正比例函数、一次函数、反比例函数的性质及图象
反比例函数的图像与性质
![反比例函数的图像与性质](https://img.taocdn.com/s3/m/dc7af3a65ff7ba0d4a7302768e9951e79a896963.png)
汇报人:XXX 2024-01-22
目录
• 反比例函数基本概念 • 反比例函数图像特征 • 反比例函数性质分析 • 反比例函数在实际问题中应用举例 • 反比例函数与一次函数、二次函数比较 • 总结回顾与拓展延伸
01
反比例函数基本概念
定义与表达式
反比例函数定义
形如 $y = frac{k}{x}$($k$ 为常数,$k neq 0$)的函数称 为反比例函数。
通过直接观察反比例函数的图像,可以判断其单调性。当比例系数大于0时,函数图像在第一、三象限内单调递 减;当比例系数小于0时,函数图像在第二、四象限内单调递增。
导数法
对反比例函数求导,通过导数的正负判断函数的单调性。当导数大于0时,函数单调递增;当导数小于0时,函 数单调递减。
奇偶性判断方法
奇函数质
综合应用探讨
反比例函数与一次函数的 综合应用
在解决某些实际问题时,可以将反比例函数 与一次函数结合起来,例如分段函数中的一 部分为反比例函数,另一部分为一次函数。 通过比较和分析这两个函数的图像和性质, 可以更好地理解问题的本质和解决方案。
反比例函数与二次函数的 综合应用
在某些复杂的问题中,可能需要同时考虑反 比例函数和二次函数的性质。例如,在经济 学中研究成本、收益与产量之间的关系时, 可能会遇到同时包含反比例函数和二次函数 的模型。通过综合运用这两个函数的性质和
图像对称性
反比例函数的图像关于原点对称,即 如果点(x, y)在图像上,那么点(-x, y)也在图像上。
VS
反比例函数的图像也关于直线y = x 和y = -x对称。这意味着如果点(x, y) 在图像上,那么点(y, x)和(-y, -x)也在 图像上。
反比例函数反比例函数的图象与性质
![反比例函数反比例函数的图象与性质](https://img.taocdn.com/s3/m/b6cee5f6f021dd36a32d7375a417866fb94ac062.png)
在匀速运动中,速度与时间成反比例 关系。通过给定的速度和时间条件, 可以建立反比例函数求解相关问题。
变速运动
在某些变速运动问题中,速度可能与 位移或时间成反比例关系。根据具体 条件建立反比例函数模型,可以求解 变速运动的相关问题。
浓度问题求解
溶液稀释
在溶液稀释过程中,溶质的质量与溶 液的体积成反比例关系。通过给定的 溶质质量和溶液体积条件,可以建立 反比例函数求解相关问题。
题目6
已知一次函数 y = kx + b (k ≠ 0) 与反比例函数 y = m/x (m ≠ 0) 的图象交于 A、B 两点 ,且点 A 的坐标为 (2, 1),则不等式 kx + b > m/x 的解集为 _______.
历年中考真题回顾
题目7
(2019年中考)已知反比例函数 y = k/x (k > 0) 的图象上有 两点 A(x1, y1),B(x2, y2),且 x1 < 0 < x2,则 y1 _______ y2.(填“>”、“<”或“=”)
与一次函数关系比较
相似之处
两者都是线性函数,具有直线型的图象。
不同之处
一次函数的图象是一条直线,而反比例函数的图象是双曲线。此外,一次函数的斜率是常数,而反比 例函数的斜率则随着x的变化而变化。
与二次函数关系比较
相似之处
两者都是非线性函数,具有曲线型的图象。
不同之处
二次函数的图象是一个抛物线,而反比例函数的图象是双曲线。此外,二次函数的对称 轴是y轴或x轴,而反比例函数的对称中心是原点。
06
练习题及解析
基础知识练习题
03
题目1
已知反比例函数 y = k/x (k ≠ 0) 的图象 经过点 (2, -3),则 k 的值为 _______.
