部编版2020学年高一数学下学期期末考试试题

合集下载

辽宁省大连市2020-2021学年高一下学期期末考试数学试题

辽宁省大连市2020-2021学年高一下学期期末考试数学试题

大连市2020-2021学年第二学期期末考试试卷高一数学一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符号题目要求。

1.已知角α的终边过点()3,4,则tan α=( ) A.35 B. 34 C. 45 D. 432.已知圆锥的轴截面是边长为2的等边三角形,则该圆锥的侧面积为( ) A.3B. 2πC. 3πD. 4π 3.已知复数13z bi =−,212z i =−,若12z z 是实数,则实数b 的值为( ) A. 6− B. 32− C. 0 D. 6 4.设向量a 与b 的夹角为θ,定义a 与b 的“向量积”:a b ⨯是一个向量,它的模sin a b a b θ⨯=⋅⋅,若()3,1a =−−,()1,3b =,则a b ⨯=( )A.B. 2C.D. 45.在复平面内,复数65i +,23i +对应的点分别为,A B ,若C 为线段AB 的中点,则点C 对应的复数是( )A. 48i +B. 82i +C. 24i +D. 4i +6.如图,从地面上C ,D 两点望山顶A ,测得它们若点仰角分别为45︒和30︒,已知100CD =米,点C位于BD 是上,则山高AB 等于( )A. B.C. 100米D. )501米 7.在ABC 中,角,,A B C 所对的边分别是,,a b c ,若sin sin sin A B C a b c ==,则ABC 是( )A. 等边三角形B. 有一内角是30︒的直角三角形C. 等腰直角三角形D. 有一内角是30︒的等腰三角形8.刘徽在他的《九章算术注》中提出一个独特的地方来计算球体的体积:他不直接给出球体的体积,而是先计算另一个叫“牟合方盖”的立体的体积,刘徽通过计算,“牟合方盖”的体积与立方体内切球的体积之比应为4π。

后人导出了“牟合方盖”的18体积计算公式,即318V r V =−牟方盖差,r 为球的半径,也即正方形的棱长均为2r ,从而计算出343V r π=球,记所有棱长都为r 的正四棱锥的体积为V 正,棱长为2r 的正方形的方盖差为V 方盖差,V V 方盖差正等于( )A. B. 2 C. 12D. 4 二、多项选择题:本题共4小题,每小题5分,共20分。

内蒙古包头市2020版高一下学期数学期末考试试卷(II)卷

内蒙古包头市2020版高一下学期数学期末考试试卷(II)卷

内蒙古包头市2020版高一下学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)下图是两组各名同学体重(单位:)数据的茎叶图.设两组数据的平均数依次为和,标准差依次为和,那么()(注:标准差,其中为的平均数)A .B .C .D .2. (2分)已知向量=(x﹣1,2),=(4,y),若⊥,则9x+3y的最小值为()A . 2B . 2C . 6D . 93. (2分) (2016高二上·定州期中) 某学校有学生2500人,教师350人,后勤职工150人,为了调查对食堂服务的满意度,用分层抽样从中抽取300人,则学生甲被抽到的概率为()A .B .C .D .4. (2分)已知等比数列公比为,其前n项和为,若成等差数列,则等于()A . 1B .C . 或1D . 或5. (2分) (2018高一下·枣庄期末) 某人在打靶中,连续射击次,至多有一次中靶的对立事件是()A . 至少有一次中靶B . 两次都中靶C . 两次都不中靶D . 恰有一次中靶6. (2分)点P是等腰三角形ABC所在平面外一点,PA⊥平面ABC,PA=8,在△ABC中,底边BC=6,AB=5,则P到BC的距离为()A .B .C .D . 27. (2分) (2018高一下·上虞期末) 函数()的图象恒过定点,若点在直线上,其中,则的最小值为()A .B .C .D .8. (2分)若a,b,c为实数,且a<b<0,则下列命题正确的是()A . ac2<bc2B . <C . >D . a2>ab>b29. (2分)(2017·邯郸模拟) 执行所给的程序框图,则输出的值是()A .B .C .D .10. (2分) (2018高一下·衡阳期末) 若实数,满足约束条件则的取值范围是()A .B .C .D .11. (2分)位于平面直角坐标系原点的一个质点P按下列规则移动:质点每次移动一个单位,移动的方向是向上或向下,并且向上移动的概率为,则质点P移动4次后位于点(0,2)的概率是()A .B .C .D .12. (2分)数列的通项公式,其前n项和为Sn,则S2013等于()A . 1006B . 2012C . 503D . 0二、填空题 (共4题;共5分)13. (1分) (2016高一下·甘谷期中) 若 =(λ,4), =(﹣3,5),且与的夹角为钝角,则λ的取值范围是________.14. (2分)在等比数列中,若,,则(1)公比q=________;(2) |a1|+|a2|+ +|an|=________.15. (1分)(2017·扬州模拟) 随着社会的发展,食品安全问题渐渐成为社会关注的热点,为了提高学生的食品安全意识,某学校组织全校学生参加食品安全知识竞赛,成绩的频率分布直方图如图所示,数据的分组依次为[20,40),[40,60),[60,80),[80,100),若该校的学生总人数为3000,则成绩不超过60分的学生人数大约为________.16. (1分) (2017高二下·吉林期末) 设△ABC的内角A , B , C的对边分别为a , b , c ,且a=2,cosC=-,3sinA=2sinB ,则c=________.三、解答题 (共6题;共45分)17. (5分)已知向量=(1,sinα),=(2,cosα),且∥,计算:.18. (5分)(2019·天津) 设是等差数列,是等比数列.已知.(Ⅰ)求和的通项公式;(Ⅱ)设数列满足其中 .(i)求数列的通项公式;(ii)求 .19. (10分) (2016高二下·永川期中) 某奶茶店为了解白天平均气温与某种饮料销量之间的关系进行分析研究,记录了2月21日至2月25日的白天平均气温x(℃)与该奶茶店的这种饮料销量y(杯),得到如表数据:平均气温x(℃)91112108销量y(杯)2326302521(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程 = x+ ;(2)试根据(1)求出的线性回归方程,预测平均气温约为20℃时该奶茶店的这种饮料销量.(参考: = , = ﹣• ;9×23+11×26+12×30+10×25+8×21=1271,92+112+122+102+82=510)20. (10分)已知R为全集,A={x|log2(3﹣x)≤2},B={x|x2≤5x﹣6},(1)求A,B(2)求CR(A∩B)21. (5分) (2019高一下·嘉定月考) 已知,,,的值为多少.22. (10分)(2012·重庆理) 设数列{an}的前n项和Sn满足Sn+1=a2Sn+a1 ,其中a2≠0.(1)求证:{an}是首项为1的等比数列;(2)若a2>﹣1,求证,并给出等号成立的充要条件.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共5分)13-1、14-1、14-2、15-1、16-1、三、解答题 (共6题;共45分) 17-1、18-1、19-1、19-2、20-1、20-2、21-1、22-1、22-2、。

北京市朝阳区2020-2021学年高一下学期期末考试数学试题Word版含解析

北京市朝阳区2020-2021学年高一下学期期末考试数学试题Word版含解析

北京市朝阳区2020-2021学年高一下学期期末考试数学试题一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,选出符合题目要求的一项.1.10y -+= 倾斜角的大小是( ) A. 6π B. 3πC. 23πD. 56π 【答案】B【解析】【分析】把直线方程化成斜截式,根据斜率等于倾斜角的正切求解.10y -+=化成斜截式为1y =+,因为tan k α=,所以3πα=.故选B.【点睛】本题考查直线的斜截式方程和基本性质,属于基础题.2.在ABC △中,a =,4b =,π3A =,则B = ( ) A. π6 B. π3 C. π2 D. 2π3【答案】A【解析】【分析】 根据正弦定理sin sin a bA B =求解. 【详解】由正弦定理可得sin sin a bA B = ,4sin 1sin 2b A B a ∴=== 又434,a b A B =>=∴>6B π∴=.故选A.【点睛】本题考查解三角形,正弦定理余弦定理是常用方法.注意增根的排除,大边对大角是常用排除方法.3.已知直线1:1l y kx =+,2:(2)l y k x =-,若12l l ⊥,则实数k 的值是( )A. 0B. 1C. 1-D. 0或1-【答案】B【解析】【分析】根据直线垂直斜率之积为1求解.【详解】因为12l l ⊥,所以(2)1k k -=-,解得1k =.故选B.【点睛】本题考查直线垂直的斜率关系,注意斜率不存在的情况.4.在正方体1111ABCD A BC D -中,,E F 分别是棱1,AA AB 的中点,则异面直线EF 和1C D 所成角的大小是( ) A. π6 B. π4 C. π3 D. π2【答案】D【解析】【分析】 平移EF 到1A B ,平移1C D 到1AB ,则1A B 与1AB 所求的角即为所求的角.【详解】如图所示,∵,E F 分别是棱1,AA AB 的中点∴EF ∥1A B又∵1C D ∥1AB ,11AB A B ⊥∴1EF C D ⊥∴EF 和1C D 所成的角为π2. 故选D.【点睛】本题考查异面直线所成的角,常用方法:1、平移直线到相交;2、向量法.5.已知,l m 是两条不同的直线,,αβ是两个不同的平面,则下列命题正确的是( )A. 若,l l m α⊥,则m α⊥B. 若,l l αβ,则αβ∥C. 若,l ααβ⊥⊥,则l β∥D. 若,l l αβ⊥⊥,则αβ∥ 【答案】D【解析】【分析】分析条件的特殊情况,结合定理举例推翻错误选项即可.【详解】当直线,l m 是相交且垂直,确定的平面与α平行时,m α,故A 错误;当,αβ相交,直线l 与交线平行时,,l l αβ,故B 错误;当直线l 在面β内,且αβ⊥,直线l 垂直,αβ的交线时,l α⊥,故C 错误;垂直与同一直线的两个平面平行,故D 正确.故选D.【点睛】本题考查空间线面的位置关系,结合定理与举例判断.6.从某小学随机抽取100名学生,将他们的身高数据(单位:厘米)按[100,110),[110,120),[120,130),[130,140),[140,150]分组,绘制成频率分布直方图(如图).从身高在[)120130,,[)130140,,[)140150,三组内的学生中,用分层抽样的方法抽取18人参加一项活动,则从身高在[]140,150内的学生中选取的人数应为 ( )A. 3B. 4C. 5D. 6【答案】A【解析】【分析】 先求[)120130,,[)130140,,[)140150,三组频率,再求各组频数,最后根据分层抽样总体与各层抽样比例相同求解.【详解】各组频率等于各组矩形的面积,所以,身高在[)120130,,[)130140,,[)140150,的频率分别为0.3,0.2,0.1, 身高在[)120130,,[)130140,,[)140150,的频数分别为30,20,10, 分层抽样的比例为183********=++ . 所以,身高在[]140,150内的学生中选取的人数为310310⨯=. 故选A.【点睛】本题考查频率分布直方图与分层抽样,属于基础题.7.如图,设A ,B 两点在河的两岸,某测量者在A 同侧的河岸边选定一点C ,测出AC 的距离为50米,∠ACB =45°,∠CAB =105°,则A ,B 两点的距离为( )A. 502 米B. 503米C. 252 米D. 5063米 【答案】A【解析】【分析】 先根据三角形内角和求ABC ∠,再根据正弦定理sin sin AB AC ACB ABC=∠∠求解. 【详解】在ABC ∆中50,45,105AC m ACB CAB ︒︒=∠=∠=,则30ABC ︒∠=由正弦定理得sin sin AB AC ACB ABC=∠∠ , 所以250sin 25021sin 2AC ACB AB ABC⨯∠===∠ m. 故选A.【点睛】本题考查解三角形的实际应用,正弦定理余弦定理是常用方法,注意增根的排除.8.如图,在正方体1111ABCD A BC D -中,F 是棱11A D 上的动点.下列说法正确的是( )A. 对任意动点,F 在平面11ADD A 内不存在...与平面CBF 平行的直线 B. 对任意动点,F 在平面ABCD 内存在..与平面CBF 垂直的直线 C. 当点F 从1A 运动到1D 的过程中,二面角F BC A --的大小不变..D. 当点F 从1A 运动到1D 的过程中,点D 到平面CBF 的距离逐渐变大..【答案】C【解析】【分析】不论F 是在11A D 任意位置,平面CBF 即平面11A D CB ,再求解.【详解】因为AD 在平面11ADD A 内,且平行平面CBF ,故A 错误;平面CBF 即平面11A D CB ,又平面11A D CB 与平面ABCD 斜相交,所以在平面ABCD 内不存在与平面CBF 垂直的直线,故B 错误;平面CBF 即平面11A D CB ,平面11A D CB 与平面ABCD 是确定平面,所以二面角不改变,故C 正确;平面CBF 即平面11A D CB ,点D 到平面11A D CB 的距离为定值,故D 错误.故选C.【点睛】本题考查空间线面关系,属于综合题.本题的关键在于平面CBF 的确定.9.2018年科学家在研究皮肤细胞时发现了一种特殊的凸多面体, 称之为“扭曲棱柱”. 对于空间中的凸多面体, 数学家欧拉发现了它的顶点数, 棱数与面数存在一定的数量关系.根据上表所体现的数量关系可得有12个顶点,8个面的扭曲棱柱的棱数是( )A. 14B. 16C. 18D. 20 【答案】C【解析】【分析】分析顶点数, 棱数与面数的规律,根据规律求解.【详解】易知同一凸多面体顶点数, 棱数与面数的规律为:棱数=顶点数+面数-2,所以,12个顶点,8个面的扭曲棱柱的棱数=12+8-2=18.故选C.【点睛】本题考查逻辑推理,从特殊到一般总结出规律.10.已知二次函数22(0)y x x m m =-+≠交x 轴于,A B 两点(,A B 不重合),交y 轴于C 点. 圆M 过,,A B C 三点.下列说法正确的是( )① 圆心M 在直线1x =上;② m 的取值范围是(0,1);③ 圆M 半径的最小值为1;④ 存在定点N ,使得圆M 恒过点N .A. ①②③B. ①③④C. ②③D. ①④【答案】D【解析】【分析】根据圆的的性质得圆心横坐标为1;根据二次函数的性质与二次函数与x 轴有两个焦点可得m 的取值范围;假设圆方程为222(1)()x y b r -+-=,用待定系数法求解,根据二次函数的性质和m 的取值范围求圆半径的取值范围,再根据圆方程的判断是否过定点.【详解】二次函数22(0)y x x m m =-+≠对称轴为1x =, 因为对称轴1x =为线段AB 的中垂线,所以圆心在直线1x =上,故①正确;因为二次函数与x 轴有两点不同交点,所以440m ∆=->,即1m <,故②错误;不妨设A 在B 的左边,则(11,0)A m --,(0,)C m设圆方程为222(1)()x y b r -+-= ,则()()()()222222111001m b r m b r ⎧---+-=⎪⎨⎪-+-=⎩,解得, 12m b +=,()221114r m =-+ 因为1m <,所以()2211114r m =-+>即1r >,故③错误; 由上得圆方程为()22211(1)()1124m x y m +-+-=-+, 即()22210x x y y m y -+---=,恒过点(0,1)N ,故④正确. 故选D.【点睛】本题考查直线与圆的应用,关键在于结合图形用待定系数法求圆方程,曲线方程恒过定点问题要分离方程参数求解.二、填空题:本大题共6小题,每小题5分,共30分.11.某学校甲、乙两个班各15名学生参加环保知识竞赛,成绩的茎叶图如下:则这30名学生的最高成绩是_______;由图中数据可得_______班的平均成绩较高.【答案】 (1). 96 (2). 乙【解析】【分析】最高成绩位的“茎”最大的“叶”上的最大数,再分析两个班的成绩主要集中在哪些“茎”上,比较这些“茎”的大小即可得出结果.【详解】由茎叶图可知,30名学生的最高成绩是96分,因为甲班的成绩集中在(60, 80)分,乙班的成绩集中在(70,80)分,故乙班的平均成绩较高。

