两角和与差的正切函数
两角和与差的正切公式。
两角和与差的正切公式。
两角和与差的正切公式如下:
1.两角和公式:
tan(A + B) = (tan A + tan B) / (1 - tan A * tan B)
2.两角差公式:
tan(A - B) = (tan A - tan B) / (1 + tan A * tan B)
这些公式可以用来计算两个角的和或差的正切值。
它们在三角函数的计算中很有用,尤其是在解决三角函数方程或证明三角函数恒等式时。
拓展:
这些公式可以通过三角恒等式的推导得到,可以帮助我们更好地理解三角函数之间的关系。
除了正切函数之外,正弦、余弦等三角函数也有类似的两角和与差的公式。
掌握这些公式可以帮助我们更好地理解三角函数的性质和用途。
(完整版)两角和与差的正弦、余弦、正切公式及变形
两角和与差的正弦、余弦、正切公式及变形1.两角和与差的正弦、余弦、正切公式 (1)公式①cos(α-β)=cos_αcos_β+sin_αsin_β(C (α-β)) ②cos(α+β)=cos_αcos_β-sin_αsin_β(C (α+β)) ③sin(α-β)=sin_αcos_β-cos_αsin_β(S (α-β)) ④sin(α+β)=sin_αcos_β+cos_αsin_β(S (α+β)) ⑤tan(α-β)=tan α-tan β1+tan αtan β(T (α-β))⑥tan(α+β)=tan α+tan β1-tan αtan β(T (α+β))(2)公式变形①tan α+tan β=tan(α+β)(1-tan αtan β). ②tan α-tan β=tan(α-β)(1+tan αtan β). 2.二倍角公式 (1)公式①sin 2α=2sin_αcos_α,②cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α, ③tan 2α=2tan α1-tan 2α.(2)公式变形①cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;②1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin )4(πα±.3.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)两角和与差的正弦、余弦公式中的角α,β是任意的.(√) (2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.(√) (3)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.(×)(4)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.(×)(5)二倍角的正弦、余弦、正切公式的适用范围是任意角.(×) (6)存在角α,使得sin 2α=2sin α成立.(√) (7)若α+β=π4,则(1+tan α)(1+tan β)=2.(√)(8)不存在实数α,β,使得cos(α+β)=sin α+cos β.(×) (9)存在实数α,使tan 2α=2tan α.(√) (10)y =1-2cos 2x 的x 无意义.(×)考点一 三角函数式的给角求值命题点1.已知非特殊角求函数式的值2.已知含参数的角化简函数或求值[例1] (1)求值:1+cos 20°2sin 20°-sin 10°)5tan 5tan 1(0-; 解:原式=2cos 210°2×2sin 10°cos 10°-sin 10°)5cos 5sin 5sin 5cos (0000- =cos 10°2sin 10°-sin 10°·cos 25°-sin 25°sin 5°cos 5°=cos 10°2sin 10°-sin 10°·cos 10°12sin 10°=cos 10°2sin 10°-2cos 10°=cos 10°-2sin 20°2sin 10°=cos 10°-2sin (30°-10°)2sin 10°=cos 10°-2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°2sin 10°=3sin 10°2sin 10°=32. (2)化简:sin 2α·sin 2β+cos 2α·cos 2β-12cos 2α·cos 2β. 解:法一:(复角→单角,从“角”入手)原式=sin 2α·sin 2β+cos 2α·cos 2β-12·(2cos 2α-1)·(2cos 2β-1) =sin 2α·sin 2β+cos 2α·cos 2β-12·(4cos 2α·cos 2β-2cos 2α-2cos 2β+1)=sin 2α·sin 2β-cos 2α·cos 2β+cos 2α+cos 2β-12 =sin 2α·sin 2β+cos 2α·sin 2β+cos 2β-12 =sin 2β+cos 2β-12=1-12=12. 法二:(从“名”入手,异名化同名)原式=sin 2α·sin 2β+(1-sin 2α)·cos 2β-12cos 2α·cos 2β=cos 2β-sin 2α(cos 2β-sin 2β)-12cos 2α·cos 2β=cos 2β-sin 2α·cos 2β-12cos 2α·cos 2β=cos 2β-cos 2β·)2cos 21(sin 2αα+=1+cos 2β2-cos 2β·⎣⎢⎡⎦⎥⎤sin 2α+12(1-2sin 2α) =1+cos 2β2-12cos 2β=12.法三:(从“幂”入手,利用降幂公式先降次) 原式=1-cos 2α2·1-cos 2β2+1+cos 2α2·1+cos 2β2-12cos 2α·cos 2β =14(1+cos 2α·cos 2β-cos 2α-cos 2β)+14(1+cos 2α·cos 2β+cos 2α+cos 2β)-12·cos 2α·cos 2β=12.[方法引航] 给角求值问题往往给出的角是非特殊角,求值时要注意:(1)观察角,分析角之间的差异,巧用诱导公式或拆分.(2)观察名,尽可能使函数统一名称.(3)观察结构,利用公式,整体化简.1.求值sin 50°(1+3tan 10°).解:sin 50°(1+3tan 10°)=sin 50°(1+tan 60°·tan 10°) =sin 50°·cos 60°cos 10°+sin 60°sin 10°cos 60°cos 10°=sin 50°·cos (60°-10°)cos 60°cos 10°=2sin 50°cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1.2.在△ABC 中,已知三个内角A ,B ,C 成等差数列,则tan A 2+tan C 2+3tan A 2tan C2的值为________.解析:因为三个内角A ,B ,C 成等差数列,且A +B +C =π, 所以A +C =2π3,A +C 2=π3,tan A +C 2=3, 所以tan A 2+tan C 2+3tan A 2tan C2 =tan )22(C A +)2tan 2tan 1(CA -+3tan A 2tan C 2 =3)2tan 2tan1(CA -+3tan A 2tan C 2= 3. 考点二 三角函数式的给值求值[例2] (1)(2016·高考全国丙卷)若tan θ=-13,则cos 2θ=( ) A .-45 B .-15 C.15 D.45解析:法一:cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=45.故选D. 法二:由tan θ=-13,可得sin θ=±110,因而cos 2θ=1-2sin 2θ=45.答案:D(2)已知tan )4(πα+=12,且-π2<α<0,则)4cos(2sin sin 22πααα-+等于( )A .-255B .-3510C .-31010 D.255 解析:由tan )4(πα+=tan α+11-tan α=12,得tan α=-13.又-π2<α<0,所以sin α=-1010. 故)4cos(2sin sin 22πααα-+=2sin α(sin α+cos α)22(sin α+cos α)=22sin α=-255.答案:A(3)已知α∈)2,0(π,且2sin 2α-sin α·cos α-3cos 2α=0,则12cos 2sin )4sin(+++ααπα=________.解析:2sin 2α-sin αcos α-3cos 2α=0则(2sin α-3cos α)(sin α+cos α)=0, 由于α∈)2,0(π,sin α+cos α≠0, 则2sin α=3cos α.又sin 2α+cos 2α=1,∴cos α=213, ∴12cos 2sin )4sin(+++ααπα=22(sin α+cos α)(sin α+cos α)2+(-sin 2α+cos 2α)=268.答案:268[方法引航] 三角函数的给值求值,关键是把待求角用已知角表示:(1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍”的关系或“互余互补”的关系.(3)已知三角函数时,先化简三角函数式,再利用整体代入求值.1.在本例(1)中,已知条件不变,求tan )6(θπ+的值.解:tan )6(θπ+=tan π6+tan θ1-tan π6tan θ=33-131+33×13=53-613.2.在本例(1)中,已知条件不变,求2sin 2θ-sin θcos θ-3cos 2θ的值. 解:原式=2sin 2θ-sin θcos θ-3cos 2θsin 2θ+cos 2θ=2tan 2θ-tan θ-3tan 2θ+1=2×⎝ ⎛⎭⎪⎫-132+13-3⎝ ⎛⎭⎪⎫-132+1=-115.3.已知cos )2(απ-+sin )32(απ-=235,则cos )32(πα+=________.解析:由cos )2(απ-+sin )32(απ-=235,得sin α+sin 2π3cos α-cos 23πsin α=235∴32sin α+32cos α=235, 即3sin )6(πα+=235,∴sin )6(πα+=25,因此cos )32(πα+=1-2sin 2)6(πα+=1-2×2)52(=1725.答案:1725考点三 已知三角函数式的值求角[例3] (1)已知cos α=17,cos(α-β)=1314,0<β<α<π2,则β=________. 解析:∵cos α=17,0<α<π2.∴sin α=437.又cos(α-β)=1314,且0<β<α<π2.∴0<α-β<π2,则sin(α-β)=3314. 则cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =17×1314+437×3314=497×14=12,由于0<β<π2,所以β=π3.答案:π3(2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β的值为________.解析:∵tan α=tan[(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β=12-171+12×17=13>0,∴0<α<π2.又∵tan 2α=2tan α1-tan 2α=2)31(1312-⨯=34>0,∴0<2α<π2,∴tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34+171-34×17=1. ∵tan β=-17<0,∴π2<β<π,-π<2α-β<0,∴2α-β=-34π. 答案:-34π[方法引航] 1.解决给值求角问题应遵循的原则 (1)已知正切函数值,选正切函数.(2)已知正、余弦函数值,选正弦函数或余弦函数,且①若角的范围是)2,0(π,选正、余弦皆可;②若角的范围是(0,π),选余弦较好;③若角的范围是)2,2(ππ-,选正弦较好. 2.解给值求角问题的一般步骤 (1)求角的某一个三角函数值. (2)确定角的范围.(3)根据角的范围写出所求的角.1.设α,β为钝角,且sin α=55,cos β=-31010,则α+β的值为( ) A.3π4 B.5π4 C.7π4 D.5π4或7π4 解析:选C.∵α,β为钝角,sin α=55,cos β=-31010, ∴cos α=-255,sin β=1010,∴cos(α+β)=cos αcos β-sin αsin β=22>0.又α+β∈(π,2π),∴α+β∈)2,23(ππ,∴α+β=7π4. 2.已知tan α=-13,cos β=55,α∈),2(ππ,β∈)2,0(π,求tan(α+β)的值,并求出α+β的值.解:由cos β=55,β∈)2,0(π,得sin β=255,tan β=2.∴tan(α+β)=tan α+tan β1-tan αtan β=-13+21+23=1. ∵α∈),2(ππ,β∈)2,0(π,∴π2<α+β<3π2,∴α+β=5π4.[方法探究]三角恒等变换在化简、求值、证明中的综合应用三角恒等变换要重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.[典例] 某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: (1)sin 213°+cos 217°-sin 13°cos 17°; (2)sin 215°+cos 215°-sin 15°cos 15°; (3)sin 218°+cos 212°-sin 18°cos 12°; (4)sin 2(-18°)+cos 248°-sin(-18°)cos 48°; (5)sin 2(-25°)+cos 255°-sin(-25°)cos 55°.(Ⅰ)试从上述五个式子中选择一个,求出这个常数;(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. [解] (Ⅰ)选择(2)式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30°=1-14=34. (Ⅱ)法一:三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34. 证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin α·cos α-12sin 2α=34sin 2α+34cos 2α=34.法二:三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34. 