一次函数,二次函数,反比例函数性质总结
![一次函数,二次函数,反比例函数性质总结](https://img.taocdn.com/s3/m/9fcea35e4431b90d6d85c726.png)
一次函数、二次函数、反比例函数性质总结1.一次函数一次函数)0(≠+=k b kx y ,当0=x 时,得到的y 的值也即b 叫做图象与坐标轴的纵截距,当0=y 时,得到的x 的值,叫做图象与坐标轴的横截距。
(1)当0=b 时,一次函数的解析式变为)0(≠=k kx y ,也称为正比例函数,此函数图象恒过原点)0,0(O ,且横,纵截距都为0。
且0>k 时,函数图象过一、三象限,0>k 时,图象过二、四象限。
② k (≠a )+∞(1)当0,0==c b 时,函数的解析式变为)0(2≠=a ax y ,则 ①0>a 时 ②0<a 时(2)b a ,决定二次函数的对称轴与开口方向②0,0,0=<>c b a 时③ 0,0,0=><c b a 时 ④ 0,0,0=<<c b a 时(3)c a ,决定开口方向与与y 轴的截距①0,0,0=>>b c a 时 ②a③0,0,0=>b c a 时 ④0,0,0=<<b c a 时y yOxx yOOyyOxxxxy y OOx xOOy(3)对于一般的二次函数,c b a ,,共同来决定其函数图像与性质,故通常采用配方的方法 )0(2≠++=a c bx ax y c aba b x a b x a c x a b x a +-++=++=))2()2(()(2222 c a b a b x a +-+=]4)2[(222=c a b a b x a +-+4)2(22 =ab ac a b x a 44)2(22-++ 我们称abx 2-=为二次函数的对称轴,坐标)44,2(2a b ac a b --为二次函数的顶点坐标,此时我们也称其解析式为二次函数的顶点式,并可设其解析式为)0()(2≠+-=a k h x a y 。
若知道二次函数与x 轴的两个交点坐标,可设其解析式为)0)()((21≠--=a x x x x a y 。
高中数学-反比例函数的图像与性质
![高中数学-反比例函数的图像与性质](https://img.taocdn.com/s3/m/2a0ddd6fdcccda38376baf1ffc4ffe473368fd6f.png)
在y 同一k条直k角坐0标系中的 图象可能是
:
x
D
y ox (A)
y ox (B)
y ox (C)
y ox (D)
9.如图能表示y k(1 x)和y k (k 0) x
在同一坐标系中的大致图象的是 __D__ .
y
Ox A
y
O
x
B
y
Ox C
y x
o
D
10.请找出下面的四个关系式对应的的图像
设P(m, n)是双曲线 y k (k 0)上任意一点 ,有 : x
(1)过P作x轴的垂线 , 垂足为 A, 则
SOAP
1 2
OA
AP
1 2
|
m
|
•
|
n
|
1 2
|
k
|
y
过双曲线上任意一点作
P(m,n)
其中一条坐标中的垂线,连 接这个点与原点所得三角形
oA
x 的面积为 k
2
1.如图,点P是反比例函数 y 图2象上的 x
若x1>x2>0>x3,则下列各式中正确的是
(A)
A、y3>y1>y2 B、y3>y2>y1 C、y1>y2>y3 D、y1>y3>y2
7.函数
的图象上有三点
(-3,y1), (-1,y2), (2,y3),则函数值y1、y2、y3的
大小关系是____y_3_<__y_1_<__y_2__;
8、函数y=kx-k 与
x 2
(C) y=-2x+2; (D) y=4x.
5、点(23,-3)在反比例函数
反比例函数的图象和性质课件
![反比例函数的图象和性质课件](https://img.taocdn.com/s3/m/f139eaf50912a2161579292d.png)
3.甲乙两地相距100km,一辆汽车从甲地开往乙地, 把汽车到达乙地所用的时间y(h)表示为汽车的平均
速度x(km/h)的函数,则这个函数的图象大致是( C )
反比例函数的性质
y
1.当k>0时,图象的两个分
支分别在第一、三象限内,
x
在每一个象限内,y随x的
0
增大而减小;
y
2.当k<0时,图象的两个分
-4
函数y=kx-k 与 y k k 0在同一条直角坐标系中的 图象
x
可能是
:D
y ox (A)
y ox (B)
y ox (C)
y ox (D)
在每一象限内,Y 随x 的增大而___增___大___.