2023-2024学年四川省自贡市高一下学期期末考试数学试题(含解析)

2023-2024学年四川省自贡市高一下学期期末考试数学试题(含解析)

2023-2024学年四川省自贡市高一下学期期末考试数学试题一、选择题:本题共11小题,每小题5分,共55分。

1.在▵OMN 中,ON−MN +MO =( )A. 0B. 2MOC. 2OMD. 02.复数2+3i 1+i 对应的点( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.为了了解学生们的身体状况,某学校决定采用按比例分层抽样的方法,从高一、高二、高三三个年级共抽取100人进行各项指标测试.已知高三年级有500人,高二年级有700人,高一年级有800人,则高二年级抽取的人数为( )A. 40B. 35C. 30D. 254.水平放置的▵ABC 的斜二测直观图如图所示,已知A′C′=3,B′C′=2,则▵ABC 的面积是( )A. 4B. 5C. 6D. 75.若连续抛两次骰子得到的点数分别是m ,n ,则点P (m,n )在直线x +y =8上的概率是( )A. 112B. 19C. 536D. 166.在▵ABC 中,B =30∘,b =2,c =2 2,则▵ABC 的面积为( )A. 3+ 3B. 3+1C. 3± 3D. 3±17.已知▵ABC 中,AC ⋅AB =0,2AD−AC−AB =0,|AD |=|AB |,则CA 在CB 上的投影向量为( )A. 14CBB. 34CB D. −34CB 8.图1是唐朝著名的风鸟花卉纹浮雕银杯,它的盛酒部分可以近似地看作半球与圆柱的组合体(如图2).设这种酒杯内壁的表面积为Scm 2,半球的半径为3cm ,若半球的体积不小于圆柱体积,则S 的取值范围是( )A. [24π,+∞)B. (18π,24π]C. [30π,+∞)D. (18π,30π]9.设向量a,b满足|a|=|b|=1,且|3b−a|=10,则以下结论正确的是( )A. a⊥bB. |a−b|=2C. |b−3a|=10D. 向量a+b与a−b夹角为60∘10.下列命题中真命题是( )A. 如果不同直线m、n都平行于平面α,则m,n一定不相交B. 如果不同直线m,n都垂直于平面α,则m,n一定平行C. 如果平面α、β互相平行,若直线m⊂α,直线n⊂β,则m//nD. 如果平面α、β互相垂直,且直线m,n也互相垂直,若m⊥α,则n⊥β11.一家公司为了解客户对公司新产品的满意度,随机选取了m名客户进行评分调查,根据评分数进行适当分组后(每组为左闭右开的区间),画出的频率分布直方图如图所示,其中有8名客户的评分数落在[40,50)内,则( )A. 图中的a=0.005B. m=200C. 同组数据用该组区间的中点值作代表,则评分数的平均数为76.2D. 该公司计划邀请评分数低于第25百分位数的客户参与产品改进会议,若客户甲的评分数为66,则甲将会被邀请参与产品改进会议二、填空题:本题共3小题,每小题5分,共15分。

徐州市2020-2021学年高一下学期期末考试数学试题

徐州市2020-2021学年高一下学期期末考试数学试题

江苏省徐州市2020~2021学年高一下学期期末考试数学试题2021.06注意事项及说明:本卷考试时间为120分钟,全卷满分为150分.一、单项选择题(本大题共8小题,每小题5分,共计40分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上)1.已知i 为虚数单位,则12i2i+-=A .45i 33+B .5i3C .iD .﹣i2.在直角三角形ABC 中,∠C =90°,则向量AB在向量AC 上的投影向量为A .ACB .ABC .CAD .CB3.从一批羽毛球中任取1个羽毛球,如果其质量小于4.8g 的概率是0.3,其质量不小于4.85g的概率是0.32,那么其质量在[4.8,4.85)(单位:g)范围内的概率是A .0.62B .0.68C .0.7D .0.384.近日,2021中国最具幸福感城市调查推选活动正式启动,在100个地级及以上候选城市名单中,徐州市入选.“幸福感指数”是指某个人主观地评价他对自己目前生活状态的满意程度的指标,常用区间[0,10]内的一个数来表示,该数越接近10表示满意度越高.现随机抽取20位徐州市居民,他们的幸福感指数见下表,则这组数据的80百分位数是3345566677778888991010A .7.7B .8C .8.5D .95.在△ABC 中,AC =1,AB BC =3,则△ABC 的面积为A .8B .4C .2D .6.将某一等腰直角三角形绕着斜边所在的直线旋转一周,若形成的几何体的表面积为,则该几何体的体积为A .3B .3C .23πD .3π7.已知cos()4πθ+=sin2θ=A .2425-B .1225-C .1225D .24258.在三棱锥A —BCD 中,平面ABD ⊥平面BCD ,BD ⊥CD ,且AB =BD =DA =3,CD =A —BCD 的外接球的表面积为A .154πB .15πC .32πD .6π二、多项选择题(本大题共4小题,每小题5分,共计20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上)9.某市教育局对全市高三年级的学生身高进行抽样调查,随机抽取了200名学生,他们的身高都处在A ,B ,C ,D ,E 五个层次内,根据抽样结果得到统计图表,则样本中A .女生人数多于男生人数B .D 层次男生人数多于女生人数C .B 层次男生人数为24人D .A 层次人数最少10.设向量a,b 满足1a b == ,且3b a +=A .a ⊥bB .1a b -=C .3a b +=D .a 与b的夹角为60°11.已知复数z 满足(3+4i)z =34i -(其中i 为虚数单位),则A .z 的虚部为45-iB .复数z 在复平面内对应的点位于第一象限C .1z z ⋅=D .当θ∈[0,2π)时,5cos isin z θθ--的最大值为612.在棱长为1的正方体ABCD–A 1B 1C 1D 1,中,E ,F 分别为BC ,CC 1的中点,则A .DD 1⊥AFB .直线AF 与平面ABCD 所成的角的正弦值为13C .平面AEF 截该正方体所得的截面面积为98D .点C 到平面AEF 的距离为13三、填空题(本大题共4小题,每小题5分,共计20分.请把答案填写在答题卡相应位置上)13.某工厂有A ,B ,C 三个车间,A 车间有1000人,B 车间有400人.若用分层抽样的方法得到一个样本容量为44的样本,其中B 车间8人,则样本中C 车间的人数为.14.甲、乙、丙三人独立破译一份密码,已知各人能破译的概率分别是12,13,14,则三人都成功破译的概率是;密码被两人成功破译的概率为.(本题第一空2分,第二空3分)15.如图,等边三角形SAB 为该圆锥的轴截面,点C 为母线SB 的中点,D 为 AB的中点,则异面直线SA 与CD 所成角为.16.赵爽是我国古代数学家,大约在公元222年,他为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形由4个全等的直角三角形再加上中间的一个小正方形组成).类比“赵爽弦图”,可构造如图所示的图形,它是由3个全等的三角形与中间一个小等边三角形拼成的一个较大的等边三角形,设AD=λAB AC μ+ ,若AD 4AF =,则λμ-的值为.四、解答题(本大题共6小题,共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知a ,b 为平面向量,且a=(﹣2,1).(1)若a ∥b ,且b =,求向量b 的坐标;(2)若b =(3,2),且ka b - 与2a b +垂直,求实数k 的值.已知1tan 3α=,cos 5β=且02πα<<,322πβπ<<.(1)求tan 2α的值;(2)求αβ+的值.19.(本小题满分12分)如图①,在正方体ABCD —A 1B 1C 1D 1中,E ,F ,G 分别为AB ,BC ,BB 1的中点.(1)求证:平面EFG ⊥平面BB 1D 1D ;(2)将该正方体截去八个与四面体B —EFG 相同的四面体得到一个多面体(如图②),若该多面体的体积是1603,求该正方体的棱长.2021年开始,江苏省推行全新的高考制度,采用“3+1+2”模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还需要依据想考取的高校及专业要求,结合自己的兴趣爱好等因素,在物理、历史任选一门参加考试,满分100分,原始分计入总分,在思想政治、地理、化学、生物学4门科目中自选2门参加考试(4选2),每科满分100分,进行等级赋分计入总分.为了解高一学生的选科意向,某学校对学生所选科目进行检测,下面是100名学生的思想政治、地理、化学、生物学四科成绩总分,以组距40分成8组:[80,120),[120,160),[160,200),[200,240),[240,280),[280,320),[320,360),[360,400],画出频率分布直方图如图所示.(1)求a的值;(2)试估计这100名学生的思想政治、地理、化学、生物学四科成绩总分的中位数;(3)为了进一步了解选科情况,在思想政治,地理、化学、生物学四科成绩总分在[240,280)和[360,400]的两组中,用分层抽样的方法抽取6名学生,再从这6名学生中随机抽取2名学生进行问卷调查,求抽取的这2名学生来自不同组的概率.sinC cosA c =;②B C 2sinB sin2a b +=-;③2A 2cos 128)4(π+=+.这三个条件中任选一个,补充在下面问题中,然后解答补充完整的题.在锐角三角形ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知.(1)求角A ;(2)已知a =22b c +的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.22.(本小题满分12分)如图,在四棱锥P —ABCD 中,底面ABCD 是矩形,PA ⊥PD ,PA =PD ,M ,N 分别为棱AB ,PD 的中点,二面角P —AD —B 的大小为60°,AB =3,BC =4.(1)求证:直线MN ∥平面PBC ;(2)求二面角A —PB —C 的余弦值.江苏省徐州市2020~2021学年高一下学期期末考试数学试题2021.06注意事项及说明:本卷考试时间为120分钟,全卷满分为150分.一、单项选择题(本大题共8小题,每小题5分,共计40分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上)1.已知i 为虚数单位,则12i2i+-=A .45i 33+B .5i3C .iD .﹣i【答案】C【解析】12i (12i)(2i)i 2i (2i)(2i)+++==--+.2.在直角三角形ABC 中,∠C =90°,则向量AB在向量AC 上的投影向量为A .ACB .ABC .CAD .CB【答案】A【解析】根据投影向量的概念,易判断A 选项正确.3.从一批羽毛球中任取1个羽毛球,如果其质量小于4.8g 的概率是0.3,其质量不小于4.85g的概率是0.32,那么其质量在[4.8,4.85)(单位:g)范围内的概率是A .0.62B .0.68C .0.7D .0.38【答案】D【解析】根据互斥事件概率计算公式,可知所求概率=1﹣0.3﹣0.32=0.38,选D .4.近日,2021中国最具幸福感城市调查推选活动正式启动,在100个地级及以上候选城市名单中,徐州市入选.“幸福感指数”是指某个人主观地评价他对自己目前生活状态的满意程度的指标,常用区间[0,10]内的一个数来表示,该数越接近10表示满意度越高.现随机抽取20位徐州市居民,他们的幸福感指数见下表,则这组数据的80百分位数是3345566677778888991010A .7.7B .8C .8.5D .9【答案】C【解析】首先可以看到表格中20个数据已经按从小到到顺序排列了,20×80%=16,故是从小到大开始,第16个数与第17个数的平均数,为所求的80百分位数,即为8.5,故选C .5.在△ABC 中,AC =1,AB BC =3,则△ABC 的面积为A .8B .4C .2D .【答案】B【解析】S =2222222114()491(913347)44a b a b c -+-=⨯⨯-+-=,故选B .6.将某一等腰直角三角形绕着斜边所在的直线旋转一周,若形成的几何体的表面积为22π,则该几何体的体积为A .423πB .223πC .23πD .3π【答案】C【解析】该几何体由两个全等的圆锥组合而成,故一个圆锥的侧面积为2π,设该圆锥底面半径为r ,则母线为2r ,故222r r ππ⋅⋅=,解得r =1,易得该圆锥的高h =1,所以一个圆锥体积=211331ππ⨯⨯⨯=,从而旋转体的体积为23π,选C .7.已知72cos()410πθ+=,则sin2θ=A .2425-B .1225-C .1225D .2425【答案】A 【解析】224cos(2)cos 2()2cos ()124425πππθθθ+=+=+-=,sin2θ=﹣cos(2)2πθ+=2425-.8.在三棱锥A —BCD 中,平面ABD ⊥平面BCD ,BD ⊥CD ,且AB =BD =DA =3,CD =3,则三棱锥A —BCD 的外接球的表面积为A .154πB .15πC .32πD .6π【答案】B【解析】已知CD ⊥平面ABD ,根据“汉堡”模型,可得球心.可以取等边三角形ABD 的重心G ,过G 作GH ⊥平面ABD ,且GH =12CD =32,则H 即为球心,GA 即为外接球半径,在Rt △AGH 中,AG =3,GH =32,故HA =152,故外接球的表面积为15π.二、多项选择题(本大题共4小题,每小题5分,共计20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上)9.某市教育局对全市高三年级的学生身高进行抽样调查,随机抽取了200名学生,他们的身高都处在A ,B ,C ,D ,E 五个层次内,根据抽样结果得到统计图表,则样本中A .女生人数多于男生人数B .D 层次男生人数多于女生人数C .B 层次男生人数为24人D .A 层次人数最少【解析】女生人数=18+48+30+18+6=120人,则男生200﹣120=80人,故A 正确;D 层次男生人数80×0.2=16,D 层次女生人数18,故B 错误;80×(1﹣25%﹣20%﹣10%﹣15%)=24人,故C 正确;A 层次26人,E 层次18人,显然D 错误.综上选AC .10.设向量a ,b 满足1a b == ,且3b a +=A .a ⊥bB .1a b -=C .3a b +=D .a 与b的夹角为60°【答案】BD【解析】因为3b a +=229613b a a b ++⋅= ,12a b ⋅= ,故A 错误,D 正确;1a b -= ,B 正确;a b +== ,故C 错误.综上,选BD .11.已知复数z 满足(3+4i)z =34i -(其中i 为虚数单位),则A .z 的虚部为45-iB .复数z 在复平面内对应的点位于第一象限C .1z z ⋅=D .当θ∈[0,2π)时,5cos isin z θθ--的最大值为6【答案】BCD【解析】(3+4i)z =34i -,即(3+4i)z =5,所以55(34i)34i 34i (34i)(34i)55z -===-++-,故z 的虚部为45-,A 错误;34i 55z =+,在复平面内对应的点坐标是(35,45),B 正确;()3434i ()1i 5555z z ⋅=⋅+=-,C 正确;5cos isin z θθ--表示复平面内点(3,﹣4)与点(cos θ,sin θ)之间的距离,也就是以O 为圆心1为半径的圆上一点与点(3,﹣4)之间的距离,最大值确实为6,故D 正确.综上选BCD .12.在棱长为1的正方体ABCD–A 1B 1C 1D 1,中,E ,F 分别为BC ,CC 1的中点,则A .DD 1⊥AFB .直线AF 与平面ABCD 所成的角的正弦值为13C .平面AEF 截该正方体所得的截面面积为98D .点C 到平面AEF 的距离为13【答案】BCD 【解析】取DD 1中点G ,则AG 是AF 在平面AA 1D 1D 的投影,显然投影AG 与DD 1不垂直,易知∠FAC是直线AF与平面ABCD所成的角,sin∠FAC=CF1AF3=,故B正确;平面AEF截该正方体所得的截面是等腰梯形EFD1A,其中EF=2,AD1,AE=D1FE到AD1,所以S=1(22⨯+⨯=98,故C正确;S△AEF=122⨯=38,点C到平面AEF的距离=11142338ACEAEFS CFS⨯⋅==,故D正确.综上选BCD.三、填空题(本大题共4小题,每小题5分,共计20分.请把答案填写在答题卡相应位置上)13.某工厂有A,B,C三个车间,A车间有1000人,B车间有400人.若用分层抽样的方法得到一个样本容量为44的样本,其中B车间8人,则样本中C车间的人数为.【答案】16【解析】8 441000816400-⨯-=.14.甲、乙、丙三人独立破译一份密码,已知各人能破译的概率分别是12,13,14,则三人都成功破译的概率是;密码被两人成功破译的概率为.(本题第一空2分,第二空3分)【答案】1 24,14【解析】三人都成功破译的概率=12×13×14=124,密码被两人成功破译的概率=12×13×34+12×23×14+12×13×14=14.15.如图,等边三角形SAB为该圆锥的轴截面,点C为母线SB的中点,D为 AB的中点,则异面直线SA与CD所成角为.【答案】4π【解析】取AB中点O,OC∥SA,则∠OCD就是异面直线SA与CD所成角,令圆锥底面半径为r ,则OC =OD =r ,求得CD =r ,故∠OCD =45°,所以异面直线SA 与CD 所成角为4π.16.赵爽是我国古代数学家,大约在公元222年,他为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形由4个全等的直角三角形再加上中间的一个小正方形组成).类比“赵爽弦图”,可构造如图所示的图形,它是由3个全等的三角形与中间一个小等边三角形拼成的一个较大的等边三角形,设AD =λAB AC μ+ ,若AD 4AF = ,则λμ-的值为.【答案】47【解析】131********AD AE AB (AC AF)AB (AC AD)AB 44444444444=+=++=+⨯+ ,即313AD AC AD AB 16644=++ ,所以164AD AB AC 2121=+ ,故164421217λμ-=-=.四、解答题(本大题共6小题,共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知a ,b 为平面向量,且a =(﹣2,1).(1)若a ∥b ,且b = ,求向量b 的坐标;(2)若b =(3,2),且ka b - 与2a b + 垂直,求实数k 的值.【解析】(1)由//b a 可设()2,,b λλ=-所以b ==解得2λ=±,所以向量b 的坐标为()4,2-或()4,2-.(2)因为()()2,1,3,2a b =-=,所以()()23,2,24,5ka b k k a b -=---+=,因为ka b -与2a b +垂直,所以()()20ka b a b -⋅+=即()()423520k k --+-=,解得223k =-.18.(本小题满分12分)已知1tan 3α=,cos 5β=且02πα<<,322πβπ<<.(1)求tan 2α的值;(2)求αβ+的值.【解析】(1)因为1tan 3α=,所以22122tan 33tan21tan 4113ααα⨯===-⎛⎫- ⎪⎝⎭.(2)因为3cos ,252πββπ=<<,所以25sin 5β===-,所以25sin 5tan 2cos βββ-===-,所以()()12tan tan 3tan 111tan tan 123αβαβαβ-++===---⨯-,因为30,222ππαβπ<<<<,所以3522ππαβ<+<,所以74παβ+=.19.(本小题满分12分)如图①,在正方体ABCD —A 1B 1C 1D 1中,E ,F ,G 分别为AB ,BC ,BB 1的中点.(1)求证:平面EFG ⊥平面BB 1D 1D ;(2)将该正方体截去八个与四面体B —EFG 相同的四面体得到一个多面体(如图②),若该多面体的体积是1603,求该正方体的棱长.【解析】(1)在正方体1111ABCD A B C D -中,1BB ⊥平面ABCD ,又因为EF ⊂平面ABCD ,所以1,BB EF ⊥连接AC ,在ABC 中,,E F 分别为,AB BC 的中点,所以//EF AC ,又因为在正方形ABCD 中,AC BD ⊥,所以,EF BD ⊥又因为1,BB BD B BD ⋂=⊂平面111,BB D D BB ⊂平面11BB D D ,所以EF ⊥平面11,BB D D 又因为EF⊂平面EFG ,所以平面EFG ⊥平面11.BB D D (2)设正方体的棱长为a ,由(1)知,四面体B EFG -的体积为311133248BEF a S BG BE BF BG ⋅=⨯⋅⋅= 所以所得多而体的体积为331608483a a -⨯=,解得4a =,即该正方体的棱长为4.20.(本小题满分12分)2021年开始,江苏省推行全新的高考制度,采用“3+1+2”模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还需要依据想考取的高校及专业要求,结合自己的兴趣爱好等因素,在物理、历史任选一门参加考试,满分100分,原始分计入总分,在思想政治、地理、化学、生物学4门科目中自选2门参加考试(4选2),每科满分100分,进行等级赋分计入总分.为了解高一学生的选科意向,某学校对学生所选科目进行检测,下面是100名学生的思想政治、地理、化学、生物学四科成绩总分,以组距40分成8组:[80,120),[120,160),[160,200),[200,240),[240,280),[280,320),[320,360),[360,400],画出频率分布直方图如图所示.(1)求a 的值;(2)试估计这100名学生的思想政治、地理、化学、生物学四科成绩总分的中位数;(3)为了进一步了解选科情况,在思想政治,地理、化学、生物学四科成绩总分在[240,280)和[360,400]的两组中,用分层抽样的方法抽取6名学生,再从这6名学生中随机抽取2名学生进行问卷调查,求抽取的这2名学生来自不同组的概率.【解析】(1)由()0.00050.00150.003250.004250.004520.001401,a ++++++⨯=解得0.005.a =(2)因为()0.00050.00150.003250.00425400.380.5+++⨯=<,()0.00050.00150.003250.004250.005400.580.5,++++⨯=>所以中位数在[240,280),设中位数为x ,所以()2400.0050.12x -⨯=,解得264,x =所以思想政治、地理、化学、生物四科成贯总分的中位数为264.(3)思想政治、地理、化学、生物四科成贯总分在[240,280)和[360,400]的两组中的人数分别为:0.0054010020⨯⨯=人,0.001401004⨯⨯=人,由分层抽样可知,从成绩在[240,280的组中应抽取2065204⨯=+人,记为,,,,a b c d e ,从成贯在[360,400]的组中应抽取1人,记为f ,以(),a b 表示“抽取的两人为a 和b "(余类推),则样本空间为()()()()()()()()()()()()Ω{,,,,,,,,,,,,,,,,,,,,,,,a b a c a d a e a f b c b d b e b f c d c e c f =()()(),,,,,},d e d f e f 记“抽取的这2名学生来自不同组"为事件A ,则()()()()(){},,,,,,,,,A a f b f c f d f e f =,所以()51153P A ==,答;抽取的这2名学生来自不同组的概率为13.21.(本小题满分12分)sinC cosA c =;②B C 2sinB sin2a b +=-;③2A 2cos 128)(π+=+这三个条件中任选一个,补充在下面问题中,然后解答补充完整的题.在锐角三角形ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知.(1)求角A ;(2)已知a =22b c +的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.【解析】(1sin cos C c A=sin sin cos ,A C C A =因为C 为锐角,所以sin 0C ≠,所以cos A A=因为A 为锐角,所以cos 0A ≠,所以3tan ,3A =所以6A π=.若选择②:2sin sin 2B Ca Bb +=由正弦定理知2sin sin sin sin 2B C A B B +=,因为sin 0B ≠,所以2sin sin cos 22B C A A +==,即4sin cos cos 222A A A =,因为A 为锐角,所以cos 02A ≠,则sin ,cos ,2424A A ===所以1sin 2sincos 2,22442A A A +==⨯⨯=因为A 为锐角,所以6A π=.若选择③:2622cos 1284A π⎛⎫+=+ ⎪⎝⎭即cos 44A π⎛⎫+= ⎪⎝⎭又()cos cos cos sin sin cos sin 4442A A A A A πππ⎛⎫+=-=- ⎪⎝⎭所以31cos sin 2A A --=,因为22sin cos 1,A A A +=为锐角,所以1sin ,2A =因为A 为锐角,所以6A π=.(2)由(1)知6A π=,又a =1sin sin sin 2b c a B C A ===,即,b B c C==所以()()222212sin sin 62cos2cos2b c B C B C +=+=--()62cos2cos2B C ⎡⎤=-+⎣⎦562cos 2cos23C C π⎡⎤⎛⎫=--- ⎪⎢⎥⎝⎭⎣⎦6223C π⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦因为ABC 为锐角三角形,50,62B C ππ⎛⎫=-∈ ⎪⎝⎭,又0,2C π⎛⎫∈ ⎪⎝⎭所以,32C ππ⎛⎫∈ ⎪⎝⎭,所以22,333C πππ⎛⎫-∈ ⎪⎝⎭,所以sin 2,132C π⎛⎤⎛⎫-∈ ⎥ ⎪ ⎝⎭⎝⎦所以22b c +的取值范围为(12.⎤+⎦22.(本小题满分12分)如图,在四棱锥P —ABCD 中,底面ABCD 是矩形,PA ⊥PD ,PA =PD ,M ,N 分别为棱AB ,PD 的中点,二面角P —AD —B 的大小为60°,AB =3,BC =4.(1)求证:直线MN ∥平面PBC ;(2)求二面角A —PB —C 的余弦值.【解析】(1)取PC 的中点E ,连接,NE EB ,又因为N 为PD 的中点,所以在PCD 中,//NE CD ,且1,2NE CD =又M 为棱AB 的中点,12MB AB =,因为底面ABCD 为矩形,所以//,AB CD AB CD =,所以//MB NE ,且MB NE =,则四边形MBEN 为平行四边形所以//,MN EB 又MN ∝平而,PBC EB ⊂平面PBC ,所以直线//MN 平面.PBC (2)取AD 中点,F BC 中点G ,连接,,PF FG PG .在PAD 中,PA PD =,则PF AD ⊥,在矩形ABCD 中,可得FG AD ⊥,所以PFG ∠为二面角P AD B --的平面角,即60.PFG ∠= 又因为,,PF FG F PF FG ⋂=⊂平面PFG ,所以AD ⊥平面PFG ,又因为PG ⊂平面PFG ,所以AD PG ⊥,又因为//BC AD ,所以BC PG ⊥,所以PBC 是等腰三角形,即.PB PC =在PFG 中,12,3,602PF AD FG PFG ∠==== ,由余弦定理可知,PG ==,所以PB PC ==在PAB 中,过点A 作AH PB ⊥于点H ,由余弦定理可知,cosABP ∠==,所以BH =,则AH =,由余弦定理可知,cosCBP ∠==,在PBC 中,过点H 作HK PB ⊥,可知,3,HK BC K BK HK == 于点,则AHK ∠为二面角A PB C --的平面角.在矩形ABCD 中,可求得AK =在AHK 中,由余弦定理可知,63631841111cos 637AHK ∠+-==--,所以二面角A PB C --的余弦值为47-.。

