.关于x 的正比例函数y kx =与一次函数y kx x k =+-的大致图像不可能是( ) A . B .C .D .8.如图,在四边形ABCD 中,AD ∥BC ,∠B =60°,∠D =90°,AB =4,AD =2,点P 从点B 出发,沿B→A→D→C 的路线运动到点C ,过点P 作PQ ⊥BC ,垂足为Q .若点P 运动的路程为x ,△BPQ 的面积为y ,则表示y 与x 之间的函数关系图象大致是( )A .B .C .D .9.已知一次函数(6)1y a x =-+经过第一、二、三象限,且关于x 的不等式组1()0232113a x x x ⎧-->⎪⎪⎨+⎪+≥⎪⎩恰有 4 个整数解,则所有满足条件的整数a 的值的和为( ) A .9 B .11 C .15 D .1810.下列关于一次函数25y x =-+的说法,错误的是( )A .函数图象与y 轴的交点()0,5B .当x 值增大时,y 随着x 的增大而减小C .当 5y >时,0x < D .图象经过第一、二、三象限 11.如图,在Rt ABC △中,90ACB ∠=︒,2AC BC ==,AB 的中点为D .以C 为原点,射线CB 为x 轴的正方向,射线CA 为y 轴的正方向建立平面直角坐标系.P 是BC 上的一个动点,连接AP 、DP ,则AP DP +最小时,点P 的坐标为( ).A .2,03⎛⎫ ⎪⎝⎭B .2,0⎛⎫ ⎪ ⎪⎝⎭C .10,0⎛⎫ ⎪ ⎪⎝⎭D .1,010⎛⎫ ⎪⎝⎭ 12.如图,直线y kx b =+与x 轴交于点()1,0-,与y 轴交于点()0,2-,则关于x 的不等式0kx b +<的解集为( )A .1x >-B .2x >-C .1x <-D .2x <- 13.港口,,A B C 依次在同一条直线上,甲、乙两艘船同时分别从,A B 两港出发,匀速驶向C 港,甲、乙两船与B 港的距离y (海里)与行驶时间x (小时)之间的函数关系如图所示,则下列说法正确的有( )①,B C 两港之间的距离为60海里②甲、乙两船在途中只相遇了一次③甲船平均速度比乙船平均速度快30海里/时④甲船到达C 港时,乙船还需要一个小时才到达C 港⑤点P 的坐标为()1,30A .1个B .2个C .3个D .4个14.若一次函数()231y m x =-+-的图象经过点()11,A x y ,()22,B x y ,当12x x <时,12y y >时,则m 的取值范围是( )A .32m >B .32m >-C .32m <D .32m <- 15.若函数y =(k ﹣3)x+k 2﹣9是正比例函数,则( )A .k≠3B .k =±3C .k =3D .k =﹣3二、填空题16.如图,两个一次函数y =kx+b 与y =mx+n 的图象分别为直线l 1和l 2,l 1与l 2交于点A (1,p ),l 1与x 轴交于点B (-2,0),l 2与x 轴交于点C (4,0),则不等式组0<mx+n <kx+b 的解集为_____.17.已知A 、B 两地相距200千米,货车甲从A 地出发将一批物资运往B 地,行驶一段路程后出现故障,即刻停车与B 地联系.B 地收到消息后立即派货车乙从B 地出发去接运甲车上的物资,货车乙遇到货车甲后,用了30分钟将物资从货车甲搬运到货车乙上,随后以原速开往B 地,货车甲以原速的25返回A 地.两辆货车之间的路程()km y 与货车甲出发的时间()h x 的函数关系如图所示(通话等其他时间忽略不计).若点C 的坐标是()1.6,120,点D 的坐标是()3.6,0,则点E 的坐标是______.18.已知一次函数6y x =-+的图象上有两点()11,A y -,()22,A y ,则1y 与2y 的大小关系是______.19.在同一平面直角坐标系中的图像如图所示,则关于x 的不等式21k x k x b <+的解为____________.20.函数1y x =-中自变量x 的取值范围是________. 21.已知 12y y y =+,1y 与x 成正比例,2y 与x 成反比例,且当x=1时,y=-1,当x=3时,y=5,求y 与x 之间的函数关系式_______________.22.如图,已知,,a b c 分别是Rt ABC △的三条边长,90C ∠=︒,我们把关于x 的形如a b y x c c =+的一次函数称为“勾股一次函数”;若点351,P ⎛⎫ ⎪ ⎪⎝⎭在“勾股一次函数”的图象上,且Rt ABC △的面积是10,则c 的值是_________.23.函数1y x=-的定义域是______. 24.如图,已知一次函数y mx n =-的图像,则关于x 的不等式1mx n ->的解集是__________.25.如图,函数(0)y kx k =≠和4(0)y ax a =+≠的图象相交于点(1,1)A -,则不等式4kx ax <+的解集为__________.26.已知正比例函数y kx =的图像经过点)(2,5A -,点M 在正比例函数y kx =的图像上,点)(3,0B ,且10ABM S =△,则点M 的坐标为______. 三、解答题27.如图直线27y x =-+与x 轴、y 轴分别相交于点C 、B ,与直线32y x =相交于点A .(1)求A 点坐标;(2)求OAC 的面积;(3)如果在y 轴上存在一点P ,使OAP △是等腰三角形,请直接写出P 点坐标;(4)在直线27y x =-+上是否存在点Q ,使OAQ 的面积等于6?若存在,请求出Q 点的坐标,若不存在,请说明理由.28.已知y 与1x -成正比例,当3x =时,4y =,求y 与x 之间的函数关系式. 29.慧慧和甜甜上山游玩,慧慧乘坐缆车,甜甜步行,两人相约在山顶的缆车终点会合,已知甜甜行走到缆车终点的路程是缆车到山顶的线路长的2倍,慧慧在甜甜出发后50分才乘上缆车,缆车的平均速度为180米/分.设甜甜出发x 分后行走的路程为y 米.图中的折线表示甜甜在整个行走过程中y 随x 的变化关系.(1)甜甜行走的总路程是______米,她途中休息了______分.(2)分别求出甜甜在休息前和休息后所走的路程段上的步行速度.(3)当慧慧到达缆车终点时,甜甜离缆车终点的路程是多少.30.快车与慢车分别从甲乙两地同时相向出发,匀速而行,快车到达乙地后停留0.5h ,然后按原路原速返回,快车比慢车晚0.5h 到达甲地.快慢两车距各自出发地的路程()km y 与所用的时间()h x 的关系如图所示.(1)甲乙两地之间的路程为________km ;快车的速度为________km/h ;慢车的速度为_________km/h ;(2)出发________h ,快慢两车距各自出发地的路程相等;(3)快慢两车出发________h 相距250km .。