证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=1-cos 2α2+1+cos (60°-2α)2-sin α(cos 30°cos α+sin30°sin α)=12-12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)-32sin αcos α-12sin 2α=12-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-14(1-cos 2α)=1-14cos 2α-14+14cos 2α=34.[高考真题体验]1.(2016·高考全国甲卷)若cos )4(απ-=35,则sin 2α=( )A.725B.15 C .-15 D .-725解析:选D.因为cos )4(απ-=cos π4cos α+sin π4sin α=22(sin α+cos α)=35,所以sin α+cos α=325,所以1+sin 2α=1825,所以sin 2α=-725,故选D. 2.(2016·高考全国丙卷)若tan α=34,则cos 2α+2sin 2α=( ) A.6425 B.4825 C .1 D.1625 解析:选A.法一:由tan α=sin αcos α=34,cos 2α+sin 2α=1,得⎩⎪⎨⎪⎧sin α=35cos α=45或⎩⎪⎨⎪⎧sin α=-35cos α=-45,则sin 2α=2sin αcos α=2425,则cos 2α+2sin 2α=1625+4825=6425. 法二:cos 2α+2sin 2α=cos 2α+4sin αcos αcos 2α+sin 2α=1+4tan α1+tan 2α=1+31+916=6425. 3.(2015·高考课标全国卷Ⅰ)sin 20°cos 10°-cos 160°sin 10°=( ) A .-32 B.32C .-12 D.12解析:选D.sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin 30°=12.4.(2014·高考课标全国卷Ⅰ)设α∈)2,0(π,β∈)2,0(π,且tan α=1+sin βcos β,则( )A .3α-β=π2B .2α-β=π2C .3α+β=π2D .2α+β=π2解析:选 B.由条件得sin αcos α=1+sin βcos β,即sin αcos β=cos α(1+sin β),sin(α-β)=cos α=sin )2(απ-,因为-π2<α-β<π2,0<π2-α<π2,所以α-β=π2-α,所以2α-β=π2,故选B.5.(2015·高考四川卷)已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是________. 解析:由sin α+2cos α=0,得tan α=-2.所以2sin αcos α-cos 2α=2sin αcos α-cos 2αsin 2α+cos 2α=2tan α-1tan 2α+1=-4-14+1=-1.答案:-16.(2016·高考四川卷)cos 2π8-sin 2π8=________.解析:由二倍角公式,得cos 2π8-sin 2π8=cos )82(π⨯=22.答案:22课时规范训练 A 组 基础演练1.tan 15°+1tan 15°=( )A .2B .2+3C .4 D.433 解析:选C.法一:tan 15°+1tan 15°=sin 15°cos 15°+cos 15°sin 15° =1cos 15°sin 15°=2sin 30°=4.法二:tan 15°+1tan 15°=1-cos 30°sin 30°+1sin 30°1+cos 30°=1-cos 30°sin 30°+1+cos 30°sin 30°=2sin 30°=4.2.2cos 10°-sin 20°sin 70°的值是( ) A.12 B.32 C. 3 D. 2解析:选C.原式=2cos (30°-20°)-sin 20°sin 70°=2(cos 30°·cos 20°+sin 30°·sin 20°)-sin 20°sin 70°=3cos 20°cos 20°= 3.3.已知θ∈(0,π),且sin )4(πθ-=210,则tan 2θ=( ) A.43 B.34 C .-247 D.247解析:选C.由sin )4(πθ-=210,得22(sin θ-cos θ)=210,所以sin θ-cos θ=15. 解方程组⎩⎪⎨⎪⎧ sin θ-cos θ=15sin 2θ+cos 2θ=1,得⎩⎪⎨⎪⎧ sin θ=45cos θ=35或⎩⎪⎨⎪⎧ sin θ=-35cos θ=-45.因为θ∈(0,π),所以sin θ>0,所以⎩⎪⎨⎪⎧ sin θ=-35cos θ=-45不合题意,舍去,所以tan θ=43,所以tan 2θ=2tan θ1-tan 2θ=2×431-⎝ ⎛⎭⎪⎫432=-247,故选C. 4.若θ∈]2,4[ππ,sin 2θ=378,则sin θ等于( ) A.35 B.45 C.74 D.34解析:选D.由sin 2θ=387和sin 2θ+cos 2θ=1得(sin θ+cos θ)2=378+1=2)473(+,又θ∈]2,4[ππ,∴sin θ+cos θ=3+74. 同理,sin θ-cos θ=3-74,∴sin θ=34.5.已知sin 2(α+γ)=n sin 2β,则tan (α+β+γ)tan (α-β+γ)的值为( ) A.n -1n +1 B.n n +1 C.n n -1 D.n +1n -1解析:选D.由已知可得sin[(α+β+γ)+(α-β+γ)]=n sin[(α+β+γ)-(α-β+γ)],则sin(α+β+γ)·cos(α-β+γ)+cos(α+β+γ)sin(α-β+γ)=n [sin(α+β+γ)cos(α-β+γ)-cos(α+β+γ)sin(α-β+γ)],即(n +1)cos(α+β+γ)sin(α-β+γ)=(n -1)sin(α+β+γ)cos(α-β+γ),所以tan (α+β+γ)tan (α-β+γ)=n +1n -1,故选D. 6.若sin )2(θπ+=35,则cos 2θ=________. 解析:∵sin )2(θπ+=cos θ=35,∴cos 2θ=2cos 2θ-1=2×2)53(-1=-725. 答案:-7257.若点P (cos α,sin α)在直线y =-2x 上,则sin 2α+2cos 2α=________.解析:∵点P (cos α,sin α)在直线y =-2x 上∴sin α=-2cos α,于是sin 2α+2cos 2α=2sin αcos α+2(2cos 2α-1)=-4cos 2α+4cos 2α-2=-2.答案:-28.设sin 2α=-sin α,α∈),2(ππ,则tan 2α的值是________. 解析:∵sin 2α=-sin α,∴2sin αcos α=-sin α.∵α∈),2(ππ,sin α≠0,∴cos α=-12.又∵α∈),2(ππ,∴α=23π, ∴tan 2α=tan 43π=tan )3(ππ+=tan π3= 3. 答案: 39.化简:(1+sin θ+cos θ)⎝ ⎛⎭⎪⎫sin θ2-cos θ22+2cos θ(0<θ<π). 解:由θ∈(0,π),得0<θ2<π2,∴cos θ2>0, ∴2+2cos θ=4cos 2θ2=2cos θ2.又(1+sin θ+cos θ))2cos 2(sin θθ-=)2cos 2)(sin 2cos 22cos 2sin 2(2θθθθθ-+ =2cos θ2)2cos 2(sin 22θθ- =-2cos θ2cos θ.故原式=-2cos θ2cos θ2cos θ2=-cos θ. 10.已知α∈),2(ππ,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈),2(ππ,求cos β的值. 解:(1)因为sin α2+cos α2=62,两边同时平方,得sin α=12.又π2<α<π,所以cos α=-32.(2)因为π2<α<π,π2<β<π,所以-π<-β<-π2,故-π2<α-β<π2.又sin(α-β)=-35,得cos(α-β)=45.cos β=cos[α-(α-β)=cos αcos(α-β)+sin αsin(α-β)=-32×45+12×)53(-=-43+310. B 组 能力突破 1.已知sin α+cos α=22,则1-2sin 2)4(απ-=( )A.12B.32 C .-12 D .-32解析:选C.由sin α+cos α=22,得1+2sin αcos α=12,∴sin 2α=-12.因此1-2sin 2)4(απ-=cos2)4(απ-=sin 2α=-12. 2.已知f (x )=2tan x -2sin 2x 2-1sin x 2cos x 2,则f )12(π的值为( )A .43 B.833 C .4 D .8解析:选D.∵f (x )=2)sin cos cos sin (2)sin cos (tan xx x x x x x +⨯=+=2×1cos x ·sin x =4sin 2x , ∴f )12(π=4sin π6=8. 3.已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于( )A.5π12B.π3C.π4D.π6解析:选C.∵α、β均为锐角,∴-π2<α-β<π2.又sin(α-β)=-1010,∴cos(α-β)=31010.又sin α=55,∴cos α=255,∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=55×31010-255×)1010(-=22. ∴β=π4.4.若tan α=lg(10a ),tan β=lg 1a ,且α+β=π4,则实数a 的值为________.解析:tan α+tan β=lg(10a )+lg 1a =lg 10=1,∵α+β=π4,所以tan π4=tan(α+β)=tan α+tan β1-tan αtan β=11-tan αtan β, ∴tan αtan β=0,则有tan α=lg(10a )=0或tan β=lg 1a =0.所以10a =1或1a =1,即a =110或1.答案:110或15.已知tan(π+α)=-13,tan(α+β)=ααααπ2sincos10cos4)2(2sin22-+-.(1)求tan(α+β)的值;(2)求tan β的值.解:(1)∵tan(π+α)=-13,∴tan α=-13.∵tan(α+β)=ααααπ2sincos10cos4)2(2sin22-+-=sin 2α+4cos2α10cos2α-sin 2α=2sin αcos α+4cos2α10cos2α-2sin αcos α=2cosα(sin α+2cos α)2cos α(5cos α-sin α)=sin α+2cos α5cos α-sin α=tan α+25-tan α=-13+25-⎝⎛⎭⎪⎫-13=516.(2)tan β=tan[(α+β)-α]=tan(α+β)-tan α1+tan(α+β)tan α=516+131-516×13=3143.。
两角和与差的三角函数及二倍角公式
两角和与差的三角函数及二倍角公式在三角函数中,我们经常会遇到两个角的和或差。
为了简化计算,我们可以利用两角和与差的三角函数公式来求解。
同时,在求解过程中,二倍角公式也是一个非常重要的工具。
在本文中,我们将详细介绍两角和与差的三角函数及二倍角公式。
一、两角和与差的三角函数公式1.两角和的正弦和余弦:设角A和角B的正弦分别为sinA和sinB,余弦分别为cosA和cosB,则有:sin(A + B) = sinA × cosB + cosA × sinBcos(A + B) = cosA × cosB - sinA × sinB这两个公式分别称为两角和的正弦公式和余弦公式。
2.两角和的正切:在已知角A和B的正切tanA和tanB的情况下,可以使用以下公式求解两角和的正切tan(A + B):tan(A + B) = (tanA + tanB) / (1 - tanA × tanB)这个公式称为两角和的正切公式。
3.两角差的正弦和余弦:设角A和角B的正弦分别为sinA和sinB,余弦分别为cosA和cosB,则有:sin(A - B) = sinA × cosB - cosA × sinBcos(A - B) = cosA × cosB + sinA × sinB这两个公式分别称为两角差的正弦公式和余弦公式。
4.两角差的正切:在已知角A和B的正切tanA和tanB的情况下,可以使用以下公式求解两角差的正切tan(A - B):tan(A - B) = (tanA - tanB) / (1 + tanA × tanB)这个公式称为两角差的正切公式。
以上就是两角和与差的三角函数公式。
在三角函数中,二倍角公式是非常重要的公式。
通过二倍角公式,我们可以将一个角的三角函数表示为另一个角的三角函数。
下面是各种三角函数的二倍角公式:1.正弦的二倍角公式:sin(2A) = 2sinA × cosA2.余弦的二倍角公式:cos(2A) = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2A3.正切的二倍角公式:tan(2A) = 2tanA / (1 - tan^2A)这些公式称为正弦、余弦和正切的二倍角公式。
第3讲 两角和与差的正弦、余弦和正切公式