浙江省宁波市2023-2024学年高一下学期期末考试数学试题卷含答案

浙江省宁波市2023-2024学年高一下学期期末考试数学试题卷含答案

镇海2023学年第二学期期末考试高一数学试题卷(答案在最后)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.点P 是椭圆2212x y +=上一动点,则点P 到两焦点的距离之和为()A.2B.C. D.4【答案】C 【解析】【分析】由椭圆的定义求解即可.【详解】由2212x y +=可得:a =,由椭圆的定义可知:点P到两焦点的距离之和为2a =.故选:C .2.若{,,}a b c是空间中的一组基底,则下列可与向量,2a c a c +-构成基底的向量是()A.aB.2a b+C.2a c+D.c【答案】B 【解析】【分析】借助空间中基底定义,计算该向量能否用,2a c a c +-表示即可得.【详解】由{,,}a b c 是空间中的一组基底,故,,a b c两两不共线,对A :有()()1223a a c a c ⎡⎤=++-⎣⎦,故A 错误;对B :设()()22a b m a c n a c +=++- ,则有()()22a b m n a m n c +=++-,该方程无解,故2a b +可与,2a c a c +-构成基底,故B 正确;对C :有()()12423a c a c a c ⎡⎤+=+--⎣⎦,故C 错误;对D :有()()123c a c a c ⎡⎤=+--⎣⎦,故D 错误.故选:B.3.l 为直线,α为平面,则下列条件能作为l α∥的充要条件的是()A.l 平行平面α内的无数条直线B.l 平行于平面α的法向量C.l 垂直于平面α的法向量D.l 与平面α没有公共点【答案】D 【解析】【分析】根据直线与平面平行的定义,由于定义是充要条件得到选项.【详解】对A :没有强调l α⊄,故A 错误;对B :l 平行于平面α的法向量,可得l α⊥,故B 错误;对C :同A 一样,没有强调l α⊄,故C 错误;对D :根据直线与平面平行的定义:直线与平面没有公共点时,直线与平面平行.所以“直线l 与平面α没有公共点”是“l α∥”的充要条件.故D 正确.故选:D4.己知 (2,2,1)(1,1,0)a b ==,,则a 在b 上的投影向量的坐标为()A.(1,1,0)B.(1,2,0)C.(2,2,0)D.(1,1,1)【答案】C 【解析】【分析】根据投影向量的概念求解即可.【详解】向量a 在b上的投影向量为:()()21,1,02,2,0a b b bb⋅⋅⨯==,故选:C5.点()()1122,,,P x y Q x y 为直线20kx y -+=上不同的两点,则直线111:1l x x y y -=与直线222:1l x x y y -=的位置关系是()A.相交B.平行C.重合D.不确定【答案】A 【解析】【分析】利用这两直线的斜率来结合已知条件,即可以作出判断.【详解】由点()()1122,,,P x y Q x y 为直线20kx y -+=上不同的两点,则直线111:1l x x y y -=与直线222:1l x x y y -=的斜率存在时一定为1212x x y y ,,可以把这两个斜率看成直线上两点到原点的斜率的倒数,由已知可得OP OQ k k ≠,则1212x x y y ≠,即两直线不可能平行与重合,则只能相交;若直线111:1l x x y y -=与直线222:1l x x y y -=的斜率有一个不存在,则另一个斜率必存在,也能判定两直线相交;故选:A.6.如图,平行六面体各棱长为1,且1160A AB A AD BAD ∠=∠=∠=︒,动点P 在该几何体内部,且满足1(1)(,R)AP xAB y AD x y AA x y =++--∈ ,则||AP的最小值为()A.4B.3C.62D.12【答案】B 【解析】【分析】由平面向量共面定理可知:点P 在平面1BDA 内,则||AP的最小值即为点P 到平面1BDA 的距离,求出三棱锥1A A BD -为正四面体,过点A 作AH ⊥平面1BDA ,求解AH 即可得出答案.【详解】因为1(1)(,R)AP xAB y AD x y AA x y =++--∈,则()()111AP AA x AB AA y AD AA -=-+- ,即111A P xA B y A D =+ ,由平面向量共面定理可知:点P 在平面1BDA 内,则||AP的最小值即为点P 到平面1BDA 的距离,连接11,,,BD DA A B 因为平行六面体各棱长为1,且1160A AB A AD BAD ∠=∠=∠=︒,所以111BD DA A B ===,所以三棱锥1A A BD -为正四面体,过点A 作AH ⊥平面1BDA ,因为1A H ⊂平面1BDA ,所以AH ⊥1A H ,如图,所以1223323A H ==⨯=,所以3AH ===,所以||AP的最小值为3AH =.故选:B .7.实数,x y 满足2222x y x y +=-,则|3|x y -+的最小值为()A.3B.7C. D.3+【答案】A 【解析】【分析】化简2222x y x y +=-可得()()22112x y -++=,|3|x y -+表示为圆上点到直线30x y -+=【详解】化简2222x y x y +=-可得()()22112x y -++=,即(),x y 在圆上,则|3|x y -+表示为圆上点到直线30x y -+=倍,圆心()1,1-到直线距离为d =则|3|x y -+的最小值为3-=.故选:A8.在棱长为2的正四面体O ABC -中,棱,OA BC 上分别存在点,M N (包含端点),直线MN 与平面ABC ,平面OBC 所成角为θ和ϕ,则sin sin θϕ+的取值范围是()A.2,33⎡⎢⎣⎦B.2,33⎡⎢⎣⎦C.,33⎣⎦D.,33⎣⎦【答案】C 【解析】【分析】建立空间直角坐标系,然后利用空间向量得到3sin sin θϕ+=最后根据,a b 范围求sin sin θϕ+的取值范围即可.【详解】如图,取ABC 的中心1O ,连接1OO ,取BC 中点F ,连接1O F ,过点1O 作1O E BC ∥交AB 于点E ,以1O 为原点,分别以111,,O E O F O O 为,,x y z 轴建立空间直角坐标系,因为O ABC -为正四面体,所以13O A =,13O F =,13O O =,()10,0,0O,1,,03B ⎛⎫ ⎪ ⎪⎝⎭,1,,03C ⎛⎫- ⎪ ⎪⎝⎭,0,0,3O ⎛⎫ ⎪ ⎪⎝⎭,10,0,3O O ⎛⎫= ⎪ ⎪⎝⎭,1,,33OB ⎛⎫=- ⎪ ⎪⎝⎭,1,,33OC ⎛⎫=-- ⎪ ⎪⎝⎭,设230,3M a ⎛⎫- ⎪ ⎪⎝⎭,3,,03N b ⎛⎫ ⎪ ⎪⎝⎭,230,3a ⎡∈⎢⎣⎦,[]1,1b ∈-,则(),MN b a =,由题意得1O O uuu r可以作为平面ABC 的一个法向量,则113sin a MN O O MN O Oθ⋅==,设平面OBC 的法向量为(),,m x y z =,033033m OB x y z m OC x y z ⎧⋅=+-=⎪⎪⎨⎪⋅=-+-=⎪⎩,则0x =,令y =4z =,所以4m ⎛= ⎝⎭ ,33332sin a m MNm MNϕ--⋅==33sin sin θϕ-+=因为0,3a ⎡∈⎢⎣⎦,[]1,1b ∈-,所以[]2332,3a -+∈,[]20,1b ∈,⎤⎦,3sin sin ,33θϕ+=⎥⎣⎦.故选:C.【点睛】关键点点睛:本题关键在于利用相似设出点M 的坐标,然后利用空间向量的方法求出线面角,最后求范围即可.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分.9.已知椭圆222:14x y C a +=的焦点分别为12,FF ,焦距为P 为椭圆C 上一点,则下列选项中正确的是()A.椭圆C 的离心率为53B.12F PF △的周长为3C.12F PF ∠不可能是直角D.当1260F PF ∠=︒时,12F PF △的面积为3【答案】AD【解析】【分析】先确定椭圆的方程,再根据方程分析椭圆的性质.【详解】由题意,焦距为2c =⇒c =,又2<,所以椭圆焦点必在x 轴上,由245a -=3a ⇒=.所以椭圆的离心率3c e a ==,故A 正确;根据椭圆的定义,12F PF △的周长为226a c +=+,故B 错误;如图:取()0,2M 为椭圆的上顶点,则()()123,23,250MF MF ⋅=-⋅--=-<,所以12F MF ∠为钝角,所以椭圆上存在点P ,使得12F PF ∠为直角,故C 错误;如图:当1260F PF ∠=︒时,设11PF t =,22PF t =,则1222121262cos6020t t t t t t +=⎧⎨+-︒=⎩⇒12221212620t t t t t t +=⎧⎨+-=⎩⇒12163t t =,所以12121116343sin 6022323F PF S t t =︒=⨯⨯=,故D 正确.故选:AD10.已知圆221:(1)(2)9C x y a -+-=,圆2222:82120,C x y x ay a a +-+++=∈R .则下列选项正确的是()A.直线12C C 恒过定点(3,0)B.当圆1C 和圆2C 外切时,若,P Q 分别是圆12,C C 上的动点,则max ||10PQ =C.若圆1C 和圆2C 共有2条公切线,则43a <D.当13a =时,圆1C 与圆2C 相交弦的弦长为2【答案】ABD 【解析】【分析】根据圆的方程确定圆心,可求出直线12C C 的方程,即可判断A ;根据圆1C 和圆2C 外切求出a 的值,数形结合,可判断B ;根据两圆公切线条数判断两圆相交,列不等式求解判断C ;求出两圆的公共弦方程,即可求得两圆的公共弦长,判断D.【详解】对于A ,由圆221:(1)(2)9C x y a -+-=,圆2222:82120,C x y x ay a a +-+++=∈R ,可知()()121,2,4,C a C a -,故直线12C C 的方程为(4)y a a x +=--,即()3y a x =--,即得直线12C C 恒过定点(3,0),A 正确;对于B ,2222:82120,C x y x ay a a +-+++=∈R 即()()222:44,C x y a a -++=∈R ,当圆1C 和圆2C 32=+,解得43a =±,当43a =时,如图示,当12,,,P C C Q 共线时,max 12||32510PQ C C =++==;同理求得当43a =-时,max ||10PQ =,B 正确;对于C ,若圆1C 和圆2C 共有2条公切线,则两圆相交,则123232C C -<<+,即15<<,解得4433a -<<,C 错误对于D ,当13a =时,两圆相交,2212:(1)(93C x y -+-=,()2221:443C x y ⎛⎫-++= ⎪⎝⎭,将两方程相减可得公共弦方程596203x y --=,则121,3C ⎛⎫⎪⎝⎭到596203x y --=4=,则圆1C 与圆2C相交弦的弦长为2=,D 正确,故选:ABD11.埃舍尔是荷兰著名的版画家,《哈利波特》《盗梦空间》《迷宫》等影片的灵感都来源于埃舍尔的作品.通过著名的《瀑布》(图1)作品,可以感受到形状渐变、几何体组合和光学幻觉方面的魅力.画面中的两座高塔上方各有一个几何体,右塔上的几何体首次出现,后称“埃舍尔多面体”(图2),其可以用两两垂直且中心重合的三个正方形构造.如图4,,,,(1,2,3)n n n n A B C D n =分别为埃舍尔多面体的顶点,,(1,2,3)n n P Q n =分别为正方形边上的中点,埃舍尔多面体的可视部分是由12个四棱锥构成.为了便于理解,图5中构造了其中两个四棱锥11122A PE P E -与22131,,(1,2)n n A P E P F E F n -=分别为线段的中点.左塔上方是著名的“三立方体合体”(图3),取棱长为2的正方体ABCD A B C D -''''的中心O ,以O 为原点,,,x y z 轴均平行于正方体棱,建立如图6所示的空间直角坐标系,将正方体分别绕,,x y z 轴旋转45︒,将旋转后的三个正方体,1,2,3n n n n n n n n A B C D A B C D n ''''-=(图7,8,9)结合在一起便可得到“三立方体合体”(图10),下列有关“埃舍尔多面体”和“三立方体合体”的说法中,正确的是()A.在图5中,1322A P E P ⊥B.在图5中,直线12Q A 与平面122A E P 所成角的正弦值为63C.在图10中,设点nA '的坐标为(),,,1,2,3n n n x y z n =,则()122239n n n n x y z =∑++=D.在图10中,若E 为线段22B C 上的动点(包含端点),则异面直线2D E 与23A A 所成角余弦值的最大值为22【答案】BCD 【解析】【分析】利用建立空间直角坐标系,结合空间向量法可以解决各个问题.【详解】对A ,在图5中,如图建系,设1231OP OP OP ===,则()10,1,1A ,()31,0,0P ,()20,1,0P ,2111,,222E ⎛⎫-⎪⎝⎭,所以()13221111,1,1,,,222A P E P ⎛⎫=--=- ⎪⎝⎭,则()132********1,1,1,,02222222A P E P ⎛⎫⋅=--⋅-=-+=≠ ⎪⎝⎭ ,13A P 与22E P 不垂直,故A 错误;对B ,由图知:()10,0,1Q -,()21,1,0A ,()10,1,1A ,1111,,222E ⎛⎫⎪⎝⎭,()20,1,0P 则()121,1,1Q A = ,()120,0,1A P =-,22111,,222E P ⎛⎫=-- ⎪⎝⎭,设平面122A E P 的法向量为(),,n x y z =,则122200n A P n E P ⎧⋅=⎪⎨⋅=⎪⎩ ,得01110222z x y z -=⎧⎪⎨-+-=⎪⎩,令1y =得,01z x ==,,即()01,1n =,,又由121212cos ,3Q A nQ A n Q A n⋅==,所以直线12Q A 与平面122A E P所成角的正弦值为3,故B 正确;对C ,在平面直角坐标系中,正方形绕中心旋转45︒,1A 坐标由()11,变为(),所以结合图形可知:点1A '的坐标为(1,0,2,点2A '的坐标为(0,1,2,-点3A '的坐标为)2,0,1,-则()()()()322211212129n n n n xy z =++=+++++=∑,故C 正确;对D ,由图知:)22,1,0A -,)22,1,0B ,(22C ,(20,2D -,)32,0,1A ,则()2301,1A A =,,由E 为线段22B C 上的动点(包含端点),则可设222C E C B λ=,[]0,1λ∈,所以())222222220,2,02,0,22,2,2D E D C C E D C C B λλλλ=+=+=+-=-,则22322322223222cos ,44221D E A A D E A A D E A A λλλλ⋅--==⋅+⋅+2t λ=,22t ∈,则()223222cos ,322121221212333t D E A A tt tt ==⎛⎫-+-+-+⎪⎝⎭,由1221,2t ⎤∈⎥⎣⎦,得2212221,32318t ⎛⎛-≥-= ⎪ ⎝⎭⎝⎭即22322cos ,=211121232318333D E A A t=≤⎛⎫⨯+-+⎪⎝⎭ 所以异面直线2D E 与23A A 所成角余弦值的最大值为22,故D 正确;故选:BCD.【点睛】关键点点睛:就是针对旋转后的点的空间坐标表示,这里先通过借助平面旋转时的坐标变化关系,再来写空间旋转后的点的坐标表示,只有表示出各点坐标,再就是借助空间向量的运算就能求解各选项问题.三、填空题:本题共3小题,每小题5分,共15分.12.在空间直角坐标系中,点(2,0,0)A 为平面α外一点,点(0,1,1)B 为平面α内一点.