八年级数学(下)第十九章《一次函数》测试卷含答案

八年级数学(下)第十九章《一次函数》测试卷含答案

八年级数学(下)第十九章《一次函数》测试卷(测试时间:90分钟 满分:120分)一、选择题(共10小题,每题3分,共30分) 1.函数的自变量的取值范围是( )A. x ≥-2B. x <-2C. x >-2D. x ≤-2 2.在平面直角坐标系中,直线1y x =+经过( ) A. 第一、二、三象限 B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限3.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h 和放水时间t 之间的关系的是( )A. B. C. D.4.在关于的正比例函数中,随的增大而减小,则的取值范围是( ) A.B.C.D.5.已知两点M (4,2),N (1,1),点P 是x 轴上一动点,若使PM+PN 最短,则点P 为( ) A. (2,0) B. (2.5,0) C. (3,0) D. (4,0)6.如图,直线y 1=kx+b 过点A (0,2),且与直线y 2=mx 交于点P (1,m ),则不等式组mx >kx+b >mx ﹣2的解集是( )A. 1<x <2B. 0<x <2C. 0<x <1D. 1<x7.根据如图的程序,计算当输入x=3时,输出的结果y=( )A. 2B. 3C. 4D. 58.如图①,在矩形MNPQ 中,动点R 从点N 出发,沿N →P→Q→M 方向运动至点M 处停止,设点R 运动的路程为x ,△MNR 的面积为y ,如果y 关于x 的函数图象如图②,则当x =9时,点R 应运动到( )A. M 处B. N 处C. P 处D. Q 处9.在矩形ABCD 中, 1AB =, 2AD =, M 是CD 的中点,点P 在矩形的边上沿A B C M →→→运动,则APM 的面积y 与点P 经过的路程x 之间的函数关系用图象表示大致是下图中的( )A. B.C. D.10.小聪和小明分别从相距30公里的甲、乙两地同时出发相向而行,小聪骑摩托车到达乙地后立即返回甲地,小明骑自行车从乙地直接到达甲地,函数图象y 1(km )和y 2(km )分别表示小聪离甲地的距离和小明离乙地的距离与已用时间t (h )之间的关系,如图所示.下列说法:①折线段OAB 是表示小聪的函数图象y 1,线段OC 是表示小明的函数图象y 2;②小聪去乙地和返回甲地的平均速度相同;③两人在出发80分钟后第一次相遇;④小明骑自行车的平均速度为15km/h ,其中不正确的个数为( )A. 0个B. 1个C. 2个D. 3个二、填空题(共10小题,每题3分,共30分)11.若一次函数的图象经过二、三、四象限,则__________,__________.12.如果点在直线上,则的值是__________.13.如果一次函数与两坐标轴围成的三角形面积为,则__________.14.已知某一次函数与直线平行,且经过点,则这个一次函数解析式是__________.15.如图,已知y=ax+b和y=kx的图象交于点P,根据图象可得关于x、y的二元一次方程组0 {0 ax y bkx y-+=-=的解是_________________.16.如图所示的函数图象反映的过程是:小红从家去书店,又去学校取封信后马上回家,其中x表示时间,y表示小红离她家的距离,则小红从学校回家的平均速度为_______________千米/小时.17.若函数y=(n+2)x+(n2-4)是一次函数,则n_____;若函数y=(n+2)x+(n2-4)是正比例函数,则n____.18.小明和小亮分别从同一直线跑道A、B两端同时相向匀速出发,小明和小亮第一次相遇后,小亮觉得自己速度太慢便提速至原速的53倍,并匀速运动达到B 端,且小明到达B 端后停止运动,小亮匀速跑步到达A 端后,立即按原速返回B 端(忽略调头时间),回到B 端后停止运动,已知两人相距的路程S (千米)与小亮出发时间t (秒)之间的关系如图所示,则当小明到达B 端后,经过_________秒,小亮回到B 端.19.在全民健身环城越野赛中,甲、乙两名选手的行程y (千米)随时间x (时)变化的图象如图所示.有下列说法:①甲先到达终点;②起跑后1小时内,甲始终在乙的前面;③起跑1小时,甲、乙两人跑的路程相等;④乙起跑1.5小时,跑的路程为13千米;⑤两人都跑了20千米.以上说法正确的有____________(填序号).20.如图,点A 2,A 4…分别是x 轴上的点,点A 1,A 3,A 5,…分别是射线OA 2n-1上的点,△OA 1A 2,△OA 2A 3,△OA 3A 4,…分别是以OA 2,OA 3,OA 4 ,OA 5…为底边的等腰三角形,若OA 2n-1与x 轴正半轴的夹角为30°,OA 1=1,则可求得点A 2的坐标是________;A 2n-1的坐标_______.三、解答题(共60分)21.(6分)已知一次函数2(4)232y k x k =--+(1)k为何值时,y随x的增大而减小?(2)k为何值时,它的图象经过原点?22.(7分)已知y+3与x+2成正比例,且当x=3时,y=7.(1)写出y与x之间的函数关系式;(2)当x=-1时,求y的值;(3)当y=0时,求x的值.23.(8分)如图,在平面直角坐标系xOy中,正比例函数y=x的图象与一次函数y=kx-k的图象的交点坐标为A(m,2).(1)求m的值和一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,求△AOB的面积;(3)直接写出使函数y=kx-k的值大于函数y=x的值的自变量x的取值范围.24.(6分)如果一次函数y=kx+b中x的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9.求此函数的的解析式.25.(8分)某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式图(1)第20天的总用水量为多少米3?(2)当x≥20时,求y与x之间的函数关系式;(3)种植时间为多少天时,总用水量达到7000米3?26.(8分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?27.(7分)某校家长委员会计划在九年级毕业生中实施“读万卷书,行万里路,了解赤峰,热爱家乡”主题活动,决定组织部分毕业生代表走遍赤峰全市12个旗、县、区考察我市创建文明城市成果,远航旅行社对学生实行九折优惠,吉祥旅行社对20人以内(含20人)学生旅行团不优惠,超过20人超出的部分每人按八折优惠.两家旅行社报价都是2000元/人.服务项目、旅行路线相同.请你帮助家长委员会策划一下怎样选择旅行社更省钱.28.(10分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发.不久,第二列快车也从甲地发往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分后,第二列快车与慢车相遇.设慢车行驶的时间为x(单位:时),慢车与第一、第二列快车之间的距离y(单位:千米)与x(单位:时)之间的函数关系如图1、图2,根据图象信息解答下列问题:(1)甲、乙两地之间的距离为千米.(2)求图1中线段CD所表示的y与x之间的函数关系式,并写出自变量x的取值范围.(3)请直接在图2中的()内填上正确的数.答案(测试时间:90分钟 满分:120分)一、选择题(共10小题,每题3分,共30分) 1.函数的自变量的取值范围是( )A. x ≥-2B. x <-2C. x >-2D. x ≤-2【答案】A【解析】二次根式有意义的条件是根号下被开方数非负,所以x +2≥0,即x ≥2, 故选A.2.在平面直角坐标系中,直线1y x =+经过( ) A. 第一、二、三象限 B. 第一、二、四象限 C. 第一、三、四象限 D. 第二、三、四象限 【答案】A故选A.3.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h 和放水时间t 之间的关系的是( )A. B. C. D.【答案】A【解析】由图知蓄水池上宽下窄,深度h 和放水时间t 的比不一样,前者慢后者快,即前者的斜率小,后者斜率大,分析各选项知只有A 正确.B 斜率一样,C 前者斜率大,后者小,D 也是前者斜率大,后者小,因此B 、C 、D 排除.故选A . 4.在关于的正比例函数中,随的增大而减小,则的取值范围是( )A. B. C. D.【答案】A【解析】∵随的增大而减小,∴∴.故选A. 学科#网5.已知两点M(4,2),N(1,1),点P是x轴上一动点,若使PM+PN最短,则点P为()A. (2,0)B. (2.5,0)C. (3,0)D. (4,0)【答案】A6.如图,直线y1=kx+b过点A(0,2),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx﹣2的解集是()A. 1<x<2B. 0<x<2C. 0<x<1D. 1<x【答案】A【解析】由于直线y1=kx+b过点A(0,2),P(1,m),故选A .7.根据如图的程序,计算当输入x=3时,输出的结果y=( )A. 2B. 3C. 4D. 5 【答案】A【解析】∵x=3>1, ∴y=-x+5=-3+5=2. 故选A. 学!科网8.如图①,在矩形MNPQ 中,动点R 从点N 出发,沿N→P→Q→M 方向运动至点M 处停止,设点R 运动的路程为x ,△MNR 的面积为y ,如果y 关于x 的函数图象如图②,则当x =9时,点R 应运动到( )A. M 处B. N 处C. P 处D. Q 处 【答案】D【解析】观察图象可得:当R 在PN 上运动时,面积不断在增大,当点R 运动到PQ 上时,△MNR 的面积y 达到最大,且保持一段时间不变;到Q 点以后,面积y 开始减小;故当x=9时,点R 应运动到Q 处.