2.集合间的基本关系练习题

合集下载

高中数学必修第一册《1-2集合间的基本关系》课时同步训练试题

高中数学必修第一册《1-2集合间的基本关系》课时同步训练试题

1-2集合间的基本关系 同步训练第I 卷(选择题)一、单选题1.(2018·浙江高一课时练习)设B ={1,2},A ={x |x ⊆B },则A 与B 的关系是( ) A .A ⊆BB .B ⊆AC .B ∈AD .A =B2.(2021·全国)下列命题中,正确的有( )①空集是任何集合的真子集;②若A B ,B C ,则A C ;③任何一个集合必有两个或两个以上的真子集:④如果不属于B 的元素一定不属于A ,则A B ⊆.A .①②B .②③C .②④D .③④ 3.(2018·佛山市第二中学)集合{}{}14,A x x B x x a =-≤≤=>,若A B ⋂≠∅,则a 的取值范围为( )A .4a <B .4a >-C .1a >-D .14a -<≤4.(2019·华东师范大学第一附属中学)已知集合{}2430,A x x x x R =-+<∈,(){}12202750,x B x a x a x x R -=+≤-++≤∈且,若A B ⊆,则实数a 的取值范围_______. A .[]4,0- B .[]4,1-- C .[]1,0- D .14,13⎡⎤--⎢⎥⎣⎦ 5.(2017·浙江)集合{|}A x x a =≤,2{|50}B x x x =-<,若A∩B=B ,则a 的取值范围是( )A .5a ≥B .4a ≥C .5a <D .4a < 6.(2019·太原市第五十三中学校高一月考)已知{}1,2,3A =,{}|,,B x x a b a A b A ==+∈∈,则B 的真子集个数为( )A .31B .32C .63D .64二、多选题7.(2021·江苏)给出下列选项,其中正确的是( )A .{}{}∅∈∅B .{}{}∅⊆∅C .{}∅∈∅D .∅⫋{}∅ 8.(2021·全国高一专题练习)已知集合{12}A xx =<<∣,{232}B x a x a =-<<-∣,下列命题正确的是A .不存在实数a 使得AB =B .存在实数a 使得A B ⊆C .当4a =时,A B ⊆D .当04a 时,B A ⊆E.存在实数a 使得B A ⊆第II 卷(非选择题)三、填空题9.(2020·瓦房店市实验高级中学高一月考)已知集合{}1,2,3,4M =,对它的非空子集A ,可将A 中的每一个元素k 都乘以()1k-再求和,则对M 的所有非空子集执行上述求和操作,则这些和的总和是______.10.(2021·全国)设集合A ={x ||x ﹣a |<1,x ∈R },B ={x |1<x <5,x ∈R },若A 是B 的真子集,则a 的取值范围为___. 11.(2019·全国高一课时练习)某个含有三个实数的集合既可表示为,,0b b a ⎧⎫⎨⎬⎩⎭,也可表示为{a ,a +b ,1},则a 2015+b 2015的值为____.12.(2021·全国)已知{}{}1,21,2,3,4,5,6,7A ≠⊆⊂,满足上述条件的集合A 的个数是______.四、解答题13.(2021·全国高一课时练习)已知全集(){|010},{1,35,7}U U A B x N x A C B =⋃=∈≤≤⋂=,,试求集合B .14.(2017·湖南长沙一中高一期中)已知集合{|013}A x ax =<+≤,集合1{|2}2B x x =-<<. (1)若1a =;求AC B ;(2)若A B A =,求实数a 的取值范围.15.(2020·黑龙江哈九中高三期末(文))已知()1f x x a x =-++.(1)若不等式()21f x x <++的解集是区间3,2的子区间,求实数a 的取值范围; (2)若对任意的x ∈R ,不等式()21>+f x a 恒成立,求实数a 的取值范围.16.(2019·太原市第五十三中学校高一月考)写出集合P 的所有子集,其中(){},|5,,P x y x y x N y N ++=+=∈∈.参考答案1.C【解析】【分析】首先确定集合A 的特征,据此确定A 与B 的关系即可.【详解】由题意可知集合A 中的元素为集合B 的子集,据此可得:B A ∈.本题选择C 选项.【点睛】本题主要考查集合的表示方法,集合与元素的概念等知识,意在考查学生的转化能力和计算求解能力.2.C【分析】运用空集的性质,即可判断①;运用集合的传递性,即可判断②;由集合的真子集的个数,即可判断③;由韦恩图,即可判断④.【详解】①空集是任何集合的子集,是任何非空集合的真子集,故①错误;②真子集具有传递性,故②正确;③若一个集合是空集,则没有真子集,故③错误;④由韦恩图易知④正确.故选C.【点睛】本题考查集合的概念,主要是空集和子集、真子集的性质,考查判断能力,属于基础题. 3.A【分析】据已知条件知A ,B 有公共元素,列出两个集合的端点满足的不等关系,结合数轴可以得出a 的范围.【详解】{}14A x x =-≤≤,{}B x x a =>,∵A B ⋂≠∅,∴对照数轴得4a <,即a 的取值范围为4a <,故选:A.【点睛】本题考查集合关系中的参数取值问题和集合的交集运算,将集合的关系转化为集合端点的不等关系,是解决本题的关键,属于基础题.4.B【分析】首先解出集合A ,若满足A B ⊆,则当()1,3x ∈时,120x a -+≤和()22750x a x -++≤恒成立,求a 的取值范围.【详解】{}13A x x =<<,A B ⊆,即当()1,3x ∈时,120x a -+≤恒成立,即12x a -≤- ,当()1,3x ∈时恒成立,即()1min 2x a -≤- ,()1,3x ∈而12x y -=-是增函数,当1x =时,函数取得最小值1-,1a ∴≤-且当()1,3x ∈时,()22750x a x -++≤恒成立,()()1030f f ⎧≤⎪⎨≤⎪⎩,解得:4a ≥- 综上:41a -≤≤-.故选B【点睛】本题考查根据给定区间不等式恒成立求参数取值范围的问题,意在考查转化与化归和计算求解能力,恒成立问题可以参变分离转化为求函数的最值问题,如果函数是二次函数可以转化为根的分布问题,列不等式组求解.5.A【解析】因为25005x x x -<⇒<<,又A B B B A ⋂=⇒⊆,则由{|}A x x a =≤,可得;5a ≥时满足条件A B B ⋂=.6.A【分析】由题:根据,a b 的取值情况分析集合{2,3,4,5,6}B =一共32个子集,所以31个真子集.【详解】由题:当1a b ==时,集合B 中元素最小为2,当3a b ==时,集合B 中元素最大为6, 又当1,2a b ==时,集合B 中元素为3,当1,3a b ==时,集合B 中元素为4,当2,3a b ==时,集合B 中元素为5,所以集合{2,3,4,5,6}B =,其子集个数为5232=个,所以真子集31个.故选:A【点睛】此题考查元素与集合的关系以及子集个数分析,关键在于熟记集合的子集个数结论,否则只有逐一列举,计算量大且容易出错.7.BCD【分析】利用空集的特征,以及元素和集合,集合与集合之间的关系逐项判断【详解】对于A ,∅不是{}{}∅的元素,故不正确;对于B ,∅是任何集合的子集,所以∅是{}{}∅的子集,故正确;对于C ,∅是{}∅的元素,故正确;对于D ,∅是任何非空集合的真子集,{}∅有一个元素∅,是非空集合,故正确.故答案为:BCD .8.AE【分析】利用集合相等判断A 选项错误,由A B ⊆建立不等式组,根据是否有解判断B 选项; 4a =时求出B ,判断是否A B ⊆可得C 错误,分B 为空集,非空集两种情况讨论可判断D选项,由D 选项判断过程可知E 选项正确.【详解】A 选项由相等集合的概念可得23122a a -=⎧⎨-=⎩解得2a =且4a =,得此方程组无解, 故不存在实数a 使得集合A=B ,因此A 正确;B 选项由A B ⊆,得23122a a -≤⎧⎨-≥⎩即24a a ≤⎧⎨≥⎩,此不等式组无解,因此B 错误; C 选项当4a =时,得{52}B xx =<<∣为空集,不满足A B ⊆,因此C 错误; D 选项当232a a -≥-,即1a ≥时,B A =∅⊆,符合B A ⊆;当1a <时,要使B A ⊆,需满足23122a a -≥⎧⎨-≤⎩解得24a ≤≤,不满足1a <,故这样的实数a 不存在,则当04a ≤≤时B A ⊆不正确,因此D 错误;E 选项由D 选项分析可得存在实数a 使得B A ⊆,因此E 正确.