高中数学《导数》讲义(全)

合集下载

高中数学导数讲解..ppt

高中数学导数讲解..ppt

解:
(1)∵Dy=f(0+Dx)-f(0)=|Dx|,
∴ DDyx
=
|Dx| Dx
.
当 Dx<0 时,
Dy Dx
=-1,
lim
Dx0
Dy Dx
=-1;
当 Dx>0 时,
Dy Dx
=1,
lim
Dx0
Dy Dx
=1,

lim
Dx0-
Dy Dx
Dlxim0+DDyx ,
从而
lim
Dx0
Dy Dx
不存在.
故函数 f(x)=|x| 在点 x=0 处不可导.
12[(1+Dx)2+1]Dx
1 2
(12+1)
=Dlxim0 -
(1+
1 2
Dx) =1,
Dlxim0+DDxy
=lim Dx0+
12(1+Dx+1)Dx
1 2
(12+1)
=lim Dx0+
1 2
Dx
Dx
=
1 2
,

Dlxim0-
Dy Dx
Dlxim0+DDxy
,
从而
lim
Dx0
Dy Dx
不存在.
∴x02-3x0+2=3x02-6x0+2.
整理得 2x02-3x0=0. 解得 x0=
这时
y0=-
3 8
,
k=-
1 4
.
3 2
(∵x00).
∴直线 l 的方程为
y=-
1 4
x,
切点坐标是 (

高中数学-导数的概念课件

高中数学-导数的概念课件
15
(1)求函数 y= x在点 x=1 处的导数;
(2)求函数 y=x2+ax+b 在点 x=x0 处的导数. [解析] (1)Δy= 1+Δx-1,
ΔΔyx=
1+ΔΔxx-1=
1 1+Δx+1.
liΔmx→0 1+1Δx+1=12,所以 y′|x=1=12.
(2)y′|x=x0
=liΔmx→0
(x0+Δx)2+a(x0+Δx)+b-(x20+ax0+b) Δx
f[x0+(-k)]-f(x0) -k
=-12f′(x0)=-12×2=-1,故应选 A.
35
• 二、填空题 • 4. 自由 落体运 动在 t= 4s的 瞬 时速度 是
________. • [答案] 39.2m/s
[解析] s=12gt2
ΔΔst=12g(t+ΔΔt)t2-12gt2=gt+12g·Δt
16
=liΔmx→0
x20+2x0Δx+(Δx)2+ax0+aΔx+b-x20-ax0-b Δx
=liΔmx→0
2x0Δx+aΔx+(Δx)2 Δx
=liΔmx→0 (2x0+a+Δx)=2x0+a.
17
[例 3] 若函数 f(x)在 x=a 处的导数为 A,求:
(1)liΔmx→0 f(a+Δx)Δ-xf(a-Δx);
21
已知 f′(x0)=A,则 liΔmx→0 f(x0-2ΔΔxx)-f(x0)=____.
[解析]
liΔmx→0
f(x0-2Δx)-f(x0) Δx
=-2liΔmx→0 f[x0+(--22ΔΔxx)]-f(x0)=-2A.
• [答案] -2A
22
[例 4] 若一物体运动方程如下:(位移:m,时间:

导数的课件ppt

导数的课件ppt
导数的课件
目录
Contents
• 导数的定义与几何意义 • 导数的计算 • 导数在几何中的应用 • 导数在实际问题中的应用 • 导数的历史与发展
01 导数的定义与几何意义
导数的定义
总结词
导数描述了函数在某一点处的切线斜率,是函数值随自变量变化的瞬时速度。
详细描述
导数是微积分中的一个基本概念,它表示函数在某一点处的切线斜率。具体来说 ,对于可导函数$f(x)$,其在点$x_0$处的导数$f'(x_0)$定义为函数在$x_0$附近 的小范围内变化时,函数值$f(x)$随自变量$x$变化的瞬时速度。
导数的几何意义
总结词
导数的几何意义是函数图像在某一点处的切线斜率。
详细描述
导数的几何意义是函数图像在某一点处的切线斜率。也就是说,对于可导函数 $f(x)$,其在点$x_0$处的导数$f'(x_0)$等于函数图像在点$(x_0, f(x_0))$处的 切线的斜率。
导数与切线斜率
总结词
导数与切线斜率是等价的,导数即为 函数在某一点处的切线斜率。
通过导数的符号变化,可以判断函数的凹凸性。
详细描述
在凹区间内,二阶导数大于0;在凸区间内,二阶导数小于0。
04 导数在实际问题中的应用
导数在物理中的应用
速度与加速度
导数可以用来描述物体的速度和 加速度,例如在分析物体的运动 轨迹时,可以运用导数来计算瞬
时速度和加速度。
弹性分析
在物理中,弹性分析是一个重要的 概念,导数可以用来描述弹性体的 应变和应力之间的关系,帮助我们 理解物体的弹性行为。
对于两个函数的和或差, 其导数等于两个函数导数 的和或差。
乘法运算规则
对于两个函数的乘积,其 导数为两个函数导数的乘 积加上被乘函数自身的导 数。

《高等数学导数》课件

《高等数学导数》课件

答案
2. 求下列函数的极值:
$f'(x) = 3x^2 - 6x + 2$,极值点为 $x=1 pm sqrt{2}$,极大值为 $f(1+sqrt{2}) = 1 + 2sqrt{2}$,极小值为 $f(1-sqrt{2}) = 1 - 2sqrt{2}$。
$f'(x) = ln x + 1$,极值点为 $x=1$,极大值为 $f(1) = 0$。
《高等数学导数》ppt 课件
contents
目录
• 导数的基本概念 • 导数的计算 • 导数的应用 • 导数的扩展 • 习题与答案
CHAPTER 01
导数的基本概念
导数的定义
总结词
导数是函数在某一点的变化率,表示 函数在该点的切线斜率。
详细描述
导数定义为函数在某一点附近取得的 最小变化率,即函数在这一点处的切 线斜率。导数的计算公式为lim(x→0) [f(x+h) - f(x)] / h,其中h趋于0。
2. 求下列函数的极值:
01
03 02
习题
$f(x) = frac{1}{x}$
$f(x) = e^x$
答案
01
1. 求下列函数的导数:
02
$y' = 2x + 2$
03
$y' = -frac{1}{x^2}$
答案
• $y' = \sin x + x \cdot \cos x$
答案
• $y' = e^x$
总结词
导数的四则运算在解决实际问题中具 有广泛的应用,例如在经济学、物理
学和工程学等领域。
详细描述
导数的四则运算法则是基于极限理论 推导出来的,通过这些法则,可以方 便地求出复杂函数的导数。