故选D . 9.在矩形ABCD 中, 1AB =, 2AD =, M 是CD 的中点,点P 在矩形的边上沿A B C M→→→运动,则APM的面积y与点P经过的路程x之间的函数关系用图象表示大致是下图中的( )A. B.C. D.【答案】A10.小聪和小明分别从相距30公里的甲、乙两地同时出发相向而行,小聪骑摩托车到达乙地后立即返回甲地,小明骑自行车从乙地直接到达甲地,函数图象y1(km)和y2(km)分别表示小聪离甲地的距离和小明离乙地的距离与已用时间t(h)之间的关系,如图所示.下列说法:①折线段OAB是表示小聪的函数图象y1,线段OC是表示小明的函数图象y2;②小聪去乙地和返回甲地的平均速度相同;③两人在出发80分钟后第一次相遇;④小明骑自行车的平均速度为15km/h,其中不正确的个数为()A. 0个B. 1个C. 2个D. 3个【答案】B【解析】①小聪离甲地的距离先增加至最大然后减小直至为0,小明离乙地的距离逐渐增大直至最大30千故选B.二、填空题(共10小题,每题3分,共30分)11.若一次函数的图象经过二、三、四象限,则__________,__________.【答案】<<【解析】∵经过二、三、四象限,∴且12.如果点在直线上,则的值是__________.【答案】-3【解析】∵点在直线上,∴,解得.故答案为:-3.13.如果一次函数与两坐标轴围成的三角形面积为,则__________.【答案】【解析】∵在中,当x=0时,y=4;当时,,∴的图象与x轴的交点坐标为,与y轴的交点坐标为(0,4),由题意可得:,解得:.故答案为:.14.已知某一次函数与直线平行,且经过点,则这个一次函数解析式是__________.【答案】【解析】设一次函数解析式∵与平行,∴,∴.∵一次函数经过,∴,,∴.15.如图,已知y=ax+b和y=kx的图象交于点P,根据图象可得关于x、y的二元一次方程组0 {0 ax y bkx y-+=-=的解是_________________.【答案】4 {2 xy=-=-16.如图所示的函数图象反映的过程是:小红从家去书店,又去学校取封信后马上回家,其中x表示时间,y表示小红离她家的距离,则小红从学校回家的平均速度为_______________千米/小时.【答案】6.【解析】小红家与学校的距离为6km,从图象可知她从学校到家用时为3-2=1小时,故从学校到家的平均速度等于6÷1=6 km/h,故答案为:6.17.若函数y=(n+2)x+(n2-4)是一次函数,则n_____;若函数y=(n+2)x+(n2-4)是正比例函数,则n____.【答案】≠-2 =218.小明和小亮分别从同一直线跑道A、B 两端同时相向匀速出发,小明和小亮第一次相遇后,小亮觉得自己速度太慢便提速至原速的53倍,并匀速运动达到B端,且小明到达B端后停止运动,小亮匀速跑步到达A端后,立即按原速返回B端(忽略调头时间),回到B端后停止运动,已知两人相距的路程S(千米)与小亮出发时间t(秒)之间的关系如图所示,则当小明到达B端后,经过_________秒,小亮回到B端.【答案】45【解析】由题意得:设小明的速度为xm/s,小亮的速度为ym/s,则85 {{53103x yxyx y+==⇒= +=小明到达B端,所需时间为36072s 5=()小亮往返需要的总时间为7204531175-⨯=,则117-72=45(s)故答案:45.19.在全民健身环城越野赛中,甲、乙两名选手的行程y(千米)随时间x(时)变化的图象如图所示.有下列说法:①甲先到达终点;②起跑后1小时内,甲始终在乙的前面;③起跑1小时,甲、乙两人跑的路程相等;④乙起跑1.5小时,跑的路程为13千米;⑤两人都跑了20千米.以上说法正确的有____________(填序号).【答案】①③④⑤20.如图,点A 2,A 4…分别是x 轴上的点,点A 1,A 3,A 5,…分别是射线OA 2n-1上的点,△OA 1A 2,△OA 2A 3,△OA 3A 4,…分别是以OA 2,OA 3,OA 4 ,OA 5…为底边的等腰三角形,若OA 2n-1与x 轴正半轴的夹角为30°,OA 1=1,则可求得点A 2的坐标是________;A 2n-1的坐标_______.【答案】)3,0 11333,2n n --⎫⎪⎪⎝⎭【解析】根据等腰三角形的三线合一的性质和30°角直角三角形的性质可求得131,22A ⎛⎫⎪ ⎪⎝⎭,)23,0A ,再由等腰三角形的三线合一的性质和30°角直角三角形的性质可求得3333,22A ⎛⎫⎪ ⎪⎝⎭, 5939,22A ⎛⎫⎪ ⎪⎝⎭,由此可得A 2n-1的坐标11333,22n n --⎛⎫⋅ ⎪ ⎪⎝⎭.三、解答题(共60分)21.(6分)已知一次函数2(4)232y k x k =--+(1)k 为何值时,y 随x 的增大而减小? (2)k 为何值时,它的图象经过原点? 【答案】(1)k >4;(2)k=-4. 【解析】考点:一次函数图象与系数的关系.22.(7分)已知y+3与x+2成正比例,且当x =3时,y =7. (1)写出y 与x 之间的函数关系式; (2)当x =-1时,求y 的值; (3)当y =0时,求x 的值. 【答案】(1)y=2x+1;(2)-1;(3)12-. 【解析】试题分析:(1)已知y+3与x+2成正比例,所以,设y+3=k( x+2),把x =3,y =7代入求出k 的值,即可写出y 与x 之间的函数关系式,(2)把x =-1代入y 与x 之间的函数关系式,求出y 的值. (3)把y =0代入y 与x 之间的函数关系式,求出x 的值.试题解析:(1)设y+3=k( x+2),把x =3,y =7代入得:7+3=(3+2)k,解得k=2,∴y+3=2(x+2),∴y=2x+1; (2)当x=-1时,y=2x+1=2×(-1)+1=-1;(3)当y=0时,有0=2x+1,解得x=12 .考点:1.正比例函数关系式.2.函数值和自变量值.23.(8分)如图,在平面直角坐标系xOy中,正比例函数y=x的图象与一次函数y=kx-k的图象的交点坐标为A(m,2).(1)求m的值和一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,求△AOB的面积;(3)直接写出使函数y=kx-k的值大于函数y=x的值的自变量x的取值范围.【答案】(1)m=2,一次函数解析式为y=2x﹣2;(2)S△AOB=2;(3)自变量x的取值范围是x>2.学科&网【解析】(3)自变量x的取值范围是x>2.考点:两条直线相交或平行问题24.(6分)如果一次函数y=kx+b中x的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9.求此函数的的解析式.【答案】见解析【解析】考点:1、一次函数性质的应用;2、分类思想.25.(8分)某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式图(1)第20天的总用水量为多少米3?(2)当x≥20时,求y与x之间的函数关系式;(3)种植时间为多少天时,总用水量达到7000米3?【答案】(1)1000;(2)y=300x-5000;(3)40.【解析】试题分析::(1)由图可知第20天的总用水量为1000m3;(2)设y=kx+b.把已知坐标代入解析式可求解;(3)令y=7000代入方程可得.试题解析:(1)第20天的总用水量为1000米3(2)当x≥20时,设y=kx+b∵函数图象经过点(20,1000),(30,4000)∴100020400030k bk b+⎨⎩+⎧==,解得,3005000kb-⎧⎨⎩==,∴y与x之间的函数关系式为:y=300x-5000(3)当y=7000时,有7000=300x-5000,解得x=40;种植时间为40天时,总用水量达到7000米3考点:一次函数的应用.26.(8分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B 出发后几小时,两人相遇?【答案】(1)1,10 km/h;(2)1.8.【解析】考点:1.一次函数的应用;2. 待定系数法的应用;3.直线上点的坐标与方程的关系.27.(7分)某校家长委员会计划在九年级毕业生中实施“读万卷书,行万里路,了解赤峰,热爱家乡”主题活动,决定组织部分毕业生代表走遍赤峰全市12个旗、县、区考察我市创建文明城市成果,远航旅行社对学生实行九折优惠,吉祥旅行社对20人以内(含20人)学生旅行团不优惠,超过20人超出的部分每人按八折优惠.两家旅行社报价都是2000元/人.服务项目、旅行路线相同.请你帮助家长委员会策划一下怎样选择旅行社更省钱.【答案】当学生人数少于40时,选择远航旅行社更优惠,当学生人数等于40时,选择两家旅行社都一样,当学生人数大于40时,选择吉祥旅行社更优惠.【解析】考点:一次函数的应用.28.(10分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发.不久,第二列快车也从甲地发往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分后,第二列快车与慢车相遇.设慢车行驶的时间为x(单位:时),慢车与第一、第二列快车之间的距离y(单位:千米)与x(单位:时)之间的函数关系如图1、图2,根据图象信息解答下列问题:(1)甲、乙两地之间的距离为千米.(2)求图1中线段C D所表示的y与x之间的函数关系式,并写出自变量x的取值范围.(3)请直接在图2中的()内填上正确的数.【答案】(1)900;(2)y=75x(6≤x≤12);(3)0.75,6.75.【解析】考点:1、待定系数法;2、一次函数的应用.21。