第3讲 两角和与差的正弦、余弦和正切公式1.两角和与差的正弦、余弦和正切公式 sin(α±β)=sin αcos β±cos αsin β; cos(α∓β)=cos αcos β±sin αsin β;tan(α±β)=tan α±tan β1∓tan αtan β⎝⎛⎭⎫α±β,α,β均不为k π+π2,k ∈Z . 2.二倍角的正弦、余弦、正切公式 sin 2α=2sin αcos α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan α⎝⎛⎭⎫α,2α均不为k π+π2,k ∈Z . 3.三角公式的关系判断正误(正确的打“√”,错误的打“×”)(1)存在实数α,β使等式sin(α+β)=sin α+sin β成立.( )(2)在锐角△ABC 中,sin A sin B 和cos A cos B 的大小关系不确定.( ) (3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( )(4)存在实数α,使tan 2α=2tan α.( )(5)两角和与差的正弦、余弦公式中的角α,β是任意的.( ) 答案:(1)√ (2)× (3)× (4)√ (5)√(教材习题改编)化简cos 18°cos 42°-cos 72°sin 42°的值为( ) A .32B .12C .-12D .-32解析:选B .法一:原式=cos 18°cos 42°-sin 18°sin 42°=cos(18°+42°)=cos 60°=12.法二:原式=sin 72°cos 42°-cos 72°sin 42°=sin(72°-42°)=sin 30°=12.(教材习题改编)已知sin(α-k π)=35(k ∈Z ),则cos 2α的值为( )A .725B .-725C .1625D .-1625解析:选A .由sin(α-k π)=35(k ∈Z )得sin α=±35.所以cos 2α=1-2sin 2α=1-2×(±35)2=1-1825=725.故选A .(教材习题改编)已知cos α=-35,α是第三象限角,则cos(π4+α)的值为( )A .210B .-210C .7210D .-7210解析:选A .因为cos α=-35,α是第三象限的角,所以sin α=-1-cos 2α=-1-(-35)2=-45,所以cos(π4+α)=cos π4cos α-sin π4sin α=22×(-35)-22×(-45)=210.(2017·高考江苏卷)若tan ⎝⎛⎭⎫α-π4=16,则tan α=________. 解析:tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4=tan ⎝⎛⎭⎫α-π4+tan π41-tan ⎝⎛⎭⎫α-π4tan π4=16+11-16=75.答案:75(教材习题改编)11-tan 15°-11+tan 15°=________.解析:原式=2tan 15°(1-tan 15°)(1+tan 15°)=2tan 15°1-tan 215°=tan 30°=33.答案:33三角函数公式的直接应用[典例引领](1)已知sin ⎝⎛⎭⎫π6-α=cos ⎝⎛⎭⎫π6+α,则tan α=( ) A .-1 B .0 C .12D .1(2)(2017·高考全国卷Ⅰ)已知α∈⎝⎛⎭⎫0,π2,tan α=2,则cos ⎝⎛⎭⎫α-π4=__________. 【解析】 (1)因为sin ⎝⎛⎭⎫π6-α=cos ⎝⎛⎭⎫π6+α, 所以12cos α-32sin α=32cos α-12sin α.所以1-32cos α=3-12sin α.所以tan α=sin αcos α=-1,故选A .(2)因为α∈⎝⎛⎭⎫0,π2,tan α=2, 所以sin α=255,cos α=55,所以cos ⎝⎛⎭⎫α-π4=cos αcos π4+sin αsin π4=22×⎝⎛⎭⎫255+55=31010. 【答案】 (1)A (2)31010三角函数公式的应用策略(1)使用两角和与差的三角函数公式,首先要记住公式的结构特征. (2)使用公式求值,应先求出相关角的函数值,再代入公式求值.[注意] 三角函数公式对使公式有意义的任意角都成立.使用中要注意观察角之间的和、差、倍、互补、互余等关系.[通关练习]1.已知sin α=35,α∈⎝⎛⎭⎫π2,π,则cos 2α2sin ⎝⎛⎭⎫α+π4=________.解析:因为sin α=35,α∈⎝⎛⎭⎫π2,π,所以cos α=-45. 所以cos 2α2sin ⎝⎛⎭⎫α+π4=cos 2α-sin 2α2⎝⎛⎭⎫22sin α+22cos α=cos α-sin α=-75.答案:-752.设sin 2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan 2α的值是________. 解析:因为sin 2α=2sin αcos α=-sin α, 所以cos α=-12.又α∈⎝⎛⎭⎫π2,π,所以sin α=32, 所以tan α=- 3.所以tan 2α=2tan α1-tan 2α=-231-(-3)2= 3.答案: 3三角函数公式的逆用与变形应用[典例引领](1)计算sin 110°sin 20°cos 2155°-sin 2155°的值为( )A .-12B .12C .32D .-32(2)已知θ∈⎝⎛⎭⎫0,π4,且sin θ-cos θ=-144,则2cos 2θ-1cos ⎝⎛⎭⎫π4+θ=( )A .23B .43C .34D .32【解析】 (1)sin 110°sin 20°cos 2155°-sin 2155°=sin 70°sin 20°cos 310°=cos 20°sin 20°cos 50°=12sin 40°sin 40°=12.(2)由sin θ-cos θ=-144得sin ⎝⎛⎭⎫π4-θ=74, 因为θ∈⎝⎛⎭⎫0,π4,所以0<π4-θ<π4, 所以cos ⎝⎛⎭⎫π4-θ=34.2cos 2θ-1cos ⎝⎛⎭⎫π4+θ=cos 2θsin ⎝⎛⎭⎫π4-θ=sin ⎝⎛⎭⎫π2-2θsin ⎝⎛⎭⎫π4-θ=sin ⎣⎡⎦⎤2⎝⎛⎭⎫π4-θsin ⎝⎛⎭⎫π4-θ =2cos ⎝⎛⎭⎫π4-θ=32. 【答案】(1)B (2)D(1)三角函数公式活用技巧①逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式.②tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,注意公式的正用、逆用和变形使用.(2)三角函数公式逆用和变形使用应注意的问题①公式逆用时一定要注意公式成立的条件和角之间的关系.②注意特殊角的应用,当式子中出现12,1,32,3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式.[通关练习]1.在△ABC 中,若tan A tan B =tan A +tan B +1,则cos C 的值为( ) A .-22B .22C .12D .-12解析:选B .由tan A tan B =tan A +tan B +1,可得tan A +tan B1-tan A tan B =-1,即tan(A +B )=-1,又A +B ∈(0,π),所以A +B =3π4,则C =π4,cos C =22.2.已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+7π6的值是( ) A .-235B .235C .45D .-45解析:选D.由cos ⎝⎛⎭⎫α-π6+sin α=435,可得32cos α+12sin α+sin α=435,即32sin α+32cos α=435,所以3sin ⎝⎛⎭⎫α+π6=435,sin ⎝⎛⎭⎫α+π6=45, 所以sin ⎝⎛⎭⎫α+7π6=-sin ⎝⎛⎭⎫α+π6=-45.角的变换[典例引领](1)设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β等于( ) A .2525B .255C .2525或255D .55或525(2)对于锐角α,若sin ⎝⎛⎭⎫α-π12=35,则cos ⎝⎛⎭⎫2α+π3=________. 【解析】 (1)依题意得sin α=1-cos 2α=255, cos(α+β)=±1-sin 2(α+β)=±45.又α,β均为锐角,所以0<α<α+β<π, cos α>cos(α+β).因为45>55>-45,所以cos(α+β)=-45.于是cos β=cos[(α+β)-α] =cos(α+β)cos α+sin(α+β)sin α =-45×55+35×255=2525.(2)由于α为锐角,且sin ⎝⎛⎭⎫α-π12=35,可得cos ⎝⎛⎭⎫α-π12=45,那么cos ⎝⎛⎭⎫α+π6=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-π12+π4=cos ⎝⎛⎭⎫α-π12cos π4-sin ⎝⎛⎭⎫α-π12sin π4=210,于是cos ⎝⎛⎭⎫2α+π3=2cos 2⎝⎛⎭⎫α+π6-1=2×⎝⎛⎭⎫2102-1=-2425.【答案】 (1)A (2)-2425利用角的变换求三角函数值的策略(1)当“已知角”有两个时:一般把“所求角”表示为两个“已知角”的和或差的形式; (2)当“已知角”有一个时:此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.[注意] 常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎝⎛⎭⎫α+β2-⎝⎛⎭⎫α2+β等. [通关练习]1.已知tan(α+β)=1,tan ⎝⎛⎭⎫α-π3=13,则tan ⎝⎛⎭⎫β+π3的值为( ) A .23B .12C .34D .45解析:选B .tan ⎝⎛⎭⎫β+π3=tan ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫α-π3=tan(α+β)-tan ⎝⎛⎭⎫α-π31+tan(α+β)tan ⎝⎛⎭⎫α-π3=1-131+1×13=12. 2.若sin ⎝⎛⎭⎫π3-α=14,则cos ⎝⎛⎭⎫π3+2α=( ) A .-78B .-14C .14D .78解析:选A .cos ⎝⎛⎭⎫π3+2α=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫2π3-2α =-cos ⎝⎛⎭⎫2π3-2α=-⎣⎡⎦⎤1-2sin 2⎝⎛⎭⎫π3-α=-78.两角和、差及倍角公式的逆用和变用(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式. (2)和差角公式变形:sin αsin β+cos(α+β)=cos αcos β, cos αsin β+sin(α-β)=sin αcos β, tan α±tan β=tan(α±β)·(1∓tan α·tan β),(3)倍角公式变形:降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2,配方变形:1±sin α=⎝⎛⎭⎫sin α2±cos α22,1+cos α=2cos 2α2,1-cos α=2sin 2α2.三角恒等变换的变“角”与变“名”问题的解题思路(1)角的变换:明确各个角之间的关系(包括非特殊角与特殊角、已知角与未知角),熟悉角的拆分与组合的技巧,半角与倍角的相互转化,如:2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,⎝⎛⎭⎫π4+α+⎝⎛⎭⎫π4-α=π2,α2=2×α4等. (2)名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.1.cos 15°+sin 15°cos 15°-sin 15°的值为( )A .33 B . 3 C .-33D .- 3解析:选B .原式=1+tan 15°1-tan 15°=tan 45°+tan 15°1-tan 45°tan 15°=tan(45°+15°)= 3.2.(1+tan 18°)·(1+tan 27°)的值是( ) A . 3 B .1+ 2C .2D .2(tan 18°+tan 27°)解析:选C .原式=1+tan 18°+tan 27°+tan 18°tan 27°=1+tan 18°tan 27°+tan 45°(1-tan 18°tan 27°)=2,故选C .3.已知sin α+cos α=13,则sin 2(π4-α)=( )A .118B .1718C .89D .29解析:选B .由sin α+cos α=13两边平方得1+sin 2α=19,解得sin 2α=-89,所以sin 2(π4-α)=1-cos(π2-2α)2=1-sin 2α2=1+892=1718.4.已知sin ⎝⎛⎭⎫α-π4=7210,cos 2α=725,则sin α=( ) A .45B .-45C .35D .-35解析:选C .由sin ⎝⎛⎭⎫α-π4=7210得 sin α-cos α=75,①由cos 2α=725得cos 2α-sin 2α=725,所以(cos α-sin α)·(cos α+sin α)=725,② 由①②可得cos α+sin α=-15,③由①③可得sin α=35.5.已知cos(π3-2x )=-78,则sin(x +π3)的值为( )A .14B .78C .±14D .±78解析:选C .因为cos [π-(π3-2x )]=cos(2x +2π3)=78,所以有sin 2(x +π3)=12(1-78)=116,从而求得sin(x +π3)的值为±14,故选C .6.已知cos θ=-513,θ∈⎝⎛⎭⎫π,3π2,则sin ⎝⎛⎭⎫θ-π6的值为________. 解析:由cos θ=-513,θ∈⎝⎛⎭⎫π,3π2得sin θ=-1-cos 2θ=-1213,故sin ⎝⎛⎭⎫θ-π6=sin θcos π6-cos θsin π6=-1213×32-⎝⎛⎭⎫-513×12=5-12326.答案:5-123267.已知cos ⎝⎛⎭⎫x -π6=-33,则cos x +cos ⎝⎛⎭⎫x -π3=________. 解析:cos x +cos ⎝⎛⎭⎫x -π3=cos x +12cos x +32sin x =32cos x +32sin x =3cos ⎝⎛⎭⎫x -π6 =3×⎝⎛⎭⎫-33=-1. 答案:-18.计算sin 250°1+sin 10°=________.解析:sin 250°1+sin 10°=1-cos 100°2(1+sin 10°)=1-cos(90°+10°)2(1+sin 10°)=1+sin 10°2(1+sin 10°)=12.答案:129.已知函数f (x )=sin ⎝⎛⎭⎫x +π12,x ∈R . (1)求f ⎝⎛⎭⎫-π4的值; (2)若cos θ=45,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫2θ-π3的值. 解:(1)f ⎝⎛⎭⎫-π4=sin ⎝⎛⎭⎫-π4+π12=sin ⎝⎛⎭⎫-π6=-12. (2)f ⎝⎛⎭⎫2θ-π3=sin ⎝⎛⎭⎫2θ-π3+π12=sin ⎝⎛⎭⎫2θ-π4=22(sin 2θ-cos 2θ). 因为cos θ=45,θ∈⎝⎛⎭⎫0,π2,所以sin θ=35. 所以sin 2θ=2sin θcos θ=2425,cos 2θ=cos 2 θ-sin 2θ=725,所以f ⎝⎛⎭⎫2θ-π3=22(sin 2θ-cos 2θ)=22×⎝⎛⎭⎫2425-725=17250. 10.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62.(1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值. 解:(1)因为sin α2+cos α2=62, 两边同时平方,得sin α=12. 又π2<α<π,所以cos α=-1-sin 2α=-32. (2)因为π2<α<π,π2<β<π, 所以-π2<α-β<π2. 又由sin(α-β)=-35, 得cos(α-β)=45. 所以cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =-32×45+12×⎝⎛⎭⎫-35=-43+310.1.3cos 10°-1sin 170°=( ) A .4 B .2C .-2D .