综上AE 选项正确.故选:AE.【点睛】本题主要考查了集合相等,子集的概念,考查了推理运算能力,属于中档题.9.16【分析】先求出集合M 它非空子集A 的个数,在所有子集中,各个元素出现的次数,即可解答.【详解】因为{}1,2,3,4M =,对它的非空子集A 共有15个, 分别是{}{}{}{}123412{},,,,,, 1,31,42,32,43,41,2,31,2,4{}{}{}{}{}{}{}{}{}{}1,3,42,3,41,2,34,,,,,,,,,,其中数字1,2,3,4都出现了8次. 依题意得:()()()()123481121314116⎡⎤-+-+-+-=⎣⎦. 故答案为:16.【点睛】本题主要考查了集合的非空真子集的概念,理解本题中的新定义的概念是解决本题的关键,属于中档题.10.2≤a ≤4【分析】根据集合A 解出a ﹣1<x <a +1,利用包含关系求解参数范围.【详解】由|x ﹣a |<1,得﹣1<x ﹣a <1,∴a ﹣1<x <a +1,由A 是B 的真子集,得1115a a ->⎧⎨+<⎩ ,∴2<a <4. 又当a =2时,A ={x |1<x <3}, a =4时,A ={x |3<x <5}, 均满足A 是B 的真子集, ∴2≤a ≤4.故答案为:2≤a ≤411.0【分析】根据所给的一个集合的两种表达形式,看出第一种表达形式中,只有a +b 一定不等式0,重新写出集合的两种形式,把两种形式进行比较,得出a ,b 的值,得到结果.【详解】解:∵集合既可以表示成{b ,b a,0},又可表示成{a ,a +b ,1} ∴a +b 一定等于0在后一种表示的集合中有一个元素是1只能是b .∴b =1,a =-1∴a 2015+b 2015=0.【点睛】本题考查集合的元素的三个特性和集合相等.易错点在于忽略集合中元素的互异性. 12.31【分析】集合A 中一定含有1,2这两个元素,且集合A 是集合{}1,2,3,4,5,6,7的真子集,则满足上述条件的集合A 的个数与集合{}3,4,5,6,7的真子集的个数一致,求出集合{}3,4,5,6,7的真子集个数,即可得出答案.【详解】由题意可知,集合A 中一定含有1,2这两个元素,且集合A 是集合{}1,2,3,4,5,6,7的真子集 则满足上述条件的集合A 的个数与集合{}3,4,5,6,7的真子集的个数一致则满足上述条件的集合A 的个数为52131-=故答案为:31【点睛】本题主要考查了集合的包含关系,求集合的真子集个数,属于中档题.13.{0,2,4,6,8,9,10}【分析】计算{0,1,2,3,4,5,6,7,8,9,10}U A B =⋃=,根据(){1,3,5,7}U A B ⋂=计算得到答案.【详解】{0,1,2,3,4,5,6,7,8,9,10}U A B =⋃=,(){1,3,5,7}U A B ⋂=,{1,3,5,7}U B ∴=.故(){0,2,4,6,8,9,10}U U B B ==.【点睛】本题考查了交集,全集,补集,意在考查学生的计算能力.14.(1)1{|12A CB x x =-<≤-或2}x =;(2)(,4)[2,)-∞-+∞ 【解析】试题分析:(1)1a =时求出集合A ,根据补集的定义写出A B ;(2)A B A ⋂=得A B ⊆,A 中不等式解集分三种情况讨论:0a =、0a <和0a >时,求出对应集合A ,根据A B ⊆求出a 的取值范围.试题解析:(1)若1a =,则{|12}A x x =-<≤, 故1{|12A CB x x =-<≤-或2}x = (2),A B A A B ⋂=∴⊆,不等式013ax <+≤解集分三种情况讨论:①0a =,则,A R A B =⊆不成立;②0a <,则21{|}A x x a a =≤<-,由A B ⊆得12,12,2a a⎧-≤⎪⎪⎨⎪-<⎪⎩得4a <-;③0a >,则12{|}A x x a a =-≤<,由A B ⊆得11,222,a a⎧-≥-⎪⎪⎨⎪<⎪⎩得2a ≥. 综上所述:a 的取值范围为()[),42,-∞-⋃+∞.点睛:本题主要考查了集合的运算以及含有参数的集合间的关系,属于基础题;对于含有参数的一元一次不等式的解法,主要利用分类讨论的思想,对一次项系数进行讨论,分为0,0,0a a a =><三种情形,利用数轴将区间端点值进行比较,得出不等式组.15.(1)[]1,0-(2)(),0-∞【分析】(1)首先求出不等式的解集,再根据集合的包含关系求出参数的取值范围;(2)根据绝对值的三角不等式可得()1111f x x a x a x x a x x a =-++=-++≥-++=+,故对任意的x ∈R ,()21>+f x a 恒成立可转化为121a a +>+, 分类讨论计算可得;【详解】解:(1)因为()1f x x a x =-++,且()21f x x <++,2x a ∴-< ,22a x a ∴-+<<+,由题意知,()[]2,23,2a a -+⊆-,所以2322a a -≥-⎧⎨+≤⎩, 解得10a -≤≤,所以实数a 的取值范围是[]1,0-.(2)()1111f x x a x a x x a x x a =-++=-++≥-++=+,当且仅当()()10a x x -+≥时,等号成立,所以()f x 的最小值为1a +.故对任意的x ∈R ,()21>+f x a 恒成立可转化为121a a +>+,所以10121a a a +≥⎧⎨+>+⎩或10121a a a +<⎧⎨-->+⎩,解得0a <. 所以实数a 的取值范围是(),0-∞.【点睛】本题考查绝对值不等式的解法,集合的包含关系及绝对值三角不等式的应用,属于中档题. 16.{},(1,4)},{(2,3)},{(3,2)},{(4,1)∅,{}{(1,4),(2,3)},{(1,4),(3,2)},(1,4),(4,1),{(2,3),(3,2)},{(2,3),(4,1)},{(3,2),(4,1)},{}{(1,4),(2,3),(3,2)},{(1,4),(2,3),(4,1)},{(2,3),(3,2),(4,1)},(1,4),(3,2),(4,1),{}(1,4),(2,3),(3,2),(4,1)【分析】依次写出集合P 中的所有元素,{}(1,4),(2,3),(3,2),(4,1)P =,即可写出其所有子集.【详解】由题(){},|5,,P x y x y x N y N ++=+=∈∈可解得{}(1,4),(2,3),(3,2),(4,1)P =,所有子集分为:没有元素:∅;一个元素:{}(1,4)},{(2,3)},{(3,2)},{(4,1);两个元素:{}{(1,4),(2,3)},{(1,4),(3,2)},(1,4),(4,1),{(2,3),(3,2)},{(2,3),(4,1)},{(3,2),(4,1)};三个元素:{}{(1,4),(2,3),(3,2)},{(1,4),(2,3),(4,1)},{(2,3),(3,2),(4,1)},(1,4),(3,2),(4,1);四个元素:{}(1,4),(2,3),(3,2),(4,1).所以,所有子集为:{},(1,4)},{(2,3)},{(3,2)},{(4,1)∅,{}{(1,4),(2,3)},{(1,4),(3,2)},(1,4),(4,1),{(2,3),(3,2)},{(2,3),(4,1)},{(3,2),(4,1)},{}{(1,4),(2,3),(3,2)},{(1,4),(2,3),(4,1)},{(2,3),(3,2),(4,1)},(1,4),(3,2),(4,1),{}(1,4),(2,3),(3,2),(4,1)【点睛】此题考查求集合中的元素和写出集合的子集,其中要求根据题目条件准确写出集合中的元素,根据集合中元素个数分别写出子集,做到不重不漏.答案第9页,总9页。