初中数学北师大版(2024)八年级上册 第四章 一次函数单元测试(含简单答案)

初中数学北师大版(2024)八年级上册  第四章 一次函数单元测试(含简单答案)

第四章一次函数一、单选题1.下列曲线中,表示y是x的函数的是()A.B.C.D.2.关于一次函数y=−2x+3,下列结论正确的是( )A.图象过点(1,−1)B.其图象可由y=−2x的图象向上平移3个单位长度得到C.y随x的增大而增大D.图象经过一、二、三象限3.设半径为r的圆的周长为C,则C=2πr,下列说法错误的是()A.常量是π和2B.常量是2C.用C表示r为CD.变量是C和r2π4.在同一直角坐标系中,一次函数y=kx+b和y=bx+k的图象可能正确的是( )A.B.C.D.5.如果M(−1,y1),N(2,y2)是正比例函数y=kx的图象上的两点,且y1>y2.那么符合题意的k的值可能是()A.1B.1C.3D.−236.如图所示,已知点C(1,0),直线y=−x+7与两坐标轴分别交于A,B两点,D,E分别是线段AB,OA上的动点,则△CDE的周长的最小值是()A.42B.10C.42+4D.127.函数y=|kx|(k≠0)的图象可能是()A.B.C.D.8.我们把三个数的中位数记作Z{a,b,c}.例如Z{1,3,2}=2.函数y=|2x+b|的图象为C1,函数y=Z{x+1,-x+1,3}的图象为C2.图象C1在图象C2的下方点的横坐标x满足-3<x<1,则b的取值范围为()A.0<b<3B.b>3或b<0C.0≤b≤3D.1<b<39.某电视台“走基层”栏目的一位记者乘汽车赴360km外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y(单位:km)与时间x(单位:h)之间的关系如图所示,则下列结论正确的是()A.汽车在高速公路上的行驶速度为100km/h B.乡村公路总长为90kmC.汽车在乡村公路上的行驶速度为65km/h D.该记者在出发后5h到达采访地10.如图是一次函数y1=kx+b与y2=x+a的图象,则下列结论:①k<0;②a>0;③b>0:④方程kx+b=x+a的解是x=3,错误的个数是()A.1个B.2个C.3个D.4个二、填空题11.函数y=−3x+6的图象与x轴.y轴围成的三角形面积为.12.如图,购买一种商品,付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次性购买50千克这种商品要付款元.13.直线y=kx+b平行于直线y=−2x,且与y轴交于点(0,3),则此函数的解析式y=.14.已知点A(2,y1),B(3,y2)在直线y=﹣3x+1上,则y1与y2的大小关系为:y1y2.(填“>”,“=”或“<”)15.若y=(m−1)x|m|+2是关于x的一次函数,则m等于.16.已知一次函数y1=kx﹣2k(k是常数)和y2=﹣x+1.若无论x取何值,总有y1>y2,则k的值是.17.杭黄高铁开通运营,已知杭州到黄山距离300千米,现有直达高铁往返两城市之间,该高铁每次到达杭州或黄山后,均需停留一小时再重新出发.暑假期间,铁路局计划在同线路上加开一列慢车直达旅游专列,在试运行期间,该旅游专列与高铁同时从杭州出发,在整个小时两车第一次相遇.两车之间的距离y千米运行过程中,两列车均保持匀速行驶,经过103与行驶时间x小时之间的部分函数关系如图所示,当两车第二次相遇时,该旅游专列共行驶了千米.18.如图,在平面直角坐标系中,点A1(1,1)在直线y=x图象上,过A1点作y轴平行线,交直线y=−x于点B1,以线段A1B1为边在右侧作正方形A1B1C1D1,C1D1所在的直线交y=x 的图象于点A2,交y=−x的图象于点B2,再以线段A2B2为边在右侧作正方形A2B2C2D2⋯依此类推,按照图中反映的规律,第2020个正方形的边长是.三、解答题19.父亲告诉小明:“距离地面越高,温度越低,”并给小明出示了表格.距离地面高度(千米)12345温度(℃)201482−4−10根据上表,父亲还给小明出了下面几个问题,你和小明一起回答;(1)如果用ℎ表示距离地面的高度,用t表示温度,写出t与ℎ的关系式;(2)你能计算出距离地面16千米的高空温度是多少吗?x+2和y=2x﹣3的图象分别交y轴与A、B两点,两个一次函数的20.已知一次函数y=﹣12图象相交于点P.(1)求△PAB的面积;(2)求证:∠APB=90°;(3)若在一次函数y=2x﹣3的图象上有一点N,且横坐标为x,连结NA,请直接写出△NAP 的面积关于x的函数关系式,并写出相应x的取值范围.21.已知直线y=-4x+4与x轴和y轴分别交于B、A两点,另一直线经过点B和点D3(11,6).(1)求A、B的坐标;(2)证明:△ABD是直角三角形;(3)在x轴上找点C,使△ACD是以AD为底边的等腰三角形,求出C点坐标.22.如图,l1和l2分别是走私船和我公安快艇航行路程与时间的函数图象,请结合图象解决下列问题:(1)在刚出发时,我公安快艇距走私船多少海里?(2)计算走私船与公安艇的速度分别是多少?(3)求出l1,l2的解析式.(4)问6分钟时,走私船与我公安快艇相距多少海里?23.如图1,某地铁车站在出入口设有上、下行自动扶梯和步行楼梯,甲、乙两人从车站入口同时下行去乘坐地铁,甲乘自动扶梯,乙走步行楼梯,乙离地铁进站入口地面的高度ℎ(单位:m)与下行时间x(单位:s)之间具有函数关系ℎ=−15x+6,甲离地铁进站入口地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达地铁进站入口地面.24.已知直线y=kx+b可变形为:kx−y+b=0,则点P(x0, y0)到直线kx−y+b=0的距离d可用公式d=|kx0−y0+b|1+k2计算.例如:求点P(-2,1)到直线y=x+1的距离.解:因为直线y=x+1可变形为x−y+1=0,其中k=1,b=1.所以点P(-2,1)到直线y=x+1的距离为d=|kx0−y0+b|1+k2=|1×(−2)−1+1|1+12=22=2.根据以上材料求:(1)点P(2,-1)到直线y=2x−1的距离;(2)已知M为直线y=−x+2上的点,且M到直线y=2x−1的距离为35,求M的坐标;(3)已知线段y=kx+3(−1≤x≤2)上的点到直线y=x+1的最小距离为1,求k的值.25.如图,一次函数y=x+1的图象分别与x轴,y轴交于点B与点A,直线AC与x轴正半轴交于点C,且∠BAO=45°,OC=2OB.(1)求直线AC的函数表达式;(2)点D在直线AB上且不与点B重合,点E在直线AC上.若以A,D,E为顶点的三角形与△ABC全等,请直接写出点D的坐标(不必写解答过程);(3)已知平面内一点P(m,n),作点P关于直线AB的对称点P1,作P1关于y轴的对称点P2,若P2恰好落在直线AC上,则m,n应满足怎样的等量关系?说明理由.26.某企业准备为员工采购20000袋医用口罩.经市场调研,准备购买A,B,C三种型号的口罩,这三种型号口罩的价格如下表所示:型号A B C价格/(元/袋)303540已知购买B型号口罩的数量是A型号口罩的2倍,设购买A型号口罩x袋,该企业购买口罩的总费用为y元.(1)请求出y与x之间的函数表达式;(2)因为A型号口罩的数量严重不足,口罩生产厂家能提供的A型号口罩的数量不大于C型号口罩的数量,怎样购买能使该企业购买口罩的总费用最少?请求出费用最少的购买方案,并求出总费用的最小值.参考答案:1.D 2.B 3.B 4.B 5.D 6.B 7.C 8.C 9.D 10.A 11.612.42013.−2x +314.>15.−116.−117.25018.2×3201919.(1)t =20−6ℎ(ℎ≥0)(2)距离地面16千米的高空温度是−76℃20.(1)5;(3)当x >2时,△NAP 的面积S=52(x ﹣2);当x <2时,△NAP 的面积S=52(2﹣x ).21.(1)A (0,4),B (3,0);(3)C (14122,0).22.(1)5海里;(2)走私船:1海里/分;公安快艇:1.5海里/分(3)y 1=t+5 ;y 2=32t ;(4)2海里;23.(1)y =−310x +6;(2)甲先到地铁进站入口地面.24.(1)455;(2)M (6,-4)或M (-4,6);(3)k =−2+3或22x+125.(1)y=−12(2)点D的坐标为(−102,1−102)或(1,2)或(102,1+102);(3)2m+1=n,26.(1)y=−20x+800000(2)当购买A型号口罩5000袋,B型号口罩10000袋,C型号口罩5000袋时,该企业购买口罩的总费用最少,总费用的最小值为700000元。