-4 解析:选D.3cos 10°-1sin 170°=3cos 10°-1sin 10°=3sin 10°-cos 10°sin 10°cos 10°=2sin(10°-30°)12sin 20°=-2sin 20°12sin 20°=-4,故选D. 2.若α,β都是锐角,且cos α=55,sin(α-β)=1010, 则cos β=( )A .22 B .210 C .22或-210 D .22或210解析:选A .因为α,β都是锐角,且cos α=55,sin(α-β)=1010,所以sin α=255,cos(α-β)=31010,从而cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=22,故选A . 3.3tan 12°-3sin 12°(4cos 212°-2)=________. 解析:原式=3×sin 12°cos 12°-3sin 12°(4cos 212°-2)=3sin 12°-3cos 12°2sin 12°cos 12°(2cos 212°-1)=23⎝⎛⎭⎫12sin 12°-32cos 12°sin 24°cos 24° =23sin(12°-60°)12sin 48°=-4 3. 答案:-4 34.设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π12的值为________. 解析:因为α为锐角,cos ⎝⎛⎭⎫α+π6=45, 所以sin ⎝⎛⎭⎫α+π6=35,sin ⎣⎡⎦⎤2⎝⎛⎭⎫α+π6=2425,cos ⎣⎡⎦⎤2⎝⎛⎭⎫α+π6=725, 所以sin ⎝⎛⎭⎫2α+π12=sin ⎣⎡⎦⎤2⎝⎛⎭⎫α+π6-π4 =2425×22-725×22=17250. 答案:172505.若sin ⎝⎛⎭⎫34π+α=513,cos ⎝⎛⎭⎫π4-β=35,且0<α<π4<β<34π,求cos(α+β)的值. 解:因为0<α<π4<β<34π. 所以34π<34π+α<π,-π2<π4-β<0. 又sin ⎝⎛⎭⎫34π+α=513,cos ⎝⎛⎭⎫π4-β=35,所以cos ⎝⎛⎭⎫34π+α=-1213,sin ⎝⎛⎭⎫π4-β=-45, 所以cos(α+β)=sin ⎣⎡⎦⎤π2+(α+β)=sin ⎣⎡⎦⎤⎝⎛⎭⎫34π+α-⎝⎛⎭⎫π4-β =sin ⎝⎛⎭⎫34π+αcos ⎝⎛⎭⎫π4-β-cos ⎝⎛⎭⎫34π+αsin ⎝⎛⎭⎫π4-β=-3365. 6.已知cos ⎝⎛⎭⎫π6+αcos ⎝⎛⎭⎫π3-α=-14,α∈⎝⎛⎭⎫π3,π2. (1)求sin 2α的值;(2)求tan α-1tan α的值. 解:(1)因为cos ⎝⎛⎭⎫π6+αcos ⎝⎛⎭⎫π3-α=cos ⎝⎛⎭⎫π6+αsin ⎝⎛⎭⎫π6+α =12sin ⎝⎛⎭⎫2α+π3=-14, 所以sin ⎝⎛⎭⎫2α+π3=-12. 因为α∈⎝⎛⎭⎫π3,π2,所以2α+π3∈⎝⎛⎭⎫π,4π3, 所以cos ⎝⎛⎭⎫2α+π3=-32, 所以sin 2α=sin ⎣⎡⎦⎤⎝⎛⎭⎫2α+π3-π3 =sin ⎝⎛⎭⎫2α+π3cos π3-cos ⎝⎛⎭⎫2α+π3sin π3=12. (2)因为α∈⎝⎛⎭⎫π3,π2,所以2α∈⎝⎛⎭⎫2π3,π, 又由(1)知sin 2α=12,所以cos 2α=-32. 所以tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos 2αsin 2α=-2×-3212=2 3.。
两角和与差的正弦余弦和正切公式记忆口诀
两角和与差的正弦余弦和正切公式记忆口诀
两角和与差的正弦余弦和正切公式是高中数学中的重要内容,它们在解决三角函数问题时起到了重要的作用。
下面我将为大家介绍这些公式,并给出一个易于记忆的口诀。
我们来看两角和的正弦公式:
正弦和公式:sin(A±B) = sinA⋅cosB ± cosA⋅sinB
这个公式告诉我们,两个角的正弦之和等于这两个角的正弦乘积的和,再加上它们的余弦乘积的差。
这个公式在求解三角函数的和差问题时非常有用。
接下来,我们来看两角和的余弦公式:
余弦和公式:cos(A±B) = cosA⋅cosB ∓ sinA⋅sinB
这个公式告诉我们,两个角的余弦之和等于这两个角的余弦乘积的差,再减去它们的正弦乘积的和。
这个公式在求解三角函数的和差问题时也非常有用。
我们来看两角和的正切公式:
正切和公式:tan(A±B) = (tanA ± tanB) / (1 ∓ tanA⋅tanB)
这个公式告诉我们,两个角的正切之和等于这两个角的正切之和与它们的正切乘积之商。
同样,这个公式在求解三角函数的和差问题时非常有用。
为了帮助大家记忆这些公式,我编写了一个简单的口诀:
正弦和余弦顺勾股,正切和相除求和差。
这个口诀简洁明了,通过押韵和押字的方式,使得记忆起来更加轻松。
通过学习和记忆这些公式和口诀,我们可以更加方便地解决两角和与差的问题,为高中数学的学习打下坚实的基础。
希望大家能够认真学习并灵活运用这些公式,提高自己的数学能力。
让我们一起努力,共同进步!。
两角和与差的正弦余弦正切公式
两角和与差的正弦余弦正切公式在三角函数中,我们经常需要计算两个角的和或差的正弦、余弦或正切值。
这些公式被广泛应用于数学、物理、工程等领域的问题求解中。
本文将详细介绍两角和与差的正弦、余弦和正切公式。
一、两角和与差的正弦公式首先,我们来讨论两个角的和的正弦公式。
设有两个角A和B,那么它们的和角记为(A+B)。
根据三角函数的定义,我们知道正弦的定义为一个角的对边与斜边之比,可以表示为sin(x)=opposite/hypotenuse。
根据这个定义,我们可以得到如下的两角和的正弦公式:sin(A+B) = sinA*cosB + cosA*sinB这个公式很重要,可以帮助我们计算两个角的和的正弦值。
在实际应用中,我们经常需要计算两个角的和的正弦,而不是两个角分别的正弦。
所以这个公式非常有用。
接下来,我们来讨论两个角的差的正弦公式。
设有两个角A和B,那么它们的差角记为(A-B)。
根据三角函数的定义,我们可以得到如下的两角差的正弦公式:sin(A-B) = sinA*cosB - cosA*sinB这个公式与两角和的正弦公式类似,也非常有用。
二、两角和与差的余弦公式类似于正弦公式,我们也可以推导出两角和与差的余弦公式。
设有两个角A和B,那么它们的和角记为(A+B)。
根据三角函数的定义,我们知道余弦的定义为一个角的邻边与斜边之比,可以表示为cos(x)=adjacent/hypotenuse。
根据这个定义,我们可以得到如下的两角和的余弦公式:cos(A+B) = cosA*cosB - sinA*sinB同样地,我们也可以得到两角差的余弦公式:cos(A-B) = cosA*cosB + sinA*sinB这两个公式和两角和与差的正弦公式一样重要,经常被应用于实际问题中。
三、两角和与差的正切公式最后,我们来讨论两角和与差的正切公式。
设有两个角A和B,那么它们的和角记为(A+B)。
根据三角函数的定义,我们知道正切的定义为一个角的对边与邻边之比,可以表示为tan(x)=opposite/adjacent。
课件-两角和与差的正切函数
通过公式的变形,可以进一步推导出 其他形式的正切和差公式,如二倍角 公式等。
利用三角函数的减法公式和同角三角 函数的基本关系推导两角差的正切公 式。
03
两角和与差的正切函数的性 质
奇偶性
奇偶性
两角和与差的正切函数具有奇偶 性,即对于任意实数x,有tan(x)=-tan(x),这是正切函数的基本
性质之一。
tan(15°)
tan(30° + 45°)
习题
tan(60° - 30°) tan(180° - 45°)
已知 tanα = 2/3,求 tan(α + 45°) 的值。
习题
若 tanα = -√3,求 tan(α + 15°) 的值。 若 tan2α = -√3,求 tan(α + 45°) 的值。
解决物理问题
在物理问题中,常常需要计算一些特定条件下的物理量,例如振动 、波动等,利用两角和与差的正切函数公式可以方便地解决这些问 题。
解决工程问题
在工程问题中,常常需要计算一些特定条件下的参数,例如机械、建 筑等,利用两角和与差的正切函数公式可以方便地解决这些问题。
05
习题与解答
习题
计算下列各式的值
推导过程
利用三角函数的加法公式和减法公式 ,通过代数运算推导得出。
符号表示
01
tan(α±β)表示两角和与差的正切 函数,其中α和β为任意角度。
02
tanα和tanβ分别表示两个角的正 切值,tan(α±β)表示这两个角的 和或差的正切值。
特殊角的正切值
特殊角的正切值
0°、30°、45°、60°、90°等特殊 角的正切值分别为0、√3/3、1、 √3、不存在等。
两角和与差的正弦、余弦与正切公式
2
(sin
2
A.a>b>c
C.c>a>b
(2)已知
56°-cos 56°),c=
1-ta n 2 39°
,则 a,b,c 的大小关系是(
1+ta n 2 39°
B.b>a>c
D.a>c>b
π
cos(α-6 )+sin
4 3
α= 5 ,则
π
si(nα+6 )=
.
)
答案 (1)D
4
(2)
5
解析 (1)a=cos 50°cos 127°+cos 40°cos 37°
1
D.
2
.
答案 (1)B (2)D (3) 3
解析 (1)根据两角和的正弦公式展开得 sin
3
θ= sin
2
3
θ+ cos
2
θ=1,即
π
3sin(θ+ )=1,解得
6
π
θ+sin(θ+ )=sin
3
1
θ+ sin
2
π
3
sin(θ+ )= .故选
6
3
B.
(2)∵t=2sin 18°,
2cos2 27°-1
.
1+cos
5.积化和差公式
sin αcos
1
β=
2
sin( + ) + sin(-) ,
cos αsin
1
β=2
sin( + )-sin(-) ,
cos αcos
1
β=2
两角和与差的正切
两角和与差的正切
正切是一个在数学中具有重要意义的函数。
它的定义是,当一条直线
与另一条直线的两个斜率相乘时得到的结果。
正切可以用来描述两角平分
线之间的关系,也可以用来计算两角和与两角差之间的正切。
两角和和差的正切分别为:
和:tan(α+β) = (tanα + tanβ)/ (1-tanα * tanβ)。
差:tan(α-β) = (tanα - tanβ)/ (1+tanα * tanβ)。
上述结果可以由三角恒等式和正反三角函数的定义来证明,首先是三
角恒等式,sin(α+β)=sinαcosβ+cosαsinβ,
cos(α+β)=cosαcosβ-sinαsinβ,
tan(α+β)=[sin(α+β)/cos(α+β)]=[sinαcosβ+cosαsinβ]/[cos
αcosβ-sinαsinβ],同样的,tan(α-β)=[sin(α-β)/cos(α-
β)]=[sinαcosβ-cosαsinβ]/[cosαcosβ+sinαsinβ],将第一两
项分开,可以得到tan(α+β)= (tanα + tanβ)/ (1-tanα * tanβ),tan(α-β) = (tanα - tanβ)/ (1+tanα * tanβ)。
因此,两角和与两角差的正切可以表示为:tan(α+β) = (tanα + tanβ)/ (1-tanα * tanβ),tan(α-β) = (tanα - tanβ)/
(1+tanα * tanβ)。
两角和与差的正弦、余弦和正切公式(含解析)
两角和与差的正弦、余弦和正切公式(含解析)1.两角和与差的正弦、余弦、正切公式1) $cos(\alpha-\beta): cos(\alpha-\beta)=cos\alphacos\beta+sin\alpha sin\beta$2) $cos(\alpha+\beta): cos(\alpha+\beta)=cos\alpha cos\beta-sin\alpha sin\beta$3) $sin(\alpha+\beta): sin(\alpha+\beta)=sin\alphacos\beta+cos\alpha sin\beta$4) $sin(\alpha-\beta): sin(\alpha-\beta)=sin\alpha cos\beta-cos\alpha sin\beta$5) $tan(\alpha+\beta):tan(\alpha+\beta)=\frac{tan\alpha+tan\beta}{1-tan\alpha tan\beta}$6) $tan(\alpha-\beta): tan(\alpha-\beta)=\frac{tan\alpha-tan\beta}{1+tan\alpha tan\beta}$2.二倍角的正弦、余弦、正切公式1) $sin2\alpha: sin2\alpha=2sin\alpha cos\alpha$2) $cos2\alpha: cos2\alpha=cos^2\alpha-sin^2\alpha=2cos^2\alpha-1=1-2sin^2\alpha$3) $tan2\alpha: tan2\alpha=\frac{2tan\alpha}{1-tan^2\alpha}$3.常用的公式变形1) $tan(\alpha\pm\beta)=\frac{tan\alpha\pm tan\beta}{1\mp tan\alpha tan\beta}$2) $cos2\alpha=\frac{1+cos2\alpha}{2}$,$sin2\alpha=\frac{1-cos2\alpha}{2}$3) $1+sin2\alpha=(sin\alpha+cos\alpha)^2$,$1-sin2\alpha=(sin\alpha-cos\alpha)^2$,$\sin\alpha+\cos\alpha=2\sin\frac{\alpha+\beta}{4}$基础题必做1.若$tan\alpha=3$,则$\frac{sin2\alpha}{2sin\alphacos\alpha}$的值等于$2tan\alpha=2\times3=6$。
两角和与差的正弦、余弦和正切公式
cos
12
(α-β)= ,
13
sin
3
(α+β)=- ,则
5
π
3π
3π
π
(2)∵ <β < ,∴- <-β <- .
2
4
4
2
π
3π
π
π
又∵ <α< ,∴- <α-β < .
2
4
4
4
π
∵α>β,∴α-β>0,∴0<α-β < .
4
∵ cos
12
(α-β)= ,∴
13
sin (α-β)= 1 −
144
两角和与差的正弦、余弦和正切公式
[学习要求] 1.会推导两角差的余弦公式. 2.会用两角差的余弦公式推
导出两角差的正弦、正切公式.
内容索引
必备知识
自主梳理
关键能力
重点探究
课时作业
巩固提升
必备知识 自主梳理
[知识梳理]
知识点一 两角和与差的正弦、余弦、正切公式
1. cos (α-β)= cos α cos β+ sin α sin β .
5
= .
169
13
cos 2α的
π
3π
π
3π
3π
∵ <α< , <β< ,∴π<α+β< .