3. 函数y=—x5— ,当x>0时,图象在第__一__象限, Y 随x 的增大而___减__小____.
4.下列函数中,图象位于第二、四象限的
有 (3)、;(在4)图象所在象限内,y的值随x
的增大而增大的有
(2).、(3)、(5)
(1)y 2 (2)y 2x
-1
-1
-2
-2
-3
-3
-4
-4
-5 -5
-6 -6
y
6
5
y
=-
6 x
4
y
=
6 x
3
2
请大家仔细观察反比例函数
y 6
和
y
6
的函数
x
x
1
图象,找找看,他们有什么共同
-6
-5 -4 -3 -2 -1 0 1 -1
23 4
5
6x
-2
的特征?
-3
正比例函数与反比例函数(含图像)
![正比例函数与反比例函数(含图像)](https://img.taocdn.com/s3/m/17c084e4c8d376eeafaa310b.png)
1、正比例函数
定义:
形如y=kx(k为常数,且k≠0),我们就说y是x的正比例函数。
正比例函数是特殊的一次函数【一次函数的一般形式为y=kx+b(b不为0,k为常数)】。
图象作法:
a.列表(待定系数)
b.描点
c.连线
正比例函数的图象是一条直线,一定经过坐标的原点;
当k>0时,图象经过一、三象限,y随x的增大而增大;
当k<0时,图象经过二、四象限,y随x的增大而减小。
具体图像:
正比例函数y=x的函数图像
2、反比例函数
定义:
形如y=k/x(k为常数且k≠0)的函数,我们就说y是x的反比例函数。
(自变量x的取值范围是不等于0的一切实数)
图像作法:
反比例函数的图像为双曲线。
它可以无限地接近坐标轴,但永不相交;
当k>0时,图象在一、三象限,在每个象限内,y随x的增大而减小;
当k<0时,图象在二、四象限,在每个象限内,y随x的增大而增大。
具体图像:
反比例函数y=1/x的函数图像。
正比例函数、一次函数、反比例函数的性质及图象
![正比例函数、一次函数、反比例函数的性质及图象](https://img.taocdn.com/s3/m/b776e98d49649b6649d74755.png)
正比例函数、一次函数、反比例函数的性质及图象、一次函数的性质和图象:概念:一般地,形如y=kx+b(k , b是常数,且k z0 的函数,叫做一次函数。
图像和性质:①k>0,b>0,则图象过___________________________ 象限②k>0,b<0,则图象过___________________________ 象限当k>0时,y随x的增大而____________________________③k<0,b>0,则图象过________________________ 象限④k<0,b<0,则图象过________________________ 象限当k v 0时,y 随x的增大而 ______________________________________三、反比例函数性质和图象:1. ______________________ 定义:形如 (k为常数,k z0的函数称为反比例函数。
其他形式________________________________________________________2. 图像:反比例函数的图像是双曲线。
反比例函数的图象既是轴对称图形又是中心对称图形。
,在每个象限内y,在每个象限内y一、正比例函数性质和图象:概念:一般地,形如______________ (k是常数,且k z0的函数,叫做正比例函数。
当k>0时,图象过 __________________ 象限;y随x的增大而__________________________________ 。
3. _________________________________________________ 性质:当k >0时双曲线的两支分别位于_______________________________________值随x值的增大而减小。
人教版数学九年级下册26.1.2反比例函数图象和性质课件
![人教版数学九年级下册26.1.2反比例函数图象和性质课件](https://img.taocdn.com/s3/m/1af6d684b1717fd5360cba1aa8114431b90d8e7f.png)
反比例函数的图象既是轴对称图形又是中心对称图形。
有两条对称轴:直线y=x和 y=-x。对称中心是:原点
y y = —kx
y=-x
y=x
0
12
x
比较 y 6 x
与y6 x
两个图象,它们有什
么共同特点?它们之间有什么关系?