八年级数学下册第四单元《一次函数》测试(含答案解析)

八年级数学下册第四单元《一次函数》测试(含答案解析)

一、选择题1.甲、乙两车分别从A 地出发匀速行驶到B 地,在整个行驶过程中,甲、乙两车离开A 城的距离(km)y 与甲车行驶的时间(h)t 之间的关系如图所示,则下列结论中正确的个数为( )①,A B 两地相距480km ;②乙车比甲车晚出发1小时,却比甲车早到1小时; ③乙车出发后4小时时追上甲车;④甲,乙两车相距50km 时, 3.5t 或4.5.A .1B .2C .3D .42.如图,点O 为平面直角坐标系的原点,点A 在x 轴正半轴上,四边形OABC 是菱形.已知点B 坐标为(3,3),则直线AC 的函数解析式为( )A .y =3x+3 B .y =3x+23C .y =﹣3x+3 D .y =﹣3x+23 3.如图,一次函数y =2x 和y =ax +4的图象相交于点A (m ,3),则不等式0<ax +4<2x 的解集是( )A .0<x <32B .32<x <6 C .32<x <4 D .0<x <34.若直线y =kx+b 经过第一、二、四象限,则函数y =bx -k 的大致图像是( )A .B .C .D .5.已知点()11,P y -、点()23,Q y 在一次函数(21)2y m x =-+的图像上,且12y y >,则m 的取值范围是( ) A .12m <B .12m >C .m 1≥D .1m <6.若关于x 、y 的二元一次方程组42313312x y a x y a +=+⎧⎪⎨-=+⎪⎩的解为非负数,且a 使得一次函数(1)3y a x a =++-图象不过第四象限,那么所有符合条件的整数a 的个数是( )A .2B .3C .4D .57.某游泳馆新推出了甲、乙两种消费卡,设游泳次数为x 时两种消费卡所需费用分别为y 甲,y 乙元,y 甲,y 乙与x 的函数图象如图所示,当游泳次数为30次时选择哪种消费卡更合算( )A .甲种更合算B .乙种更合算C .两种一样合算D .无法确定 8.下列一次函数中,y 的值随着x 值的增大而增大的是( )A .–1y x =-B .0.3y x =C . 1y x =-+D .y x =-9.函数211+2y x=的图象如图所示,若点()111,P x y ,()222,P x y 是该函数图象上的任意两点,下列结论中错误的是( )A .10x ≠ ,20x ≠B .112y >,212y > C .若12y y =,则12||||x x = D .若12y y <,则12x x < 10.下列说法正确的是( )①从开始观察时起,50天后该植物停止长高;②直线AC 的函数表达式为165y x =+ ③第40天,该植物的高度为14厘米; ④该植物最高为15厘米A .①②③B .②④C .②③D .①②③④11.如图,直线y =kx (k≠0)与y =23x+2在第二象限交于A ,y =23x+2交x 轴,y 轴分别于B 、C 两点.3S △ABO =S △BOC ,则方程组0236kx y x y -=⎧⎨-=-⎩的解为( )A .143x y =-⎧⎪⎨=⎪⎩B .321x y ⎧=-⎪⎨⎪=⎩C .223x y =-⎧⎪⎨=⎪⎩D .3432x y ⎧=-⎪⎪⎨⎪=⎪⎩12.弹簧挂上物体后伸长,已知一弹簧的长度y (cm )与所挂物体的质量m (kg )之间的关系如下表:所挂物体的质量m/kg 0 1 2 3 4 5 弹簧的长度y/cm 1012.51517.52022.5A .在没挂物体时,弹簧的长度为10cmB .弹簧的长度随所挂物体的质量的变化而变化,弹簧的长度是自变量,所挂物体的质量是因变量C .弹簧的长度y (cm )与所挂物体的质量m (kg )之间的关系可用关系式y =2.5m +10来表示D .在弹簧能承受的范围内,当所挂物体的质量为4kg 时,弹簧的长度为20cm参考答案二、填空题13.已知一次函数41y x =-和23y x =+的图像交于点(2,7)P ,则二元一次方程组4123y x y x =-⎧⎨=+⎩的解是_. 14.已知一次函数(2) 3y m x m =-+-的图象经过第一、二、四象限,则化简244m m -++296m m -+=__________.15.如图,直线22y x =-+与两坐标轴分别交于A 、B 两点,将线段OA 分成n 等份,分点分别为1231,,,,n P P P P -,过每个分点作x 轴的垂线分别交直线AB 于点1231,,,,n T T T T -,用1231,,,,n S S S S -分别表示11212121Rt ,Rt ,,Rt n n n T OP T PP T P P ---△△△的面积,则当n=4时,121n S S S -+++=_______;当n=2020时,1231n S S S S -++++=______.16.对于函数21y x =-,有下列性质:①它的图像过点()1,0,②y 随x 的增大而减小,③与y 轴交点为()0,1-,④它的图像不经过第二象限,其中正确的序号是______(请填序号).17.如图,直线y =﹣43x +8与x 轴、y 轴分别交于点A 、B ,∠BAO 的角平分线与y 轴交于点M ,则OM 的长为_____.18.已知一次函数y =ax +6,当-2≤x≤3时,总有y >4,则a 的取值范围为______. 19.已知直线()0y kx b k =+≠过()1,0和()0,2-,则关于x 的不等式0kx b +<的解集是______.20.已知一个一次函数的图象过点(1,2)-,且y 随x 的增大而减小,则这个一次函数的解析式为__________.(只要写出一个)三、解答题21.我市全民健身中心面向学生推出假期游泳优惠活动,活动方案如下. 方案一:购买一张学生卡,每次游泳费用按六折优惠; 方案二:不购买学生卡,每次游泳费用按八折优惠.设某学生假期游泳x (次),按照方案一所需费用为1y (元),且11y k x b =+;按照方案二所需费用为2y (元),且22y k x =.其函数图象如图所示.(1)求y 1关于x 的函数关系式,并直接写出单独购买一张学生卡的费用和购买学生卡后每次游泳的费用;(2)求打折前的每次游泳费用和k 2的值;(3)八年级学生小明计划假期前往全民健身中心游泳8次,应选择哪种方案所需费用更少?说明理由.22.已知如图,直线113:4l y x m =-+与y 轴交于A(0,6),直线22:1l y kx =+分别与x 轴交于点B(-2,0),与y 轴交于点C .两条直线相交于点D ,连接AB .求:(1)直线12l l 、的解析式; (2)求△ABD 的面积;(3)在x 轴上是否存在一点P ,使得43ABP ABD S S =△△,若存在,求出点P 的坐标;若不存在,说明理由.23.如图,在平面直角坐标系中,过点()0,6C 的直线AC 与直线OA 相交于点()4,2A .(1)求直线AC 和OA 的函数解析式;(2)动点M 在直线AO 上运动,是否存在点M ,使OMC 的面积是OAC 的面积的14?若存在,求出此时点M 的坐标;若不存在,请说明理由.24.某水果超市营销员的个人收入与他每月的销售量成一次函数关系,其图象如下,请你根据图象提供的信息,解答以下问题:(1)求营销员的个人收入y (元)与营销员每月销售量x (千克)(0x ≥)之间的函数关系式;(2)营销员佳妮想得到收入1600元,她应销售水果多少千克?25.某商品经销店欲购进A 、B 两种纪念品,用160元购进的A 种纪念品与用240元购进的B 种纪念品的数量相同,每件B 种纪念品的进价比A 种纪念品的进价贵10元. (1)求A 、B 两种纪念品每件的进价分别为多少元?(2)若这两种纪念品共购进1000件,由于A 种纪念品销量较好,进购时A 不少于B 种纪念品的数量,且不超过B 种纪念品的1.5倍,问共有多少种进购方案?(3)该商店A 种纪念品每件售价24元,B 种纪念品每件售价35元,在(2)的条件下求出哪种方案获利最多,并求出最大利润.26.一次函数23y x =-+的图像经过点P (1,n ). (1)求n 的值;(2)若一次函数1y mx =-的图像经过点P (2n -1,n ),求m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B解析:B 【分析】观察图象可判断A 、B ,由图象所给数据可求得甲、乙两车离开A 城的距离y 与时间t 的关系式,可求得两函数图象的交点,可判断C ,分四种情况讨论,求得t ,可判断④,继而解题. 【详解】①由图象可知,A 、B 两城市之间的距离为480km ,故①正确;②甲行驶的时间为8小时,而乙是在甲出发1小时后出发的,且用时6小时,即比甲早到1小时,故②正确;③设甲车离开A 城的距离y 与t 的关系式为=y kt 甲,把(8,480)代入可求得=60k ,=60y t ∴甲设乙车离开A 城的距离y 与t 的关系式为=m y t n +乙,把(10)(7480),、,代入可得 07480m n m n +=⎧⎨+=⎩解得8080m n =⎧⎨=-⎩ =8080y t -乙,令=y 甲y 乙可得:60=t 8080t -,解得=4t , 即甲、乙两直线的交点横坐标为=4t ,此时乙出发时间为3小时,即乙车出发3小时后追上甲车,故③不正确; ④当=50y 甲时,此时5=6t ,乙还没出发, 又当乙已经到达B 城,甲距离B 城50km 时,43=6t , 当=50y y -甲乙,可得60808050t t -+=,即802050t -=,当802050t -=时,可解得3=2t ,当802050t -=-时,可解得13=2t , 综上可知当t 的值为56或436或32或132,故④不正确, 综上所述,正确的有①②,共2个,故选:B . 【点睛】本题考查了一次函数的应用,掌握一次函数的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,是中考常见考点,难度较易.2.D解析:D 【分析】过B 点作BH ⊥x 轴于H 点,菱形的对角线的交点为P ,如图,设菱形的边长为t ,则OA =AB =t ,在Rt △ABH 中利用勾股定理得到(3﹣t )2+2=t 2,解方程求出t ,得到A(2,0),再利用P为OB的中点得到P(3 2,32),然后利用待定系数法求直线AC的解析式即可.【详解】解:过B点作BH⊥x轴于H点,菱形的对角线的交点为P,如图,∵四边形ABCO为菱形,∴OP=BP,OA=AB,设菱形的边长为t,则OA=AB=t,∵点B坐标为(33∴BH3AH=3﹣t,在Rt△ABH中,(3﹣t)2+32=t2,解得t=2,∴A(2,0),∵P为OB的中点,∴P(323设直线AC的解析式为y=kx+b,把A(2,0),P(32320332k bk b+=⎧⎪⎨+=⎪⎩,解得:323kb⎧=-⎪⎨=⎪⎩,∴直线AC的解析式为y33故选:D.【点睛】本题主要考查菱形的性质,勾股定理以及一次函数的待定系数法,熟练掌握菱形的性质和待定系数法,是解题的关键.3.B解析:B【分析】先求解A的坐标,再求解一次函数的解析式及B的坐标,结合函数图像解0<ax+4<2x即可得到答案.【详解】解:一次函数y=2x和y=ax+4的图象相交于点A(m,3),23,m ∴=3,2m ∴=3,3,2A ⎛⎫∴ ⎪⎝⎭3+4=32a ∴, 2,3a ∴=-24,3y x ∴=-+令0,y = 则240,3x -+= 6,x ∴=()6,0,B ∴不等式0<ax +4,4y ax ∴=+的图像上的点在x 轴的上方,所以结合图像可得:x <6, ax +4<2x ,2y x ∴=的图像在4y ax =+的图像的上方,3,3,2A ⎛⎫ ⎪⎝⎭ x >32, 所以:不等式0<ax +4<2x 的解集是32<x <6. 