若平面α的一个法向量为(1,1,2)-,则点A 到平面α的距离是_______.【答案】62【解析】【分析】根据条件,利用点到面的距离的向量法,即可求出结果.【详解】由题知(2,1,1)AB =-,又平面α的一个法向量为(1,1,2)n =-,所以点A 到平面α的距离为62AB n d n ⋅==,故答案为:2.13.已知点P 是直线80-+=x y 上的一个动点,过点P 作圆()()22:114C x y -+-=的两条切线,与圆切于点,M N ,则cos MPN ∠的最小值是_______.【答案】34##0.75【解析】【分析】结合切线的性质与二倍角公式可将求cos MPN ∠的最小值转化为求sin MPC ∠的最大值,结合三角函数定义与点到直线距离公式计算即可得.【详解】由题意可得PM CM ⊥、PN CN ⊥,MPC NPC ∠=∠,设MPC α∠=,则2MPN α∠=,则2cos cos 212sin MPN αα∠==-,由()()22:114C x y -+-=可得圆心为()1,1C ,半径为2r =,则2sin MC PCPC α==,又min PC ==,则()max min 2sin 4PC α===,则()22min 23cos 12sin 1244MPN α⎛⎫∠=-=-⨯= ⎪ ⎪⎝⎭.故答案为:34.14.已知椭圆2222:1(0)x y C a b a b+=>>的左,右焦点分别是12(,0),(,0)F c F c -,下顶点为点()0,M b -,直线2MF 交椭圆C 于点N ,设1△MNF 的内切圆与1NF 相切于点E ,若122NE F F ==,则椭圆C 的离心率为_______,1△MNF 的内切圆半径长为_______.【答案】①.12##0.5②.5【解析】【分析】借助切线长定理与椭圆性质可得12F E FF =,从而可结合椭圆定义得到a 的值,即可得其离心率;借助余弦定理的推论可得三角形各边长,结合面积公式运用等面积法即可求取内切圆半径.【详解】设1△MNF 的内切圆与NM 、1MF 相切于点F ,G ,由切线长定理可得11F E FG =,MF MG =,NE NF =,又12MF MF a ==,则12FG FF =,故12F E FF =,由椭圆定义可知122NF NF a +=,即122222NE EF NF NE FF NF NE a ++=++==,故2a NE ==,又1222F F c ==,则12c e a ==;则2π6OMF ∠=,故12π3F MF ∠=,设1EF m =,则2422NF m m =--=-,即12NF m =+,4NM m =-,则有()()()22222111442πcos 32224m m MF MN NF MF MN m +--++-==⨯⋅⨯⨯-,计算可得45m =,则()11π24sin 235MNF S m =⨯⨯-= ,又184MNF C a == ,则11412MNF MNF S r C r =⋅= ,即有45r =,即5r =.故答案为:12;5.【点睛】关键点点睛:本题关键点一个是借助切线长定理与椭圆性质得到12F E FF =,从而可结合椭圆定义得到a 的值,第二个是借助等面积法求取内切圆半径.四、解答题:本题共5小题,共77分.解答应写出文字说明、正明过程或演算步骤.15.已知直线l 经过点(4,4)A ,且点(5,0)B 到直线l 的距离为1.(1)求直线l 的方程;(2)O 为坐标原点,点C 的坐标为(6,3)-,若点P 为直线OA 上的动点,求||||PB PC +的最小值,并求出此时点P 的坐标.【答案】(1)4x =或158920x y +-=(2)10,1515,77P ⎛⎫⎪⎝⎭【解析】【分析】(1)考虑直线l 的斜率存在和不存在情况,存在时,设直线方程,根据点到直线的距离求出斜率,即得答案.(2)确定(6,3)-关于直线OA 的对称点,数形结合,利用几何意义即可求得答案.【小问1详解】由题意知直线l 经过点(4,4)A ,当直线斜率不存在时,方程为4x =,此时点(5,0)B 到直线l 的距离为1,符合题意;当直线l 斜率存在时,设方程为4(4)y k x -=-,即440kx y k --+=,则由点(5,0)B 到直线l 的距离为11=,解得158k =-,即得15604088x y --++=,即158920x y +-=,故直线l 的方程为4x =或158920x y +-=;【小问2详解】由点(4,4)A ,可得直线OA 的方程为y x =,故点(5,0)B 关于y x =的对称点为1(0,5)B ,连接1PB ,则1PB PB =,则11||||||||||10PB PC PB PC B C +=+≥==,当且仅当1,,B P C 共线时,等号成立,即||||PBPC +的最小值为10,此时1B C 的方程为53455063y x x +=+=-+-,联立y x =,解得157x y ==,即151577P ,⎛⎫ ⎪⎝⎭.16.如图,正三棱柱111ABC A B C -所有的棱长均为2,点D 在棱11A B 上,且满足11123A D A B =,点E 是棱1BB 的中点.(1)证明://EC 平面1AC D ;(2)求直线AE 与平面1AC D 所成角的正弦值.【答案】(1)证明见解析(2)65【解析】【分析】(1)(2)建立空间直角坐标系,利用空间向量证明线面平行,也可利用空间向量求线面角的大小.【小问1详解】如图:取AB 的中点O ,因为三棱柱是正三棱柱且棱长为2,故以O 为原点,建立空间直角坐标系,则()1,0,0A -,()3,0C ,()13,2C ,1,0,23D ⎛⎫ ⎪⎝⎭,()1,0,1E ,所以4,0,23AD ⎛⎫= ⎪⎝⎭ ,113,03DC ⎛⎫=- ⎪⎝⎭,()3,1EC =--.设平面1AC D 的法向量为(),,n x y z =,由1n ADn DC ⎧⊥⎪⎨⊥⎪⎩ ⇒()()4,,,0,2031,,3,003x y z x y z ⎧⎛⎫⋅= ⎪⎪⎪⎝⎭⎨⎛⎫⎪⋅-= ⎪⎪⎝⎭⎩⇒460330x z x +=⎧⎪⎨-+=⎪⎩,取()6n =-.因为()()16EC n ⋅=--⋅-9360=-++=,又直线EC ⊄平面1AC D ,所以//EC 平面1AC D .【小问2详解】因为()2,0,1AE =,设直线AE 与平面1AC D 所成的角为θ,则sin θcos ,n AE n AE n AE ⋅===⋅5=.17.已知圆C 的圆心在x轴上,且过(-.(1)求圆C 的方程;(2)过点(1,0)P -的直线与圆C 交于,E F 两点(点E 位于x 轴上方),在x 轴上是否存在点A ,使得当直线变化时,均有PAE PAF ∠=∠?若存在,求出点A 的坐标;若不存在,请说明理由.【答案】(1)224x y +=(2)存在,且()4,0A -【解析】【分析】(1)设出圆的方程,借助代入所过点的坐标计算即可得;(2)圆问题可转化为在x 轴上是否存在点A ,使0AE AF k k +=,设出直线方程,联立曲线,借助韦达定理与斜率公式计算即可得.【小问1详解】设圆C 为()222x a y r -+=,则有()()2222212a r a r ⎧--+=⎪⎨⎪-=⎩,解得24a r =⎧⎨=⎩,故圆C 的方程为224x y +=;【小问2详解】由题意可得,直线EF 斜率不为0,故可设:1EF l x my =-,()11,E x y ,()22,F x y ,联立2214x my x y =-⎧⎨+=⎩,有()221230m y my +--=,2224121216120m m m ∆=++=+>,12221my y m +=+,12231y y m -=+,设(),0A t ,1t ≠-,由PAE PAF ∠=∠,则有0AE AF k k +=,即()()()()12211212120y x t y x t y yx t x t x t x t -+-+==----,即()1221120y x y x t y y +-+=,()()()()12211212211211y x y x t y y y my y my t y y +-+=-+--+()()()()1212222216216210111m t m m t m my y t y y m m m +--+-=-++=-==+++,即()()621240m m t m t ++=+=,则当4t =-时,0AE AF k k +=恒成立,故存在定点()4,0A -,使得当直线变化时,均有PAE PAF ∠=∠.18.如图,三棱柱111ABC A B C -中,ABC 为等边三角形,1π4B BC ∠=,平面11ABB A ⊥平面11CBB C .(1)求证:1AC BB ⊥;(2)若12BB ==,点E 是线段AB 的中点,(i )求平面1ECC 与平面1ACC 夹角的余弦值;(ii )在平面11ABB A 中是否存在点P ,使得14PB PB +=且1PC PC =P 的位置;若不存在,请说明理由.【答案】(1)答案见解析(2)(i )10;(ii )存在,(2,0,0)P -【解析】【分析】(1)用线面垂直的判定定理证明BB 1⊥平面AOC ,后转移到线线垂直即可.(2)(i )空间向量解题,先求出平面1ECC 与平面1ACC 的法向量,后按照夹角公式求解即可.(ii )设假设存在(,0,)P x z ,若1PC PC =22560x z x +++=(∗).1142PB PB BB +=>=,则根据椭圆定义知道P 的轨迹为椭圆,求出轨迹方程为:22143x z +=,整理得22334z x =-,联立(∗),解出即可【小问1详解】如图,过A 作1BB 的垂线AO ,交1BB 于O ,连接OC ,则,AO OB AO OC ⊥⊥.ABC 为等边三角形,则AB AC =,又AO AO =,则Rt Rt AOB AOC ≅ ,则BO CO =,则π4OCB ∠=,则π2COB ∠=,即11,,B B CO B B AO CO AO O ⊥⊥= ,,CO AO ⊂平面AOC ,则1BB ⊥平面AOC ,AC ⊂平面AOC ,则1AC BB ⊥.【小问2详解】(i )由(1)可知OB ,OA ,OC 两两垂直,则可以O 为原点,建立如图所示空间坐标系O -xyz .122BB ==,点E 是线段AB 的中点,则2AB BC CA ===1OA OB OC ===.1111(0,0,1),(1,0,0),(0,1,0),(1,0,0),(2,1,0),(,0,22A B C B C E --,111(2,0,0),(0,1,1),(,1,)22CC CA CE =-=-=- .设平面1ECC 法向量(,,)m x y z = ,则100m CE m CC ⎧⋅=⎪⎨⋅=⎪⎩ 即1102220x y z x ⎧-+=⎪⎨⎪-=⎩解得012x y z =⎧⎪=⎨⎪=⎩,故(0,1,2)m = ;同理平面1ACC 法向量(0,1,1)n = .则cos ,2510m n m n m n ⋅==⋅ ,设平面1ECC 与平面1ACC 夹角θ,则310cos 10θ=.(ii )平面11ABB A 中,假设存在(,0,)P x z ,若15PCPC =222215(2)1x z x z ++=--++,整理得,22560x z x +++=(∗).1142PB PB BB +=>=,则根据椭圆定义知道P 在以1BB 为焦距的椭圆上,且1142,22PB PB a c BB +====,解得2,1,3a c b ===则P 的轨迹方程为:22143x z +=,整理得22334z x =-,与(∗)联立方程组.2222560334x z x z x ⎧+++=⎪⎨=-⎪⎩,解得120x z =-⎧⎨=⎩,22180)x z =-<(,舍去.故在平面11ABB A 中存在点P ,使得14PB PB +=且1PCPC =P 坐标为(2,0,0)-.19.在空间直角坐标系O xyz -中,己知向量(,,)u a b c = ,点()0000,,P x y z .若直线l 以u 为方向向量且经过点0P ,则直线l 的标准式方程可表示为000(0)x x y y z z abc a b c---==≠;若平面α以u 为法向量且经过点0P ,则平面α的点法式方程可表示为()()()0000a x x b y y c z z -+-+-=,一般式方程可表示为0ax by cz d +++=.(1)若平面1:210x y α+-=,平面1:210y z β-+=,直线l 为平面1α和平面1β的交线,求直线l 的单位方向向量(写出一个即可);(2)若三棱柱的三个侧面所在平面分别记为22αβγ、、,其中平面2α经过点(4,0,0),(3,1,1)-,(1,5,2)-,平面2:4y z β+=,平面:(1)(2)30mx m y m z γ+++++=,求实数m 的值;(3)若集合{}(,,)|4,4,4M x y z x y y z z x =+≤+≤+≤,记集合M 中所有点构成的几何体为S ,求几何体S 的体积和相邻两个面(有公共棱)所成二面角的大小.【答案】(1)212,,333⎛⎫--⎪⎝⎭(2)1m =-(3)体积为128,相邻两个面(有公共棱)所成二面角为2π3【解析】【分析】(1)记平面1α,1β的法向量为11(1,2,0),(0,2,1)αβ==-,设直线l 的方向向量(,,)l x y z = ,由直线l 为平面1α和平面1β的交线,则1l α⊥,1l β⊥ ,列出方程即可求解;(2)设2:α10ax by cz +++=,由平面2α经过点(4,0,0),(3,1,1)-,(1,5,2)-,列出方程中求得2:4x y α+=,记平面22αβγ、、的法向量为22(1,1,0),(0,1,1),(,1,2)m m m αβγ===++ ,求出2α与2β交线方向向量为()1,1,1p =- ,根据p γ⊥ ,即可求得m 的值;(3)由题可知,S 由一个边长是4的正方体和6个高为2的正四棱锥构成,即可计算出体积,设几何体S 相邻两个面(有公共棱)所成二面角为()0,πθ∈,由题得出平面EBC 和平面ECD 的法向量,根据两平面夹角的向量公式计算即可.【小问1详解】记平面1α,1β的法向量为11(1,2,0),(0,2,1)αβ==-,设直线l 的方向向量(,,)l x y z = ,因为直线l 为平面1α和平面1β的交线,所以1l α⊥,1l β⊥ ,即112020l x y l y z αβ⎧⋅=+=⎪⎨⋅=-=⎪⎩ ,取2x =,则(2,1,2)l =-- ,所以直线l 的单位方向向量为212,,333⎛⎫--⎪⎝⎭.【小问2详解】设2:α10ax by cz +++=,由平面2α经过点(4,0,0),(3,1,1)-,(1,5,2)-,所以4103105210a a b c a b c +=⎧⎪+-+=⎨⎪-+++=⎩,解得14140a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩,即2:4x y α+=,所以记平面22αβγ、、的法向量为22(1,1,0),(0,1,1),(,1,2)m m m αβγ===++ ,与(1)同理,2α与2β确定的交线方向向量为()1,1,1p =-,所以p γ⊥ ,即()1210p m m m m γ⋅=-+++=+= ,解得1m =-.【小问3详解】由集合{}(,,)|4,4,4M x y z x y y z z x =+≤+≤+≤知,S 由一个边长是4的正方体和6个高为2的正四棱锥构成,如图所示,13224433V =⨯⨯⨯=正四棱锥,3244461283S V =⨯⨯+⨯=,设几何体S 相邻两个面(有公共棱)所成二面角为()0,πθ∈,平面:40EBC x z +-=,设平面EBC 法向量1(1,0,1)n = ,平面:40ECD y z +-=,设平面ECD 法向量2(0,1,1)n = ,所以121cos cos ,2n n θ== ,所以几何体S相邻两个面(有公共棱)所成二面角为2π3.【点睛】关键点点睛:本题第三问的关键是作出空间图形,求出相关法向量,利用二面角的空间向量求法即可.。