(完整版)高二导数讲义

(完整版)高二导数讲义

导数【知识归纳】1、导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值x y ∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=x x f x x f ∆-∆+)()(00。

如果当0→∆x 时,x y∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

即f (x 0)=0lim →∆x xy ∆∆=0lim →∆x x x f x x f ∆-∆+)()(00。

说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,xy ∆∆有极限。

如果x y ∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。

(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。

由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤:(1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0);(2)求平均变化率xy ∆∆=x x f x x f ∆-∆+)()(00; (3)取极限,得导数f’(x 0)=x y x ∆∆→∆0lim。

2、导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。

也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。

相应地,切线方程为y -y 0=f /(x 0)(x -x 0)。

3、几种常见函数的导数:①0;C '= ②()1;n n x nx-'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '=⑥()ln x xa a a '=; ⑦()1ln x x '=; ⑧()1l g log a a o x e x '=.4、两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即: (.)'''v u v u ±=±法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:.)('''uv v u uv +=若C 为常数,'''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数:.)(''Cu Cu =法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积再除以分母的平方:⎪⎭⎫ ⎝⎛v u ‘=2''v uv v u -(v ≠0)。

高中数学第一章几个常用函数的导数1.2.2基本初等函数的导数公式及导数的运算法则(一)讲义

高中数学第一章几个常用函数的导数1.2.2基本初等函数的导数公式及导数的运算法则(一)讲义

1.2.2 基本初等函数的导数公式及导数的运算法则(一)1.几个常见函数的导数2.基本初等函数的导数公式设两个函数分别为f(x)和g(x).4.导数的加法与减法法则(1)两个函数和(或差)的导数等于两个函数的导数的和(或差),可推广到多个函数的和(或差),即(f1±f2±…±f n)′=□17f1′±f2′±…±f n′.(2)两个函数和(或差)的导数还可推广为[mf(x)±ng(x)]′=□18mf′(x)±ng′(x)(m,n为常数).基本初等函数的四类求导公式(1)第一类为幂函数,y ′=(x α)′=α·xα-1(注意幂指数α可推广到全体实数).对于解析式为根式形式的函数,首先应把根式化为分数指数幂的形式,再求导数.(2)第二类为三角函数,可记为正弦函数的导数为余弦函数,余弦函数的导数为正弦函数的相反数.注意余弦函数的导数,不要漏掉前面的负号.(3)第三类为指数函数,y ′=(a x)′=a x·ln a ,当a =e 时,e x的导数是(a x )′的一个特例.(4)第四类为对数函数,y ′=(log a x )′=1x ·ln a ,也可记为(log a x )′=1x·log a e ,当a=e 时,ln x 的导数也是(log a x )′的一个特例.1.判一判(正确的打“√”,错误的打“×”) (1)若y =2,则y ′=12×2=1.( )(2)若f ′(x )=sin x ,则f (x )=cos x .( ) (3)若f (x )=-1x ,则f ′(x )=12x x.( ) 答案 (1)× (2)× (3)√ 2.做一做(1)⎝ ⎛⎭⎪⎫1x 3′=________. (2)(2x)′=________.(3)若f (x )=x 3,g (x )=log 3x ,则f ′(x )-g ′(x )=________. 答案 (1)-3x4 (2)2x ln 2 (3)3x 2-1x ln 3探究1 利用导数公式及运算法则求导 例1 求下列函数的导数.(1)y =5x 3;(2)y =log 5x ;(3)f (x )=(x +1)2(x -1); (4)f (x )=2-2sin 2x2;(5)f (x )=e x+1e x -1.[解] (1)y ′=(5x 3)′=(x 35 )′=35x - 25 =355x 2.(2)y ′=(log 5x )′=1x ln 5. (3)因为f (x )=(x +1)2(x -1)=(x 2+2x +1)(x -1)=x 3+x 2-x -1,所以f ′(x )=3x 2+2x -1.(4)因为f (x )=2-2sin 2x2=1+cos x ,所以f ′(x )=-sin x .(5)解法一:f ′(x )=x +x--x+x-x -2=-2e xx -2.解法二:因为f (x )=e x+1e x -1=1+2e x -1,所以f ′(x )=x--x -x -2=-2e xx -2.拓展提升(1)利用函数的和、差、积、商的求导法则求函数的导数时,要分清函数的结构,再利用相应的法则进行求导.(2)遇到函数的表达式是乘积形式或是商的形式,有时先将函数表达式展开或化简,然后再求导.【跟踪训练1】 求下列函数的导数. (1)y =13x2;(2)y =x 3·e x;(3)y =cos x x.解 (1)y ′=⎝ ⎛⎭⎪⎪⎫13x 2′=(x - 23 )′=-23x -23-1 =-23x - 53 .(2)y ′=(x 3·e x )′=(x 3)′·e x +x 3·(e x)′ =3x 2·e x +x 3·e x=x 2e x(3+x ). (3)y ′=⎝ ⎛⎭⎪⎫cos x x ′=xx -cos x xx 2=-x ·sin x -cos x x2=-x sin x +cos xx2. 