故选:.B 【点睛】本题考查的是利用待定系数法求解一次函数的解析式,利用一次函数的图像解不等式组,掌握利用图像解决问题是解题的关键.4.B解析:B 【分析】根据一次函数y=kx+b 的图象经过第一、二、四象限,可以得到k 和b 的正负,然后根据一次函数的性质,即可得到一次函数y=bx-k 中b ,-k 的正负,从而得到图象经过哪几个象限,从而可以解答本题. 【详解】解:∵一次函数y=kx+b 的图象经过第一、二、四象限,∴k<0,b>0,∴b>0,-k>0,∴一次函数y=bx-k图象第一、二、三象限,故选:B.【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数解析式判断其经过的象限解答.5.A解析:A【分析】由题目条件可判断出一次函数的增减性,则可得到关于m的不等式,可求得m的取值范围.【详解】解:∵点P(-1,y1)、点Q(3,y2)在一次函数y=(2m-1)x+2的图象上,∴当-1<3时,由题意可知y1>y2,∴y随x的增大而减小,∴2m-1<0,解得m<12,故选:A.【点睛】本题主要考查了一次函数的性质,得出一次函数的增减性是解题的关键.6.C解析:C【分析】由题意,先求出二元一次方程组的解,结合解为非负数得到a的取值范围,再根据一次函数的性质,即可得到答案.【详解】解:42313312x y ax y a+=+⎧⎪⎨-=+⎪⎩解方程组,得:521322x ay a⎧=+⎪⎪⎨⎪=-+⎪⎩,∵方程的解是非负数,∴50213022a a ⎧+≥⎪⎪⎨⎪-+≥⎪⎩, 解得:532a -≤≤, ∵一次函数(1)3y a x a =++-图象不过第四象限,∴1030a a +>⎧⎨-≥⎩, ∴13a -<≤,∴a 的取值范围是13a -<≤,∴所有符合条件的整数a 有:0,1,2,3,共4个;故选:C .【点睛】本题考查了一次函数的性质,解二元一次方程组,解不等式组,解题的关键是掌握运算法则,正确求出a 的取值范围.7.B解析:B【分析】根据一次函数的图象,哪个函数图象在上面,哪个就大,直接得出答案即可.【详解】解:利用图象,当游泳次数大于10次时,y 甲在y 乙上面,即y 甲>y 乙,∴当游泳次数为30次时,选择乙种方式省钱.故选:B .【点睛】此题主要考查了一次函数的应用以及利用函数图象比较函数大小,利用数形结合得出是解题关键.8.B解析:B【分析】一次函数y kx b =+中,当0k >时y 的值随着x 值的增大而增大;当0k <时y 的值随着x 值的增大而减小,据此对各选项进行解答即可.【详解】解:A .∵y=-x-1中k=-1<0,∴y 的值随着x 值的增大而减小,故本选项错误; B .∵y=0.3x 中k=0.3>0,∴y 的值随着x 值的增大而增大,故本选项正确;C .∵y=-x+1中k=-1<0,∴y 的值随着x 值的增大而减小,故本选项错误;D .∵y=-x 中k=-1<0,∴y 的值随着x 值的增大而减小,故本选项错误.故选:B .【点睛】本题考查的是一次函数的性质,熟知一次函数的增减性是解答此题的关键.9.D解析:D【分析】根据函数的解析式,结合图象的对称性、图象与坐标轴的关系、点的位置与图象的关系等逐项分析判断即可.【详解】解:A 、根据图象与y 轴没交点,所以10x ≠ ,20x ≠,此选项正确; B 、∵x 2>0,∴21x>0,∴211+2y x =>12,此选项正确; C 、∵图象关于y 轴对称,∴若12y y =,则12||||x x =,此选项正确;D 、∵图象关于y 轴对称,∴若12y y <,则12||||x x >,此选项错误,故选:D .【点睛】本题考查了函数的图象与性质,能从图象上获取有效信息是解答的关键.10.A解析:A【分析】①根据平行线间的距离相等可知50天后植物的高度不变,也就是停止长高;②设直线AC 的解析式为y =kx +b (k ≠0),然后利用待定系数法求出直线AC 线段的解析式,③把x =40代入②的结论进行计算即可得解;④把x =50代入②的结论进行计算即可得解.【详解】解:∵CD ∥x 轴,∴从第50天开始植物的高度不变,故①的说法正确;设直线AC 的解析式为y =kx +b (k ≠0),∵经过点A (0,6),B (30,12),∴30126k b b +=⎧⎨=⎩, 解得156k b ⎧=⎪⎨⎪=⎩,所以,直线AC 的解析式为165y x =+(0≤x ≤50),故②的结论正确;当x=40时,14065y=⨯+=14,即第40天,该植物的高度为14厘米;故③的说法正确;当x=50时,15065y=⨯+=16,即第50天,该植物的高度为16厘米;故④的说法错误.综上所述,正确的是①②③.故选:A.【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键.11.C解析:C【分析】先根据223y x=+可得B、C的坐标,进而确定OB、OC的长,然后根据3S△ABO=S△BOC结合点A在第二象限确定A点的纵坐标,然后再根据点A在y=23x+2上,可确定点A的横坐标即可解答.【详解】解:由223y x=+可得B(﹣3,0),C(0,2),∴BO=3,OC=2,∵3S△ABO=S△BOC,∴3×12×3×|yA|=12×3×2,解得y A=±23,又∵点A在第二象限,∴y A=23,当y=23时,23=23x+2,解得x=﹣2,∴方程组236kx yx y-=⎧⎨-=-⎩的解为223xy=-⎧⎪⎨=⎪⎩.故答案为C .【点睛】本题主要考查了一次函数与二元一次方程组,理解方程组的解就是两个相应的一次函数图象的交点坐标成为解答本题的关键.12.B解析:B【分析】因为表中的数据主要涉及到弹簧的长度和所挂物体的重量,所以反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;由已知表格得到弹簧的长度是y=10+2.5m ,质量为mkg ,y 为弹簧长度;弹簧的长度有一定范围,不能超过.【详解】解:A .在没挂物体时,弹簧的长度为10cm ,根据图表,当质量m =0时,y =10,故此选项正确,不符合题意;B 、反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量,故此选项错误,符合题意;C 、当物体的质量为mkg 时,弹簧的长度是y =10+2.5m ,故此选项正确,不符合题意;D 、由C 中y =10+2.5m ,m =4,解得y =20,在弹簧的弹性范围内,故此选项正确,不符合题意;故选:B .【点睛】此题考查了函数的表示方法,列表法能具体地反映自变量与函数的数值对应关系,在实际生活中应用非常广泛;解析式法准确地反映了函数与自变量之间的对应规律,根据它可以由自变量的取值求出相应的函数值,反之亦然;图象法直观地反映函数值随自变量的变化而变化的规律.二、填空题13.【分析】根据一次函数数和的图象交点可知点P 的坐标就是的解【详解】解:根据题意可知二元一次方程组的解就是一次函数和的图象的交点P 的坐标∴二元一次方程组的解是故答案为:【点睛】此题考查了一次函数与二元一解析:27x y =⎧⎨=⎩【分析】根据一次函数数41y x =-和23y x =+的图象交点,可知点P 的坐标就是4123y x y x =-⎧⎨=+⎩的解.【详解】解:根据题意可知,二元一次方程组4123y x y x =-⎧⎨=+⎩的解就是一次函数41y x =-和23y x =+的图象的交点P 的坐标,∴二元一次方程组4123y x y x =-⎧⎨=+⎩的解是27x y =⎧⎨=⎩. 故答案为:27x y =⎧⎨=⎩. 【点睛】 此题考查了一次函数与二元一次方程(组),解答此题的关键是熟知方程组的解与一次函数的图象交点P 之间的联系,考查了学生对题意的理解能力.14.5-2m 【分析】首先根据一次函数y=(m-2)x+3-m 的图象不经过第三象限可得m-2<0进而得到m <2再根据二次根式的性质进行计算即可【详解】方法一:一次函数的图象经过第一二四象限∴∴故答案为:方解析:5-2m【分析】首先根据一次函数y=(m-2)x+3-m 的图象不经过第三象限,可得m-2<0,30m ->,进而得到m <2,再根据二次根式的性质进行计算即可.【详解】方法一:一次函数(2)3y m x m =-+-的图象经过第一、二、四象限,∴2030m m -<⎧⎨->⎩,∴=23m m =-+-52m =-.故答案为:52m -.方法二:(2)3y m x m =-+-的图象经过第一、二、四象限,∴2030m m -<⎧⎨->⎩解得23m m <⎧⎨<⎩, ∴2m <,=|2||3|m m =-+-23m m =-+-52m =-故答案为52m -.【点睛】本题考查了一次函数图象与系数的关系,以及二次根式的化简,关键是掌握:①k >0,b>0⇔y=kx+b 的图象在一、二、三象限;②k >0,b <0⇔y=kx+b 的图象在一、三、四象限;③k <0,b >0⇔y=kx+b 的图象在一、二、四象限;④k <0,b <0⇔y=kx+b 的图象在二、三、四象限.15.【分析】根据图象上点的坐标性质得出点各点纵坐标进而利用三角形的面积得出继而得到规律据此解题即可【详解】解:是轴上的点且分别过点作轴的垂直交直线于点的横坐标为:纵坐标为:同理可得:的横坐标为:纵坐标为 解析:3820194040【分析】 根据图象上点的坐标性质得出点12321,,,,n n T T T T T --各点纵坐标,进而利用三角形的面积得出1231n S S S S -、、,继而得到规律1111n n S n n --⎛⎫=- ⎪⎝⎭,据此解题即可. 【详解】解:1231,,,,n P P P P +,是x 轴上的点且11223211n n OP PP P P P P n --=====, 分别过点12321,,,,,n n P P P P P --作x 轴的垂直交直线22y x =-+于点12321,,,,n n T T T T T --,1T ∴的横坐标为:1n ,纵坐标为:22n-, 111211212S n n n n ⎛⎫⎛⎫∴=⨯-=- ⎪ ⎪⎝⎭⎝⎭, 同理可得:2T 的横坐标为:2n ,纵坐标为:42n-, 2121S n n ⎛⎫∴=- ⎪⎝⎭, 3T 的横坐标为:3n ,纵坐标为:62n-, 3131S n n ⎛⎫∴=- ⎪⎝⎭, 4T 的横坐标为:4n ,纵坐标为:82n-, 以此规律可得:1111n n S n n --⎛⎫=- ⎪⎝⎭,12311111(1)22n n S S S S n n n n --⎡⎤∴++++=---=⎢⎥⎣⎦, ∴当4n =时,1234413248S S S S -+++==⨯, 当2020n =时,1232019202012019220204040S S S S -++++==⨯. 故答案为:38;20194040. 【点睛】本题考查一次函数图象上点的坐标特征,是重要考点,难度一般,掌握相关知识是解题关键.16.③④【分析】根据一次函数的性质进行计算即可【详解】解:把x =1代入解析式得到y =1即函数图象经过(11)不经过点(10)故①错误;函数y =2x−1中k =2>0则该函数图象y 值随着x 值增大而增大故②错解析:③④【分析】根据一次函数的性质进行计算即可.【详解】解:把x =1代入解析式得到y =1,即函数图象经过(1,1),不经过点(1,0),故①错误;函数y =2x−1中,k =2>0,则该函数图象y 值随着x 值增大而增大,故②错误; 把x =0代入解析式得到y =-1,即函数图象经过(0,-1),故③正确;函数y =2x−1中,k =2>0,b =−1<0,则该函数图象经过第一、三、四象限,不经过第二象限,故④正确;故答案为:③④.