集合间的基本关系练习题含答案

集合间的基本关系练习题含答案

集合间的基本关系练习题(1)1. 如图,已知全集U=Z,集合A={−2, −1, 0, 1, 2},B={1, 2, 3, 4},则图中阴影部分所表示的集合是()A.{3, 4}B.{−2, −1, 0}C.{1, 2}D.{2, 3, 4}2. 已知集合A={−1, 0, 1},则含有元素0的A的子集的个数为()A.2B.4C.6D.83. 设集合A={−1, 1, 2},集合B={x|x∈A 且2−x∉A},则B=()A.{−1}B.{2}C.{−1, 2}D.{1, 2}4. 已知A={−2, 2011, x2−1},B={0, 2011, x2+3x},且A=B,则x的值为()A.1或−1B.0C.−2D.−15. 定义:设A,B是非空的数集,a∈A,b∈B,若a是b的函数且b也是a的函数,则称a与b是“和谐关系”.如等式b=a2,a∈[0, +∞)中a与b是“和谐关系”,则下列等中a与b是“和谐关系”的是()A.b=sin aa ,a∈(0,π2) B.b=a3+52a2+2a+1,a∈(−2,−23)C.(a−2)2+b2=1,a∈[1, 2]D.|a|+|b|=1,a∈[−1, 1]6. 已知集合:①{0};②{⌀};③{x|3m<x<m};④{x|a+2<x<a};⑤{x|x2+ 2x+5=0, x∈R}.其中,一定表示空集的是________(填序号).7. 当a满足________时,集合A={x|3x−a<0, x∈N+}表示集合{1}.8. 已知集合M={1, 2, 3, ..., n}(n>1, n∈N∗),则M的所有非空子集的元素和为________(只需写出数学表达式)=a+2},B={(x,y)|(a2−4)x+(a−2)y=7},若A∩9. 已知集合A={(x,y)|y−2x−1B=⌀,则实数a=________.10. 集合A={1, 2}共有________子集.11. 已知集合A={1,2,3,4}.(1)若M⊆A,且M中至少有一个偶数,则这样的集合M有多少个?(2)若B={x|ax−3=0},且B⊆A,求实数a的取值集合.12. 已知集合A={x|2m−10<x<m−1},B={x|2<x<6}.(1)若m=4,求A∩B;(2)若A⊆B,求m的取值范围.参考答案与试题解析集合间的基本关系练习题(1)一、选择题(本题共计 5 小题,每题 5 分,共计25分)1.【答案】A【考点】Venn图表达集合的关系及运算【解析】由阴影部分可知对应的集合为B∩∁U A,即可得到结论.【解答】解:阴影部分可知对应的集合为B∩(∁U A),∵全集U=Z,集合A={−2, −1, 0, 1, 2},B={1, 2, 3, 4},∴B∩(∁U A)={3, 4},故选A.2.【答案】B【考点】元素与集合关系的判断【解析】由集合子集的定义找出集合A的所有子集可得答案,【解答】已知集合A={−1, 0, 3},则由集合的子集定义可得A集合的所有子集为:⌀,{−1},{1},8},1},1},4,1},则含有元素0的A的子集为{6},{−1,{0,{−2,0,个数为4个,3.【答案】C【考点】集合的包含关系判断及应用【解析】本题的关键是认清集合B的研究对象,利用列举法写出集合B的元素即可.【解答】解:∵集合A={−1, 1, 2},集合B={x|x∈A 且2−x∉A},−1∈A,且2−(−1)=3∉A,故1∈B;1∈A,但2−1=1∈A,不满足题意;2∈A,且2−2=0∉A,故2∈B;故B={−1, 2}.故选C.4.【答案】D【考点】集合的相等【解析】直接应用集合相等则集合中的元素完全相同来解决问题.【解答】解:∵A=B,即A和B中的元素完全相同,∴有{x2−1=0x2+3x=−2,解得:x=−1.故选D.5.【答案】A【考点】元素与集合关系的判断【解析】只要判断所给出的函数单调即可.【解答】解:A.∵a∈(0,π2),则a>sin a,∴b′=a cos a−sin aa2=cos a(a−sin a)a2>0,因此函数b在a∈(0,π2)上单调递增,正确;B.∵a∈(−2,−23),b′=3a2+5a+2=(3a+2)(a+1),∴a∈(−2, −1)时单调递增;a∈(−1, −23)时单调递减,因此不符合题意;C.∵(a−2)2+b2=1,a∈[1, 2],∴b=±√1−(a−2)2,b不是a的函数,舍去;D.∵|a|+|b|=1,a∈[−1, 1],∴b=±(1−|a|),b不是a的函数,舍去.故选:A.二、填空题(本题共计 5 小题,每题 5 分,共计25分)6.【答案】④⑤【考点】空集的定义、性质及运算【解析】利用单元素集、空集的定义直接求解.【解答】①{0}是单元素集;②{⌀}是单元素集;③当m<0时,{x|8m<x<m}不是空集;④{x|a+2<x<a}是空集;⑤{x|x2+7x+5=0, x∈R}是空集.∴一定表示空集的是④⑤.7.【答案】【考点】集合的含义与表示【解析】先解不等式3x−a<0,得,根据已知条件需限制a为:1<≤2,解不等式即得a满足的条件.【解答】解3x−a<0得.根据已知条件知:x=1,∴1<.解得3<a≤6.8.【答案】(n2+n)⋅2n−2【考点】子集与真子集【解析】由题意可知,集合中的元素出现的次数都是相等的,从而确定每个元素出现的次数,从而利用等差数列求和公式求和.【解答】若M={1, 2, 3, ...n},则集合M的所有非空子集中,集合M中的任何一个元素出现的次数都是相等的;考查1出现的次数,可看成集合{2, 3, 4, ...n}的子集个数,故共有2n−1个1,故M的所有非空子集的元素和为2n−1(1+2+3+4+...+n)=(n2+n)⋅2n−29.【答案】【考点】集合关系中的参数取值问题【解析】此题暂无解析【解答】此题暂无解答10.【答案】4【考点】子集与真子集【解析】对于有限集合,我们有以下结论:若一个集合中有n个元素,则它有2n个子集.【解答】解:集合A有2个元素,故有22=4个子集.故答案为:4.三、 解答题 (本题共计 2 小题 ,每题 5 分 ,共计10分 )11.【答案】解:(1)由M ⊆A ,且M 中至少有一个偶数,得满足条件的集合M 为:{2},{1,2},{2,3},{1,2,3},{4},{1,4},{3,4},{1,3,4},{2,4},{1,2,4},{2,3,4},{1,2,3,4},共12个.(2)因为B ⊆A ,所以集合B 有两种可能:B =⌀,B ≠⌀.当B =⌀时,显然a =0,当B ≠⌀时,则a ≠0,得x =3a ,则有3a =1或3a =2或3a =3或3a =4, 解得a =3或a =32或a =1或a =34.综上,实数a 的取值集合是{0,34,1,32,3}.【考点】集合的包含关系判断及应用【解析】此题暂无解析【解答】解:(1)由M ⊆A ,且M 中至少有一个偶数,得满足条件的集合M 为:{2},{1,2},{2,3},{1,2,3},{4},{1,4},{3,4},{1,3,4},{2,4},{1,2,4},{2,3,4},{1,2,3,4},共12个.12.【答案】解:(1)当m =4时,A ={x|2×4−10<x <4−1}={x|−2<x <3},B ={x|2<x <6},则A ∩B ={x|2<x <3}.(2)∵ A ⊆B ,当A ≠⌀时,{2m −10<m −12m −10≥2m −1≤6;解得,6≤m ≤7;当A =⌀时,由2m −10≥m −1得,m ≥9;故m 的取值范围为{m|m ≥9或6≤m ≤7}.【考点】交集及其运算集合的包含关系判断及应用【解析】(1)当m =3时,化简A ={x 2−3x −10≤0}=[−2, 5],B =(2, 7);从而求交集.(2)讨论当B ≠⌀时,{m −1<2m +1m −1≥−22m +1≤5;当B =⌀时,m −1≥2m +1,从而解得.【解答】解:(1)当m =4时,A ={x|2×4−10<x <4−1}={x|−2<x <3},B ={x|2<x <6},则A ∩B ={x|2<x <3}.(2)∵ A ⊆B ,当A ≠⌀时,{2m −10<m −12m −10≥2m −1≤6;解得,6≤m ≤7;当A =⌀时,由2m −10≥m −1得,m ≥9;故m 的取值范围为{m|m ≥9或6≤m ≤7}.。