探究2 曲线切线方程的确定与应用例2 过原点作曲线y =e x的切线,求切点的坐标及切线的斜率.[解] 因为(e x )′=e x,设切点坐标为(x 0,e x 0),则过该切点的直线的斜率为e x 0,所以所求切线方程为y -ex 0=ex 0(x -x 0).因为切线过原点,所以-ex 0=-x 0·ex 0,x 0=1.所以切点为(1,e),斜率为e.[条件探究] 已知点P 是曲线y =e x上任意一点,求点P 到直线y =x 的最小距离.[解] 根据题意设平行于直线y =x 的直线与曲线y =e x相切于点(x 0,y 0),该切点即为与y =x 距离最近的点,如图.则在点(x 0,y 0)处的切线斜率为1,即y ′|x =x 0=1.y ′=(e x )′=e x,ex 0=1,得x 0=0,代入y =e x,y 0=1,即P (0,1). 利用点到直线的距离公式得距离为22. 拓展提升利用基本初等函数的求导公式和导数的四则运算法则,结合导数的几何意义可以解决一些与距离、面积相关的几何的最值问题.解题的关键是正确确定所求切线的位置,进而求出切点坐标.【跟踪训练2】 已知点P (-1,1),点Q (2,4)是曲线y =x 2上的两点,求与直线PQ 平行的曲线y =x 2的切线方程.解 因为y ′=(x 2)′=2x ,设切点为M (x 0,y 0), 则y ′| x =x 0=2x 0.又因为PQ 的斜率为k =4-12+1=1,而切线平行于PQ ,所以k =2x 0=1,即x 0=12,所以切点为M ⎝ ⎛⎭⎪⎫12,14. 所以所求的切线方程为y -14=x -12,即4x -4y -1=0. 探究3 导数的综合应用例3 已知函数f (x )=x 3-4x 2+5x -4. (1)求曲线f (x )在点(2,f (2))处的切线方程; (2)求经过点A (2,-2)的曲线f (x )的切线方程. [解] (1)∵f ′(x )=3x 2-8x +5, ∴f ′(2)=1,又f (2)=-2,∴曲线f (x )在点(2,f (2))处的切线方程为y -(-2)=x -2,即x -y -4=0. (2)设切点坐标为(x 0,x 30-4x 20+5x 0-4), ∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)(x -2), 又切线过点(x 0,x 30-4x 20+5x 0-4), ∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2), 整理得(x 0-2)2(x 0-1)=0, 解得x 0=2或x 0=1,∴经过A (2,-2)的曲线f (x )的切线方程为x -y -4=0或y +2=0. 拓展提升求曲线方程或切线方程时,应注意:(1)切点是曲线与切线的公共点,切点坐标既满足曲线方程也满足切线方程; (2)曲线在切点处的导数就是切线的斜率;(3)必须明确已知点是不是切点,如果不是,应先设出切点.【跟踪训练3】 已知f (x )=13x 3+bx 2+cx (b ,c ∈R ),f ′(1)=0,当x ∈[-1,3]时,曲线y =f (x )的切线斜率的最小值为-1,求b ,c 的值.解 f ′(x )=x 2+2bx +c =(x +b )2+c -b 2, 且f ′(1)=1+2b +c =0.① 若-b ≤-1,即b ≥1,则f ′(x )在[-1,3]上是增函数, 所以f ′(x )min =f ′(-1)=-1, 即1-2b +c =-1,②由①②,解得b =14,不满足b ≥1,应舍去.若-1<-b <3,即-3<b <1, 则f ′(x )min =f ′(-b )=-1, 即b 2-2b 2+c =-1,③由①③,解得b =-2,c =3或b =0,c =-1. 若-b ≥3,即b ≤-3,f ′(x )在[-1,3]上是减函数, 所以f ′(x )min =f ′(3)=-1, 即9+6b +c =-1,④由①④,解得b =-94,不满足b ≤-3,应舍去.综上可知,b =-2,c =3或b =0,c =-1.1.利用常见函数的导数公式可以比较简捷地求出函数的导数,其关键是牢记和运用好导数公式.解题时,要认真观察函数的结构特征,积极地进行联想划归.2.准确记忆导数的运算法则是进行导数运算的前提,但在解题过程中要注意如何使用运算法则可使运算较为简单,例如求y =x ·x 的导数,若使用积的导数公式可以求出结果,但不如先化简为y =x ·x =x 32 ,再求y ′=32x 12简单.3.三次函数的导数为二次函数,当涉及与二次函数最值有关的问题时,常需要讨论,而讨论的立足点是二次函数的图象的对称轴与区间的位置关系.1.已知函数f (x )=5,则f ′(1)等于( ) A .5 B .1 C .0 D .不存在 答案 C解析 因为f (x )=5,所以f ′(x )=0,所以f ′(1)=0. 2.已知f (x )=x 3+3x+ln 3,则f ′(x )为( ) A .3x 2+3xB .3x 2+3x·ln 3+13C .3x 2+3x ·ln 3D .x 3+3x·ln 3答案 C解析 (ln 3)′=0,注意避免出现(ln 3)=13的错误,∵f (x )=x 3+3x +ln 3,∴f ′(x )=3x 2+3x·ln 3.3.曲线y =cos x 在点A ⎝ ⎛⎭⎪⎫π6,32处的切线方程为________.答案 x +2y -3-π6=0解析 因为y ′=(cos x )′=-sin x ,所以k =-sin π6=-12,所以在点A 处的切线方程为y -32=-12⎝ ⎛⎭⎪⎫x -π6,即x +2y -3-π6=0.4.已知函数f (x )=f ′⎝ ⎛⎭⎪⎫π4cos x +sin x ,则f ⎝ ⎛⎭⎪⎫π4的值为________.答案 1解析 ∵f (x )=f ′⎝ ⎛⎭⎪⎫π4cos x +sin x , ∴f ′(x )=-f ′⎝ ⎛⎭⎪⎫π4sin x +cos x , ∴f ′⎝ ⎛⎭⎪⎫π4=-f ′⎝ ⎛⎭⎪⎫π4sin π4+cos π4,即f ′⎝ ⎛⎭⎪⎫π4=2-1,从而有f ⎝ ⎛⎭⎪⎫π4=(2-1)cos π4+sin π4=1,故填1. 5.已知直线y =kx 是函数y =ln x 的一条切线,试求k 的值. 解 设切点坐标为(x 0,y 0).∵y =ln x ,∴y ′=1x ,∴y ′| x =x 0=1x 0=k .∵点(x 0,y 0)既在直线y =kx 上,也在曲线y =ln x 上, ∴⎩⎪⎨⎪⎧y 0=kx 0,①y 0=ln x 0,②把k =1x 0代入①式得y 0=1,再把y 0=1代入②式求出x 0=e ,∴k =1x 0=1e .。