高一数学下学期期末试题(附答案)

高一数学下学期期末试题(附答案)

高一数学下学期期末试题(附答案)距离期末考试越来越近了,大家是不是都在紧张的复习中呢?查字典数学网编辑了高一数学下学期期末试题,希望对您有所帮助!一选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知是第二象限角,,则 ( )A. B. C. D.2.集合,,则有( )A. B. C. D.3.下列各组的两个向量共线的是( )A. B.C. D.4. 已知向量a=( 1,2),b=(x+1,-x),且a⊥b,则x=()A.2B.23C.1D.05.在区间上随机取一个数,使的值介于到1之间的概率为A. B. C. D.6.为了得到函数的图象,只需把函数的图象A.向左平移个单位B.向左平移个单位C.向右平移个单位D. 向右平移个单位7.函数是( )A.最小正周期为的奇函数B.最小正周期为的偶函数C.最小正周期为的奇函数D.最小正周期为的偶函数8.设,,,则 ( )A. B. C. D.9. 若f(x)=sin(2x+φ)为偶函数,则φ值可能是()A. π4B. π2C. π3D. π10.已知函数的最大值为4,最小值为0,最小正周期为,直线是其图象的一条对称轴,则下列各式中符合条件的解析式是A. B.C. D.11.已知函数的定义域为,值域为,则的值不可能是( )A. B. C. D.12.函数的图象与曲线的所有交点的横坐标之和等于A.2B.3C.4D.6第Ⅱ卷(非选择题,共60分)二、填空题(每题5分,共20分)13.已知向量设与的夹角为,则 = .14. 已知的值为15.已知,则的值16.函数f(x)=sin(2x-π3)的图像为C,如下结论中正确的是________(写出所有正确结论的编号).①图像C关于直线x=1112π对称;②图像C关于点(23π,0)对称;③函数f(x)在区间[-π12,512π]内是增函数;④将y=sin2x的图像向右平移π3个单位可得到图像C.三、解答题:(共6个题,满分70分,要求写出必要的推理、求解过程)17. (本小题满分10分)已知 .(Ⅰ)求的值;( Ⅱ)求的值.18. (本小题满分12 分)如图,点A,B是单位圆上的两点,A,B两点分别在第一、二象限,点C是圆与x轴正半轴的交点,△AOB是正三角形,若点A的坐标为(35,45),记∠COA=α. (Ⅰ)求1+sin2α1+cos2α的值;(Ⅱ)求cos∠COB的值.19. (本小题满分12分)设向量a=(4cosα,sinα),b=(sinβ,4cosβ),c=(cosβ,-4sinβ),(1)若a与b-2c垂直,求tan(α+β)的值;(2)求|b+c|的最大值.20. (本小题满分12分)函数f(x)=3sin2x+π6的部分图像如图1-4所示.(1)写出f(x)的最小正周期及图中x0,y0的值;(2)求f(x)在区间-π2,-π12上的最大值和最小值.21.(本小题满分12分)已知向量的夹角为 .(1)求 ;(2)若,求的值.22.(本小题满分12分)已知向量 ) .函数(1) 求的对称轴。

山东省临沂市2019-2020学年高一数学下学期期末考试数学试题含解析

山东省临沂市2019-2020学年高一数学下学期期末考试数学试题含解析
2. 的值是()
A. B. C.- D.
〖答 案〗B
〖解 析〗
〖分析〗
根据诱导公式化简,并结合正弦和角公式即可求解.
〖详 解〗由诱导公式可知
所以由正弦和角公式可得

故选:B.
〖点 睛〗本题考查了诱导公式及正弦和角公式的应用,属于基础题.
3.某工厂12名工人的保底月薪如下表所示,第80百分位是()
工人
A. 18B.6C. 3D. 2
〖答 案〗C
〖解 析〗
〖分析〗
由题意可得该正方体的内切球的体积,设正方体的棱长为 ,进而可得内切球半径为 ,由球的体积公式列方程,即可得解.
〖详 解〗因为“牟合方盖”的体积为18,所以该正方体的内切球的体积为 ,
设正方体的棱长为 ,则该正方体的内切球半径为 ,
所以 ,解得 .
A. B. C. D.
〖答 案〗C
〖解 析〗
〖分析〗
计算出基本事件的总数以及事件“抽到的两人中有一男一女”所包含的基本事件数,利用古典概型的概率公式可求得所求事件的概率.
〖详 解〗从两名男生和两名女生中任意抽取两人,若采取有放回简单随机抽样,基本事件总数为 ,
若抽到的两人中有一男一女,可以先抽到男生后抽到女生,也可以先抽到女生后抽到男生,
保底月薪
工人
保底月薪
1
2890
7
2850
2
2860
8
3130
3
3050
9
2880
4
2940
10
3325
5
2755
11
2920
6
2710
12
2950
A. 3050B.2950C. 3130D. 3325