2
4
2
4
2
∵ sin
3
(α+β)=- ,∴
5
cos (α+β)=- 1 −
9
4
=- ,
25
5
∴ cos 2α= cos [(α-β)+(α+β)]= cos (α-β) cos (α+β)-
sin (α-β) sin
两角和与差的正弦、余弦、正切公式课件
3.两角和与差的正切公式
名称
公式
两角和的正切
tan(α+β) =
tan α+tan β 1-tan αtan β
两角差的正切
tan(α-β) =
tan α-tan β 1+tan αtan β
简记符号
使用条件
T(α+β)
α,β,α+β≠kπ+π2 (k∈Z)
T(α-β)
α,β,α-β≠kπ+π2 (k∈Z)
∴cos(α+β)=cos α·cos β-sin αsin β
=2 5 5·3 1010-
55·1100=
2 2.
由 0<α<2π,0<β<2π得 0<α+β<π,
又 cos(α+β)>0,∴α+β 为锐角,∴α+β=4π.
规律方法 此类题是给值求角问题,步骤如下:①求所求角的 某一个三角函数值,②确定所求角的范围,此类题常犯的错误 是对角的范围不加讨论,或范围讨论的程度过大或过小,这样 就会使求出的角不合题意或者漏解,同时要根据角的范围确定 取该角的哪一种三角函数值.
规律方法 化简三角函数式是为了更清楚地显示式中所含量之 间的关系,以便于应用,对于三角函数式的化简要求应熟练掌 握:(1)能求出值的应求出值.(2)使三角函数种数尽量少.(3) 使三角函数式中的项数尽量少.(4)尽量使分母不含有三角函 数.(5)尽量使被开方数不含三角函数.
题型二 给角求值问题
【例 2】 求下列各式的值:
两角和与差的正弦、余弦、正切公式
自学导引
1.两角和与差的余弦公式
C(α+β):cos(α+β)= cos αcos β-sin αsin β
;
C(α-β):cos(α-β)= cos αcos β+sin αsin β.来自2.两角和与差的正弦公式
第5课时 两角和与差的正弦、余弦和正切公式
3 1 4 2 2 8 2-3 =- × + × = . 5 3 5 3 15
工具
第三章
三角函数
栏目导引
1.理解和运用两角和与差的三角函数公式需注意的几个问题 (1)两角和与差的正弦、余弦、正切公式之间的内在联系 ①掌握好公式的内在联系及其推导过程,能帮助我们理解和记忆公 式,是学好这部分内容的关键. ②诱导公式是两角和与差的三角函数公式的特殊情况,α、β 中若有 π 的整数倍角时,使用诱导公式更灵活、简便. 2
(3)角的变换 α=(α+β)-β,β=(α+β)-α,2α=(α+β)+(α-β), 2β=(α+β)-(α-β).
工具
第三章
三角函数
栏目导引
2.理解和运用二倍角公式需注意的几个问题 (1)掌握二倍角公式与两角和公式之间的内在联系能帮助我们理解 与记忆公式. (2)公式的逆用及有关变形 1-cos 2α 1+cos 2α 2 sin α= ;cos α= (降幂公式); 2 2
工具
第三章
三角函数
栏目导引
5 又 β 为第一象限角,cos β= , 13 12 12 ∴sin β= 1-cos β= ,tan β= , 13 5
2
24 12 -7-5 204 ∴tan(2α-β)= = . 24 12 253 1+- 7 × 5
工具
第三章
三角函数
栏目导引
sin 50° 1+ 3tan 10° -cos 20° 求值: . cos 80° 1-cos 20°
1 2× 2 2tan α 4 解析: tan 2α= = = . 12 3 1-tan2α 1-2
π 4 ∵α∈0,2,2α∈(0,π),tan 2α=3>0, π , 0 , ∴2α∈ 2
【高中数学】两角和与差的正弦、余弦和正切公式及二倍角公式
两角和与差的正弦、余弦和正切公式及二倍角公式一、基础知识1.两角和与差的正弦、余弦、正切公式S (α±β):sin(α±β)=sin αcos β±cos αsin β.C (α±β):cos(α±β)=cos αcos β∓sin αsin β.T (α±β):tan(α±β),β,α±β≠π2+k π,k ∈两角和与差的正弦、余弦、正切公式的结构特征和符号特点及关系:C (α±β)同名相乘,符号反;S (α±β)异名相乘,符号同;T (α±β)分子同,分母反.2.二倍角公式S 2α:sin 2α=2sin αcos α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.T 2α:tan 2α≠k π+π2且α≠k π2+π4,k ∈二倍角是相对的,例如,α2是α43α是3α2的二倍角.二、常用结论(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.(2)升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α.(3)公式变形:tan α±tan β=tan(α±β)(1∓tan αtan β).(4)辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φsin φ=b a 2+b 2,cos φ考点一三角函数公式的直接应用[典例](1)已知sin α=35,αtan β=-12,则tan(α-β)的值为()A .-211B.211C.112D .-112(2)(2019·呼和浩特调研)若sin (π-α)=13,且π2≤α≤π,则sin 2α的值为()A .-229B .-429C.229D.429[解析](1)因为sin α=35,α所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.所以tan(α-β)=tan α-tan β1+tan αtan β=-211.(2)因为sin(π-α)=sin α=13,π2≤α≤π,所以cos α=-1-sin 2α=-223,所以sin 2α=2sin αcos α=2×13×=-429.[答案](1)A(2)B[解题技法]应用三角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)注意与同角三角函数基本关系、诱导公式的综合应用.(3)注意配方法、因式分解和整体代换思想的应用.[题组训练]1.已知sin α=13+cos α,且α,则cos 2α()A .-23B.23C .-13D.13解析:选A因为sin α=13+cos α,所以sin α-cos α=13,所以cos 2α=cos 2α-sin 2αsin αcos π4+cos αsin π4=(cos α-sin α)(cos α+sin α)22(sin α+cos α)=-1322=-23.2.已知sin α=45,且αsin α________.解析:因为sin α=45,且αα所以cos α=-1-sin 2α=-=-35.因为sin 2α=2sin αcos α=-2425,cos 2α=2cos 2α-1=-725.所以αsin 2αcos π3+cos 2αsin π3=-24+7350.答案:-24+7350考点二三角函数公式的逆用与变形用[典例](1)(2018·全国卷Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________.(2)计算:tan 25°+tan 35°+3tan 25°tan 35°=________.[解析](1)∵sin α+cos β=1,①cos α+sin β=0,②∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1,∴sin αcos β+cos αsin β=-12,∴sin(α+β)=-12.(2)原式=tan(25°+35°)(1-tan 25°tan 35°)+3tan 25°·tan 35°=3(1-tan 25°tan 35°)+3tan 25°tan 35°=3.[答案](1)-12(2)3[解题技法]两角和、差及倍角公式的逆用和变形用的技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式.(2)公式的一些常用变形:sin αsin β+cos(α+β)=cos αcos β;cos αsin β+sin(α-β)=sin αcos β;1±sin αsin α2±cos ;sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1;cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α.[提醒](1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,且常与一元二次方程根与系数的关系结合命题.(3)注意特殊角的应用,当式子中出现12,1,32,3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式.[题组训练]1.设a =cos 50°cos 127°+cos 40°cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是()A .a >b >cB .b >a >cC .c >a >bD .a >c >b解析:选D由两角和与差的正、余弦公式及诱导公式,可得a =cos 50°cos 127°+cos40°cos 37°=cos 50°cos 127°+sin 50°sin 127°=cos(50°-127°)=cos(-77°)=cos 77°=sin 13°,b =22(sin 56°-cos 56°)=22sin 56°-22cos 56°=sin(56°-45°)=sin 11°,c =1-tan 239°1+tan 239°=1-sin 239°cos 239°1+sin 239°cos 239°=cos 239°-sin 239°=cos 78°=sin 12°.因为函数y =sin x ,x ∈0,π2为增函数,所以sin 13°>sin 12°>sin 11°,所以a >c >b .2.已知sin α=435,则________.解析:由sin α=435,可得32cos α+12sin α+sin α=435,即32sin α+32cos α=435,∴3sin =435,即=45.答案:453.化简sin sin sin 2α的结果是________.解析:sin 2α=1-12cos ααsin 2α=1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12.答案:12考点三角的变换与名的变换考法(一)三角公式中角的变换[典例](2018·浙江高考改编)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点-35,-若角β满足sin(α+β)=513,则cos β的值为________.[解析]由角α的终边过点-35,-得sin α=-45,cos α=-35.由sin(α+β)=513,得cos(α+β)=±1213.由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α,所以cos β=-5665或cos β=1665.[答案]-5665或1665[解题技法]1.三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=考法(二)三角公式中名的变换[典例](2018·江苏高考)已知α,β为锐角,tan α=43,cos(α+β)=-55.(1)求cos 2α的值;(2)求tan(α-β)的值.[解](1)因为tan α=43,tan α=sin αcos α,所以sin α=43cos α.因为sin 2α+cos 2α=1,所以cos 2α=925,所以cos 2α=2cos 2α-1=-725.(2)因为α,β为锐角,所以α+β∈(0,π).又因为cos(α+β)=-55,所以α+β所以sin(α+β)=1-cos 2(α+β)=255,所以tan(α+β)=-2.因为tan α=43,所以tan 2α=2tan α1-tan 2α=-247.所以tan(α-β)=tan[2α-(α+β)]=tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.[解题技法]三角函数名的变换技巧明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.[题组训练]1.已知tan θ+1tan θ=4,则cos ()A.12B.13C.14D.15解析:选C由tan θ+1tan θ=4,得sin θcos θ+cos θsin θ=4,即sin 2θ+cos 2θsin θcos θ=4,∴sin θcos θ=14,∴cos =1-sin 2θ2=1-2sin θcos θ2=1-2×142=14.2.(2018·济南一模)若=7210A sin A 的值为()A.35B.45C.35或45D.34解析:选B ∵A A +π4∈∴=-210,∴sin A =-π4=cos π4-sin π4=45.3.已知sin α=-45,α∈3π2,2π,若sin (α+β)cos β=2,则tan(α+β)=()A.613B.136C .-613D .-136解析:选A ∵sin α=-45,α∈3π2,2π,∴cos α=35.又∵sin (α+β)cos β=2,∴sin(α+β)=2cos[(α+β)-α].展开并整理,得65cos(α+β)=135sin(α+β),∴tan(α+β)=613.[课时跟踪检测]A 级1.sin 45°cos 15°+cos 225°sin 165°=()A .1 B.12C.32D .-12解析:选B sin 45°cos 15°+cos 225°sin 165°=sin 45°·cos 15°+(-cos 45°)sin 15°=sin(45°-15°)=sin 30°=12.2.若2sin x +1,则cos 2x =()A .-89B .-79C.79D .-725解析:选C 因为2sin x +1,所以3sin x =1,所以sin x =13,所以cos 2x =1-2sin 2x =79.3.(2018·山西名校联考)若=-33,则cos α=()A .-223B .±223C .-1D .±1解析:选C cos α=12cos α+32sin α+cos α=32cos α+32sin α=3cos =-1.4.tan 18°+tan 12°+33tan 18°tan 12°=()A.3B.2C.22D.33解析:选D ∵tan 30°=tan(18°+12°)=tan 18°+tan 12°1-tan 18°tan 12°=33,∴tan 18°+tan 12°=33(1-tan 18°tan 12°),∴原式=33.5.若α3cos 2α=sin 2α的值为()A .-118B.118C .-1718D.1718解析:选C由3cos 2α=3(cos 2α-sin 2α)=22(cos α-sin α),又由α∈可知cos α-sin α≠0,于是3(cos α+sin α)=22,所以1+2sin αcos α=118,故sin 2α=-1718.6.已知sin 2α=13,则cos ()A .-13B.13C .-23D.23解析:选Dcos =12+12sin 2α=12+12×13=23.7.已知=12,α-π2,cos________.解析:由已知得cos α=12,sin α=-32,所以=12cos α+32sin α=-12.答案:-128.(2019·湘东五校联考)已知sin(α+β)=12,sin(α-β)=13,则tan αtan β=________.解析:因为sin(α+β)=12,sin(α-β)=13,所以sin αcos β+cos αsin β=12,sin αcos β-cosαsin β=13,所以sin αcos β=512,cos αsin β=112,所以tan αtan β=sin αcos βcos αsin β=5.答案:59.(2017·江苏高考)若=16,则tan α=________.解析:tan α=+π4=tanπ41-tan π4=16+11-16=75.答案:7510.化简:sin 235°-12cos 10°cos 80°=________.解析:sin 235°-12cos 10°cos 80°=1-cos 70°2-12cos 10°sin 10°=-12cos 70°12sin 20°=-1.答案:-111.已知tan α=2.(1)求tan(2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.解:=tan α+tan π41-tan αtan π4=2+11-2=-3.(2)sin 2αsin 2α+sin αcos α-cos 2α-1=2sin αcos αsin 2α+sin αcos α-(2cos 2α-1)-1=2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×222+2-2=1.12.已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值;(2)求cos β的值.解:(1)∵α,β,∴-π2<α-β<π2.又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010.(2)由(1)可得,cos(α-β)=31010.∵α为锐角,且sin α=35,∴cos α=45.∴cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=45×31010+35×=91050.B 级1.(2019·广东五校联考)若4cos(2π-θ),|θ|<π2,则tan2θ=________.解析:∵4cos(2π-θ),∴cos θsin θ=4cos θ,又∵|θ|<π2,∴sin θ=14,∴0<θ<π2,cos θ=154,tan θ=sin θcos θ=115,从而tan 2θ=2tan θ1-tan 2θ=157.答案:1572.(2018·江西新建二中期中)已知A ,B 均为锐角,cos(A +B )=-2425,=35,则________.解析:因为A ,B 均为锐角,cos(A +B )=-2425,=35,所以π2<A +B <π,π2<B +π3<π,所以sin(A +B )=1-cos 2(A +B )=725,=-45,可得cos (A +B )=-2425×+725×35=117125.答案:1171253.(2019·石家庄质检)已知函数f (x )=x ∈R.(1)求f(2)若cos θ=45,θf θ解:(1)-π4+=-12.(2)θθ-π3+θ=22(sin 2θ-cos 2θ).因为cos θ=45,θsin θ=35,所以sin 2θ=2sin θcos θ=2425,cos 2θ=cos 2θ-sin 2θ=725,所以θ=22(sin 2θ-cos 2θ)=22×=17250.。
两角和与差的正弦、余弦和正切公式及二倍角公式
答案 D 由cos +sin α= , 可得 cos α+ sin α+sin α= , 即 sin α+ cos α= , ∴ sin = , 即sin = , ∴sin =-sin =- .