《高中数学导数讲解》课件

《高中数学导数讲解》课件

积分
导数是积分的基础,通过 求导可以推导出原函数的 表达式。
微分方程
导数在解决微分方程问题 中起到关键作用,如物理 中的动力学问题。
THANKS
感谢观看
பைடு நூலகம்
高中数学导数讲解
目录
• 导数的基本概念 • 导数的计算 • 导数的应用 • 导数的实际应用 • 导数的扩展知识
01
导数的基本概念
导数的定义
总结词
导数是函数在某一点的变化率,表示函数在该点的切线斜率。
详细描述
导数是微积分中的一个基本概念,用于描述函数在某一点附近的变化率。对于可导函数$f(x)$,其在点$x_0$处 的导数定义为$f'(x_0) = lim_{Delta x to 0} frac{Delta y}{Delta x}$,其中$Delta y = f(x_0 + Delta x) - f(x_0)$ 。导数表示函数在点$x_0$处的切线斜率。
01
02
03
起源
导数最初由牛顿和莱布尼 茨在17世纪分别独立发现 ,为微积分学奠定了基础 。
早期发展
18世纪,欧拉、拉格朗日 等数学家进一步发展了导 数理论,将其应用于函数 研究。
现代应用
随着数学的发展,导数在 物理、工程、经济等领域 得到广泛应用,成为解决 实际问题的重要工具。
导数的其他性质
导数的几何意义
详细描述
在物理中,导数具有实际意义。例如,物体运动的瞬时速度 可以由速度函数的导数表示,物质扩散的瞬时速度可以由扩 散函数的导数表示。导数可以描述物体或物质在极短时间内 速度或加速度的变化。
02
导数的计算
切线斜率与导数
切线斜率
导数描述了函数在某一点的切线斜率 ,即函数在该点的变化率。

高中数学导数自学讲义——认识导数

高中数学导数自学讲义——认识导数

导数的简单自学讲义1.函数y =f (x )在x =x 0处的导数(1)定义:称函数y =f (x )在x =x 0处的瞬时变化率()()0000lim lim x x f x x f x y x x∆→∆→+∆-∆=∆∆为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0(2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).2.函数f (x )的导函数称函数f ′(x )=()()0lim x f x x f x x∆→+∆-∆为f (x )的导函数.3.基本初等函数的导数公式(*)4.利用导数的定义求函数的导数(1)根据导数的定义求函数在点处导数的方法: ①求函数的增量; ②求平均变化率; ③得导数,简记作:一差、二比、三极限.(2)函数的导数与导数值的区间与联系:导数是原来函数的导函数,而导数值是导函数在某一点的函数值,导数值是常数.5.导数的运算法则1) .[f (x )±g (x )]′=f ′(x )±g ′(x );2) .[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );3) .()()()()()()()2f x f x g x f x g x g x g x '⎡⎤''-=⎢⎥⎡⎤⎣⎦⎣⎦(g (x )≠0) 4) 复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.例题精析【例题1】求函数y =x=1处的导数. 【例题2】一质点运动的方程为.(1) 求质点在t=1时的瞬时速度;(2) 求质点在t=1时的瞬时加速度;【例题3】求下列函数的导数.【例题4】已知曲线,(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程;。

完整版)导数讲义(学生新版)

完整版)导数讲义(学生新版)

完整版)导数讲义(学生新版)导数一、导数的概念函数y=f(x),如果自变量x在x处有增量Δx,那么函数y 相应地有增量Δy=f(x+Δx)−f(x),比值化率,即Δy/Δx叫做函数y=f(x)在x到x+Δx之间的平均变化率。

如果当Δx→0时,有极限,我们就说函数y=f(x)在点x处可导,并把这个极限叫做f(x)在点x处的导数,记作f’(x)或y’|x=x。

例如,若lim(Δy/Δx)=k,则lim(Δy/f(x+2Δx)−f(x)/Δx)=lim(2k)等于()=k,因此f’(x)=lim(Δy/Δx)。

变式训练:设函数f(x)在点x处可导,试求下列各极限的值:1.lim(f(x−Δx)−f(x))/Δx;2.lim(f(x+h)−f(x−h))/2h;3.若f’(x)=2,则lim(f(x−k)−f(x))/k=?二、导数的几何意义函数y=f(x)在点x处的导数的几何意义是曲线y=f(x)在点p(x,f(x))处的切线的斜率。

也就是说,曲线y=f(x)在点p(x,f(x))处的切线的斜率是f’(x)。

切线方程为y−f(x)=(f’(x))(x−x)。

三、导数的运算1.基本函数的导数公式:①C’=0;(C为常数)②x^n’=nx^(n−1);③(sin x)’=cos x;④(cos x)’=−sin x;⑤(e^x)’=e^x;⑥(ax)’=axln a;⑦(ln x)’=1/x;⑧(log_a x)’=log_a e/x。

题:求下列函数的导数:(8分钟独立完成)1)f(x)=π;(2)f(x)=x^4;(3)f(x)=x;(4)f(x)=sin x;(5)f(x)=−cos x;(6)f(x)=3x;(7)f(x)=e^x;(8)f(x)=log_2 x;(9)f(x)=ln x;(10)f(x)=1/(1+x);(11)y=x^4+cos x;(12)y=x/(4+x^2);(13)y=log x−e^x;(14)y=x^3 cos x。

高中数学讲义(人教A版选择性必修二):导数的概念及其意义 (教师版)

高中数学讲义(人教A版选择性必修二):导数的概念及其意义 (教师版)

Δt
=1+Δt,
∴lim (1+Δt)=1. Δt→0
即物体的初速度为 1 m/s.
(3)设物体在 t0 时刻的瞬时速度为 9 m/s.
又ΔΔst=st0+ΔΔtt-st0=(2t0+1)+Δt.
lim
Δt→0
ΔΔst=Δlit→m0(2t0+1+Δt)=2t0+1.
则 2t0+1=9,∴t0=4.
∵质点 M 在 t=2 附近的平均变化率为
Δs=s2+Δt-s2=a2+Δt2-4a=4a+aΔt,
Δt
Δt
Δt
∴lim Δs=4a=8, Δt→0 Δt
即 a=2.
知识点 3 函数在某点处的导数
如果当Δx→0
时,平均变化率Δy无限趋近于一个确定的值,即Δy有极限,则称
Δx
Δx
y=f(x)在
x=x0
s3+Δt-s3=18 m/s, Δt
则下列说法中正确的是( )
A.18 m/s 是物体从开始到 3 s 这段时间内的平均速度
B.18 m/s 是物体从 3 s 到(3+Δt)s 这段时间内的速度
C.18 m/s 是物体在 3 s 这一时刻的瞬时速度
D.18 m/s 是物体从 3 s 到(3+Δt)s 这段时间内的平均速度
则物体在 4 s 时的瞬时速度为 9 m/s.
【即学即练 6】一质点 M 按运动方程 s(t)=at2+1 做直线运动(位移单位:m,时间单位:s),若质点 M 在 t
=2 s 时的瞬时速度为 8 m/s,求常数 a 的值. 【解析】质点 M 在 t=2 s 时的瞬时速度即为函数在 t=2 处的瞬时变化率.
(4)几何意义:已知
P1(x1,f(x1)),P2(x2,f(x2))是函数