湖北省武汉2023-2024学年高一下学期期末考试数学试卷含答案

湖北省武汉2023-2024学年高一下学期期末考试数学试卷含答案

武汉2023-2024学年度下学期期末考试高一数学试卷(答案在最后)命题教师:考试时间:2024年7月1日考试时长:120分钟试卷满分:150分一、选择题:本题共8小题,每题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足(2i)3i z +=-,则z =()A.1i +B.1i- C.1i-+ D.1i--【答案】A 【解析】【分析】先利用复数的除法运算法则化简得到复数z ,再根据共轭复数的概念即可求解.【详解】因为(2i)3i z +=-,所以3i (3i)(2i)1i 2i 41z ---===-++,所以1i z =+.故选:A2.△ABC 中,60A =︒,BC =AC =C 的大小为()A.75︒B.45︒C.135︒D.45︒或135︒【答案】A 【解析】【分析】利用正弦定理可得sin B =45B = ,由三角形内角和即可求解.【详解】由正弦定理可得sin sin BC AC A B=,故32sin 2B ==,由于60A =︒,故0120B ︒︒<<,故45B = ,18075C A B =--= ,故选:A3.已知数据1x ,2x ,L ,9x 的方差为25,则数据131x +,231x +,L ,931x +的标准差为()A.25B.75C.15D.【答案】C 【解析】【分析】根据方差的性质求出新数据的方差,进而计算标准差即可.【详解】因为数据1x ,2x ,L ,9x 的方差为25,所以另一组数据131x +,231x +,L ,931x +的方差为2325225⨯=,15=.故选:C4.在正方形ABCD 中,M 是BC 的中点.若AC AM BD λμ=+,则λμ+的值为()A.43B.53C.158D.2【答案】B 【解析】【分析】建立平面直角坐标系,利用向量的坐标运算求解作答.【详解】在正方形ABCD 中,以点A 为原点,直线AB ,AD 分别为x ,y 轴建立平面直角坐标系,如图,令||2AB =,则(2,0),(2,2),(0,2),(2,1)B C D M ,(2,2),(2,1),(2,2)AC AM BD ===-,(22,2)AM BD λμλμλμ+=-+ ,因AC AM BD λμ=+ ,于是得22222λμλμ-=⎧⎨+=⎩,解得41,33λμ==,53λμ+=所以λμ+的值为53.故选:B5.正三棱柱111ABC A B C -的底面边长为2D 为BC 中点,则三棱锥11A B DC -的体积为A.3B.32C.1D.32【答案】C 【解析】【详解】试题分析:如下图所示,连接AD ,因为ABC ∆是正三角形,且D 为BC 中点,则AD BC ⊥,又因为1BB ⊥面ABC ,故1BB AD ⊥,且1BB BC B ⋂=,所以AD ⊥面11BCC B ,所以AD 是三棱锥11A B DC -的高,所以11111133133A B DC B DC V S AD -∆=⋅==.考点:1、直线和平面垂直的判断和性质;2、三棱锥体积.6.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin sin()sin B C AA C b c C ⎛⎫++= ⎪⎝⎭,3B π=,则a c +的取值范围是()A.332⎛⎝ B.332⎛⎝ C.332⎣ D.332⎡⎢⎣【答案】A 【解析】【分析】利用三角恒等变换及正弦定理将cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭进行化简,可求出b 的值,再利用边化角将a c +化成角,然后利用辅助角公式及角的范围即可得到答案.【详解】由题知cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π=∴cos cos sin sin sin B C AB bc C ⎛⎫+=⎪⎝⎭即cos cos 3sin B C Ab c C+=由正弦定理化简得∴sin cos cos 3sin 3A cB bC C ⋅+⋅==∴23sin sin cos cos sin 3AC B C B +=∴23sin sin()sin 3AB C A +==∴2b =3B π=∴1sin sin sin a b cA B C===∴23sin sin sin sin()sin cos )3226a c A C A A A A A ππ+=+=+-=+=+ 203A π<<∴5666A πππ<+<∴)26A π<+≤即2a c <+≤故选:A .【点睛】方法点睛:边角互化的方法(1)边化角:利用正弦定理2sin sin sin a b cr A B C===(r 为ABC 外接圆半径)得2sin a r A =,2sin b r B =,2sin c r C =;(2)角化边:①利用正弦定理:sin 2aA r=,sin 2b B r =,sin 2c C r=②利用余弦定理:222cos 2b c a A bc+-=7.设O 为△ABC 的外心,若2AO AB AC =+,则sin BAC ∠的值为()A.4B.4C.4-D.4【答案】D 【解析】【分析】设ABC 的外接圆半径为R ,由已知条件可得,2AC BO = ,所以12AC R =,且//AC BO ,取AC的中点M ,连接OM 可得π2BOM ∠=,计算cos sin BOC MOC ∠=-∠的值,再由余弦定理求出BC ,在ABC 中,由正弦定理即可求解.【详解】设ABC 的外接圆半径为R ,因为2AO AB AC =+ ,2AC AO AB BO =-=,所以1122AC BO R ==,且//AC BO ,取AC 的中点M ,连接OM ,则OM AC ⊥,因为//AC BO ,所以OM BO ⊥,即π2BOM ∠=,所以11π124cos cos sin 24AC RMC BOC MOC MOC OC OB R ⎛⎫∠=+∠=-∠=-=-=-=- ⎪⎝⎭,在BOC中由余弦定理可得:2BC R ===,在ABC中,由正弦定理得:2sin 224RBCBAC RR ∠===.故选:D8.高为8的圆台内有一个半径为2的球1O ,球心1O 在圆台的轴上,球1O 与圆台的上底面、侧面都相切.圆台内可再放入一个半径为3的球2O ,使得球2O 与球1O 、圆台的下底面及侧面都只有一个公共点.除球2O ,圆台内最多还能放入半径为3的球的个数是()A.1 B.2C.3D.4【答案】B 【解析】【详解】作过2O 的圆台的轴截面,如图1.再作过2O 与圆台的轴垂直的截面,过截面与圆台的轴交于圆O .由图1.易求得24OO =.图1这个问题等价于:在以O 为圆心、4为半径的圆上,除2O 外最多还可放几个点,使以这些点及2O 为圆心、3为半径的圆彼此至多有一个公共点.由图2,3sin45sin sin604θ︒<=︒,有4560θ︒<<︒.图2所以,最多还可以放入36013122θ︒⎡⎤-=-=⎢⎣⎦个点,满足上述要求.因此,圆台内最多还可以放入半径为3的球2个.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知某地区有小学生120000人,初中生75000人,高中生55000人,当地教育部门为了了解本地区中小学生的近视率,按小学生、初中生、高中生进行分层抽样,抽取一个容量为2000的样本,得到小学生,初中生,高中生的近视率分别为30%,70%,80%.下列说法中正确的有()A.从高中生中抽取了460人B.每名学生被抽到的概率为1125C.估计该地区中小学生总体的平均近视率为60%D.估计高中学生的近视人数约为44000【答案】BD 【解析】【分析】根据分层抽样、古典概型、频率公式等知识对选项进行分析,从而确定正确选项.【详解】高中生抽取5500020004401200007500055000⨯=++人,A 选项错误.每名学生被抽到的概率为200011200007500055000125=++,B 选项正确.学生总人数为1200007500055000250000++=,估计该地区中小学生总体的平均近视率为1200007500055000132.50.30.70.80.53250000250000250000250⨯+⨯+⨯==,C 选项错误.高中学生近视人数约为550000.844000⨯=人,D 选项正确.故选:BD10.G 是ABC 的重心,2,4,120,AB AC CAB P ∠=== 是ABC 所在平面内的一点,则下列结论正确的是()A.0GA GB GC ++= B.AB 在AC上的投影向量等于12- AC .C.3AG =D.()AP BP CP ⋅+ 的最小值为32-【答案】ACD 【解析】【分析】根据向量的线性运算,并结合重心的性质,即可判断A ,根据投影向量的定义,判断B ;根据向量数量积公式,以及重心的性质,判断C ;根据向量数量积的运算率,结合图形转化,即可判断D.【详解】A.以,GB GC 为邻边作平行四边形GBDC ,,GD BC 交于点O ,O 是BC 的中点,因为G 是ABC 的重心,所以,,A G O 三点共线,且2AG GO =,所以2GB GC GD GO +== ,2GA AG GO =-=- ,所以0GA GB GC ++=,故A 正确;B.AB 在AC 上的投影向量等于1cos1204AC AB AC AC ⨯=-,故B 错误;C.如图,因为()12AO AB AC =+ ,所以()222124AO AB AC AB AC =++⋅,即211416224342AO ⎛⎫=+-⨯⨯⨯= ⎪⎝⎭,即3AO = 因为点G 是ABC 的重心,22333AG AO ==,故C 正确;D.取BC 的中点O ,连结,PO PA ,取AO 中点M ,则2PA PO PM += ,()12AO AB AC =+,()()2221124816344AO AB AB AC AC =+⋅+=⨯-+= ,则()()()()221224AP BP CP PA PB PC PA PO PA PO PA PO ⎡⎤⋅+=⋅+=⋅=⨯+--⎢⎥⎣⎦,222132222PM OA PM =-=- ,显然当,P M 重合时,20PM = ,()AP BP CP ⋅+ 取最小值32-,故D 正确.故选:ACD【点睛】关键点点睛:本题的关键是对于重心性质的应用,以及向量的转化.11.如图,在棱长为2的正方体1111ABCD A B C D -中,O 为正方体的中心,M 为1DD 的中点,F 为侧面正方形11AA D D 内一动点,且满足1B F ∥平面1BC M ,则()A.三棱锥1D DCB -的外接球表面积为12πB.动点F 的轨迹的线段为22C.三棱锥1F BC M -的体积为43D.若过A ,M ,1C 三点作正方体的截面Ω,Q 为截面Ω上一点,则线段1AQ 长度的取值范围为45,225⎡⎢⎣⎦【答案】AC 【解析】【分析】选项A :三棱锥1D DCB -的外接球即为正方体的外接球,结合正方体的外接球分析;选项B :分别取1AA ,11A D 的中点H ,G ,连接1B G ,GH ,1HB ,1AD ;证明平面1B GH ∥平面1BC M ,从而得到点F 的轨迹为线段GH ;选项C :根据选项B 可得出GH ∥平面1BC M ,从而得到点F 到平面1BC M 的距离为H 到平面1BC M 的距离,再结合线面垂直及等体积法,利用四棱锥的体积求解所求三棱锥的体积;选项D :设N 为1BB 的中点,从而根据面面平行的性质定理可得到截面Ω即为面1AMC N ,从而线段1AQ 长度的最大值为线段11A C 的长,最小值为四棱锥11A AMC N -以1A 为顶点的高.【详解】对于A :由题意可知:三棱锥1D DCB -的外接球即为正方体的外接球,可知正方体的外接球的半径3R =所以三棱锥1D DCB -的外接球表面积为24π12πR =,故A 正确;对于B :如图分别取1AA ,11A D 的中点H ,G ,连接1B G ,GH ,1HB ,1AD .由正方体的性质可得11B H C M ∥,且1B H ⊂平面1B GH ,1C M ⊄平面1B GH ,所以1C M //平面1B GH ,同理可得:1BC //平面1B GH ,且111BC C M C ⋂=,11,BC C M ⊂平面1BC M ,所以平面1B GH ∥平面1BC M ,而1B F ∥平面1BC M ,所以1B F ⊂平面1B GH ,所以点F 的轨迹为线段GH ,其长度为12222⨯=,故B 错误;对于C :由选项B 可知,点F 的轨迹为线段GH ,因为GH ∥平面1BC M ,则点F 到平面1BC M 的距离为H 到平面1BC M 的距离,过点B 作1BP B H ⊥,因为11B C ⊥平面11ABB A ,BP ⊂平面11ABB A ,所以11B C BP ⊥,又1111⋂=B C B H B ,111,B C B H ⊂平面11B C MH ,所以BP ⊥平面11B C MH ,所以1111111111114252232335F BC M H BC M B C MH B B C MH B C MHV V V V S BP ----====⨯=⨯⨯⨯⨯,故C 正确;对于D :如图,设平面Ω与平面11AA B B 交于AN ,N 在1BB 上,因为截面Ω⋂平面11AA D D AM =,平面11AA D D ∥平面11BB C C ,所以1AM C N ∥,同理可证1AN C M ∥,所以截面1AMC N 为平行四边形,所以点N 为1BB 的中点,在四棱锥11A AMC N -中,侧棱11A C 最长,且11A C =设棱锥11A AMC N -的高为h ,因为1AM C M ==1AMC N 为菱形,所以1AMC 的边1AC ,又1AC =则112AMC S =⨯=△1111111142223323C AA M AA M V SD C -=⋅=⨯⨯⨯⨯=△,所以1111114333A AMC AMC C AA M V S h V --=⋅===△,解得3h =.综上,可知1AQ 长度的取值范围是,3⎡⎢⎣,故D 错误.故选:AC【点睛】关键点睛:由面面平行的性质得到动点的轨迹,再由锥体的体积公式即可判断C ,D 选项关键是找到临界点,求出临界值.三、填空题:本小题共3小题,每小题5分,共15分.12.已知复数()221i i()z m m m =-++⋅∈R 表示纯虚数,则m =________.【答案】1-【解析】【分析】根据2i 1=-和复数的分类要求得出参数值;【详解】因为复数()()2221ii=11i()z m m mm m =-++⋅-+-⋅∈R 表示纯虚数,所以210,10,m m ⎧-=⎨-≠⎩解得1m =-,故答案为:1-.13.定义集合(){},02024,03,,Z |A x y x y x y =≤≤≤≤∈,则从A 中任选一个元素()00,x y ,它满足00124x y -+-<的概率是________.【答案】42025【解析】【分析】利用列举法求解符合条件的()00,x y ,即可利用古典概型的概率公式求解.【详解】当0y =时,02024,Z x x ≤≤∈,有2025种选择,当1,2,3y =时,02024,Z x x ≤≤∈,分别有2025种选择,因此从A 中任选一个元素()00,x y ,共有202548100⨯=种选择,若00y =,则022y -=,此时由00124x y -+-<得012x -<,此时0x 可取0,1,2,若01y =或3,则021y -=,此时由00124x y -+-<得013x -<,此时0x 可取0,1,2,3,若02y =,则020y -=,此时由00124x y -+-<得014x -<,此时0x 可取0,1,2,3,4,综上可得满足00124x y -+-<的共有342516+⨯+=种情况,故概率为16481002025=故答案为:4202514.在ABC 和AEF △中,B 是EF的中点,1,6,AB EF BC CA ====,若2AB AE AC AF ⋅+⋅= ,则EF 与BC的夹角的余弦值等于__________.【答案】23【解析】【分析】【详解】由题意有:()()2AB AE AC AF AB AB BE AC AB BF ⋅+⋅=⋅++⋅+=,即22AB AB BE AC AB AC BF +⋅+⋅+⋅= ,而21AB =,据此可得:11,AC AB BE BF ⋅=⨯-=- ,即()112,2BF AC AB BF BC +⋅--=∴⋅= ,设EF 与BC 的夹角为θ,则2cos 2,cos 3BF BC θθ⨯⨯=∴= .四、解答题:本小题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.某学校为了解本校历史、物理方向学生的学业水平模拟测试数学成绩情况,分别从物理方向的学生中随机抽取60人的成绩得到样本甲,从历史方向的学生中随机抽取n 人的成绩得到样本乙,根据两个样本数据分别得到如下直方图:已知乙样本中数据在[70,80)的有10个.(1)求n 和乙样本直方图中a 的值;(2)试估计该校物理方向的学生本次模拟测试数学成绩的平均值和历史方向的学生本次模拟测试数学成绩的第75百位数(同一组中的数据用该组区间中点值为代表);(3)采用分层抽样的方法从甲样本数据中分数在[60,70)和[70,80)的学生中抽取6人,并从这6人中任取2人,求这两人分数都在[70,80)中的概率.【答案】(1)50n =,0.018a =;(2)物理方向的学生本次模拟测试数学成绩的平均值为81.5,历史方向的学生本次模拟测试数学成绩的第75百位数为88.25;(3)25【解析】【分析】(1)由频率分布直方图得乙样本中数据在[70,80)的频率为0.2,这个组学生有10人,由此能求出n ,由乙样本数据直方图能求出a ;(2)利用甲、乙样本数据频率分布直方图能估计估计该校物理方向的学生本次模拟测试数学成绩的平均值和历史方向的学生本次模拟测试数学成绩的第75百位数;(3)由频率分布直方图可知从分数在[60,70)和[70,80)的学生中分别抽取2人和4人,将从分数在[60,70)中抽取的2名学生分别记为1A ,2A ,从分数在[70,80)中抽取的4名学生分别记为1b ,2b ,3b ,4b ,利用列举法能求出这两人分数都在[70,80)中的概率.【小问1详解】解:由直方图可知,乙样本中数据在[70,80)的频率为0.020100.20⨯=,则100.20n=,解得50n =;由乙样本数据直方图可知,(0.0060.0160.0200.040)101a ++++⨯=,解得0.018a =;【小问2详解】解:甲样本数据的平均值估计值为(550.005650.010750.020850.045950.020)1081.5⨯+⨯+⨯+⨯+⨯⨯=,乙样本数据直方图中前3组的频率之和为(0.0060.0160.02)100.420.75++⨯=<,前4组的频率之和为(0.0060.0160.020.04)100.820.75+++⨯=>,所以乙样本数据的第75百位数在第4组,设第75百位数为x ,(80)0.040.420.75x -⨯+=,解得88.25x =,所以乙样本数据的第75百位数为88.25,即物理方向的学生本次模拟测试数学成绩的平均值为81.5,历史方向的学生本次模拟测试数学成绩的第75百位数为88.25;【小问3详解】解:由频率分布直方图可知从分数在[60,70)和[70,80)的学生中分别抽取2人和4人,将从分数在[60,70)中抽取的2名学生分别记为1A ,2A ,从分数在[70,80)中抽取的4名学生分别记为1b ,2b ,3b ,4b ,则从这6人中随机抽取2人的基本事件有:12(,)A A ,11(,)A b ,12(,)A b ,13(,)A b ,14(,)A b ,21(,)A b ,22(,)A b ,23(,)A b ,24(,)A b ,12()b b ,,13(,)b b ,14(,)b b ,23(,)b b ,24(,)b b ,34(,)b b 共15个,所抽取的两人分数都在[70,80)中的基本事件有6个,即这两人分数都在[70,80)中的概率为62155=.16.(建立空间直角坐标系答题不得分)如图,在四棱锥11A BCC B -中,平面ABC ⊥平面11BCC B ,△ABC 是正三角形,四边形11BCC B 是正方形,D 是AC 的中点.(1)求证:1//AB 平面1BDC ;(2)求直线BC 和平面1BDC 所成角的正弦值的大小.【答案】(1)证明见解析(2)55【解析】【分析】(1)连接1B C ,交1BC 于点O ,连接OD ,由中位线的性质,可知1//OD AB ,再由线面平行的判定定理,得证;(2)过点C 作1CE C D ⊥于点E ,连接BE ,可证CE ⊥平面1BDC ,从而知CBE ∠即为所求,再结合等面积法与三角函数的定义,得解.【小问1详解】连接1B C ,交1BC 于点O ,连接OD ,则O 为1B C 的中点,因为D 是AC 的中点,所以1//OD AB ,又OD ⊂平面1BDC ,1AB ⊄平面1BDC ,所以1AB ∥平面1BDC .【小问2详解】过点C 作1CE C D ⊥于点E ,连接BE ,因为四边形11BCC B 是正方形,所以1BC CC ⊥,又平面ABC⊥平面11BCC B ,1CC ⊂平面11BCC B ,平面ABC ⋂平面11BCC B BC =,所以1CC ⊥平面ABC ,因为BD ⊂平面ABC ,所以1CC BD ⊥,因为ABC 是正三角形,且D 是AC 的中点,所以BD AC ⊥,又1CC AC C =I ,1,⊂CC AC 平面1ACC ,所以BD ⊥平面1ACC ,因为CE ⊂平面1ACC ,所以BD CE ⊥,又1C D BD D =I ,1,C D BD ⊂平面1BDC ,所以CE ⊥平面1BDC ,所以CBE ∠就是直线BC 和平面1BDC 所成角,设2BC =,在1Rt DCC 中,11CE DC CD CC ⋅=⋅,所以5CE ==,在Rt BCE 中,5sin 25CE CBE BC ∠===.17.甲、乙两人进行乒乓球对抗赛,每局依次轮流发球,连续赢2个球者获胜,且比赛结束,通过分析甲、乙过去比赛的数据知,甲发球甲赢的概率为23,乙发球甲赢的概率为25,不同球的结果互不影响,已知某局甲先发球.(1)求该局打4个球甲赢的概率;(2)求该局打5个球结束的概率.【答案】(1)875(2)44675【解析】【分析】(1)先设甲发球甲赢为事件A ,乙发球甲赢为事件B ,然后分析这4个球的发球者及输赢者,即可得到所求事件的构成,利用相互独立事件的概率计算公式即可求解;(2)先将所求事件分成甲赢与乙赢这两个互斥事件,再分析各事件的构成,利用互斥事件和相互独立事件的概率计算公式即可求得概率.【小问1详解】设甲发球甲赢为事件A ,乙发球甲赢为事件B ,该局打4个球甲赢为事件C ,由题知,2()3P A =,2()5P B =,则C ABAB =,所以23228()()()(()()353575P C P ABAB P A P B P A P B ===⨯⨯⨯=,所以该局打4个球甲赢的概率为875.【小问2详解】设该局打5个球结束时甲赢为事件D ,乙赢为事件E ,打5个球结束为事件F ,易知D ,E 为互斥事件,D ABABA =,E ABABA =,F D E =⋃,所以()()()()()()()P D P ABABA P A P B P A P B P A ==2222281135353675⎛⎫⎛⎫=-⨯⨯-⨯⨯= ⎪ ⎪⎝⎭⎝⎭,()()()()()()()P E P ABABA P A P B P A P B P A ==2222241113535375⎛⎫⎛⎫⎛⎫=⨯-⨯⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以8444()()()()67575675P F P D E P D P E =⋃=+=+=,所以该局打5个球结束的概率为44675.18.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,22cos a c b C -=.(1)求B ;(2)若点D 为边BC 的中点,点E ,F 分别在边AB ,AC (包括顶点)上,π6EDF ∠=,2b c ==.设BDE α∠=,将DEF 的面积S 表示为α的函数,并求S 的取值范围.【答案】(1)π3(2)3ππ,π328sin 23S αα=≤≤⎛⎫- ⎪⎝⎭,3,84S ⎡∈⎢⎣⎦【解析】【分析】(1)由题干及余弦定理可得222a c b ac +-=,再根据余弦定理即可求解;(2)由题可得ABC 为等边三角形,ππ32α≤≤,在BDE 与CDF 中,分别由正弦定理求出DE ,DF ,根据三角形面积公式可得3ππ,2ππ3216sin sin 36S ααα=≤≤⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,由三角恒等变换及正弦函数的图象与性质即可求解.【小问1详解】因为22cos a c b C -=,所以222222222a b c a b c a c b ab a +-+--=⋅=,即222a cb ac +-=,所以2221cos 222a cb ac B ac ac +-===.因为()0,πB ∈,所以π3B =.【小问2详解】由π3B=及2b c==可知ABC为等边三角形.又因为π6EDF∠=,BDEα∠=,所以ππ32α≤≤.在BDE中,2π3BEDα∠=-,由正弦定理可得sin sinDE BDB BED∠=,即32π2sin3DEα=⎛⎫-⎪⎝⎭.在CDF中,π6CFDα∠=-,由正弦定理可得sin sinDF CDC CFD∠=,即π2sin6DFα=⎛⎫-⎪⎝⎭.所以31π3ππsin,2ππ2ππ8632 sin sin16sin sin3636Sααααα=⨯⨯=≤≤⎛⎫⎛⎫⎛⎫⎛⎫----⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.因为2ππ11sin sin cos sin sin cos362222αααααα⎛⎫⎛⎫⎛⎫⎛⎫--=+-⎪⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭2213313sin cos cos sin sin2cos224444αααααα=-+=-1πsin223α⎛⎫=-⎪⎝⎭,因为ππ32α≤≤,所以ππ2π2,333α⎡⎤-∈⎢⎥⎣⎦,所以π3sin2,132α⎤⎛⎫-∈⎥⎪⎝⎭⎣⎦,所以1π1sin2,2342α⎤⎛⎫-∈⎥⎪⎝⎭⎣⎦.所以2ππ16sin sin36αα⎛⎫⎛⎫⎡⎤--∈⎪ ⎪⎣⎦⎝⎭⎝⎭,所以33,2ππ8416sin sin36αα⎡∈⎢⎛⎫⎛⎫⎣⎦--⎪ ⎪⎝⎭⎝⎭,所以333,2ππ8416sin sin36Sαα⎡=∈⎢⎛⎫⎛⎫⎣⎦--⎪ ⎪⎝⎭⎝⎭.所以S 的取值范围为3,84⎡⎢⎣⎦.19.(建立空间直角坐标系答题不得分)如图,在三棱柱ADP BCQ -中,侧面ABCD 为矩形.(1)若PD⊥面ABCD ,22PD AD CD ==,2NC PN =,求证:DN BN ⊥;(2)若二面角Q BC D --的大小为θ,π2π,43θ⎡⎤∈⎢⎥⎣⎦,且2cos 2AD AB θ=⋅,设直线BD 和平面QCB 所成角为α,求sin α的最大值.【答案】(1)证明见解析(2)12-【解析】【分析】(1)问题转化为证明DN⊥平面BCP ,即证明ND BC ⊥和DN PC ⊥,ND BC ⊥转化为证明BC ⊥平面PQCD ,而ND BC ⊥则只需证明PDN PCD△△(2)作出二面角Q BC D --的平面角以及直线BD 与平面QCB 所成的角,列出sin α的表达式,最后把问题转化为函数最值问题.【小问1详解】因为PD⊥平面ABCD ,BC ⊂平面ABCD ,所以PD BC ⊥,又CD BC ⊥,PD CD D ⋂=,,PD CD ⊂平面PCD ,所以BC ⊥平面PQCD ,又ND ⊂平面PQCD ,所以ND BC ⊥,在Rt PCD 中,2PD ==,则CD =3PC =,所以2NC =,1PN =,由PN PDND PC=,DPN CPD ∠=∠,所以PDN PCD △△,所以DN PC ⊥,又因为ND BC ⊥,PC BC C ⋂=,,PC BC ⊂平面BCP ,所以DN⊥平面BCP ,又因为BN ⊂平面BCP ,所以DN BN ⊥.【小问2详解】在平面QBC 中,过点C 作CF BC ⊥,因为ABCD 为矩形,所以BC CD ⊥,所以DCF ∠为二面角Q BC D --的平面角,且DCF θ∠=,又⋂=CF CD C ,,CD CF ⊂平面CDF ,所以BC ⊥平面CDF ,在平面CDF 中,过点D 作DG FC ⊥,垂足为G ,连接BG ,因为BC ⊥平面CDF ,DG ⊂平面CDF ,所以DG BC ⊥,又BC FC C ⋂=,,BC FC ⊂平面BCQ ,所以DG ⊥平面BCQ ,所以DBG ∠为直线BD 与平面QCB 所成的角,即DBG α∠=,sin DG DC θ=,又因为2cos 2AD AB θ=⋅,所以222sin 32cos 14cos 2DGBDAB AD αθθ===+++π2π,43θ⎡⎤∈⎢⎥⎣⎦可得12cos ,22θ⎡∈-⎢⎣⎦,21cos 0,2θ⎡⎤∈⎢⎥⎣⎦,设32cos t θ=+,2,32t ⎤∈+⎥⎦,则23cos 2t θ-=,()2223sin 1cos 14t θθ-=-=-,所以()2222563125651sin 14222t t t t α⎛⎫-++ ⎪--+⎝⎭=-=≤=,当且仅当25t =时等号,所以sin α51-.【点睛】关键点点睛:本题的关键是作出二面角Q BC D --的平面角以及直线BD 与平面QCB 所成的角,然后写出sin α的表达式,最后求函数最值问题利用了换元法和基本不等式.。