单击此处添加大标题内容
2-1 已知cos +sin α= ,则sin 的值是 ( ) A.- B. C. D.-
方法技巧 三角恒等变换的变“角”与变“名”问题的解题思路 角的变换:明确各个角之间的关系(包括非特殊角与特殊角、已知角 与未知角),熟悉角的拆分与组合的技巧,半角与倍角的相互转化,如:2α= (α+β)+(α-β),α=(α+β)-β=(α-β)+β,40°=60°-20°, + = , =2× 等. 名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、 诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.
添加标题
1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2.
添加标题
cos2α=⑩ ,sin2α= ;
添加标题
1.sin 20°cos 10°-cos 160°sin 10°= ( ) A.- B. C.- D.
02
03
已知sin(α-kπ)= (k∈Z),则cos 2α的值为 ( ) A. B.- C. D.-
A
若tan = ,则tan α= .
.
考点突破
典例1 (1)已知sin =cos ,则tan α= ( ) A.-1 B.0 C. D.1 (2)(2017课标全国Ⅰ,15,5分)已知α∈ ,tan α=2,则cos = (3)设sin 2α=-sin α,α∈ ,则tan 2α的值是 .
两角和与差的正弦余弦正切
在三角函数图象与性质中的应用
两角和与差的正弦、余弦、正切公式在研究三角函数的图象和性质时也起着重要作用。通过这些公式 ,可以推导出三角函数的周期性、奇偶性、单调性等性质,并进一步研究其图象特征。
例如,利用两角和的正弦公式,可以将sin(α+β)转化为sinαcosβ+cosαsinβ,从而简化表达式。同样地,余弦和正切公式也有类 似的作用。
在三角函数求值中的应用
两角和与差的正弦、余弦、正切公式 在三角函数求值中也有广泛应用。通 过这些公式,可以求解一些特定角度 的三角函数值,或者计算一些复杂三 角函数的值。
tan(α-β) = (tanα - tanβ) / (1 + tanαtanβ)
02 公式推导
两角和的公式推导
三角函数的加法公式
sin(x+y)=sinxcosy+cosxsiny,cos(x+y)=cosxcosy-sinxsiny, tan(x+y)=(tanx+tany)/(1-tanxtany)。
3 两角和的正切公式
tan(α+β) = (tanα + tanβ) / (1 - tanαtanβ)
两角差的的正弦、余弦、正切公式
两角差的正弦公式
sin(α-β) = sinαcosβ - cosαsinβ
两角差的余弦公式
cos(α-β) = cosαcosβ + sinαsinβ
两角差的正切公式
应用
在三角函数计算中,该公式常用于求解两角和的余弦、正切值。
高中数学-两角和与差的正切公式
(2)求 α+2β 的值.
解:由条件得
cosα=
102,cosβ=2
5
5 .
∵α,β 为锐角,∴sinα= 1-cos2α=7102,
sinβ=
1-cos2β=
5 5.
因此 tanα=7,tanβ=12.
(1)tan(α+β)=1t-antαa+nαt·atannββ=1-7+7×12 12=-3.
分析:变化角
α=(α-β)+β,2α-β=(α-β)+α, 这样由已知可求得tanα的值,再进一步求 tan(2α-β)的值,确定角时要注意范围.
解:∵tan(α-β)=12,tanβ=-17, ∴tanα=tan[(α-β)+β]=1t-antaαn-αβ-+βttaannββ=1-12+12×--1717=13<1. ∵α∈(0,π),∴0<α<π4,0<2α<π2. 又 tanβ=-17<0,β∈0,π, ∴π2<β<π,∴-π<2α-β<0.
又 tan(2α-β)=tan[(α-β)+α] =1t-antαan-αβ-+βttaannαα=1-12+12×31 31=1, ∴2α-β=-34π.
规律技巧:求角“三步曲”:定范围,求函数值,确 定角.尤其是范围问题,宁肯小一点,勿过大,过大会增 解.
小结: 角的变换是使用两角和与差的三角公式求值中常见的 方法,要掌握一些角的变换技巧,
tan(α+β)= tanα+ tanβ 1- tanαtanβ
上式中以代得
tan[ ( )] tan tan( ) = tanα- tanβ 1 tan tan( ) 1+ tanαtanβ
∴tan(α-β)= tanα- tanβ 1+ tanαtanβ
两角和与差的正弦、余弦和正切公式
三角函数两角和与差及二倍角公式一、知识梳理1.两角和与差的正弦、余弦和正切公式sin(α±β)=sin αcos β±cos αsin β; cos(α∓β)=cos αcos β±sin αsin β; tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式sin 2α=2sin αcos α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α.3.注意:1.在使用两角和与差的余弦或正切公式时运算符号易错. 2.在(0,π)范围内,sin(α+β)=22所对应的角α+β不是唯一的. [试一试]1.sin 68°sin 67°-sin 23°cos 68°的值为( ) A .-22 B .22 C .32D .1 答案:B2.若sin α2=33,则cos α=( )A .-23B .-13C .13D .23答案:C解析:因为sin α2=33,所以cos α=1-2sin 2 α2=1-2×233⎛⎫ ⎪ ⎪⎝⎭=13二、方法归纳 1.公式的常用变形(1)tan α±tan β=tan(α±β)(1∓tan αtan β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin 4πα⎛⎫± ⎪⎝⎭2.角的变换技巧2α=(α+β)+(α-β);α=(α+β)-β;β=α+β2-α-β2;α-β2=22βααβ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭3.三角公式关系[练一练]1.已知tan 6πα⎛⎫-⎪⎝⎭=37,tan 6πβ⎛⎫+ ⎪⎝⎭=25,则tan(α+β)的值为( ) A .2941 B .129 C .141 D .1答案:D2.已知sin 2α=23,则cos 24πα⎛⎫+ ⎪⎝⎭=( ) A .16 B .13 C .12 D .23答案:A解析:法一:cos 24πα⎛⎫+ ⎪⎝⎭=121cos 22πα⎡⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦=12(1-sin 2α)=16. 法二:cos 4πα⎛⎫+ ⎪⎝⎭=22cos α-22sin α, 所以cos 24πα⎛⎫+ ⎪⎝⎭=12(cos α-sin α)2=12(1-2sin αcos α)=12(1-sin 2α)=16 三、考点精讲考点一 三角函数公式的基本应用1.已知sin α=35,α∈,2ππ⎛⎫⎪⎝⎭,则cos 22sin 4απα⎛⎫+ ⎪⎝⎭=________. 答案:-75解析:cos 22sin 4απα⎛⎫+ ⎪⎝⎭=22cos sin 222sin cos 22αααα-⎛⎫+ ⎪⎝⎭=cos α-sin α,∵sin α=35,α∈,2ππ⎛⎫⎪⎝⎭,∴cos α=-45,∴原式=-75.2.设sin 2α=-sin α,α∈,2ππ⎛⎫⎪⎝⎭,则tan 2α的值是________. 答案: 3解析:∵sin 2α=2sin αcos α=-sin α,∴cos α=-12,又α∈,2ππ⎛⎫⎪⎝⎭,∴sin α=32,tan α=-3,∴tan 2α=2tan α1-tan 2α=()223313-=--3.已知函数f (x )=2sin 136x π⎛⎫- ⎪⎝⎭,x ∈R . (1)求f 54π⎛⎫⎪⎝⎭的值; (2)设α,β∈0,2π⎡⎤⎢⎥⎣⎦,f 32πα⎛⎫+ ⎪⎝⎭=1013,f (3β+2π)=65,求cos(α+β)的值. 解:(1)∵f (x )=2sin 136x π⎛⎫-⎪⎝⎭,∴f 54π⎛⎫⎪⎝⎭=2sin 5126ππ⎛⎫- ⎪⎝⎭=2sin π4=2. (2)∵α,β∈0,2π⎡⎤⎢⎥⎣⎦,f 32πα⎛⎫+ ⎪⎝⎭=1013,f (3β+2π)=65, ∴2sin α=1013,2sin 2πβ⎛⎫+ ⎪⎝⎭=65,即sin α=513,cos β=35.∴cos α=1213,sin β=45∴cos(α+β)=cos αcos β-sin αsin β=1213×35-513×45=1665.[解题通法]两角和与差的三角函数公式可看作是诱导公式的推广,可用α、β的三角函数表示α±β的三角函数,在使用两角和与差的三角函数公式时,特别要注意角与角之间的关系,完成统一角和角与角转换的目的.考点二 三角函数公式的逆用与变形应用(1)在△ABC 中,若tan A ·tan B =tan A +tan B +1,则cos C 的值是( ) A .-22 B .22 C .12 D .-12(2)sin 110°sin 20°cos 2155°-sin 2155°的值为( ) A .-12 B .12 C .32 D .-32答案:(1)B (2)B解析:(1)由tan A tan B =tan A +tan B +1,可得tan A +tan B1-tan A tan B=-1,即tan(A +B )=-1,所以A +B =3π4,则C =π4,cos C =22,故选B .(2)sin 110°sin 20°cos 2155°-sin 2155°=sin 70°sin 20°cos 310°=cos 20°sin 20°cos 50°=12sin 40°sin 40°=12. [解题通法]运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等. [针对训练] 1.已知sin 6πα⎛⎫+⎪⎝⎭+cos α=435,则sin 3πα⎛⎫+ ⎪⎝⎭的值为( ) A .45 B .35 C .32 D .35答案:A 解析:由条件得32sin α+32cos α=435, 即12sin α+32cos α=45,∴sin 3πα⎛⎫+ ⎪⎝⎭=45. 2.若α+β=3π4,则(1-tan α)(1-tan β)的值是________.答案:2解析:-1=tan 3π4=tan(α+β)=tan α+tan β1-tan αtan β,∴tan αtan β-1=tan α+tan β.∴1-tan α-tan β+tan αtan β=2,即(1-tan α)(1-tan β)=2. 考点三 角的变换已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值; (2)求cos β的值. 解:(1)∵α,β∈0,2π⎛⎫⎪⎝⎭,从而-π2<α-β<π2 又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010. (2)由(1)可得,cos(α-β)=31010. ∵α为锐角,且sin α=35,∴cos α=45,∴cos β=cos[α-(α-β)] =cos αcos(α-β)+sin αsin(α-β)=45×31010+35×1010⎛⎫- ⎪ ⎪⎝⎭=91050变式练习:在本例条件下,求sin(α-2β)的值 解:∵sin(α-β)=-1010,cos(α-β)=31010, cos β=91050,sin β=131050.∴sin(α-2β)=sin[(α-β)-β]=sin(α-β)cos β-cos(α-β)sin β=-2425.[解题通法]1.当“已知角”有两个时,一般把“所求角”表示为两个“已知角”的和或差的形式; 2.当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”;3.注意角变换技巧. [针对训练]1.设tan ()α+β=25,tan 4πβ⎛⎫- ⎪⎝⎭=14,则tan 4πα⎛⎫+ ⎪⎝⎭=( )A .1318B .1322C .322D .16答案:C解析:tan 4πα⎛⎫+ ⎪⎝⎭=()tan 4παββ⎡⎤⎛⎫+-- ⎪⎢⎥⎝⎭⎣⎦=()()tan tan 34221tan tan 4παββπαββ⎛⎫+-- ⎪⎝⎭=⎛⎫++- ⎪⎝⎭2.设α为锐角,若cos 6πα⎛⎫+ ⎪⎝⎭=45,则sin 212πα⎛⎫+ ⎪⎝⎭的值为________. 答案:17250解析:因为α为锐角,cos 6πα⎛⎫+⎪⎝⎭=45, 所以sin 6πα⎛⎫+ ⎪⎝⎭=35,sin 26πα⎛⎫+ ⎪⎝⎭=2425, cos 26πα⎛⎫+⎪⎝⎭=725, 所以sin 212πα⎛⎫+⎪⎝⎭=sin 264ππα⎡⎤⎛⎫+- ⎪⎢⎥⎝⎭⎣⎦=2425×22-725×22=17250. 考点四 三角函数式的化简1.化简:2sin 22cos sin 4ααπα-⎛⎫- ⎪⎝⎭=________.