y
y6 x
y 6 都由两条曲线组成,都 x 是轴对称图形又是中心
x 对称图形,图象永远不
◆图象是两支曲线,k>0时图象分别在一、三象限内
y
y
6 5
y 2
4
x
3
2
1
6
5 4
y 3
3
x
2
1
-4 -3 -2 -1-O1 0· 1 2 3 4
-4 -3 -2 -1-O1 0· 1 2 3 4
x
x
-2
-2
-3
y 4 -3
-4
x -4
-5
-5
-6
-6
当k 0时y k 的图象又会怎样?如k 2、 3 当K<0x 时y ,图象位于二.四象限 y
减 性 y随x的增大而减小
正比例函数y=kx (k≠0)的图像的位置和增减性是由 谁决定的?
二、探究新知
例 1 画出反比例函数 y =
6 x
和
y=
6 x
的函数图象
函数图象画法
描点法 列
描
连
表
点
线
x
y
=
6 x
y=
6 x
x … -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 …
y
=
6 x
2
初中高中数学七大函数的性质 图像
![初中高中数学七大函数的性质 图像](https://img.taocdn.com/s3/m/7eebf505b52acfc789ebc937.png)
初中高中数学七大函数的性质图像1.一次函数(包括正比例函数)最简单最常见的函数,在平面直角坐标系上的图象为直线。
定义域(下面没有说明的话,都是在无特殊要求情况下的定义域):R值域:R奇偶性:无周期性:无平面直角坐标系解析式(下简称解析式):①ax+by+c=0[一般式]②y=kx+b[斜截式](k为直线斜率,b为直线纵截距,正比例函数b=0)③y-y1=k(x-x1)[点斜式](k为直线斜率,(x1,y1)为该直线所过的一个点)④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式]((x1,y1)与(x2,y2)为直线上的两点)⑤x/a-y/b=0[截距式](a、b分别为直线在x、y轴上的截距)解析式表达局限性:①所需条件较多(3个);②、③不能表达没有斜率的直线(平行于x轴的直线);④参数较多,计算过于烦琐;⑤不能表达平行于坐标轴的直线和过圆点的直线。
倾斜角:x轴到直线的角(直线与x轴正方向所成的角)称为直线的倾斜角。
设一直线的倾斜角为a,则该直线的斜率k=tg(a)。
2.二次函数:题目中常见的函数,在平面直角坐标系上的图象是一条对称轴与y轴平行的抛物线。
定义域:R值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)奇偶性:偶函数周期性:无解析式:①y=ax^2+bx+c[一般式]⑴a≠0⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;⑶极值点:(-b/2a,(4ac-b^2)/4a);⑷Δ=b^2-4ac,Δ>0,图象与x轴交于两点:([-b+√Δ]/2a,0)和([-b+√Δ]/2a,0);Δ=0,图象与x轴交于一点:(-b/2a,0);Δ<0,图象与x轴无交点;②y=a(x-h)^2+t[配方式]此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b^2)/4a);3.反比例函数在平面直角坐标系上的图象为双曲线。
正比例与反比例函数的性质
![正比例与反比例函数的性质](https://img.taocdn.com/s3/m/323eaabfc9d376eeaeaad1f34693daef5ef7131c.png)
正比例与反比例函数的性质正比例函数和反比例函数是数学中常见的两种函数类型。
它们在数学和实际生活中都有着重要的应用。
本文将详细介绍正比例函数和反比例函数的性质,并探讨它们在不同领域的用途。
1. 正比例函数的性质正比例函数是指两个变量之间存在线性关系,其中一个变量的值是另一个变量的常数倍。
形式上,正比例函数可以表示为 y = kx,其中 k 是常数。