【点睛】本题考查了一次函数的性质,掌握一次函数的性质是解题的关键.17.3【分析】过点M 作MH ⊥AB 于H 利用AAS 可证△AHM ≌△AOM 则由全等三角形的性质可得AH =AOHM =OM 根据一次函数的解析式可分别求出直线y =﹣x+8与两坐标轴的交点坐标并得OAOB 的长由勾股定解析:3【分析】过点M 作MH ⊥AB 于H ,利用AAS 可证△AHM ≌△AOM ,则由全等三角形的性质可得AH =AO ,HM =OM .根据一次函数的解析式可分别求出直线y =﹣43x +8与两坐标轴的交点坐标,并得OA 、OB 的长,由勾股定理可求AB .最后在Rt △BMH 中利用勾股定理即可求解OM 的长.【详解】解:如图,过点M 作MH ⊥AB 于H ,∴∠BHM =∠AHM =90°=∠AOM .∵AM 平分∠BOA ,∴∠HAM =∠OAM .在△AHM 和△AOM 中,AHM AOM HAM OAM AM AM ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AHM ≌△AOM (AAS ).∴AH =AO ,HM =OM .将x =0代入y =﹣43x +8中,解得y =8, 将y =0代入y =﹣43x +8中,解得x =6, ∴A (6,0),B (0,8).即OA =6,OB =8.∴AB 2268+=10.∵AH =AO =6,∴BH =AB -AH =4.设HM =OM =x ,则MB =8-x ,在Rt △BMH 中,BH 2+HM 2=MB 2,即42+x 2=(8-x )2,解得x =3.∴OM =3.故答案为:3.【点睛】此题考查了一次函数的图象与性质、全等三角形的判定与性质等知识,熟练掌握一次函数的性质并能利用辅助线构造全等三角形与直角三角形模型是解本题的关键.18.或【分析】分当时和当时两种情况讨论根据函数的增减性以及y >4即可求得a 的取值范围【详解】解:当时一次函数y =ax +6y 随x 增大而减小在x=3时取得最小值此时解得此时;当时一次函数y =ax +6y 随x 增解析:01a <<或203a <<-【分析】分当0a <时和当0a >时两种情况讨论,根据函数的增减性以及y >4即可求得a 的取值范围.【详解】解:当0a <时,一次函数y =ax +6,y 随x 增大而减小,在x=3时取得最小值, 此时364a +>,解得23a >-,此时203a <<-; 当0a >时,一次函数y =ax +6,y 随x 增大而增大,在x=-2时取得最小值, 此时264a -+>,解得1a <,此时01a <<;综上所述,01a <<或203a <<-. 故答案为:01a <<或203a <<-. 【点睛】本题考查一次函数的增减性,一次函数与一元一次不等式.能分类讨论是解题关键. 19.【分析】由题意可以求得k 和b 的值代入不等式即可得到正确答案【详解】解:由题意可得:∴k=2b=-2∴原不等式即为2x-2<0解之可得:x<1故答案为x<1【点睛】本题考查一次函数与一元一次不等式的综解析:1x <【分析】由题意可以求得k 和b 的值,代入不等式即可得到正确答案 .【详解】解:由题意可得:02k b b =+⎧⎨-=⎩, ∴ k=2,b=-2,∴原不等式即为2x-2<0,解之可得:x<1,故答案为x<1 .【点睛】本题考查一次函数与一元一次不等式的综合应用,利用直线与坐标轴的交点求出不等式的系数是解题关键.20.y=-x+1(答案不唯一)【分析】设一次函数的解析式为y=kx+b 根据一次函数的性质得k <0取k=-1然后把(-12)代入y=-x+b 可求出b 【详解】解:设一次函数的解析式为y=kx+b ∵y 随x 的增解析:y=-x+1.(答案不唯一)【分析】设一次函数的解析式为y=kx+b ,根据一次函数的性质得k <0,取k=-1,然后把(-1,2)代入y=-x+b 可求出b .【详解】解:设一次函数的解析式为y=kx+b ,∵y 随x 的增大而减小,∴k 可取-1,把(-1,2)代入y=-x+b 得1+b=2,解得b=1,∴满足条件的解析式可为y=-x+1.故答案为y=-x+1.(答案不唯一)【点睛】本题考查了一次函数y=kx+b 的性质:k >0,y 随x 的增大而增大,函数从左到右上升;k <0,y 随x 的增大而减小,函数从左到右下降.三、解答题21.(1)1530y x =+,单独购买一张学生卡的费用为30元,购买学生卡后每次游泳的费用为15元;(2)打折前的每次健身费用为25元,k 2=20;(3)选择方案一所需费用更少,理由见解析【分析】(1)把点(0,30),(10,180)代入11y k x b =+,得到关于1k 和b 的二元一次方程组,求解即可,再利用1k 的含义可得答案;(2)根据方案一每次健身费用按六折优惠,可得打折前的每次健身费用,再根据方案二每次健身费用按八折优惠,求出2k 的值;(3)将x=8分别代入12,y y 关于x 的函数解析式,比较即可.【详解】解:(1)∵11y k x b =+过点(0,30),(10,180),∴13010180b k b =⎧⎨+=⎩, 解得:11530k b =⎧⎨=⎩, 11530,y x ∴=+由115k =可得:购买一张学生卡后每次健身费用为15元,b =30可得:购买一张学生卡的费用为30元;(2)由题意可得,打折前的每次健身费用为15÷0.6=25(元),则2250.820k =⨯=;220y x ∴=.(3)选择方案一所需费用更少.理由如下:由题意可知,11530y x =+,220y x =.当健身8次时,选择方案一所需费用:115830150y =⨯+=(元),选择方案二所需费用:2208160y =⨯=(元),∵150<160,∴选择方案一所需费用更少.【点睛】本题考查了一次函数的应用,解题的关键是理解两种优惠活动方案,求出12,y y 关于x 的函数解析式.22.(1)1364y x =-+,21y 12x =+;(2)15;(3)存在,理由见解析. 【分析】(1)直接把点A (0,6)代入l 1解析式中,求出m 的值;把点B (-2,0)代入直线l 2,求出k 的值即可;(2)首先求出点C 的坐标,然后求出点D 坐标,进而根据S △ABD =S △ACB +S △ACB 求出答案; (3)分点P 在点B 的左边和右边两种情况进行讨论,利用三角形面积公式求出点P 的坐标.【详解】解:(1)∵直线113:4l y x m =-+与y 轴交于A (0,6), ∴m =6, ∴1364y x =-+, ∵22:1l y kx =+分别与x 轴交于点B (−2,0),∴−2k +1=0,∴k =12, ∴21y 12x =+; (2)令21y 12x =+中x =0,求出y =1, ∴点C 坐标为(0,1),联立364112y x y x ⎧=-+⎪⎪⎨⎪=+⎪⎩ , 解得x =4,y =3∴点D 的坐标为(4,3), ∴11(61)2522ACB S AC BO =⨯=⨯-⨯=△ 154102ACD S =⨯⨯=△ ∴51015ABD ACD ACD S S S =+=+=△△△;(3)设点P 坐标为(m ,0),当点P 在B 点的右侧时,BP =m +2,114(2)615223ABP S BP AO m =⨯=⨯+⨯=⨯△, 解得m =143, 则点P 坐标为(143,0), 当点P 在B 点的左侧时,BP =−2−m , 114(2)615223ABP S BP AO m =⨯=⨯--⨯=⨯△, 解得m =−263, 则点P 坐标为(−263,0), 综上点P 的坐标为(143,0)或(−263,0). 【点睛】本题考查了一次函数综合题的知识,本题涉及到求一次函数解析式、两直线交点问题,三角形面积等知识,解本题(2)的关键是求出D 点的坐标,解答(3)的关键是进行分类讨论.23.(1)16,2y x y x =-+=;(2)存在,11,2⎛⎫ ⎪⎝⎭或11,2⎛⎫-- ⎪⎝⎭ 【分析】(1)利用待定系数法即可求出直线AC 和OA 的函数解析式;(2)根据(1)求出OAC 的面积,然后将OMC 的面积用含有M 坐标的式子表示出来,即可求出M 坐标.【详解】(1)设直线AB 的解析式是y kx b =+,根据题意得:426k b b +=⎧⎨=⎩解得:16k b =-⎧⎨=⎩则直线的解析式是:6y x =-+,设OA 的解析式是y mx =,则42m =, 解得:12m =, 则直线的解析式是:12y x =; (2)∵当OMC ∆的面积是OAC ∆的面积的14时, ∴14OMC S OAC ∆=∆, 即111242M C OC x OC x ⨯⨯=⨯⨯⨯, ∴1414M x =⨯=, 当1M x =时,12M y =, 当1M x =-时,12M y =-时, ∴M 的坐标为11,2⎛⎫ ⎪⎝⎭或11,2⎛⎫-- ⎪⎝⎭. 【点睛】本题重点在于利用待定系数法求函数解析式,以及利用未知数表示三角形面积,依次求出点坐标.24.(1)0.2500y x =+;(2)营销员佳妮想得到收入1600元,她应销售5500斤水果.【分析】(1)设500y kx =+,用待定系数法求解即可;(2)令y=1600求解即可.【详解】解:(1)设500y kx =+,把x=4000,y=1300代入得40005001300k +=,解得 0.2k =,∴ y 与x 之间的函数关系式是0.2500y x =+.(2)当1600y =时,0.25001600x +=,解得 5500x =,答:营销员佳妮想得到收入1600元,她应销售5500斤水果.【点睛】本题考查了一次函数的应用,熟练掌握待定系数法是解答本题的关键.25.(1)A 、B 两种纪念品每件进价分别为20元、30元;(2)101种;(3)A 种500件,B 种中500件时,最大利润为4500元【分析】(1) 设A 种纪念品每件进价a 元,则B 种纪念品每件进价(10)x +元,根据题意列方程求解即可;(2)设A 种纪念品购进y 件,则B 种纪念品购进(1000)y -件,依据题意列不等式组,求出y 的整数取值范围,即可得出进购方案;(3)根据题意得出利润的关系式,再结合第二问y 的取值范围求出最大利润.【详解】解:(1)设A 种纪念品每件进价a 元,则B 种纪念品每件进价(10)x +元. 根据题意得16024010x x =+,去分母, 得:160(10)240x x +=,解得:20x , 经检验,20x 是原方程的解,1030x +=(元),∴A 种纪念品每件进价20元,B 种纪念品每件进价30元.(2)设A 种纪念品购进y 件,则B 种纪念品购进(1000)y -件,根据题意得:10001.5(1000)y y y y ≥-⎧⎨≤-⎩,解得:500600y ≤≤. 又y 只能取整数,500y ∴=,501, (600)则共有101种购进方案.(3)由题意得,最大利润为:(2420)(3530)(1000)5000W y y y =-+--=-+,在500600y ≤≤时,当500y =时,max 4500W =(元),∴当A 种购进500件,B 种购进500件时,利润最大为4500元.【点睛】本题考查分式方程、一元一次不等式组及一次函数的综合应用,解题关键在于充分理解题意,根据题意列出相关关系式进行求解.26.(1)1;(2)m =2【分析】(1)把点P (1, n )代入一次函数 y=−2x+3 即可求出n 的值;(2)由(1)可得P (1,1),由一次函数 y=mx−1 的图像经过点P (1,1),可得m 的值.【详解】(1)一次函数23y x =-+的图像经过点P (1,n ),n =-2+3=1;(2)由n =1,P (2n -1,n ),可得P (1,1),一次函数1y mx =-的图像经过点P (1,1),11m =-,解得m=2.【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.。

