微积分英文版课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f (x) dx 的图形
y
的所有积分曲线组成 的平行曲线族.
o
x0
x
机动 目录 上页 下页 返回 结束
(1)
d dx
f (x)d x
f (x)
或 d
f (x)dx
f (x)dx
(2) F(x) dx F(x) C 或 d F(x) F(x) C
二、 基本积分表
利用逆向思维
(1) kdx kx C
想到公式
1
d
u u
2
arctan u C
机动 目录 上页 下页 返回 结束
例. 求 解:
dx a 1 (ax)2
d
(
x a
)
1
(
x a
)2
想到
d u arcsinu C 1u2
f [(x)](x)dx f ((x))d(x)
(直接配元)
机动 目录 上页 下页 返回 结束
例4. 求 解:
机动 目录 上页 下页 返回 结束
定义 .
在区间 I 上的原函数全体称为
上的不定积分, 记作
其中
— 积分号;
— 被积函数;
— 积分变量;


— 被积表达式.
例如,
exdx ex C
x2dx
1 3
x3
C
( C 为任意常数 )
C 称为积分常数 不可丢 !
sin xdx cos x C
推论: 若

n
f (x)dx ki fi (x)dx i 1
机动 目录 上页 下页 返回 结束
例. 求
解: 原式 = [(2e)x 5 2x )dx
(2e)x 5 2x C ln(2e) ln 2
2
x
ln
ex 2
1
5 ln 2
C
机动 目录 上页 下页 返回 结束
例. 求
解: 原式 = (sec2x 1)dx sec2xdx dx tan x x C
例. 求
解: 原式 =
x (1 x x(1 x2
2
)
)
dx
1 1 x2
dx
1 x
dx
arctan x ln x C
机动 目录 上页 下页 返回 结束
例 求下列积分:
提示:
(1)
1 x2 (1
x2)
(6) cos xdx sin x C
(7) sin xdx cos x C
(8)
dx cos 2
x
sec2Байду номын сангаас
xdx
tan x C
(9)
d sin
x
2
x
csc2
xdx
cot
xC
机动 目录 上页 下页 返回 结束
(10) sec x tan xdx sec x C
(11) csc x cot xdx csc x C
机动 目录 上页 下页 返回 结束
例1. 设曲线通过点( 1 , 2 ) ,且其上任一点处的切线
斜率等于该点横坐标的两倍, 求此曲线的方程.
解:
y
所求曲线过点 ( 1 , 2 ) , 故有
(1, 2)
因此所求曲线为 y x2 1
o
x
机动 目录 上页 下页 返回 结束
不定积分的几何意义:
的原函数的图形称为 的积分曲线 .
( k 为常数)
(2)
x dx
1
1
x
1
C
( 1)
(3)
dx x
ln
x
C
x 0时 ( ln x ) [ ln(x) ] 1
x
机动 目录 上页 下页 返回 结束
(4)
1
dx x
2
arctan
x
C
或 arccot x C
(5)
dx arcsin x C 1 x2
或 arccos x C
sin cos
x dx x
dcos x cos x
类似
cos x dx sin x
d sin x sin x
机动 目录 上页 下页 返回 结束
(1 x2) x2 x2 (1 x2 )
1 x2
1
1 x
2
(2)
sin 2
1 x cos2
x
sin2 x cos2 x sin2 x cos2 x
sec2 x csc2 x
机动 目录 上页 下页 返回 结束
例 已知 x2 dx A x 1 x2 B dx
1 x2
1 x2
求A,B.
f (u)du u(x)
第一类换元法 第二类换元法
机动 目录 上页 下页 返回 结束
一、第一类换元法 定理1. 设 f (u) 有原函数 , u (x)可导, 则有换元
公式
f (u)du u (x) 即 f [(x)](x)dx f ((x))d(x)
(也称配元法 , 凑微分法)
机动 目录 上页 下页 返回 结束
初等函数在定义区间上有原函数
机动 目录 上页 下页 返回 结束
定理 . 原函数都在函数族
证: 1)
( C 为任意常数 ) 内 .

又知
[(x) F(x)] (x) F(x) f (x) f (x) 0

(x) F(x) C0 (C0 为某个常数)
即 (x) F(x) C0 属于函数族 F(x) C .
CHAPTER 4
THE DEFINITE INTEGRAL
一、 原函数与不定积分的概念
定义 1 . 若在区间 I 上定义的两个函数 F (x) 及 f (x)
满足
则称 F (x) 为f (x)
在区间 I 上的一个原函数 .
机动 目录 上页 下页 返回 结束
定理. 存在原函数 .
初等函数在定义区间上连续
例1. 求
解: 令 u ax b ,则 d u adx , 故
原式 = um 1 d u 1 1 um1 C a a m1
注: 当

机动 目录 上页 下页 返回 结束
例. 求
解:
1 a2
dx
1
(
x a
)
2
令 u x , 则 du 1 d x
a
a
1
a
du 1 u
2
1 arctan u C a
(12) ex dx ex C (13) a xdx a x C
ln a
(14) sh xdx ch x C
sh x ex ex 2
ch x ex ex 2
(15) ch xdx sh x C
机动 目录 上页 下页 返回 结束
三、不定积分的性质
1. k f (x) dx k f (x)dx (k 0) 2. [ f (x) g(x)]dx f (x)dx g(x) d x
解: 等式两边对 x 求导, 得
x2 A 1 x2 Ax2 B
1 x2
1 x2 1 x2
( A B) 2Ax2 1 x2
A 2
B A
0 1
A B
1 2
1 2
机动 目录 上页 下页 返回 结束
基本思路
设 F(u) f (u),
可导, 则有
dF[(x)] f [(x)](x)dx
F[(x)] C F (u) C u(x)
相关文档
最新文档