1.1 直线关系正比例函数的图像是一条直线,且经过原点。
这意味着函数中的变量之间的关系是直接的,一方增大,另一方也相应增大。
1.2 斜率正比例函数的斜率是常数 k。
斜率表示了函数的增长速率,正比例函数的斜率恒定。
1.3 比例常数比例常数 k 是正比例函数的一个重要特征。
它体现了两个变量之间的比例关系。
当 k > 1 时,随着 x 的增加,y 的增加幅度更大;当 0 < k < 1 时,随着 x 的增加,y 的增加幅度更小。
2. 反比例函数的性质反比例函数是指两个变量之间存在反比关系,其中一个变量的值是另一个变量的倒数。
形式上,反比例函数可以表示为 y = k / x,其中 k是常数。
2.1 反比例关系反比例函数的图像通常是一个超越原点的曲线。
这意味着函数中的变量之间的关系是间接的,一方增大,另一方相应减小。
2.2 渐近线反比例函数的图像具有渐近线,其中一条渐近线为横轴 (x 轴),另一条渐近线为纵轴 (y 轴)。
这意味着当 x 趋近于正无穷大或负无穷大时,函数的值趋近于 0。
2.3 比例常数比例常数 k 是反比例函数的一个重要特征。
它体现了两个变量之间的反比关系。
当 k > 0 时,随着 x 的增加,y 的值减小;当 k < 0 时,随着 x 的增加,y 的值增大。
3. 应用领域正比例函数和反比例函数在各个领域都有广泛的应用。
3.1 正比例函数的应用正比例函数常常用于计算比例、比率和百分比。
在经济学中,正比例函数可以用于描述成本、收入和利润之间的关系。
正比例函数和反比例函数的区别(附图)
![正比例函数和反比例函数的区别(附图)](https://img.taocdn.com/s3/m/59ffd7a6195f312b3069a556.png)
正比例函数和反比例函数的区别(附图)
一:正比例函数
y=kx(k为常数,且k≠0),我们就说y是x的正比例函数,
正比例函数是特殊的一次函数,一次函数的一般形式为y=kx+b(b不为0,k为常数)。
正比例函数的图象是一条直线,一定经过坐标的原点,
当k>0时,图象经过一、三象限,y随x的增大而增大,
当k<0时,图象经过二、四象限,y随x的增大而减小。
二、反比例函数
y=k/x(k为常数且k≠0) 的函数,我们就说y是x的反比例函数 (自变量x的取值范围是不等于0的一切实数) 。
反比例函数的图像为双曲线,它可以无限地接近坐标轴,但永不相交,
当k>0时,图象在一、三象限,在每个象限内,y随x的增大而减小,
当k<0时,图象在二、四象限,在每个象限内,y随x的增大而增大。
26.1.2反比例函数的图象与性质
![26.1.2反比例函数的图象与性质](https://img.taocdn.com/s3/m/3aab9757640e52ea551810a6f524ccbff021ca65.png)
在求解反比例函数相关问题时,要确保 $x$ 的取值范围使得函数有意义(即 $x neq 0$ )。
在实际应用中,要注意理解反比例关系背后 的实际意义,避免盲目套用公式。
拓展延伸:反比例函数在其他领域应用
经济学中的应用
在经济学中,反比例函数可以表 示某些经济变量之间的关系,如 价格与需求量之间的反比关系。
04
感谢您的观看
THANKS
06
函数图像在第二象限和第四象限内分别位于 $x$ 轴和 $y$ 轴的两侧,且无限接近于坐标轴。
02
反比例函数图象特征
图象形状与位置
图象形状
反比例函数的图象为双曲线,两 支分别位于第一、三象限或第二 、四象限。
图象位置
当$k > 0$时,图象位于第一、三 象限;当$k < 0$时,图象位于第 二、四象限。
表达式
反比例函数的一般表达式为 $y = frac{k}{x}$,其中 $k$ 是比例系数, 且 $k neq 0$。
自变量取值范围
自变量 $x$ 的取值范围
在反比例函数中,自变量 $x$ 不能取值为 0,即 $x neq 0$。
函数定义域
反比例函数的定义域为 $x in R$ 且 $x neq 0$。