高中数学导数的概念课件

高中数学导数的概念课件

优化问题求解
总结词
导数在数学优化中常用于求解最值问题,通过求导可以 找到函数的极值点。
详细描述
在数学优化中,最值问题是最常见的一类问题,导数可 以用来求解这类问题。通过对函数求导,可以找到函数 的极值点,从而确定函数的最值。例如,一个企业要制 定一个营销策略,目标是最大化利润,利润函数为P(x) ,对其求导得到利润函数的导数P'(x),通过求解P'(x)=0 ,可以找到使利润最大的最优策略。
导数在科学计算中的应用
数值分析
导数可以用于数值分析中,如求 解微分方程、积分方程等,通过 求导数可以得到数值解的近似值

图像处理
导数可以用于图像处理中,如边 缘检测、图像滤波等,通过求图 像函数的导数可以得到图像的边
缘信息。
信号处理
导数可以用于信号处理中,如滤 波器设计、信号降噪等,通过求 信号函数的导数可以得到信号的
高中数学导数的概念课件
汇报人:
202X-01-05
CATALOGUE
目 录
• 导数的定义 • 导数的性质 • 导数的应用 • 导数的计算 • 导数在实际问题中的应用案例
01
CATALOGUE
导数的定义
导数的起源
01
导数起源于微积分,最初由牛顿 和莱布尼茨等数学家提出,用于 描述函数在某一点的变化率。
导数与函数极值
总结词
导数等于0的点可能是极值点
详细描述
函数在极值点的一阶导数等于0,但一阶导数为0的点不一定是极值点,需要进一 步判断二阶导数的正负。
导数与函数最值
总结词
导数可以帮助寻找函数最值
详细描述
通过求导数并令其为0,可以找到可能的极值点,再结合一阶或二阶导数的符号变化,判断是极大值还是极小值 ,从而确定函数的最值。

导数讲义(学生新版)

导数讲义(学生新版)

导数一、导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值xy∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=x x f x x f ∆-∆+)()(00。

如果当0→∆x 时,xy ∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f ’(x 0)或y ’|0x x =。

f ’(x 0)=0lim →∆x x y∆∆=0lim →∆x x x f x x f ∆-∆+)()(00。

例、 若k x x f x x f x =∆-∆+→∆)()(lim000,则xx f x x f x ∆-∆⋅+→∆)()2(lim000等于( ) A .k 2 B .k C .k 21D .以上都不是变式训练: 设函数)(x f 在点0x 处可导,试求下列各极限的值.1.xx f x x f x ∆-∆-→∆)()(lim000;2..2)()(lim 000hh x f h x f h --+→3.若2)(0='x f ,则k x f k x f k 2)()(lim 000--→=?二、导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。

也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f ’(x 0)。

切线方程为y -y 0=f /(x 0)(x -x 0)。

三、导数的运算1.基本函数的导数公式: ①0;C '=(C 为常数)②()1;n n x nx -'=③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '= ⑥()ln x x a a a '=;⑦()1ln x x '=;⑧()1l g log a a o x e x'=.习题:求下列函数的导数:(8分钟独立完成)(1)()f x π= (2)4()f x x = (3)()f x (4)()sin f x x = (5)()cos f x x =- (6)()3x f x = (7)()x f x e = (8)2()log f x x = (9)()ln f x x = (10)1()f x x = (11)31cos 44y x =+ (12)1xy x=+ (13)lg x y x e =- (14)3cos y x x = 2、导数的四则运算法则:)()(])()([)()(])()([x g x f x g x f x g x f x g x f '-'='-'+'='+)()()()()()()()()()()(])()([2x g x g x f x g x f x g x f x g x f x g x f x g x f '-'='⎥⎦⎤⎢⎣⎡'+'='练习:求下列函数的导数:(1)x x y 22+=; (2)x x y ln -=;(3)x x y sin =; (4)x x y ln =。

人教版高中数学选择性必修2《导数的概念及其意义》PPT课件

人教版高中数学选择性必修2《导数的概念及其意义》PPT课件
高中数学
选择性必修第二册 RJ
RJA
第五章
1
5.1导数的概念及其意义
5.1.2 导数的概念
及其几何意义
学习目标
1.通过实例分析,经历由平均变化率过渡到瞬时变化率的过程.
2.理解函数平均变化率、瞬时变化率的概念以及它们之间的关系.
3.掌握函数平均变化率、瞬时变化率的求法.
4.掌握导数的概念及其几何意义,会用导数的概念求简单函数在某点处的导数及曲
4x (x) 2 7 x

x 3,
x
了原油温度在时刻x0附近的变化情况.
y
lim (x 3) 3.
x 0 x
x 0
所以f '(2) lim
同理可得 ′(6)=5.
在第2 h与第6 h时,原油温度的瞬时变化率分别为−3 ℃/h与5 ℃/h.说明在第2 h附近,
y
所以v '(2) lim
lim t 2 2. 同理可得 ′(6)= − 6.
t 0 t
t 0
在第2 s与第6 s时,汽车的瞬时加速度分别是2 m/s2与−6 m/s2.说明在第2 s附近,汽车的速度
每秒大约增加2 m/s;在第6 s附近,汽车的速度每秒大约减少6 m/s.
我们知道,导数 ′(0)表示函数=()在=0处的瞬时变化率,反映了函数
=()在=0附近的变化情况.那么导数 ′(0)的几何意义是什么?
思考:观察函数=()的图象(如下图),平均变化率
原油温度大约以3 ℃/h的速率下降;在第6 h附近,原油温度大约以5 ℃/h的速率上升.
例3
一辆汽车在公路上沿直线变速行驶,假设 s时汽车的速度(单位:m/s)为
=()= − 2 + 6 + 60,求汽车在第2 s与第6 s时的瞬时加速度,并说明它们的意义.