潍坊市高一数学下学期期末考试试题含解析

潍坊市高一数学下学期期末考试试题含解析
因为 , ,所以点P到x轴的距离的最大值为6,故C不正确;
当 时, ,此时 ,点 , ,故D正确,
故选:AD.
【点睛】本题考查的是有关函数的应用问题,涉及到的知识点有数学建模,将实际问题转化为函数问题来解决,结合三角函数的相应的性质求得结果,属于中档题。
三、填空题:本题共4小题,每小题5分,共20分。
【答案】(1) ;(2) 。
【解析】
【分析】
(1)用三角函数的定义;
(2)先求正切值,再把弦化切.
【详解】(1)由题意知, ,
因为 ,
所以 。
解得 ,
所以 .
(2)当 时, ,
所以 。
【点睛】本题为基础题,考查三角函数的定义及同角三角函数的关系。
18。 某广场设置了一些多面体形或球形的石凳供市民休息.如图(1)的多面体石凳是由图(2)的正方体石块截去八个相同的四面体得到,且该石凳的体积是 .
【详解】由题意,某扇形的半径为 ,圆心角为 ,
根据扇形的面积公式,可得
所以此扇形的面积为 。
故选:B。
【点睛】本题主要考查了扇形的面积公式及其应用,其中解答中熟记扇形的面积公式是解答的关键,着重考查推理与运算能力。
4。 在 中,点 满足 ,则( )
A。 B.
C. D。
【答案】A
【解析】
【分析】
由已知条件可得 ,然后由向量的加减法法则进行运算可得答案.
对于C,因为平面与平面的位置关系有:相交或平面,因为 , 是空间两个不同的平面,而 ,所以平面 与 相交,即 , 必相交于一条直线,故C正确;
对于D,当直线 与平面 相交,且 垂直于平面 内的无数条直线,若这些直线中没有相交直线,则 不一定垂直平面 ,故D 不正确,

高一下学期数学期末试卷含答案(共5套)

高一下学期数学期末试卷含答案(共5套)

高一下学期期末考试数学试题第Ⅰ卷 选择题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}A |2,x x x R =≤∈,集合B 为函数y lg(1)x =-的定义域,则B A I ( ) A .(1,2) B .[1,2] C .[1,2) D .(1,2]2.已知20.5log a =,0.52b =,20.5c =,则a ,b ,c 的大小关系为( )A .a b c <<B .c b a <<C .a c b <<D .c b a <<3.一个单位有职工800人,其中高级职称160人,中级职称300人,初级职称240人,其余人员100人,为了解职工收入情况,现采取分层抽样的方法抽取容量为40的样本,则从上述各层中依次抽取的人数分别为( )A .15,24,15,19B .9,12,12,7C .8,15,12,5D .8,16,10,6 4.已知某程序框图如图所示,若输入实数x 为3,则输出的实数x 为( )A .15B .31 C.42 D .63 5.为了得到函数4sin(2)5y x π=+,x R ∈的图像,只需把函数2sin()5y x π=+,x R ∈的图像上所有的点( )A .横坐标伸长到原来的2倍,纵坐标伸长到原来的2倍.B .纵坐标缩短到原来的12倍,横坐标伸长到原来的2倍.C .纵坐标缩短到原来的12倍,横坐标缩短到原来的12倍. D .横坐标缩短到原来的12倍,纵坐标伸长到原来的2倍.6.函数()1ln f x x x=-的零点所在的区间是( )A .(0,1)B .(1,2) C.(2,3) D .(3,4)7.下面茎叶图记录了在某项体育比赛中,九位裁判为一名选手打出的分数情况,则去掉一个最高分和最低分后,所剩数据的方差为( )A .327 B .5 C.307D .4 8.已知函数()222cos 2sin 1f x x x =-+,则( )A .()f x 的最正周期为2π,最大值为3.B .()f x 的最正周期为2π,最大值为1. C.()f x 的最正周期为π,最大值为3. D .()f x 的最正周期为π,最大值为1.9.平面向量a r 与b r 的夹角为23π,(3,0)a =r ,||2b =r ,则|2|a b +=r r ( )A C.7 D .3 10.已知函数2log (),0()(5),0x x f x f x x -<⎧=⎨-≥⎩,则()2018f 等于( )A .1-B .2 C.()f x D .111.设点E 、F 分别为直角ABC ∆的斜边BC 上的三等分点,已知3AB =,6AC =,则AE AF ⋅u u u r u u u r( )A .10B .9 C. 8 D .712.气象学院用32万元买了一台天文观测仪,已知这台观测仪从启动的第一天连续使用,第n 天的维修保养费为446(n )n N *+∈元,使用它直至“报废最合算”(所谓“报废最合算”是指使用的这台仪器的平均每天耗资最少)为止,一共使用了( )A .300天B .400天 C.600天 D .800天第Ⅱ卷 非选择题二、填空题(本大题共4小题,每题5分,满分20分,将答案填在答题纸上) 13.已知θ为锐角且4tan 3θ=,则sin()2πθ-= . 14.A 是圆上固定的一点,在圆上其他位置任取一点B ,连接A 、B 两点,它是一条弦,它的长度不小于半径的概率为 .15.若变量x ,y 满足2425()00x y x y f x x y +≤⎧⎪+≤⎪=⎨≥⎪⎪≥⎩,则32z x y =+的最大值是 .16.关于x 的不等式232x ax >+(a为实数)的解集为,则乘积ab 的值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 在ABC ∆中,角A ,B C ,所对应的边分别为a ,b ,c ,且5a =,3A π=,cos B =(1)求b 的值; (2)求sin C 的值.18. 已知数列{}n a 中,前n 项和和n S 满足22n S n n =+,n N *∈.(1)求数列{}n a 的通项公式; (2)设12n n n b a a +=,求数列{}n b 的前n 项和n T . 19. 如图,在ABC ∆中,点P 在BC 边上,AC AP >,60PAC ∠=︒,PC =10AP AC +=.(1)求sin ACP ∠的值;(2)若APB ∆的面积是,求AB 的长.20. 已知等差数列{}n a 的首项13a =,公差0d >.且1a 、2a 、3a 分别是等比数列{}n b 的第2、3、4项. (1)求数列{}n a 与{}n b 的通项公式;(2)设数列{}n c 满足2 (n 1)(n 2)n n na c ab =⎧=⎨⋅≥⎩,求122018c c c +++L 的值(结果保留指数形式).21.为响应党中央“扶贫攻坚”的号召,某单位知道一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2018年种植的一批试验紫甘薯在不同温度时6组死亡株数:经计算:615705i i i x y ==∑,6214140ii x ==∑,62110464i i y ==∑≈0.00174.其中i x ,i y 分别为试验数据中的温度和死亡株数,1,2,3,4,5,6.i =(1)y 与x 是否有较强的线性相关性?请计算相关系数r (精确到0.01)说明.(2)求y 与x 的回归方程ˆˆˆ+a y bx =(ˆb 和ˆa 都精确到0.01);(3)用(2)中的线性回归模型预测温度为35C ︒时该批紫甘薯死亡株数(结果取整数). 附:对于一组数据11(,v )u ,22(,v )u ,L L ,(,v )n n u ,①线性相关系数ni i u v nu vr -=∑,通常情况下当|r |大于0.8时,认为两个变量具有很强的线性相关性.②其回归直线ˆˆv u αβ=+的斜率和截距的最小二乘估计分别为: 1221ˆni i i nii u v nu vunu β==-=-∑∑,ˆˆˆav u β=-;22.已知函数()2lg(a)1f x x =+-,a R ∈. (1)若函数()f x 是奇函数,求实数a 的值;(2)在在(1)的条件下,判断函数()y f x =与函数lg(2)xy =的图像公共点各数,并说明理由;(3)当[1,2)x ∈时,函数lg(2)x y =的图像始终在函数lg(42)xy =-的图象上方,求实数a 的取值范围.答案一、选择题答案9. 【解析】方法1: (1,b =-,2(1,a b +=±,|2|13a b +=。