新高考数学复习考点知识提升专题训练2---集合间的基本关系

新高考数学复习考点知识提升专题训练2---集合间的基本关系

新高考数学复习考点知识提升专题训练(二) 集合间的基本关系(一)基础落实1.下列说法正确的是( ) A .Q ⊆Z B .N ∈R C .N ⊆QD .Z ⊆N *解析:选C N 表示自然数集,N *表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集,因为Z ⊆Q ,N ⊆R ,N ⊆Q ,N *⊆Z ,所以A 、B 、D 错误,C 正确,故选C.2.若x ,y ∈R ,A ={(x ,y )|y =x },B =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪yx=1,则集合A ,B 间的关系为( ) A .A B B .A B C .A =BD .A ⊆B解析:选B ∵B =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪y x =1={(x ,y )|y =x ,且x ≠0},∴BA .3.下列集合中,是集合{1,2}的真子集的是( ) A .{1,2} B .∅ C .{∅}D .{1,2,3}解析:选B 由题意得:集合{1,2}的真子集为∅,{1},{2},故选B. 4.(多选)已知集合A ={x |x 2-2x =0},则有( ) A .∅⊆A B .-2∈A C .{0,2}⊆AD .A ⊆{y |y <3}解析:选ACD 由于空集是任何集合的子集,故A 正确,因为A ={0,2},所以C 、D 正确,B 错误.故选A 、C 、D.5.已知集合M {4,7,8},且M 中至多有一个偶数,则这样的集合共有( ) A .3个 B .4个 C .5个D .6个解析:选D ∵M {4,7,8},且M 中至多有一个偶数,∴M 可能为∅,{4},{7},{8},{4,7},{7,8},共6个,故选D.6.集合A ={x ∈N |1≤x <4}的真子集的个数是________.解析:∵A ={x ∈N |1≤x <4}={1,2,3},∴A ={x ∈N |1≤x <4}的真子集为:∅,{1},{2},{3},{1,2},{1,3},{2,3},共7个.答案:77.已知∅{x |x 2+x +a =0},则实数a 的取值范围是________. 解析:因为∅{x |x 2+x +a =0},所以方程x 2+x +a =0有实数根,即Δ=1-4a ≥0,解得a ≤14.答案:⎩⎨⎧⎭⎬⎫a | a ≤148.若集合A ={x ∈N |x 2<24},B ={a },B ⊆A ,则a 的最大值为________. 解析:因为自然数集中只有x =0,1,2,3,4满足x 2<24,所以A ={x ∈N |x 2<24}={0,1,2,3,4},又因为B ={a }⊆A ,所以a ∈{0,1,2,3,4},a 的最大值为4. 答案:49.写出下列每对集合之间的关系: (1)A ={1,2,3,4,5},B ={1,3,5}; (2)C ={x |x 2=1},D ={x ||x |=1}; (3)E ={x |x <3},F ={x |-1<x ≤2};(4)G ={x |x 是对角线相等且互相平分的四边形},H ={x |x 是有一个内角为直角的平行四边形}. 解:(1)因为B 的每个元素都属于A ,而4∈A 且4∉B ,所以B A .(2)不难看出,C和D包含的元素都是1和-1,所以C=D.(3)在数轴上表示出集合E和F,如图所示:由图可知F E.(4)如果x∈G,则x是对角线相等且互相平分的四边形,所以x是矩形,从而可知x是有一个内角为直角的平行四边形,所以x∈H,因此G⊆H.反之,如果x∈H,则x是有一个内角为直角的平行四边形,所以x是矩形,从而可知x是对角线相等且互相平分的四边形,所以x∈G,因此H⊆G.综上可知,G=H.10.集合A={x|x-4=0},集合B={x|x2-2(a+1)x+a2-1=0},若A⊆B,求实数a的值.解:A={4},因为A⊆B,故4∈B,所以16-8(a+1)+a2-1=0,整理得a2-8a+7=0,解得a=1或a=7.(二)综合应用1.设A={x|2<x<3},B={x|x<m},若A⊆B,则m的取值范围是()A.{m|m>3} B.{m|m≥3}C.{m|m<3} D.{m|m≤3}解析:选B因为A={x|2<x<3},B={x|x<m},A⊆B,将集合A,B表示在数轴上,如图所示,所以m≥3.2.已知集合A ={x |x =3k ,k ∈Z },B ={x |x =6k ,k ∈Z },则A 与B 之间最适合的关系是( ) A .A ⊆B B .A ⊇B C .A BD .A B解析:选D 对于集合A ={x |x =3k ,k ∈Z }, 当k =2m (m ∈Z )时,A ={x |x =6m ,m ∈Z }, 当k =2m +1(m ∈Z )时,A ={x |x =6m +3,m ∈Z }, 又B ={x |x =6k ,k ∈Z },即A B .3.