导数的概念课件

导数的概念课件

导数的物理性质
速度与加速度
在物理中,导数可以表示速度和加速度。例如,物体运动的瞬时速度是位移函数 的导数;物体运动的瞬时加速度是速度函数的导数。
斜率与加速度
在工程学中,斜率可以表示物体的加速度。例如,在电路中,电流的变化率可以 表示为电压函数的导数;在机械系统中,速度的变化率可以表示为力函数的导数 。
利用导数研究函数的曲率
总结词
描述函数曲线的弯曲程度
详细描述
导数的二阶导数可以用来描述函数的曲率。二阶导数越大, 表示函数曲线在该点越弯曲;二阶导数越小,表示函数曲线 在该点越平坦。通过计算二阶导数,可以了解函数曲线的弯 曲程度。
04
导数在实际生活中的应用
导数在经济学中的应用
总结词
导数在经济学中有着广泛的应用,它可以帮助我们理解经济现象的变化率和优化经济决 策。
链式法则
商的导数公式
若$u(x)$和$v(x)$在某点可导,且 $v(x) neq 0$,则$frac{u'(x)}{v'(x)}$ 存在。
若$u(x)$在某点可导,$f$是常数,则 复合函数$f(u(x))$在同一点也可导, 且$(f circ u)' = f' times u'$。
导数的几何性质
导数在数学分析、函数研究、优化问题、经济学等领域中 有着广泛的应用,是解决许多问题的重要工具。
导数的发展趋势与未来展望
发展趋势
随着科学技术的发展,导数在各个领域的应 用越来越广泛,如物理学、工程学、经济学 等。同时,对导数本身的研究也在不断深入 ,如对高阶导数、复合导数、变分法等的研 究。
未来展望
导数的起源与早期发展
起源
导数起源于17世纪,最初是为了解决 物理学和几何学中的问题,如速度和 切线斜率等。

导数知识归纳(课件)

导数知识归纳(课件)

一、导数有关概念1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值x y ∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=xx f x x f ∆-∆+)()(00。

如果当0→∆x 时,xy ∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f ′(x 0)或y ′|0x x =。

即f ′(x 0)=0lim →∆x x y ∆∆=0lim →∆x xx f x x f ∆-∆+)()(00。

说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。

如果x y ∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。

(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。

2、导函数(1)定义:如果函数f(x)在开区间(a ,b )内每一点都可导,就说f(x)在区间(a ,b )内可导,这时对于区间(a ,b )内每一个确定的值x 0,都对应着一个导数f ′(x 0)。

这样在开区间(a ,b )构成一个新函数,称为f(x)在(a ,b )内导函数(简称导数)。

记f ′(x )f ′(x 0)=0lim →∆x xy ∆∆=0lim →∆x ()()f x x f x x +∆-∆ (2)在点x 0处导数、导函数关系函数在点x 0处导数就是在该点的函数改变量y ∆与自变量改变量x ∆的比的极限,是一个数值。

是导函数f ′(x )在x =x 0处的函数值3、求函数y=f (x )在点x 0处的导数的步骤: 方法一、定义法:(1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0); (2)求平均变化率x y ∆∆=xx f x x f ∆-∆+)()(00; (3)取极限,得导数f’(x 0)=xy x ∆∆→∆0lim 。

高数导数概念ppt课件

高数导数概念ppt课件

解:
xn an f ( x) f (a) lim lim x a x a x a xa
lim ( x n 1 a x n 2 a 2 x n 3 a n 1 )
x a
9
对一般幂函数 y x ( 为常数)
( x ) x 1
例如, ( x ) ( x ) x
1 2
1 2
(以后将证明)
1 2

2 x 1 1 11 1 ( x ) x 2 x x
3 4 )

1
1 ( ) ( x x x
3 x 4

7 4
10
的导数. 解: 则
f ( x h) f ( x ) sin( x h) sin x lim lim h 0 h 0 h h
处的
法线方程:
( f ( x0 ) 0 )
15
哪一点有铅直切线 ? 哪一点处
的切线与直线 平行 ? 写出其切线方程.
1 2 x 3 y x 0 , 解: 3 故在原点 (0 , 0) 有铅直切线 1 1 1 令 3 2 , 得 x 1 , 对应 y 1 , y 3 x 3 1 则在点(1,1) , (–1,–1) 处与直线 1 平行的切线方程分别为 O 1 x

的导数. 记作: y x x0 ; f ( x0 ) ; d y ; dx x x0 y y x x0 f ( x0 ) lim x 0 x
6
运动质点的位置函数 s f (t ) 在 t 0 时刻的瞬时速度
O
f (t0 ) t0
f (t ) t
s
f ( t0 )

高中数学新教材选择性必修第二册《5.2导数的运算》全部课件

高中数学新教材选择性必修第二册《5.2导数的运算》全部课件

思考2 试求y=Q(x),y=H(x)的导数.并观察Q′(x),H′(x)与f′(x),
g′(x)的关系. 答案 ∵Δy=(x+Δx)+x+1Δx-x+1x=Δx+x- x+ΔΔxx, ∴ΔΔyx=1-xx+1 Δx. ∴Q′(x)=Δlixm→0ΔΔyx=Δlixm→01-xx+1 Δx=1-x12. 同理,H′(x)=1+x12. Q(x)的导数等于f(x),g(x)的导数的和.H(x)的导数等于f(x),g(x)的导数的差.
∵y′=(x2)′=2x,∴2x0=1,∴x0=12,
∴切点坐标为12,41,
∴所求的最短距离
d=12-142-2=7
8
2 .
跟踪训练3 已知直线l: 2x-y+4=0与抛物线y=x2相交于A,B两点,O 是坐标原点,试求与直线l平行的抛物线的切线方程,并在弧 AOB上求一 点P,使△ABP的面积最大. 解 由于直线l: 2x-y+4=0与抛物线y=x2相交于A,B两点, ∴|AB|为定值,要使△ABP的面积最大,只要点P到AB的距离最大, 设P(x0,y0)为切点,过点P与AB平行的直线斜率k=y′=2x0, ∴k=2x0=2,∴x0=1,y0 =1. 故可得P(1,1),∴切线方程为2x-y-1=0. 故P(1,1)点即为所求弧 AOB 上的点,使△ABP的面积最大.
x f(x)= x
导函数 f′(x)=_0__ f′(x)=_1__ f′(x)=__2_x_ f′(x)=_-__x1_2 _
1 f′(x)=_2__x__
知识点二 基本初等函数的导数公式
原函数 f(x)=c(c为常数) f(x)=xα(α∈Q*)
f(x)=sin x f(x)=cos x
f(x)=ax
解析 设切点坐标为(x0,y0),