偶函数性质
反比例函数不是偶函数,即不满足$f(-x)=f(x)$,图像不关于 y轴对称。
周期性考察
无周期性
反比例函数不具有周期性,即不存在 一个正数T,使得对于定义域内的任 意x,都有$f(x+T)=f(x)$成立。
图像特征
反比例函数的图像是双曲线,两支分 别位于第一、三象限和第二、四象限 ,且无限接近坐标轴但永不相交。
渐近线与交点情况
渐近线
高中数学 14种函数图像和性质知识解析 新人教A版必修1
![高中数学 14种函数图像和性质知识解析 新人教A版必修1](https://img.taocdn.com/s3/m/4893d02c50e2524de4187e86.png)
高中数学 14种函数图像和性质知识解析新人教A版必修1高中不得不掌握的函数图像与常用性质高中常用函数有14种,它们是:1.正比例函数;2.反比例函数;3.根式函数;4一次函数;5.二次函数;6双勾函数.;7..双抛函数;8.指数函数;9对数函数;10.三角函数;11分段函数.;12.绝对值函数;13.超越函数;14.抽象函数。
而函数的性质常见的有:1.定义域;2.值域;3.单调性;4.奇偶性;5.周期性;6.对称性;7.有界性;8.反函数;9.连续性.高中都是从函数解析式入手画出函数图像,再利用函数图像研究其性质,下面我们就函数的图像和性质做归纳总结。
1.正比例函数解析式图像定义域:值域:单调性:奇偶性:反函数:2.反比例函数解析式图像性质定义域:值域:单调性:奇偶性:反函数:对称性:定义域:值域:单调性:对称性:3根式函数解析式图像定义域:值域:单调性:奇偶性:反函数:4一次函数解析式图像定义域:值域:1 性质性质性质用心爱心专心单调性:反函数:5二次函数解析式图像定义域:值域:单调性:对称性:定义域:值域:单调性:对称性:6.双勾函数解析式图像定义域:值域:单调性:奇偶性:对称性:定义域:值域:单调性:奇偶性:对称性:7.双抛函数解析式图像定义域:值域:单调性:奇偶性:对称性:定义域:性质性质性质用心爱心专心值域:单调性:奇偶性:对称性:8.指数函数解析式图像定义域:值域:单调性:9.对数函数解析式图像定义域:值域:单调性:10.三角函数解析式图像单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:11.分段函数分段函数是在其定义域的不同子集上,分别用几个不同的式子来表示对应关系的函数,它是一类较特殊的函数。
其图像的画法是按定义域的划分分别作图。
正比例函数、一次函数和反比例函数知识点归纳
![正比例函数、一次函数和反比例函数知识点归纳](https://img.taocdn.com/s3/m/490ae196192e45361066f5e7.png)
正比例函数、一次函数和反比例函数知识点归纳正比例函数:解析式:y=kx(k为常数,k工0) ,k叫做函数的比例系数;(注意:x的指数为1)图像:过原点的直线;必过点:(0,0 )和(1,k);走向:k>o,图像过一三象限,k<0,图像过二四象限;y yK>0k<0/ \0OJx IV x倾斜度:|k|越大,倾斜度越大,也就是越靠近y轴,|k|越小,倾斜度越小,也就是越靠近x轴;如图:yy=2x//y=xO yx增减性:k>O,y随x的增大而增大;k<0,y随x的增大而减小;一次函数:解析式:y=kx+b(k,b为常数,k^ 0),k叫做函数的比例系数,(注意:x的指数为1,b为直线与y轴交点的纵坐标);正比例函数是一次函数的特殊情况,即b=0时的一种情况;图像:一条直线;必过点:(0,b)(-b/k,0);走向:k>o, b>0,图像过一二三象限,k>0,b<0,图像过一三四象限;y yk>0,b<0O O /x x倾斜度:|k|越大,倾斜度越大,也就是越靠近y轴,|k|越小,倾斜度越小,也就是越靠近x轴;如图:yy=2x /F y=xk>0,b>0k<o,b>0,图像过一二四象限k<o ,b>0,图像过二三四象限增减性:k>O,y 随x 的增大而增大;k<0, y 随x 