八年级数学:一次函数单元测试题(含解析)

八年级数学:一次函数单元测试题(含解析)

八年级数学:一次函数单元测试题(含解析)(时间:90分钟 分值:100分)一、选择题(每小题2分,共24分)1.若正比例函数的图像经过点(-1,2),则这个函数的图像必经过点( D ) A .(1,2) B .(-1,-2) C .(2,-1) D .(1,-2)解析:设正比例函数的表达式为y =kx (k ≠0),因为正比例函数y =kx 的图像经过点(-1,2),所以2=-k ,解得k =-2,所以y =-2x .把这四个选项分别代入y =-2x 中验证,易得这个图像必经过点(1,-2).故选D.2.已知点(-4,y 1),(2,y 2)都在直线y =-x +2上,则y 1,y 2的大小关系是( A ) A .y 1>y 2 B .y 1=y 2 C .y 1<y 2 D .不能比较 解析:-1<0,∴函数值y 随x 的增大而减小. 又∵-4<2,∴y 1>y 2.故选A.3.若k ≠0,b <0,则y =kx +b 的图像可能是下图中的( B )解析:b <0时,直线与y 轴交于负半轴.故选B.4.若一次函数y =2mx +(m 2-2m )的图像经过坐标原点,则m 的值为( A ) A .2 B .0 C .0或2 D .无法确定 解析:由2m ×0+(m 2-2m )=0,得m =0或m =2.由2m ≠0,得m ≠0.故m =2.故选A.5.已知直线y =kx +b 经过点(k,3)和(1,k ),则k 的值为( B ) A. 3 B .± 3 C. 2 D .± 2 解析:由⎩⎨⎧k 2+b =3,k +b =k ,得⎩⎨⎧k 2=3,b =0,∴k =± 3.故选B.6.下列各点中,在函数y =-12x +5的图像上的点是( C )A .(2,5)B .(-2,4)C .(4,3)D .(-4,9)解析:当x=4时,y=-12×4+5=3,故点(4,3)在图像上.故选C.7.在平面直角坐标系中,函数y=-x+1的图像经过( D )A.第一、二、三象限 B.第二、三、四象限C.第一、三、四象限 D.第一、二、四象限解析:根据题意有a<0,c>0,∴函数y=ax+c的图像经过第一、二、四象限.故选D.8.(2017·大庆)对于函数y=2x-1,下列说法正确的是( D )A.它的图像过点(1,0) B.y值随着x值增大而减小C.它的图像经过第二象限D.当x>1时,y>0解析:把x=1代入关系式得到y=1,即函数图像经过(1,1),不经过点(1,0),故A选项错误;函数y=2x-1中,k=2>0,则该函数图像y值随着x值增大而增大,故B选项错误;函数y =2x-1中,k=2>0,b=-1<0,则该函数图像经过第一、三、四象限,故C选项错误;当x>1时,2x -1>1,则y>1,故y>0正确,故D选项正确.故选D.9.直线y=43x+4与x轴交于点A,与y轴交于点B,则△AOB的面积为( B )A.12 B.6 C.3 D.4解析:A(-3,0),B(0,4),S△AOB=12×3×4=6.故选B.10.已知一次函数y1=kx+b与y2=x+a的图像如图,则下列结论:①k<0;②a>0;③当x<3时,y1<y2,其中正确的有( B )A.0个 B.1个 C.2个 D.3个解析:因为y1=kx+b的图像从左到右是下降的,所以k<0.因为y2=x+a的图像与y轴的交点在x轴的下方,所以a<0.因为当x<3时,y2的图像在y1的下方,所以y2<y1,所以正确的只有①.故选B.11.一次函数y=kx+2过点(1,1),那么这个一次函数是( B )A.y随x的增大而增大B.y随x的增大而减小C.图像经过原点D.图像不经过第二象限解析:由k+2=1,得k=-1.∵-1<0,∴y随x的增大而减小.故选B.12.在平面直角坐标系中,将直线l1:y=-2x-2平移后,得到直线l2:y=-2x+4,则下列平移作法正确的是( A )A.将l1向右平移3个单位长度 B.将l1向右平移6个单位长度C.将l1向上平移2个单位长度 D.将l1向上平移4个单位长度解析:∵将直线l1:y=-2x-2平移后,得到直线l2:y=-2x+4,∴-2(x+a)-2=-2x+4,解得:a=-3,故将l1向右平移3个单位长度.故选A.二、填空题(每小题3分,共18分)13.直线y=2x+b与x轴的交点坐标是(2,0),则关于x的方程2x+b=0的解是x=2.解析:2×2+b=0,b=-4.∵2x+b=0,∴2x-4=0,∴x=2.14.一次函数y=12x+5的图像经过第一、二、三象限.解析:图像过(0,5),且从左到右上升,∴图像经过第一、二、三象限.15.如图,在平面直角坐标系中,正方形ABCD的对称中心与原点重合,顶点A的坐标为(-1,1),顶点B在第一象限.若点B在直线y=kx+3上,则k的值为-2.解析:∵点A (-1,1),正方形ABCD 的对称中心与原点重合,由对称点,可知B (1,1). ∵点B 在直线y =kx +3上,∴1=k +3.解得k =-2.16.直线y =-2x +m 与直线y =2x -1的交点在第四象限,则m 的取值范围是-1<m <1.解析:解⎩⎨⎧y =-2x +m ,y =2x -1,得⎩⎪⎨⎪⎧x =m +14,y =m -12.解⎩⎪⎨⎪⎧m +14>0,m -12<0.得-1<m <1.17.已知一次函数y =2x +a 与y =-x +b 的图像都经过点A (-3,0),且与y 轴分别交于B ,C 两点,则△ABC 的面积为272.解析:将A (-3,0)代入y =2x +a ,得a =6,∴B (0,6);将A (-3,0)代入y =-x +b ,得b =-3,∴C (0,-3),∴S △ABC =12×9×3=272.18.如图所示,直线m 的函数关系式为y =x ,点A 的坐标是(-1,0),点B 是直线m 上的一个动点,连接AB ,当线段AB 最短时,点B 的坐标是⎝ ⎛⎭⎪⎫-12,-12.解析:当线段AB 最短时,AB ⊥m ,垂足为B ,过点B 作BC ⊥x 轴,垂足为C ,则△AOB 与△BOC 都是等腰直角三角形,则OC =BC =12OA =12,所以点B ⎝ ⎛⎭⎪⎫-12,-12.三、解答题(共58分)19.(6分)已知函数y =(m -1)x +m +2,则当m 为何值时,这个函数是一次函数,并且图像经过第二、三、四象限?解:由y =(m -1)x +m +2是一次函数,并且图像经过第二、三、四象限,得⎩⎨⎧m -1<0,m +2<0,解得m <-2.20.(7分)小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小敏离家的路程y (米)和所经过的时间x (分钟)之间的函数图像如图所示.请根据图像回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多长时间? (2)小敏几点几分返回到家?解:(1)速度为3 00010=300(米/分钟),逗留时间为30分钟. (2)设返回家时,y 与x 的函数表达式为y =kx +b ,把(40,3 000),(45,2 000)代入,得 ⎩⎨⎧3 000=40k +b ,2 000=45k +b ,解得⎩⎨⎧k =-200,b =11 000,∴函数表达式为y =-200x +11 000,当y =0时,x =55,∴返回到家的时间为8:55. 21.(7分)如果用x 表示鞋子的“码数”,用y 表示厘米数,那么y 是x 的一次函数.已知34码的鞋厘米数为22,40码的鞋厘米数为25.(1)求y 与x 的函数表达式;(2)一个人的鞋子为38码时,厘米数为多少? 解:(1)设y 与x 的函数表达式为y =kx +b ,∴⎩⎨⎧34k +b =22,40k +b =25.解得⎩⎨⎧k =12,b =5.∴y 与x 的函数表达式为y =12x +5.(2)当x =38时,y =12×38+5=24.22.(8分)小东从A 地出发以某一速度向B 地走去,同时小明从B 地出发以另一速度向A 地而行,如图所示,图中的线段y 1,y 2分别表示小东、小明离B 地的距离y (km)与所用时间x (h)的关系.(1)试用文字说明:交点P 所表示的实际意义; (2)试求出A ,B 两地之间的距离.解:(1)交点P 所表示的实际意义是:经过2.5 h 后,小东与小明在距离B 地7.5 km 处相遇.(2)设y 1=kx +b ,又∵y 1经过点P (2.5,7.5),(4,0), ∴⎩⎨⎧2.5k +b =7.5,4k +b =0,解得⎩⎨⎧b =20,k =-5,∴y 1=-5x +20, 当x =0时,y 1=20.故A ,B 两地之间的距离为20 km.23.(8分)如图,过点A (2,0)的两条直线l 1,l 2分别交y 轴于点B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB =13.(1)求点B 的坐标.(2)若△ABC 的面积为4,求直线l 2的关系式.解:(1)在Rt △AOB 中,OA 2+OB 2=AB 2,∴22+OB 2=(13)2. ∴OB =3.∴点B 的坐标是(0,3).(2)∵S △ABC =12BC ·OA ,∴12BC ×2=4.∴BC =4.∴C (0,-1).设l 2:y =kx +b .把A (2,0),C (0,-1)代入,得⎩⎨⎧2k +b =0,b =-1,∴⎩⎨⎧k =12,b =-1.∴直线l 2的关系式是y =12x -1.24.(10分)某部队甲、乙两班参加植树活动.乙班先植树30棵,然后甲班才开始与乙班一起植树.设甲班植树的数量为y 甲(棵),乙班植树的数量为y 乙(棵),两班一起植树所用的时间(从甲班开始植树时计时)为x (小时).y 甲、y 乙关于x 的部分函数图像如图所示.(1)当0≤x ≤6时,分别求y 甲、y 乙与x 之间的函数关系式;(2)如果甲、乙两班均保持前6个小时的工作效率,那么当x =8时,甲、乙两班植树的总数量能否超过260棵?(3)如果6个小时后,甲班保持前6个小时的工作效率,乙班通过增加人数,提高了工作效率,这样继续植树2小时,活动结束.当x =8时,两班植树的总数量相差20棵,求乙班增加人数后平均每小时植树多少棵?解:(1)设y 甲=k 1x ,把(6,120)代入y 甲=k 1x , 解得k 1=20,∴y 甲=20x . 当x =3时,y 甲=y 乙=60.设y 乙=k 2x +b ,把(0,30),(3,60)代入y 乙=k 2x +b , 得⎩⎨⎧ b =30,3k 2+b =60.解得⎩⎨⎧k 2=10,b =30.∴y 乙=10x +30.(2)当x =8时,y 甲=8×20=160,y 乙=8×10+30=110. ∵160+110=270>260,∴当x =8时,甲、乙两班植树的总数量能超过260棵. (3)设乙班增加人数后平均每小时植树a 棵.当乙班比甲班多植树20棵时,有6×10+30+2a -20×8=20. 解得a =45.当甲班比乙班多植树20棵时,有20×8-(6×10+30+2a )=20. 解得a =25.∴乙班增加人数后平均每小时植树45棵或25棵.25.(12分)(2017·衡阳)为响应绿色出行号召,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付和会员卡支付两种支付方式,如图描述了两种方式应支付金额y (元)与骑行时间x (小时)之间的函数关系,根据图像回答下列问题:(1)求手机支付金额y (元)与骑行时间x (小时)的函数关系式;(2)李老师经常骑行共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算?解:(1)当0≤x <0.5时,y =0,当x ≥0.5时,设手机支付金额y (元)与骑行时间x (时)的函数关系式是y =kx +b , ⎩⎨⎧0.5k +b =0,1×k +b =0.5,计算得出⎩⎨⎧k =1,b =-0.5.即当x ≥0.5时,手机支付金额y (元)与骑行时间x (时)的函数关系式是y =x -0.5, 由上可得,手机支付金额y (元)与骑行时间x (时)的函数关系式是y =⎩⎨⎧0≤x <0.5,x -0.5x ≥0.5.(2)设会员卡支付对应的函数关系式为y =ax , 则0.75=a ×1,得a =0.75,即会员卡支付对应的函数关系式为:y =0.75x , 令0.75x =x -0.5,得x =2,由图像可以知道,当x >2时,会员卡支付便宜. 答:当0<x <2时,李老师选择手机支付比较合算, 当x =2时,李老师选择两种支付一样, 当x >2时,李老师选择会员卡支付比较合算.。

一次函数单元测试题及答案

一次函数单元测试题及答案

一次函数测试题(含答案)一、相信你一定能填对!(每小题3分,共24分)1.下列函数中,自变量x 的取值范围是x ≥2的是( )A .y=2x -B .y=12x - C .y=24x - D .y=2x +·2x - 2.下列函数中,y 是x 的正比例函数的是( )A .y=2x-1B .y=3xC .y=2x 2D .y=-2x+13.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四4.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( )A .m>12B .m=12C .m<12D .m=-125.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<3 6.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( )A .y=-x-2B .y=-x-6C .y=-x+10D .y=-x-1 7.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( )A .y=-2x+3B .y=-3x+2C .y=3x-2D .y=12x-38.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )二、你能填得又快又对吗?(每小题4分,共40分)9.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________.10.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________. 11.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________.12.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.13.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.14.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)15.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.16.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______. 17.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k的值为_____.18.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________.三、认真解答,一定要细心哟!(共36分) 19.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题: (1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?20.(12分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y (元)与通话时间t (分钟)之间的函数关系的图象.(1)写出y 与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?x y1234-2-1C A-14321O21.(12分)已知雅美服装厂现有A种布料70米,B种布料52米,•现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.•1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.•9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.①求y(元)与x(套)的函数关系式,并求出自变量的取值范围;②当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?22、已知一次函数y=kx+b的图象经过点(-1, -5),且与正比例函数y=12x的图象相交于点(2,a),求(1)a的值(2)k,b的值(3)这两个函数图象与x轴所围成的三角形的面积。

2024-2025学年北师大版数学八上 第四章 一次函数 单元试卷(含答案)

2024-2025学年北师大版数学八上 第四章 一次函数 单元试卷(含答案)
13.<5
14.−4
15.<
1
1
16.k=2或−2.
17. = 2 + 10 (−5 < < 0)
18.(1) = 20−2 (2)5 < < 10
19.(1) = 1.5 + 5(0 < < 15);
(2)当弹簧长度为23cm时,所挂物体的质量为 12kg.
20.(1)y1=15x+30(x≥3),y2=12x+60(x≥3);(2)当购买 10 张票时,两种优惠方案付款

时,y 随 x 的增大而增大.
14.已知正比例函数 = −2的图象经过点(2,),则 m 的值为
15.已知点(−2,1),(2,2)都在直线 = 2−3上,则1


2.(填“<”或“>”或“=”)
16.若直线 ykx2 与坐标轴围成的三角形的面积是 4,则 k 的值为
.
17.已知点(−4,0)及第二象限的动点(,),且− = 5.设的面积为,则关于的
10.已知一次函数 y=kx+b(k,b 为常数,k≠0)的图象经过一、三、四象限,则下列结论
正确的是(
A.kb>0
)
B.kb<0
C.k+b>0
D.k+b<0
二、填空题
11.一次函数 = 2 + 1与轴的交点坐标是
12.请写出一个当 > 1时,随的增大而减小的函数表达式:
13.已知一次函数 = (5−) + 2,当 m
B. = + 1
6.一次函数 = −2−1的图象大致是(
A.
C. = −−2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档