5.1.2 导数的概念及其几何意义课件ppt

5.1.2 导数的概念及其几何意义课件ppt

y
y
,即
x
x
=
f(x 0 +x)-f(x 0 )
x
叫做函数y=f(x)从x0到x0+Δx的平均变化率.
(x0+Δx)-x0
名师点析 (1)Δx是自变量的变化量,它可以为正,也可以为负,但不能等于零,
而Δy是相应函数值的变化量,它可以为正,可以为负,也可以等于零.
(2)函数平均变化率的物理意义:如果物体的运动规律是s=s(t),那么函数s(t)
Δ
所以 =-Δx-2x+3.故函数的导数
Δ
Δ
f'(x)= lim
Δ→0 Δ
= (-Δx-2x+3)=-2x+3.
Δ→0
反思感悟 (1)利用定义求函数 y=f(x)的导数的步骤
①求函数值的变化量 Δy=f(x+Δx)-f(x);
Δ
②求函数的平均变化率
Δ
③取极限,得
=
(+Δ)-()
(2)若函数y=f(x)在某区间[x0,x0+Δx]上的平均变化率为0,能不能说明函数值在区
间[x0,x0+Δx]上的函数值都相等?
提示 不能.因为函数在某区间[x0,x0+Δx]上的平均变化率为0只能说明
f(x0+Δx)=f(x0).
(3)函数y=f(x)在区间[x0,x0+Δx]上的平均变化率的几何意义是什么?
它是一个确定的值,与给定的函数及x(或x0)的位置有关,而与Δx无关;导函
数是对一个区间而言的,它是一个确定的函数,依赖于函数本身,也与Δx无
关.
微练习
求函数 y=f(x)= x的导数.
解 函数的导数为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学导数讲义完整版第一部分 导数的背景一、导入新课 1. 瞬时速度问题1:一个小球自由下落,它在下落3秒时的速度是多少? (221gt s =,其中g 是重力加速度).2. 切线的斜率问题2:P (1,1)是曲线2x y =上的一点,Q 是曲线上点P 附近的一个点,当点Q 沿曲线逐渐向点P 趋近时割线PQ 的斜率的变化情况.3. 边际成本问题3:设成本为C ,产量为q ,成本与产量的函数关系式为103)(2+=q q C ,我们来研究当q =50时,产量变化q ∆对成本的影响. 二、小结:瞬时速度是平均速度ts∆∆当t ∆趋近于0时的极限;切线是割线的极限位置,切线的斜率是割线斜率xy∆∆当x ∆趋近于0时的极限;边际成本是平均成本q C ∆∆当q ∆趋近于0时的极限.三、练习与作业:1. 某物体的运动方程为25)(t t s =(位移单位:m ,时间单位:s )求它在t =2s 时的速度. 2. 判断曲线22x y =在点P (1,2)处是否有切线,如果有,求出切线的方程. 3. 已知成本C 与产量q 的函数关系式为522+=q C ,求当产量q =80时的边际成本. 4. 一球沿某一斜面自由滚下,测得滚下的垂直距离h (单位:m )与时间t (单位:s )之间的函数关系为2t h =,求t =4s 时此球在垂直方向的瞬时速度. 5. 判断曲线221x y =在(1,21)处是否有切线,如果有,求出切线的方程.6. 已知成本C 与产量q 的函数关系为742+=q C ,求当产量q =30时的边际成本.第二部分 导数的概念一、新课:1.设函数)(x f y =在0x x =处附近有定义,当自变量在0x x =处有增量x ∆时,则函数()y f x =相应地有增量)()(00x f x x f y -∆+=∆,如果0→∆x 时,y ∆与x ∆的比xy∆∆(也叫函数的平均变化率)有极限(即xy∆∆无限趋近于某个常数),我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作0/x x y =,即xx f x x f x f x ∆-∆+=→∆)()(lim)(0000/。

一般地,a x b a x =∆+→∆)(lim 0,其中b a ,为常数。

特别,a a x =→∆0lim 。

二、练习1.已知物体做自由落体运动的方程为21(),2s s t gt ==若t ∆无限趋近于0时,(1)(1)s t s t+∆-∆无限趋近于9.8/m s ,那么正确的说法是( )A .9.8/m s 是在0~1s 这一段时间内的平均速度B .9.8/m s 是在1~(1+t ∆)s 这段时间内的速度C .9.8/m s 是物体从1s 到(1+t ∆)s 这段时间内的平均速度D .9.8/m s 是物体在1t s =这一时刻的瞬时速度.2.若/(1)2015f =,则x f x f x ∆-∆+→∆)1()1(lim 0= ,xf x f x ∆--∆+→∆)1()1(lim 0= ,x x f f x ∆∆+-→∆4)1()1(lim 0= , xf x f x ∆-∆+→∆)1()21(lim 0= 。

三、导数如果函数)(x f y =在开区间),(b a 内的每点处都有导数,此时对于每一个),(b a x ∈,都对应着一个确定的导数)(/x f ,从而构成了一个新的函数)(/x f 。

称这个函数)(/x f 为函数)(x f y =在开区间内的导函数,简称导数,也可记作/y ,即 )(/x f =/y =x x f x x f x y x x ∆-∆+=∆∆→∆→∆)()(lim lim00函数)(x f y =在0x 处的导数0/x x y=就是函数)(x f y =在开区间),(b a )),((b a x ∈上导数)(/x f 在0x 处的函数值,即0/x x y ==)(0/x f 。

所以函数)(x f y =在0x 处的导数也记作)(0/x f 。

注:1.如果函数)(x f y =在开区间),(b a 内每一点都有导数,则称函数)(x f y =在开区间),(b a 内可导。

2.导数与导函数都称为导数,这要加以区分3.求导函数时,只需将求导数式中的0x 换成x 就可,即)(/x f =xx f x x f x ∆-∆+→∆)()(lim 04.由导数的定义可知,求函数)(x f y =的导数的一般方法是: (1).求函数的改变量)()(x f x x f y -∆+=∆。