集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪2x +1∈Z ,x ∈Z 的真子集个数是________. 解析:因为当x =-3时,2x +1=-1∈Z ;当x =-2时,2x +1=-2∈Z ;当x =0时,2x +1=2∈Z ;当x =1时,2x +1=1∈Z ,所以满足集合A ={-3,-2,0,1}, 真子集个数为24-1=15. 答案:154.已知集合A ,B ,C ,且A ⊆B ,A ⊆C ,若B ={1,2,3,4},C ={0,1,2,3},则所有满足要求的集合A 的各个元素之和为________.解析:∵集合A ,B ,C ,且A ⊆B ,A ⊆C ,B ={1,2,3,4},C ={0,1,2,3}, ∴集合A 是两个集合的子集,集合B ,C 的公共元素是1,2,3,∴满足上述条件的集合A=∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3},∴所有满足要求的集合A的各个元素之和为:4(1+2+3)=24.答案:245.已知集合A={2,4,6,8,9},B={1,2,3,5,8},存在非空集合C,使C中每个元素加上2就变成了A的一个子集且C中每个元素减去2就变成了B的一个子集,你能确定出集合C的个数是多少吗?解:假设存在满足条件的集合C,则C≠∅,将A中元素都减2,B中元素都加2,则C⊆{0,2,4,6,7}且C⊆{3,4,5,7,10},由于两个集合的共同元素构成的集合为{4,7},故非空集合C是{4,7}的子集,即C={4,7}或{4}或{7}.故这样的集合有3个.(三)创新发展1.设A={1,2,3,4},B={1,2},请写出一个满足B⊆C⊆A的集合C=________.解析:∵A={1,2,3,4},若B⊆C⊆A,∴C={1,2,3}或{1,2,4}或{1,2}或{1,2,3,4},答案:{1,2,3}(答案不唯一)2.已知集合A={x||x-a|=4},集合B={1,2,b}.(1)是否存在实数a,使得对于任意实数b都有A⊆B,若存在,求出对应的a的值;若不存在,说明理由.(2)若A⊆B成立,列举出对应的实数对(a,b)构成的集合.解:(1)不存在满足题意的实数a .理由如下: ∵A ={a -4,a +4},若对于任意实数b 都有A ⊆B ,则⎩⎪⎨⎪⎧ a -4=1,a +4=2或⎩⎪⎨⎪⎧a -4=2,a +4=1,方程组均无解.∴不存在实数a ,使得对于任意实数b 都有A ⊆B . (2)由(1)知,若A ⊆B ,则有⎩⎪⎨⎪⎧ a -4=1,a +4=b 或⎩⎪⎨⎪⎧ a -4=2,a +4=b 或⎩⎪⎨⎪⎧ a -4=b ,a +4=1或⎩⎪⎨⎪⎧a -4=b ,a +4=2, 解得⎩⎪⎨⎪⎧ a =5,b =9或⎩⎪⎨⎪⎧ a =6,b =10或⎩⎪⎨⎪⎧ a =-3,b =-7或⎩⎪⎨⎪⎧a =-2,b =-6.∴(a ,b )构成的集合为{(5,9),(6,10),(-3,-7),(-2,-6)}.。

集合间的基本关系练习题

集合间的基本关系练习题

A. b 3, c 2 B. b 3, c 2
C. b 2, c 3 D. b 2, c 3
4. 满足{a,b} A {a,b, c, d} 的集合 A 有 个.
5. 设 集 合 A {四边形}, B {平行四边形},C {矩形} , D {正方形} , 则 它 们 之 间 的 关 系
(2)任何一个集合是它本身的子集吗?任何一个集合是它本身的真子集吗?试用符号表示 结论.
(3)类比下列实数中的结论,你能在集合中得出什么结论? ① 若 a b, 且b a, 则a b ; ② 若 a b, 且b c, 则a c .
典型例题 例题 1 写出集合{a,b,c} 的所有的子集,并指出其中哪些是它的真子集.
A;b B;{1,3}
A.
复习题 3:比较下面几个例子,试发现两个集合之间的关系: A {3,6,9}与 B {x | x 3k, k N*且k 333} ; C {东升高中学生} 与 D {东升高中高一学生} ; E {x | x(x 1)(x 2) 0}与 F {0,1, 2}.
个,真子集有 2n 1 个.
1. 下列结论正确的是( ).
A. A
B. {0}
C. {1, 2} Z D. {0}{0,1}
2. 设 A x x 1, B x x a ,且 A B ,则实数 a 的取值范围为( ).
A. a 1
B. a 1
C. a 1
D. a 1
3. 若{1, 2} {x | x2 bx c 0} ,则( ).

.
三、总结提升
※ 学习小结 1. 子集、真子集、空集、相等的概念及符号;Venn 图图示;一些结论. 2. 两个集合间的基本关系只有“包含”与“相等”两种,可类比两个实数间的大小关系, 特别要注意区别“属于”与“包含”两种关系及其表示方法.