答案:22cos α解析:原式=2sin αcos α-2cos 2α22α-cos α=22cos α.2.化简:42212cos 2cos 22tan sin 44x x x x ππ-+⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭解:原式=()222221112sin cos 1sin 2cos 22222sin cos 2sin cos sin 244442cos 4x x x x x x x x x x ππππππ-+-==⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫- ⎪⎝⎭=1cos 22x 3.化简:1tan 1tan tan 22tan 2αααα⎛⎫ ⎪⎛⎫-⋅+⋅ ⎪ ⎪⎝⎭ ⎪⎝⎭.解:1tan 1tan tan 22tan 2αααα⎛⎫⎪⎛⎫-⋅+⋅ ⎪ ⎪⎝⎭ ⎪⎝⎭=cos sin sin sin 2221cos sin cos cos222αααααααα⎛⎫⎛⎫ ⎪ ⎪-⋅+⋅⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=cos 2α2-sin 2α2sin α2cos α2⋅cos αcos α2+sin αsinα2cos αcos α2=2cos αsin α⋅cos α2cos αcosα2=2sin α[解题通法]三角函数式的化简要遵循“三看”原则(1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”; (3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式要通分”等.考点五 三角函数式的求值研究三角函数式的求值,解题的关键都是找出条件中的角与结论中的角的联系,依据函数名称的变换特点,选择合适的公式求解.归纳起来常见的命题角度有:给值求值; 给角求值; 给值求角. 角度一 给值求值1.已知函数f (x )=2cos 12x π⎛⎫- ⎪⎝⎭,x ∈R . (1)求f 3π⎛⎫⎪⎝⎭的值; (2)若cos θ=35,θ∈3,22ππ⎛⎫⎪⎝⎭,求f 6πθ⎛⎫- ⎪⎝⎭. 解:(1)因为f (x )=2cos 12x π⎛⎫-⎪⎝⎭, 所以f 3π⎛⎫⎪⎝⎭=2cos 312ππ⎛⎫- ⎪⎝⎭=2cos π4=2×22=1. (2)因为θ∈3,22ππ⎛⎫⎪⎝⎭,cos θ=35, 所以2234sin 1cos 155θθ⎛⎫=--=--=- ⎪⎝⎭.所以f 6πθ⎛⎫-⎪⎝⎭=2cos 612ππθ⎛⎫--⎪⎝⎭=2cos 4πθ⎛⎫-⎪⎝⎭=2×22cos sin 22θθ⎛⎫+⎪ ⎪⎝⎭=cos θ+sin θ=35-45=-15.角度二 给角求值2.(1)4cos 50°-tan 40°=( ) A . 2 B .2+32C . 3D .22-1 答案:C解析:4cos 50°-tan 40°=4cos 50°-sin 40°cos 40°=4sin 40°·cos 40°cos 40°-sin 40°cos 40°=2sin 80°-sin 40°cos 40°=2cos 10°-sin 40°cos 40°=2cos 10°-+cos 40°=32cos 10°-32sin 10°cos 40°=330°cos 10°-cos 40°=3cos 40°cos 40°=3.(2)化简:sin 50°(1+3tan 10°)=________. 答案:1解析:sin 50°(1+3tan 10°)=sin 50°00sin1013cos10⎛⎫+ ⎪⎝⎭ =sin 50°×cos 10°+3sin 10°cos 10°=sin 50°×000132cos10sin1022cos10⎛⎫+ ⎪⎝⎭ =2sin 50°·cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1.角度三 给值求角3.已知α,β为锐角,sin α=35,cos ()α+β=-45,求2α+β.解:∵sin α=35,α∈0,2π⎛⎫⎪⎝⎭,∴cos α=45,∵cos(α+β)=-45,α+β∈(0,π),∴sin(α+β)=35,∴sin(2α+β)=sin[α+(α+β)]=sin αcos(α+β)+cos αsin(α+β)=35×45⎛⎫- ⎪⎝⎭+45×35=0.又2α+β∈30,2π⎛⎫⎪⎝⎭,∴2α+β=π. 4.已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.解:∵tan α=tan[(α-β)+β]=α-β+tan β1-α-ββ=12-171+12×17=13>0,∴0<α<π2,又∵tan 2α=2tan α1-tan 2α=2123113⨯⎛⎫- ⎪⎝⎭=34>0,∴0<2α<π2, ∴tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34+171-34×17=1.∵tan β=-17<0,∴π2<β<π,-π<2α-β<0,∴2α-β=-3π4.[解题通法]三角函数求值有三类(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.考点六 三角恒等变换的综合应用 已知函数f (x )=sin 6x π⎛⎫-⎪⎝⎭+cos 3x π⎛⎫-⎪⎝⎭,g (x )=2sin 2x 2. (1)若α是第一象限角,且f (α)=335,求g (α)的值; (2)求使f (x )≥g (x )成立的x 的取值集合. 解:f (x )=sin 6x π⎛⎫-⎪⎝⎭+cos 3x π⎛⎫-⎪⎝⎭=32sin x -12cos x +12cos x +32sin x =3sin x ,g (x )=2sin 2x2=1-cos x .(1)由f (α)=335得sin α=35.又α是第一象限角,所以cos α>0.从而g (α)=1-cos α=1-1-sin 2α=1-45=15.(2)f (x )≥g (x )等价于3sin x ≥1-cos x ,即3sin x +cos x ≥1,于是sin 6x π⎛⎫+ ⎪⎝⎭≥12, 从而522666k x k πππππ+≤+≤+,k ∈Z , 即2223k x k πππ≤≤+,k ∈Z . 故使f (x )≥g (x )成立的x 的取值集合为222,3x k x k k Z πππ⎧⎫≤≤+∈⎨⎬⎩⎭. [解题通法]三角变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为y =A sin(ωx +φ)的形式再研究性质,解题时注意观察角、名、结构等特征,注意利用整体思想解决相关问题. [针对训练]设函数f (x )=sin 23x π⎛⎫+⎪⎝⎭+33sin 2x -33cos 2x . (1)求f (x )的最小正周期及其图像的对称轴方程;(2)将函数f (x )的图像向右平移π3个单位长度,得到函数g (x )的图像,求g (x )在区间,63ππ⎡⎤-⎢⎥⎣⎦上的值域.解:(1)f (x )=12sin 2x +32cos 2x -33cos 2x =12sin 2x +36cos 2x =33sin 26x π⎛⎫+ ⎪⎝⎭,所以f (x )的最小正周期为T =2π2=π. 令2x +π6=k π+π2(k ∈Z ),得对称轴方程为x =k π2+π6(k ∈Z ).(2)将函数f (x )的图像向右平移π3个单位长度,得到函数g (x )=33sin 236x ππ⎡⎤⎛⎫-+ ⎪⎢⎥⎝⎭⎣⎦=-33cos 2x 的图像. 即g (x )=-33cos 2x . 当x ∈,63ππ⎡⎤-⎢⎥⎣⎦时,2x ∈2,33ππ⎡⎤-⎢⎥⎣⎦,得cos 2x ∈1,12⎡⎤-⎢⎥⎣⎦所以-33cos 2x ∈33,36⎡⎤-⎢⎥⎣⎦,即函数g (x )在区间,63ππ⎡⎤-⎢⎥⎣⎦上的值域是33,36⎡⎤-⎢⎥⎣⎦课后作业课后练习一、选择题1.已知sin3πα⎛⎫+⎪⎝⎭+sin α=-435,则cos23πα⎛⎫+⎪⎝⎭等于()A.-45B.-35C.35D.45答案:D2.已知cos6πα⎛⎫+⎪⎝⎭-sin α=233,则sin76πα⎛⎫-⎪⎝⎭的值是()A.-233B.233C.-23D.23答案:D3.已知向量a=sin,16πα⎛⎫⎛⎫+⎪⎪⎝⎭⎝⎭,b=(4,4cos α-3),若a⊥b,则sin43πα⎛⎫+⎪⎝⎭等于() A.-34B.-14C.34D.14答案:B4.函数y=sin x+cos x图象的一条对称轴方程是()A.x=5π4B.x=3π4C.x=-π4D.x=-π2答案:A5.在△ABC中,3sin A+4cos B=6,4sin B+3cos A=1,则C的大小为()A.π6B.56πC.π6或56πD.π3或23π答案:A6.已知0<α<π,3sin 2α=sin α,则cos(α-π)等于()A.13B.-13C.16D.-16答案:D解析:∵0<α<π,3sin 2α=sin α,∴6sin αcos α=sin α,又∵sin α≠0,∴cos α=16,cos(α-π)=cos(π-α)=-cos α=-167.已知tan(α+β)=25,tan4πβ⎛⎫-⎪⎝⎭=14,那么tan4πα⎛⎫+⎪⎝⎭等于()A .1318B .1322C .322D .16答案:C解析:因为α+π4+β-π4=α+β,所以α+π4=(α+β)-4πβ⎛⎫- ⎪⎝⎭.所以tan 4πα⎛⎫+ ⎪⎝⎭=tan ()()()tan tan 344221tan tan 4παββπαββπαββ⎛⎫+-- ⎪⎡⎤⎛⎫⎝⎭+--== ⎪⎢⎥⎛⎫⎝⎭⎣⎦++- ⎪⎝⎭8.已知cos 2α=12 (其中α∈,04π⎛⎫- ⎪⎝⎭),则sin α的值为 ( )A .12B .-12C .32D .-32答案:B解析:∵12=cos 2α=1-2sin 2α,∴sin 2α=14.又∵α∈,04π⎛⎫- ⎪⎝⎭,∴sin α=-129.若f (x )=2tan x -2sin 2x2-1sin x 2cosx2,则f 12π⎛⎫⎪⎝⎭的值为 ( )A .-433B .8C .4 3D .-4 3 答案:B解析:f (x )=2tan x +1-2sin 2x212sin x =2tan x +2cos x sin x =2sin x cos x =4sin 2x∴f 12π⎛⎫⎪⎝⎭=4sinπ6=8 10.在△ABC 中,若cos 2B +3cos(A +C )+2=0,则sin B 的值是 ( ) A .12B .22C .32D .1答案:C解析:由cos 2B +3cos(A +C )+2=0化简变形,得2cos 2B -3cos B +1=0,∴cos B =12或cos B =1(舍).∴sin B =32二、填空题 1.如图,图中的实线是由三段圆弧连接而成的一条封闭曲线C ,各段弧所在的圆经过同一点P (点P 不在C 上)且半径相等.设第i 段弧所对的圆心角为αi (i =1,2,3),则cos α13cos α2+α33- sinα13·sin α2+α33=________ 答案:-122.设sin α=352παπ⎛⎫<< ⎪⎝⎭,tan(π-β)=12,则tan(α-β)=________答案:-2113.已知tan α、tan β是方程x 2+33x +4=0的两根,且α、β∈,22ππ⎛⎫- ⎪⎝⎭,则tan(α+β)=__________,α+β的值为________. 答案:3 -23π4.已知α为第二象限的角,且sin α=35,则tan 2α=________.答案:-247解析:因为α为第二象限的角,又sin α=35,所以cos α=-45,tan α=sin αcos α=-34,所以tan 2α=2tan α1-tan 2α=-247. 5.函数y =2cos 2x +sin 2x 的最小值是________. 答案:1- 2解析:∵y =2cos 2x +sin 2x =sin 2x +1+cos 2x=sin 2x +cos 2x +1=2sin 24x π⎛⎫+⎪⎝⎭+1, ∴当sin(2x +π4)=-1时,函数取得最小值1- 26.若cos 2sin 4απα⎛⎫- ⎪⎝⎭=-22,则cos α+sin α的值为________.答案:12解析:∵cos 2sin 4απα⎛⎫- ⎪⎝⎭=cos 2α-sin 2α22α-cos α=-2(sin α+cos α)=-22,∴cos α+sin α=12.三、解答题 1.(1)已知α∈0,2π⎛⎫⎪⎝⎭,β∈,2ππ⎛⎫⎪⎝⎭且sin(α+β)=3365,cos β=-513.求sin α; (2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.