的增大而减小;平移:y=kx+b,向上平移 m 个单位:y=kx+b+m;向下平移 n 个单位:y=kx+b-n;向左平移 m 个单位:y=k (x+m )+b;向右平移 n 个单位:y=k (x-n )+b;简称:上加下减,左加右减;(注:上加下减到代数式后面,左加右减到x 后面,直接与x进行加减,与系数和指数都没关系);反比例函数:解析式:y=k/x (k 为常数,k z 0) 图像:双曲线(图像无限靠近坐标轴, 所在象限:k>0图像经过一三象限;增减性:k>0,y 随x 的增大而减小;k<0,y 随x 的增大而增大;反比例函数知识点归纳1、基础知识(一)反比例函数的概念但永不相交。
正比例函数图像与性质
![正比例函数图像与性质](https://img.taocdn.com/s3/m/033a4b1eac02de80d4d8d15abe23482fb4da02ef.png)
联系
• 正比例函数是一次函数的一种特殊情况 • 当一次函数的斜率为常数时,一次函数就是正比例函数
02
正比例函数的图像性质
正比例函数的图像特点
正比例函数的图像是一条通过原点(0,0)的直线 正比例函数的图像斜率k为常数,决定了函数的增减性 正比例函数的图像不经过第二象限
正比例函数的斜率与截距
斜率k
CREATE TOGETHER
DOCS
谢谢观看
THANK YOU FOR WATCHING
• 正比例函数的图像是一条通过原点(0,0)的直线
正比例函数的分类与特点
正比例函数的分类
• 直接正比例函数:k > 0 • 反比例函数:k < 0 • 常数函数:k = 0
正比例函数的特点
• 函数图像是一条直线 • 过原点(0,0) • 斜率k为常数
正比例函数与一次函数的区别与联系
区别
• 正比例函数表示y与x成正比例关系,一次函数表示y与x 成线性关系 • 正比例函数的图像是一条通过原点(0,0)的直线,一次 函数的图像是一条不过原点(0,0)的直线
正比例函数的易错点与技巧
易错点
• 混淆正比例函数与一次函数的概念 • 忽略正比例函数的最值问题
技巧
• 通过图像观察正比例函数的增减性 • 利用正比例函数的性质解决实际问题
正比例函数的拓展与提高
拓展
• 正比例函数的乘积与除法 • 正比例函数与其他函数的组合
提高
• 解决实际问题中涉及正比例函数的复杂问题 • 探索正比例函数在其他学科中的应用
• 表示正比例函数的增减性 • k > 0时,函数图像为一条通过原点(0,0)的向上倾斜的直线 • k < 0时,函数图像为一条通过原点(0,0)的向下倾斜的直线
一次函数,二次函数,反比例函数性质总结
![一次函数,二次函数,反比例函数性质总结](https://img.taocdn.com/s3/m/65fe73e07d1cfad6195f312b3169a4517723e57c.png)
一次函数、二次函数、反比例函数性质总结1.一次函数一次函数一次函数)0(¹+=k b kx y ,当0=x 时,得到的y 的值也即b 叫做图象与坐标轴的纵截距,当0=y 时,得到的x 的值,叫做图象与坐标轴的横截距。
的值,叫做图象与坐标轴的横截距。
(1)当0=b 时,一次函数的解析式变为)0(¹=k kx y ,也称为正比例函数,此函数图象恒过原点)0,0(O ,且横,纵截距都为0。
且0>k 时,函数图象过一、三象限,0>k 时,图象过二、四象限。
时,图象过二、四象限。
①0>k ②0<k(2)当0¹b 时,)0(¹+=k b kx y 的图象及性质为的图象及性质为①0,0>>b k 时,时, ② 0,0<>b k 时 图象过一二,三图象过一二,三 图象过一、三、四图象过一、三、四象限象限 象限象限③0,0><b k 时,时, ④ 0,0<<b k 时,时,图象过一、二、四图象过一、二、四 图象过二、三、四图象过二、三、四象限象限 象限象限yxxy yy OOOO xxyOOy xx2.二次函数二次函数 二次函数的一般形式为)0(2¹++=a c bx ax y ,且a 决定开口方向和大小,当0>a 时,抛物线开口向上,有最小值,值域为),44[2+¥-ab ac 当0<a ,抛物线开口向下,有最大值,值域为]44,(2ab ac --¥。