高中数学教师资格证笔试练题:集合间的基本关系(练习)

高中数学教师资格证笔试练题:集合间的基本关系(练习)

1.2 集合间的基本关系一、单选题1.下列各式中:①{}{}00,1,2∈;②{}{}0,1,22,1,0⊆;③{}0,1,2∅⊆;④{}0∅=;⑤{}{}0,1(0,1)=;⑥{}00=.正确的个数是( )A .1B .2C .3D .42.集合{}=1,2,3A 的子集个数为( )A .3B .6C .7D .83.满足条件∅ M ⫋{a ,b ,c }的集合M 共有( )A .3个B .6个C .7个D .8个 4.已知集合{}20,A x x x x R =+=∈,则集合A 的非空子集个数是( )A .1B .2C .3D .45.下列表述正确的有( )①空集没有子集;②任何集合都有至少两个子集;③空集是任何集合的真子集;④若∅是A 的真子集,则A ≠∅.A .0个B .1个C .2个D .3个 6.已知集合{}123,,A a a a =的所有非空真子集的元素之和等于9,则123a a a ++=( ) A .1 B .2 C .3 D .67.设集合A ={-1,1},集合B ={x |x 2-2ax +1=0},若B ≠∅,B ⊆A ,则a 等于( )A .-1B .0C .1D .±1二、多选题8.下列关系式正确的为( )A .{}{},,a b b a ⊆B .{}0=∅C .{}00∈D .{}0∅⊆ 9.下列集合的关系,正确的是( )A .{}∅∅B .{}∅=∅C .{}0⊇∅D .{}∅∈∅10.已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 为( )A .{1,2}B .{2,3}C .{1,2,4}D .{2,3,4}11.已知集合{}{2,A x ax B =≤=-,若B A ⊆,则实数a 的值可能是( ) A .1- B .1 C .0 D .2 12.已知集合{}12A x x =<<,{}232B x a x a =-<<-,下列说法正确的是( ) A .不存在实数a 使得A B =B .当4a =时,A B ⊆C .当04a ≤≤时,B A ⊆D .存在实数a 使得B A ⊆三、填空题13.已知集合{0,1}A =,则集合A 的子集个数为_____________.14.已知集合2,1A x Z x Z x ⎧⎫=∈∈⎨⎬-⎩⎭,则集合A 的真子集的个数为_________ 15.已知集合{1,2,}M m =-,{1,3}N =,若N M ⊆,则实数m 的值为_________. 16.设集合{}|23A x x =-≤,{}|B x x t =<,若A B ⊆,则实数t 的取值范围是_____.17.已知集合212|,,{|1,}33n n A x x n Z B x x n Z +⎧⎫==∈==+∈⎨⎬⎩⎭,则集合A 、B 的关系为A ____(B 从“,,⊆⊇=”选择合适的符号填空).四、解答题18.指出下列各对集合之间的关系:(1)A ={-1,1},B ={(-1,-1),(-1,1),(1,-1),(1,1)};(2)A ={x |x 是等边三角形},B ={x |x 是等腰三角形};(3)A ={x |-1<x <4},B ={x |x -5<0};(4)M ={x |x =2n -1,n ∈N *},N ={x |x =2n +1,n ∈N *}.19.已知集合M 满足{}{}1,21,2,3,4,5M ⊆⊆,求所有满足条件的集合M .20.已知集合{}23,21,1A a a a =-++,集合{}0,1,B x =.(1)若3A -∈,求a 的值;(2)是否存在实数a ,x ,使A B =.21.已知集合{|4}A x x a =-=,集合{}1,2,B b =(1)是否存在实数a ,使得对任意实数b 都有A B ⊆成立?若存在,求出对应的a 值;若不存在,说明理由.(2)若A B ⊆成立,写出所有实数对(),a b 构成的集合.参考答案1.B解:①集合之间的关系是包含与不包含,因此{0}{0∈,1,2},不正确,应该为{0}{0,1,2};②{0,1,2}{2⊆,1,0},正确;③{0∅⊆,1,2},正确;④∅不含有元素,因此{0}∅;⑤{0,1}与{(0,1)}的元素形式不一样,因此不正确;⑥元素与集合之间的关系是属于与不属于的关系,应该为0{0}∈,因此不正确. 综上只有:②,③正确.2.D解:由题意得集合A 的子集个数为328=.3.B解:满足条件∅ M ⫋{a ,b ,c }的集合M 有:{a },{b },{c },{a ,b },{a ,c },{b ,c }.共6个,∴满足条件∅⫋M ⫋{a ,b ,c }的集合M 共有6个.4.C{}{}20,1,0A x x x x R =+=∈=-, 所以集合A 的非空子集个数为2213-=,5.B因为∅⊆∅,故①错;∅只有一个子集,即它本身.故②错;空集是任何集合的子集,是任何非空集合的真子集,故③错;空集是任何非空集合的真子集,故④正确,6.C解:集合{}123,,A a a a =的所有非空真子集为:{}{}{}{}{}{}123121323,,,,,,,,a a a a a a a a a ,则所有非空真子集的元素之和为:()12312132312339a a a a a a a a a a a a ++++++++=++=,所以1233a a a .7.D当B ={-1}时,x 2-2ax +1=0有两相等的实根-1,则()()()2224012110a a ⎧∆=--=⎪⎨---+=⎪⎩,解得a =-1; 当B ={1}时,x 2-2ax +1=0有两相等的实根1,则()222401210a a ⎧∆=--=⎪⎨-+=⎪⎩,解得a =1; 当B ={-1,1}时,x 2-2ax +1=0有两个不相等的实根-1,1,则()()()222240*********a a a ⎧∆=-->⎪⎪---+=⎨⎪-+=⎪⎩,无解,.