(2).求平均变化率xx f x x f x y ∆-∆+=∆∆)()(。

(3).取极限,得导数/y =xy x ∆∆→∆0lim 。

例1.求122-=x y 在x =-3处的导数。

例2.已知函数x x y +=2 (1)求/y 。

(2)求函数x x y +=2在x =2处的导数。

四、练习与作业: 1.求下列函数的导数:(1)43-=x y ; (2)x y 21-= (3)x x y 1232-= (3)35x y -=2.求函数12+=x y 在-1,0,1处导数。

3.求下列函数在指定点处的导数:(1)2,02==x x y ; (2)0,3102==x x y ;(3)1,)2(02=-=x x y (4)1,02-=-=x x x y .4.求下列函数的导数:(1);14+=x y (2)210x y -=; (3);323x x y -= (4)722+=x y 。

5.求函数x x y 22-=在-2,0,2处的导数。

作业1.若)(lim 0x f x →存在,则/)](lim [x f x →=_____2.若2)(x x f =,则1)1()(lim 1--→x f x f x =______________3.求下列函数的导数:(1)14020224+--=x x x y (2)432615423x x x x y --++= (3))3)(12(23x x x y ++= (4)32)1()2(-+=x x y4.某工厂每日产品的总成本C 是日产量x 的函数,即2571000)(x x x C ++=,试求: (1)当日产量为100时的平均成本;(2)当日产量由100增加到125时,增加部分的平均成本; (3)当日产量为100时的边际成本.5.设电量与时间的函数关系为1322++=t t Q ,求t =3s 时的电流强度.6.设质点的运动方程是1232++=t t s ,计算从t =2到t =2+t ∆之间的平均速度,并计算当t ∆=0.1时的平均速度,再计算t =2时的瞬时速度.7.若曲线1232+=x y 的切线垂直于直线0362=++y x ,试求这条切线的方程. 8.在抛物线22x x y -+=上,哪一点的切线处于下述位置?(1)与x 轴平行(2)平行于第一象限角的平分线.(3)与x 轴相交成45°角9.已知曲线22x x y -=上有两点A (2,0),B (1,1),求:(1)割线AB 的斜率AB k ; (2)过点A 的切线的斜率AT k ;(3)点A 处的切线的方程.10.在抛物线2x y =上依次取M (1,1),N (3,9)两点,作过这两点的割线,问:抛物线上哪一点处的切线平行于这条割线?并求这条切线的方程.11.已知一气球的半径以10cm/s 的速度增长,求半径为10cm 时,该气球的体积与表面积的增长速度.12.一长方形两边长分别用x 与y 表示,如果x 以0.01m/s 的速度减小,y 边以0.02m/s 的速度增加,求在x =20m ,y =15m 时,长方形面积的变化率.13.(选做)证明:过曲线2a xy =上的任何一点(00,y x )(00>x )的切线与两坐标轴围成的三角形面积是一个常数.(提示:2/1)1(xx-=)第一部分 函数求导一、导数定义1. 简单函数的定义求导的方法(一差、二比、三取极限)(1)求函数的增量)()(00x f x x f y -∆+=∆;(2)求平均变化率xx f x x f x y ∆-∆+=∆∆)()(00。

(3)取极限求导数=)(0'x f xx f x x f x ∆-∆+→∆)()(lim 0002.导数与导函数的关系:特殊与一般的关系。

函数在某一点)(0'x f 的导数就是导函数)(x f ,当0x x =时的函数值。

3.常用的导数公式及求导法则: (1)公式xx a x x e e a a a x x x x x n x c a xx x x n n 1n l ln 1g lo )(ln )(sin s co cos n si )(01='⋅='='⋅='-='='⋅='='- (2)法则:)()()()()())()(()()()()())()(()()())()((2x g x f x g x g x f x g x f x f x g x g x f x g x f x g x f x g x f ⋅'-⋅'='⋅'+⋅'='⋅'+'='+ 二、例:(1)()324y x x =- (2)sin x y x=(3)3cos 4sin y x x =- (4)()223y x =+ (5)()ln 2y x =+第二部分 复合函数的导数一、基本公式:如果函数)(x ϕ在点x 处可导,函数f (u )在点u=)(x ϕ处可导,则复合函数y= f (u )=f [)(x ϕ]在点x 处也可导,并且 (f [)(x ϕ])ˊ=[])(x f ϕ')(x ϕ' 或记作x y '=u y '•x u '二、例题: 例1求下列函数的导数x y 23-= 4)31(1x y -=51x x y -= 例2求下列函数的导数 (1)y=x 21-cos x (2)y=ln (x +21x +) (3) ()ln(ln(ln ))f x x =(4) 22()(32)sin 3f x x x x =-+三、求下函数的导数.1、(1)cos3xy = (2)21y x =- 2、(1)y =(5x -3)4 (2)y =(2+3x )5 (3)y =(2-x 2)3(4)y =(2x 3+x )23、(1)y =32)12(1-x (2)y =4131+x (3)y =sin(3x -6π) (4)y =cos(1+x 2) 4、⑴32)2(x y -=; ⑵2sin x y =;⑶)4cos(x y -=π; ⑷)13sin(ln -=x y .5、 (1) y =sin x 3+sin 33x ; (2)122sin -=x x y (3))2(log 2-x a (4))132ln(2++x x导数的应用一:求切线方程导数的几何意义:)(x f 在0x x =处的导数就是)(x f 在0x x =处的切线斜率曲线C :y =f (x )在其上一点P (x 0,f (x 0))处的切线方程为y -f (x 0)=f '(x 0)(x -x 0). 问题1:如何求解曲线的切线?求切线问题的基本步骤:找切点 求导数 得斜率 题1.求曲线y=x 2在点(1,1)处的切线方程.练习1:已知1()f x x -=,求曲线()y f x =在1x =-处的切线斜率和切线方程. 练习2: 如图,函数)(x f y =的图象在点P 处的切线方程是8+-=x y ,则)5()5(f f '+= .变式1:求曲线y=x 2过点(0,-1)的切线方程 变式2.已知曲线21y x =+(1)求曲线在点(1,2)P 处的切线方程;(2)求曲线过点(1,1)Q 的切线方程;变3:已知2()1f x x =-,求曲线()y f x =在12x =处的切线斜率是多少?题2、在曲线31y x x =+-上求一点P ,使过点P 点的切线与直线47y x =-平行。

相关文档
最新文档