(1)当0,0==c b 时,函数的解析式变为)0(2¹=a ax y ,则,则 ①0>a 时 ②0<a 时(2)b a ,决定二次函数的对称轴和开口方向决定二次函数的对称轴和开口方向①当0,0,0=>>c b a 时 ②0,0,0=<>c b a 时③ 0,0,0=><c b a 时 ④ 0,0,0=<<c b a 时(3)c a ,决定开口方向和与y 轴的截距轴的截距①0,0,0=>>b c a 时 ②0,0,0=<>b c a 时yyOxxxxyyOOyOxxOyO③0,0,0=><b c a 时 ④0,0,0=<<b c a 时(3)对于一般的二次函数,c b a ,,共同来决定其函数图像和性质,故通常采用配方的方法共同来决定其函数图像和性质,故通常采用配方的方法)0(2¹++=a c bx ax yc a b a b x a b x a c x a bx a +-++=++=))2()2(()(2222c a b a b x a +-+=]4)2[(222=c ab a b x a +-+4)2(22=ab ac a b x a 44)2(22-++我们称ab x 2-=为二次函数的对称轴,坐标)44,2(2a b ac a b--为二次函数的顶点坐标,此时我们也称其解析式为二次函数的顶点式,并可设其解析式为)0()(2¹+-=a k h x a y 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正比例函数、一次函数、反比例函数的性质及图象
一、正比例函数性质和图象:
概念:一般地,形如(k是常数,且k≠0 )的函数,叫做正比例函数。
当k>0时,图象过象限; y随x的增大而。
当k<0时,图象过象限; y随x的增大而。
:
概念:一般地,形如y=kx+b(k,b是常数,且k≠0 )的函数,叫做一次函数。
图像和性质:
①k>0,b>O,则图象过象限
②k>0,b<0,则图象过象限
当k>0时, y随x的增大而。
③k<0,b>0,则图象过象限
④k<0,b<0,则图象过象限
当k<0时, y随x的增大而。
三、反比例函数性质和图象:
1.定义:形如(k为常数,k≠0)的函数称为反比例函数。
其他形式
2.图像:反比例函数的图像是双曲线。
反比例函数的图象既是轴对称图形又是中心对称图形。
3.性质:当k>0时双曲线的两支分别位于,在每个象限内y
值随x值的增大而减小。
当k<0时双曲线的两支分别位于,在每个象限内y 值随x值的增大而增大。
4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴
所作的垂线段与两坐标轴围成的矩形的面积。
练习题 1、若y =(m -1)x
22m -是正比例函数,则m 的值为( ) A 、1 B 、-1 C 、1或-1 D 、2或-2 2、下列函数中,一次函数为( )
A 、2
5y x = B .2
5y x =-1 C .24
5y x = D .2
5y x
=-
3、下列函数中,反比例函数是( )
A 、y=x+1
B 、y=
C 、=1
D 、3xy=2
4、正比例函数y=kx (k ≠0)函数值y 随x 的增大而增大,则y=kx+k 的图象大致是( )
5、直线44
3--=x y 与两坐标轴围成的三角形面积是( ) A 3 B 4 C 12 D 6
6、函数y 1=kx 和y 2=的图象如图,自变量x 的取值范围相同的是( )
7、若点A(x 1,1)、B(x 2,2)、C(x 3,-3)在双曲线上,( )
A 、x 1>x 2>x 3
B 、x 1>x 3>x 2
C 、x 3>x 2>x 1
D 、x 3>x 1>x 2
8、已知一次函数y=ax+b 图象在一、二、三象限,则反比例函数y=
的函数值随x 的增大而__________。