综上:a =±1. 8.ACD解:对于选项A ,由于任何集合是它本身的子集,所以{}{},,a b b a ⊆,故A 正确;对于选项B ,{}0是指元素为0的集合,而∅表示空集,是指不含任何元素的集合,所以{}0≠∅,故B 错误;对于选项C ,{}0是指元素为0的集合,所以{}00∈,故C 正确;对于选项D ,由于空集是任何集合的子集,所以{}0∅⊆,故D 正确.9.ACDA .空集是任意非空集合的真子集,故A 正确;C.空集是任意集合的子集,因为{}0是含有一个元素的集合,所以{}0⊇∅正确;D.空集是空集构成的集合中的元素,满足属于关系,故D 正确,B 中左边是空集,右边是含有一个元素的集合,不相等,B 不正确;10.AC{}{}2320,1,2A x x x x R =-+=∈=∣ {}{05,}1,2,3,4B x x x N =<<∈=∣,A CB ⊆⊆,故四个选项中,{1,2}和{1,2,4}满足题意.11.ABC当0a =时,{}2A x ax R =≤=,显然B A ⊆,所以选项C 符合题意;当0a >时,{}22A x ax x x a ⎧⎫=≤=≤⎨⎬⎩⎭,若B A ⊆2a a ⇒即0a <≤B 符合题意;当0a <时,{}22A x ax x x a ⎧⎫=≤=≥⎨⎬⎩⎭,若B A ⊆,所以有221a a -≥⇒≥-,即10a -≤<,所以选项A 符合题意,故选:ABC12.AD选项A :若集合A B =,则有231,22,a a -=⎧⎨-=⎩,因为此方程组无解,所以不存在实数a 使得集合A B =,故选项A 正确.选项B :当4a =时,{}52B x x =<<=∅,不满足A B ⊆,故选项B 错误.若B A ⊆,则①当B =∅时,有232a a -≥-,1a ≥;②当B ≠∅时,有1,231,22a a a <⎧⎪->⎨⎪-<⎩此方程组无实数解;所以若B A ⊆,则有1a ≥,故选项C 错误,选项D 正确.故选:AD .13.4因为A 中元素个数为2,故其子集的个数为224=,14.15 因为21Z x ∈-,所以x -1是2的因数,即x -1可能是-1,-2,1,2,则2,1A x Z x Z x ⎧⎫=∈∈⎨⎬-⎩⎭={-1,0,2,3},所以真子集的个数为24-1=15.15.3-因为集合{1,2,}M m =-,{1,3}N =,且N M ⊆,所以3m -=,得3m =-,16.(5,)+∞ 由题意,集合{}|23{|15}A x x x x =-≤=-≤≤,又由{}|B x x t =<,且A B ⊆,所以5t >,即实数t 的取值范围是(5,)+∞.17.=解:由集合A 得:1|(21),3A x x n n Z ⎧⎫==+∈⎨⎬⎩⎭, 由集合B 得:1|(23),3B x x n n Z ⎧⎫==+∈⎨⎬⎩⎭, {|21x x n =+,}{|23n Z x x n ∈==+,}n Z ∈, A B ∴=,18.(1)集合A 的代表元素是数,集合B 的代表元素是有序实数对,故A 与B 之间无包含关系. (2)等边三角形是三边相等的三角形,等腰三角形是两边相等的三角形,故A B . (3)集合B ={x |x <5},用数轴表示集合A ,B 如图所示,由图可知A B .(4)由列举法知M ={1,3,5,7,…},N ={3,5,7,9,…},故N M .19.解:①当M 中含有2个元素时,M 为{}1,2;②当M 中含有3个元素时,M 为{}1,2,3,{}1,2,4,{}1,2,5;③当M 中含有4个元素时,M 为{}1,2,3,4,{}1,2,3,5,{}1,2,4,5;④当M 中含有5个元素时,M 为{}1,2,3,4,5.故满足条件的集合M 为{}1,2,{}1,2,3,{}1,2,4,{}1,2,5,{}1,2,3,4,{}1,2,3,5,{}1,2,4,5,{}1,2,3,4,5.20.(1)2a =-;(2)不存在.(1)由题意,33a -=-或213a +=-,解得0a =或2a =-,当0a =时,{}3,1,1A =-,不成立;当2a =-时,{}5,3,5A =--,成立;∴2a =-.(2)由题意,210a +≠,若30a -=,则3a =,{}0,7,10A B =≠,不合题意;若210a +=,则12a =-,750,,24A B ⎧⎫=-≠⎨⎬⎩⎭,不合题意; ∴不存在实数a ,x ,使得A B =.21.(1)不存在,理由见解析;(2){(5,9),(6,10),(3,7),(2,6)}----.解:(1)由题意,集合{|4}A x x a =-={}4,4a a =-+,因为b 是任意实数,要使A B ⊆,必有4142a a -=⎧⎨+=⎩或4241a a -=⎧⎨+=⎩, 两个方程组都没有实数解,所以不存在满足条件的实数a .(2)由(1)知{}4,4A a a =-+,要使A B ⊆,则满足414a a b -=⎧⎨+=⎩或424a a b -=⎧⎨+=⎩或441a b a -=⎧⎨+=⎩或442a b a -=⎧⎨+=⎩, 解得59a b =⎧⎨=⎩或610a b =⎧⎨=⎩或37a b =-⎧⎨=-⎩或26a b =-⎧⎨=-⎩, 所以实数对(),a b 构成的集合为()()()(){}596103726----,,,,,,,.。