湖南省怀化市2019-2020学年高一下学期期末考试数学试题含答案

湖南省怀化市2019-2020学年高一下学期期末考试数学试题含答案

湖南省怀化市2019-2020学年高一下学期期末考试数学试题含答案注意事项:1。

答题前,考生务必将自己的姓名、准考证号写在答题卡上。

2。

考生作答时,选择题和综合题均须做在答题卡上,在本试卷上答题无效。

考生在答题卡上按答题卡中注意事项的要求答题。

3。

考试结束后,将答题卡收回.4.本试题卷共4页,如有缺页,考生须声明,否则后果自负.怀化市中小学课程改革教育质量监测试卷2020年上期期末考试高一数学一、单项选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.为了了解某地参加计算机水平测试的5000名学生的成绩,从中抽取了200名学生的成绩进行统计分析.在这个问题中,5000 名学生成绩的全体是A.总体B。

个体 C.从总体中抽取的一个样本D.样本的容量2.设α是第三象限角,且tan1α=,则cosα=A。

-12B. 22C. 22- D. 12-3。

同时掷3枚硬币,那么互为对立事件的是A.至少有1枚正面和最多有1枚正面B.最多1枚正面和恰有2枚正面C 。

至多1枚正面和至少有2枚正面 D.至少有2枚正面和恰有1枚正面4。

某中学高三从甲、乙两个班中各选出7名学生参加数学竞赛,他们取得的成绩(满分100 分)的茎叶图如图,其中甲班学生成绩的众数是85,乙班学生成绩的中位数是83,则x+ y 的值为A.7 B 。

8 C.9 D 。

10 5.若4sin cos 3θθ-=则sin()cos()πθπθ--=A 。

16B 。

16- C 。

718-D. 7186.如图所示,用两种方案将块顶角为120°, 腰长为2的等腰三角形钢板OAB 裁剪成扇形,设方案一、二的扇形的面积分别为S 1,S 2,周长分别为l 1,l 2,则A.S 1=S 2,l 1>l 2B.S 1=S 2, l 1<l 2 C 。

S 1〉S 2,l 1=l 2 D.S 1〈S 2, l 1=l 2 7。

高一下学期期末考试数学试题(含答案)

高一下学期期末考试数学试题(含答案)

33高一下学期期末数学试卷第Ⅰ卷(选择题 共50分)一、选择题(本大题共 10 小题,每小题 5 分,共 50 分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知α是第二限角,则下列结论正确的是A .sinα•cosα>0B .sinα•tanα<0C .cosα•tanα<0D .以上都有可能( )2.化简 AB + BD - AC - CD =()A . 0B . ADC . BCD . DA3.若 P (-3,4) 为角α终边上一点,则 cos α=()A. -B. 455 C. - D. - 44 34. 若 a = 1, b = 2, 且 a , b 的夹角为120 则 a + b 的值()A .1B . 3C . 2D . 2π5. 下列函数中,最小正周期是A. y = tan 2x的偶函数为() 2B. y = cos(4x + πC. y = 2 cos 22x -1 2D. y = cos 2x6. 将函数 y = sin(3x + π 的图象向左平移π) 个单位,再将所得图象上所有点的横坐标缩短到原 6 61来的 倍(纵坐标不变),则所得图象的函数解析式为( )2A. y =sin( 3 x + 2π2 3B. y = sin(6x + π3C. y = sin 6xD. y = sin(6x +2π37. 如右图,该程序运行后的输出结果为()A .0B .3C .12D .-2))) )8. 函数 y =cos(π π-2x )的单调递增区间是4()5π 5A .[k π+ 8 ,k π+ 8 π]B .[2k π+ 8 ,2k π+ π]83 C .[k π- 8 π,k π+ π3]D .[2k π- 8 8 π,2k π+ π](以上 k ∈Z )89. 已知直线 y = x + b,b ∈[﹣2,3],则直线在 y 轴上的截距大于 1 的概率是()1 234A.B .C .D .555510. 右面是一个算法的程序.如果输入的 x 的值是 20,则输出的 y 的值是()A .100B .50C .25D .150第Ⅱ卷(非选择题 共 100 分)二、填空题(本题共 5 小题,每题 5 分,共 25 分)11.若 a = (2,3) 与b = (-4, y ) 共线,则 y =.12. 某工厂生产 A ,B ,C 三种不同型号的产品,产品数量之比依次为 2∶3∶5.现用分层抽样方法抽出一个容量为 n 的样本,样本中 A 种型号的产品有 16 件,那么此样本的容量 n =.13. 设扇形的周长为8cm ,面积为 4cm 2,则扇形的圆心角的弧度数是 .14. 若tan α= 1,则2sin α+ cos α 2 s in α- 3cos α= .15. 函数 y=Asin(ωx+φ)( A >0,ω>0,|φ|<π ) ,在同一个周期内,当 x= π时, y 有最大值 2,3当 x=0 时,y 有最小值-2,则这个函数的解析式为.三、解答题(本大题共 6 小题,满分 75 分,解答须写出文字说明、证明过程或演算步骤)16.(本小题满分 12 分)某中学团委组织了“弘扬奥运精神,爱我中华”的知识竞赛,从参加考试的 学生中抽出 60 名学生,将其成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如下部分频率分布直方图.观察图形给出的信息,回答下列问题:(1) 求第四小组的频率,并补全这个频率分布直方图; (2) 估计这次考试的及格率(60 分及以上为及格)和平均分.-α 17.(本小题满分 12 分)已知函数 f (x ) = 2sin 1 x + 2 3 cos 1x .2 2(1) 求函数 f (x ) 的最小正周期及值域; (2) 求函数 f (x ) 的单调递增区间.18.(本小题满分 12 分)已知|a |=3,|b |=2,a 与 b 的夹角为 60°,c =3a +5b ,d =m a -3b .(1) 当 m 为何值时,c 与 d 垂直? (2) 当 m 为何值时,c 与 d 共线?19.(本小题满分 12 分)设函数 f (x )=a ·b ,其中向量 a =(m ,cos2x ),b =(1+sin2x,1),x ∈R ,且⎡π ⎤ 函数 y =f (x )的图象经过点 ⎢⎣ 4 , 2⎥⎦. (1) 求实数 m 的值;(2) 求函数 f (x )的最小值及此时x 值的集合.20.(本小题满分 13 分)已知π < α< π,且sin(π-α) = 4;25sin(2π+α) tan(π-α) cos(-π-α)(1) 求 sin(3π 2 π) cos( 2+α)的值;(2) 求 sin 2α- cos 2α 5π 的值.tan(α- )421.(本小题满分 14 分)某班数学兴趣小组有男生三名,分别记为 a 1 , a 2 , a 3 ,女生两名,分别记为b 1 , b 2 ,现从中任选 2 名学生去参加校数学竞赛.(1) 写出这种选法的样本空间; (2) 求参赛学生中恰有一名男生的概率; (3) 求参赛学生中至少有一名男生的概率.) 数学参考答案及评分标准一、选择题(本大题共 10 小题,每小题 5 分,共 50 分。

高一下期末数学试卷(附答案)

高一下期末数学试卷(附答案)
三、解答题(本大题共5小题,每小题8分,共40分.解答应写出文字说明,证明过程或演算步骤
21.已知在 中,角A、B、C的对边分别为a、b、c,且满足 .
(1)求角C的大小;
(2)若 , 的面积等于 ,求c边长.
22.已知关于x,y的方程 .
(1)若方程C表示圆,求实数m的取值范围;
(2)若圆C与直线 相交于M,N两点,且 ,求m的值.
【详解】(1)由频率分布直方图的面积和为1,则
,得 ,
又由100人中 分数段的人数比 分数段的人数多6人
则 ,解得 ,
中位数中位数为
(2)设“抽取的2名同学的分数不在同一组内”为事件A,
由题意知,在分数为 的同学中抽取4人,分别用 , , , 表示,
在分数为 的同学中抽取2人,分别用 , 表示,
从这6名同学中抽取2人所有可能出现的结果有:
∴ , ,
∴ 面 , 面 ,
∵ ,∴平面 平面 ,
∵ 平面 ,∴ 平面 .
(2)因为底面ABCD为矩形,所以 ,
又因为平面 平面ABCD,
平面 平面 , 平面ABCD,所以 平面PAD.
因为 平面PAD,所以 .
又因为 , ,所以 平面PCD.
因为 平面PAB,所以平面 平面PCD.
25.【答案】(1)证明见解析;(2) ;(3) .
3.【答案】D
【详解】直线 的斜率为 ,直线 的斜率为3,由题意,
,解得 。故选D
4.【答案】B
【详解】根据正弦定理: ,故 ,解得 .
故选:B.
5.【答案】A
【详解】 ,
当且仅当 ,即 时,取等号.
所以函数 的最小值为5
故选:A
6.【答案】C
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蚌埠市2017 -2018学年度第二学期期末学业水平监测
高一数学
第I卷(选择题,共60分)
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的A,B,C,D的四个选项中,只有一个选项是符合题目要求的,请将正确答案的字母代号涂到答题卡上.1.已知实数a,b,c满足a<b且c≠0,则下列不等式一定成立的是
A. B. a2 < b2 C. ac < bc D.
2.等差数列{a n}满足a2=3,a4 =7,则其前5项和S5=
A.9 B.15 C.25 D.50
3.某校高一年级有男生400人,女生300人,为了调查高一学生对于高二时文理分科的意向,拟随机抽取35人的样本,则应抽取的男生人数为
A.25 B.20 C.15 D.10
4.已知△ABC中,角A,B,C的对边分别为a,b,c,若A:B:C=3:2:1,则a:b:c= A.3:2:1 B.3::1 C.::1 D.2::1
5.一次选拔运动员,测得7名选手的身高(单位:cm)分布茎叶图如图,已知7人的平均身高为177cm,有一名选手的身高记录不清楚,其末位数记为x,则x的值是
A. 8
B. 7
C. 6
D. 5
6.已知 tan a = 2,则 sin2a + sin2a =
A. B. C. D.
7.若m+n>0,则关于x的不等式(m -x)(n+x)>0的解集是
A.{x| -n<x <m}
B.{x|x<-n或x>m}
C.{x| -m <x<n} D.{x|x<-m或x>n}
8.设x,y满足约束条件,则z=x -y的取值范围是
A. [-3,0]
B.[-3,2]
C.[0,2]
D.[0,3]
9.某企业里工人的工资与其生产利润满足线性相关关系,现统计了100名工人的工资y(元)与其生产利润x(千元)的数据,建立了y关于x的回归直线方程为= 80x +50,则下列说法正确的是
A.工人甲的生产利润为1000元,则甲的工资为130元
B.生产利润提高1000元,则预计工资约提高80元
C.生产利润提高1000元,则预计工资约提高130元
D.工人乙的工资为210元,则乙的生产利润为2000元
10.阅读右边的程序框图,运行相应的程序,则输出S的值为
A.8 B.18
C.26 1.80
11.从3双不同的鞋子中任取2只,则取出的2只不能成双的概率为
A. B.
C. D.
12.定义函数f(x)如下表,数列{an}满足a n+1=f(a n),n∈N*,若a1=2,则a l+ a2+a3+…+a2018=
A. 7042
B.7058
C.7063
D.7262
第Ⅱ卷(非选择题,共90分)
二、填空题:本大题共4小题,每小题5分,共20分,请将答案直接填在答题卡上.13.已知,则
14.设a>l,记m=log a(a2+1).n=log a(a+1),p=log a(2a),则m,n,p的大小关系是__ _(用“>”连接).
15.在△ABC中,B=,BC边上的高等于BC,则sinA=
16.已知首项为2的数列{an}的前n项和为S n,且S n+1-2(2a n+1)=0(n∈N*),若数列{b n}满足
+1(n∈N*),则数列{bn}中最大项的值为 .
三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)
已知f (x)=2 sinxcosx +2cos2x -1.
(1)求f(x)的最小正周期;
(2)求f(x)在区间[]上的最大值和最小值.
18.(本小题满分12分)
掷甲,乙两颗骰子,甲出现的点数为x,乙出现的点数为y.若令事件A为|x -y| >1,事件B为xy≤x2 +1,求P(A)+P(B)的值,并判断事件A和事件B是否为互斥事件.
19.(本小题满分12分)
某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]进行分组.已知测试分数均为整数,现用每组区间的中点值代替该组中的每个数据,则得到体育成绩的折线图如下:
(1)若体育成绩大于或等于70分的学生为“体育良好”,已知该校高一年级有1000名学生,试估计该校高一年级学生“体育良好”的人数;
(2)用样本估计总体的思想,试估计该校高一年级学生达标测试的平均分;
(3)假设甲、乙、丙三人的体育成绩分别a,b,c,且a∈[60,70),b∈[70,80),c∈[80,90),当三人的体育成绩方差s2最小时,写出a,b,c的所有可能取值(不要求证明).20.(本小题满分12分)
在△ABC中,角A,B,C的对边分别为a,b,c,且acosB=(3c-b)cosA.
(1)求sinA;
(2)若a=2,且△ABC的面积为,求b+c的值.
21.(本小题满分12分)
某农业科研单位打算开发一个生态渔业养殖项目,准备购置一块1800平方米的矩形地块,
中间挖成三个矩形池塘养鱼,挖出的泥土堆在池塘四周形成基围(阴影部分所示)种植桑树,鱼塘周围的基围宽均为2米,如图所示,池塘所占面积为S平方米,其中a:b=1:2.
(1)试用x,y表示S;
(2)若要使S最大,则x,y的值分别为多少?
22.(本小题满分12分)
已知数列{a n}满足a1=1.
(1)若|a n-a n-1|=1(n∈N*且n≥2),数列{a2n-1}为递增数列,求数列{a n}的通项公式;
(2)若|a n-a n-1|=n(n∈N*且n≥2),数列{a2n-1}为递增数列,数列{a2n}为递减数列,且a1> a2,求数列{a n}的通项公式.。

相关文档
最新文档