解:(1)∵β∈,2ππ⎛⎫⎪⎝⎭,cos β=-513,∴sin β=1213又∵0<α<π2,π2<β<π,∴π2<α+β<3π2,又sin(α+β)=3365,∴cos(α+β)=-1-sin 2α+β=233165⎛⎫-- ⎪⎝⎭=-5665 ∴sin α=sin[(α+β)-β]=sin(α+β)cos β-cos(α+β)sin β =33556123651365135⎛⎫⎛⎫⋅---⋅= ⎪ ⎪⎝⎭⎝⎭ (2)∵tan α=tan[(α-β)+β]=α-β+tan β1-α-ββ=12-171+12×17=13∴tan(2α-β)=tan[α+(α-β)]=tan α+α-β1-tan αα-β=13+121-13×12=1∵α,β∈(0,π),tan α=13<1,tan β=-17<0,∴0<α<π4,π2<β<π,∴-π<2α-β<0,∴2α-β=-3π42.(1)①证明两角和的余弦公式C (α+β):cos(α+β)=cos αcos β-sin αsin β; ②由C (α+β)推导两角和的正弦公式S (α+β):sin(α+β)=sin αcos β+cos αsin β. (2)已知△ABC 的面积S =12,AB →·AC →=3,且cos B =35,求cos C解:(1)①证明:如上图,在直角坐标系xOy 内作单位圆O ,并作出角α、β与-β,使角α的始边为Ox ,交⊙O 于点P 1,终边交⊙O 于点P 2;角β的始边为OP 2,终边交⊙O 于点P 3;角-β的始边为OP 1,终边交⊙O 于点P 4.则P 1(1,0),P 2(cos α,sin α),P 3(cos(α+β),sin(α+β)),P 4(cos(-β),sin(-β)), 由|P 1P 3|=|P 2P 4|及两点间的距离公式,得[cos(α+β)-1]2+sin 2(α+β)=[cos(-β)-cos α]2+[sin(-β)-sin α]2, 展开并整理得:2-2cos(α+β)=2-2(cos αcos β-sin αsin β), ∴cos(α+β)=cos αcos β-sin αsin β ②解 由①易得,cos 2πα⎛⎫- ⎪⎝⎭=sin α, sin 2πα⎛⎫-⎪⎝⎭=cos α. sin(α+β)=cos ()2παβ⎡⎤-+⎢⎥⎣⎦=cos ()2παβ⎡⎤⎛⎫-+- ⎪⎢⎥⎝⎭⎣⎦=cos 2πα⎛⎫-⎪⎝⎭cos(-β)-sin 2πα⎛⎫- ⎪⎝⎭sin(-β) =sin αcos β+cos αsin β. ∴sin(α+β)=sin αcos β+cos αsin β(2)解:由题意,设△ABC 的角B 、C 的对边分别为b 、c . 则S =12bc sin A =12,AB →·AC →=bc cos A =3>0,∴A ∈0,2π⎛⎫⎪⎝⎭,cos A =3sin A ,又sin 2A +cos 2A =1, ∴sin A =1010,cos A =31010, 由cos B =35,得sin B =45,∴cos(A +B )=cos A cos B -sin A sin B =1010.故cos C =cos[π-(A +B )]=-cos(A +B )=-10103.设函数f (x )=a·b ,其中向量a =(2cos x,1),b =(cos x ,3sin 2x ),x ∈R .(1)若函数f (x )=1-3,且x ∈,33ππ⎡⎤-⎢⎥⎣⎦,求x ; (2)求函数y =f (x )的单调增区间,并在给出的坐标系中画出y =f (x )在区间[0,π]上的图象.解:(1)依题设得f (x )=2cos 2x +3sin 2x =1+cos 2x +3sin 2x =2sin 26x π⎛⎫+⎪⎝⎭+1. 由2sin 26x π⎛⎫+ ⎪⎝⎭+1=1-3, 得sin 26x π⎛⎫+⎪⎝⎭=-32∵-π3≤x ≤π3,∴-π2≤2x +π6≤5π6.∴2x +π6=-π3,即x =-π4(2)-π2+2k π≤2x +π6≤π2+2k π (k ∈Z ),即36k x k ππππ-+≤≤+ (k ∈Z ),得函数单调增区间为,36k k ππππ⎡⎤-++⎢⎥⎣⎦(k ∈Z ). 列表:x 0 π6 π3 π2 2π3 5π6 π y232-12描点连线,得函数图象如图所示:4.设函数f (x )=3sin x cos x -cos x sin 2x π⎛⎫+ ⎪⎝⎭-12. (1)求f (x )的最小正周期; (2)当x ∈0,2π⎡⎤⎢⎥⎣⎦时,求函数f (x )的最大值和最小值. 解:f (x )=3sin x cos x -cos x sin 2x π⎛⎫+⎪⎝⎭-12 =32sin 2x -12cos 2x -1 =sin 26x π⎛⎫-⎪⎝⎭-1 (1)T =2π2=π,故f (x )的最小正周期为π(2)因为0≤x ≤π2,所以-π6≤2x -π6≤5π6.所以当2x -π6=π2,即x =π3时,f (x )有最大值0,当2x -π6=-π6,即x =0时,f (x )有最小值-32.6.已知函数f (x )=2cos 2x +sin 2x -4cos x . (1)求f (π3)的值;(2)求f (x )的最大值和最小值.解:(1)f (π3)=2cos 2π3+sin 2π3-4cos π3=-1+34-2=-94(2)f (x )=2(2cos 2x -1)+(1-cos 2x )-4cos x =3cos 2x -4cos x -1 =3(cos x -23)2-73,x ∈R因为cos x ∈[-1,1],所以,当cos x =-1时,f (x )取得最大值6; 当cos x =23时,f (x )取得最小值-73.。
两角和与差的正弦余弦和正切公式
两角和与差的正弦余弦和正切公式1.两角和的正弦公式:设角A和角B的正弦值分别为sinA和sinB,则角A和角B的和的正弦值为sin(A+B)。
根据倍角公式,sin(A+B) = sinA*cosB + cosA*sinB2.两角差的正弦公式:设角A和角B的正弦值分别为sinA和sinB,则角A和角B的差的正弦值为sin(A-B)。
根据差角公式,sin(A-B) = sinA*cosB - cosA*sinB3.两角和的余弦公式:设角A和角B的余弦值分别为cosA和cosB,则角A和角B的和的余弦值为cos(A+B)。
根据倍角公式,cos(A+B) = cosA*cosB - sinA*sinB4.两角差的余弦公式:设角A和角B的余弦值分别为cosA和cosB,则角A和角B的差的余弦值为cos(A-B)。
根据差角公式,cos(A-B) = cosA*cosB + sinA*sinB5.两角和的正切公式:设角A和角B的正切值分别为tanA和tanB,则角A和角B的和的正切值为tan(A+B)。
根据正切的定义,tan(A+B) = (tanA + tanB) / (1 - tanA*tanB)6.两角差的正切公式:设角A和角B的正切值分别为tanA和tanB,则角A和角B的差的正切值为tan(A-B)。
根据正切的定义,tan(A-B) = (tanA - tanB) / (1 + tanA*tanB)这些公式在解决具体问题时,如三角函数的化简、角度的关系等起到了重要的作用。
下面我们通过具体的例子来说明这些公式的应用。
例子:已知sinA=1/2,sinB=√3/2,求sin(A+B)和sin(A-B)的值。
解:根据两角和的正弦公式,sin(A+B) = sinA*cosB+cosA*sinB代入已知的值,sin(A+B) = (1/2)*(√3/2) + (√3/2)*(1/2) =√3/4 + √3/4 = √3/2继续根据两角差的正弦公式,sin(A-B) = sinA*cosB - cosA*sinB 代入已知的值,sin(A-B) = (1/2)*(√3/2) - (√3/2)*(1/2) =√3/4 - √3/4 = 0所以,sin(A+B) = √3/2,sin(A-B) = 0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
类型一 给角求值问题 例 求值: (1)1+3-3ttaann1155°°; (2)tan20°+tan40°+ 3tan20°tan40°.
训练 求下列各式的值: (1)tan1π2; (2)11+ -ttaann1155°°; (3)(1+tan1°)(1+tan2°)…(1+tan44°).
两角和与差的正切函数
1.两角和、差的余弦公式:
cos( ) cos cos sin sin ; ——C cos( ) cos cos sin sin ; ——C 2.两角和、差的正弦公式:
sin( ) sin cos cos sin ; ——S sin( ) sin cos cos sin ; ——S
技巧方法:
1.用tan和tan 的值求tan 的值时,
一定要记住它们在公式中的位置及符号. 2.根据三角函数值求角时,一定要看清所 求角的取值范围.
例 3 .已 知 ta n ()1,ta n 1,若 , ( 0 , ) ,
2
7
求 2 a的 值 .
例 5若 t a n α β 5 2 ,t a n β 4 1 4 ,求 t a n α 4 的 值 .
类型二 给值求值问题 例 已知 α 为锐角,cosα=35,tan(α-β)=13,求 tanα,tanβ, tanβ+π4的值.
训练 已知 tan(α+β)=5,tan(α-β)=3,求 tan2α,tan2β, tan2α+π4.
类型三 给值求角问题 例 已知 tanα=17,tanβ= 1100,且 α,β 为锐角,求 α+2β 的值.
2.注意公式的结构,尤其是符号.
例 1 已 知 ta n α2 ,ta nβ1,其 中 0α,β.
3
22
1 求 ta n αβ. 2求 αβ 的 值 .
例 2 已 知 ta n A 2 ,ta n B 3 ,且 A ,B 都 是 锐 角 , 求 证 : A B 1 3 5 o .
例 4 计 算 1 1 tta an n1 15 5o o的 值 .
注意:公式的其他变形形式:
1 tan tan tan( )(1 tantan ); 2 tan tan 1 tan tan ;
tan( )
3 tan tan tan tan 1;
tan( )
4 tan( ) tan tan tan( ) tan tan ; 5 tan( ) tan tan tan( ) tan tan .
右边,
所以原式成立.
1.求tan12otan33o 值 .
1
1tan12otan33o
2.已 知 tan3,求 tan4的 值 -2
3.设 tan,tan是 方 程 x23x20的 两 个 根 ,则 tan()___3__.
4.(2014.淮阴高一检测)在△ABC 中,tan A+tan B
+ 3= 3tan Atan B,则 C 等于( A )
探究点1 两角和的正切公式: 思考:怎样由两角和的正、余弦公式推导出两角和的
正切公式?
tan( ) tan tan 1 tan tan
理32.解公:式成的立右的端条是件分是数:形式 ,它k是 两(角k正切Z的)且和与1减
1两.两角角正和切的的正k积切的值比可.(以k用αZ和)且β的2 正 k切 值 表(示k.Z ).
+ 3tan B=tan Atan B-1,试判断△ABC 的形状.
和角公式
S :sinsincoscossin; C :coscoscossinsin; T :tan1tantanttaann.
差角公式
S :sinsincoscossin; C :coscoscossinsin; T :tan1tantanttaann.
2
2
2
两角和、差的正切公式:
注意:
tan
tan tan 1 tan tan
tan
tan tan 1 tan tan
T T
1.必须在定义域范围内使用上述公式.
即:tan α,tan ,tan(α )只要有一个不存在就不能使用这个
公式.
如
:已知tan
α
2,求
tan
2
α
不能用上述公式.
训练 已知 tan(α-β)=12,tanβ=-17,α,β∈(0,π),求 2α-β.
训练 已知 tan α,tan β 是方程 x2+3 3x+4=0 的两根,且-π2 <α<2π,-π2<β<π2,求角 α+β.
类型四 综合应用 例 3 已知△ABC 中,tan B+tan C+ 3tan Btan C= 3,且 3tan A
思考: tan15o ?
1.将正切转化为正余弦:
代入 sin15o,cos15o.
tan15o
sin15o cos15o
,
2.原式可化为:
sin(45o30o) sin45ocos30ocos45osin30o cos(45o30o)cos45ocos30osin45osin30o,
是否太烦琐了?能否直接用角的正切来表示呢?
2
探究点2 两角差的正切公式: 思考:怎样推导出两角差的正切公式?
tan( ) tan tan 1 tan tan
1.两角差的正切值可以用α和β的正切值表示. 2.公式的右端是分数形式,它是两角正切的差与1加两角
正切的积的比.
3.公式成立的条件是:
α + β ≠ kπ + π k ∈ Z 且α ≠ kπ + π k ∈ Z 且β ≠ kπ + π k ∈ Z .
例 6 求 证 : s in s i n 2c s o in s 2 1 t t a a n n 2 2 .
证 明 :
左 边 sin coscoss siin n 2 c o sisn 2 coscossin
sin2
cos2 cos2 sin2 cos2
sin 2
1
tan2 tan2