集合间的基本关系

集合间的基本关系

1.2 集合间的基本关系 1.判断下列说法是否正确(正确的打“√”,错误的打“×”).(1)任何集合至少有两个子集.( × )(2){0,1,2}⊆{2,0,1}.( √ )(3)若A ⊆B ,且A ≠B ,则A B .( √ )(4)集合{0,1}的子集是{0},{1},{0,1}.( × )题型1 集合间关系的判断2.已知集合U ,S ,T ,F 的关系如图所示,则下列关系正确的是__③⑥__.①S ∈U ;②F ⊆T ;③S ⊆T ;④S ⊆F ;⑤S ∈F ;⑥F ⊆U .解析:元素与集合之间的关系才用∈,故①⑤错;子集的区域要被全部涵盖,故②④错.3.判断下列各组中集合之间的关系:(1)A ={x |x 是12的约数},B ={x |x 是36的约数};(2)A ={x |x 2-x =0},B ={x ∈R |x 2+1=0};(3)M =⎩⎨⎧⎭⎬⎫x |x =n 2,n ∈Z ,N =⎩⎨⎧⎭⎬⎫x |x =12+n ,n ∈Z . 解:(1)因为若x 是12的约数,则必定是36的约数,反之不成立,所以A B .(2)因为A ={x |x 2-x =0}={0,1},B ={x ∈R |x 2+1=0}=∅,所以B A .(3)对于集合M ,其组成元素是n 2,分子部分表示所有的整数;对于集合N ,其组成元素是12+n =2n +12,分子部分表示所有的奇数.由真子集的概念知,N M . 题型2 确定集合的子集、真子集4.满足{2 019}⊆A{2 019,2 020,2 021}的集合A 的个数为( C ) A .1B .2C .3D .4解析:由题意可得A 可以为{2 019},{2 019,2 020},{2 019,2 021},因此满足条件的集合A 的个数为3.5.满足条件{x |x 2-1=0}⊆A {-1,0,1,2,5}的集合A 的个数为( A )A .7B .6C .8D .5解析:因为{x |x 2-1=0}={-1,1},所以{-1,1}⊆A {-1,0,1,2,5},所以集合A 可以是{-1,1},{-1,1,0},{-1,1,2},{-1,1,5},{-1,1,0,2},{-1,1,0,5},{-1,1,2,5},共7个.题型3 由集合之间的关系求参数6.设集合A ={x ,y },B ={0,x 2},若A =B ,则2x +y 等于( C )A .0B .1C .2D .-1 解析:由已知得⎩⎪⎨⎪⎧ x =x 2,y =0,x ≠0,解得⎩⎪⎨⎪⎧x =1,y =0.符合题意.所以2x +y =2. 7.若非空数集A ={x |2a +1≤x ≤3a -5},B ={x |3≤x ≤22},则能使A ⊆B 成立的所有a 的集合是( B )A .{a |1≤a ≤9}B .{a |6≤a ≤9}C .{a |a ≤9}D .∅解析:因为A 为非空数集,所以2a +1≤3a -5,即a ≥6.又A ⊆B ,所以⎩⎪⎨⎪⎧ 2a +1≥3,3a -5≤22,即⎩⎪⎨⎪⎧a ≥1,a ≤9.所以1≤a ≤9.综上可知,6≤a ≤9. 8.已知集合A ={1,3,a },B ={1,a 2-a +1},且B ⊆A ,则a =__-1或2__.解析:因为B ⊆A ,所以a 2-a +1=3或a 2-a +1=a .①由a 2-a +1=3得a 2-a -2=0,解得a =-1或a =2,当a =-1时,A ={1,3,-1},B ={1,3},满足B ⊆A ;当a =2时,A ={1,3,2},B ={1,3},满足B ⊆A .②由a 2-a +1=a 得a 2-2a +1=0,解得a =1,当a =1时,A ={1,3,1},不满足集合元素的互异性.综上,若B ⊆A ,则a =-1或a =2.易错点1 利用数轴求参数时忽略端点值能否取到致误9.已知集合A ={x |x ≥4或x <-5},B ={x |a +1≤x ≤a +3,a ∈R },若B ⊆A ,则a 的取值范围为__{a |a <-8或a ≥3}__.解析:利用数轴法表示B ⊆A ,如图所示,则a +3<-5或a +1≥4,解得a <-8或a ≥3.[误区警示] 在求集合中参数的取值范围时,要特别注意该参数在取值范围的边界处能否取等号,否则会导致解题结果错误.正确的做法就是把端点值代入原式,看是否符合题目要求.易错点2忽略对参数的讨论10.已知集合E={x|x2=0},F={x|x2-(a-1)x=0},判断集合E和F的关系.解:E={x|x2=0}={0}.下面对方程x2-(a-1)x=0的根的情况进行讨论.方程x2-(a-1)x=0的判别式为Δ=(a-1)2.①当a=1时,Δ=0,方程有两个相等的实数根x1=x2=0,此时F={0},E=F.②当a≠1时,Δ>0,方程有两个不相等的实数根,x=0或x=a-1,且a-1≠0,此时,F={0,a-1},E F.综上,当a=1时,E=F;当a≠1时,E F.[误区警示]本题易认为E={x|x2=0}={0},F={0,a-1},忽略方程x2-(a-1)x =0的根与参数的取值有关,得到E F.确定集合之间的关系时,若含有参数,则参数的不同取值会使集合中的元素不确定,不讨论参数易导致误判.(限时30分钟)一、选择题1.能正确表示集合M={x∈R|0≤x≤2}和集合N={x∈R|x2-x=0}关系的Venn图是(B)解析:因为M={x∈R|0≤x≤2},N={x∈R|x2-x=0}={0,1},所以N M.故选B.2.已知集合A={x|x=3k,k∈Z},B={x|x=6k,k∈Z},则A与B之间最适合的关系是(D)A.A⊆B B.A⊇BC.A B D.A B解析:因为A中元素是3的整数倍,而B中元素是3的偶数倍,所以集合B是集合A 的真子集.3.集合{x∈N|x=5-2n,n∈N}的子集的个数是(B)A.9 B.8C.7 D.6解析:因为x∈N,n∈N,所以集合{x∈N|x=5-2n,n∈N}={1,3,5}.所以其子集的个数是23=8.4.(多选题)设集合A ={x ∈Z |x <-1},则( AD )A .∅⊆AB .2∈AC .0∈AD .{-2}A解析:2∉A,0∉A ,故B ,C 错.5.(多选题)已知A ⊆B ,A ⊆C ,B ={2,0,1,8},C ={1,9,3,8},则A 可以是( AC )A .{1,8}B .{2,3}C .{1}D .{2} 解析:∵A ⊆B ,A ⊆C ,B ={2,0,1,8},C ={1,9,3,8},逐项验证可知,选项A 符合题意;选项B 不满足A ⊆B ,也不满足A ⊆C ;选项C 符合题意;选项D 满足A ⊆B ,但是不满足A ⊆C ,故选AC.6.已知集合A ={0},集合B ={x |x <a },若A ⊆B ,则实数a 的取值范围是( D )A .a ≤0B .a ≥0C .a <0D .a >0解析:因为集合A ={0},集合B ={x |x <a },若A ⊆B ,则a >0,故选D.7.已知A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( D )A .1B .2C .3D .4解析:因为A ={x |x 2-3x +2=0,x ∈R }={1,2},B ={1,2,3,4},A ⊆C ,所以1,2∈C .又C ⊆B ,所以满足条件的集合C 可以是{1,2}或{1,2,3}或{1,2,4}或{1,2,3,4},共4个.故选D.8.集合M =⎩⎨⎧⎭⎬⎫x |x =m +16,m ∈Z ,N =⎩⎨⎧⎭⎬⎫x |x =n 2-13,n ∈Z ,P =⎩⎨⎧⎭⎬⎫x |x =p 2+16,p ∈Z ,则M ,N ,P 之间的关系是( B )A .M =N PB .M N =PC .M N PD .N P =M 解析:M =⎩⎨⎧⎭⎬⎫x |x =6m +16,m ∈Z ,N =⎩⎨⎧⎭⎬⎫x |x =3n -26=3(n -1)+16,n ∈Z ,P =⎩⎨⎧⎭⎬⎫x |x =3p +16,p ∈Z . 由于3(n -1)+1和3p +1都表示被3除余1的数,而6m +1表示被6除余1的数,所以M N =P .二、填空题9.若{1,2}={x |x 2+bx +c =0},则b =__-3__,c =__2__.解析:依题意知,1,2是方程x 2+bx +c =0的两根,所以⎩⎪⎨⎪⎧1+b +c =0,4+2b +c =0,解得⎩⎪⎨⎪⎧b =-3,c =2. 10.已知A ={x |x <-1或x >5},B ={x |a ≤x <a +4},若A B ,则实数a 的取值范围是__{a |a ≤-5或a >5}__.解析:因为A ={x |x <-1或x >5},B ={x |a ≤x <a +4},A B ,所以a +4≤-1或a >5,解得a ≤-5或a >5.三、解答题11.已知集合A ={a ,a -1},B ={2,y },C ={x |1<x -1<4}.(1)若A =B ,求y 的值;(2)若A ⊆C ,求a 的取值范围.解:(1)若a =2,则A ={1,2},所以y =1.若a -1=2,则a =3,A ={2,3},所以y =3,综上,y 的值为1或3.(2)因为C ={x |2<x <5},A ⊆C ,所以⎩⎪⎨⎪⎧2<a <5,2<a -1<5,解得3<a <5. 所以a 的取值范围是{a |3<a <5}.12.已知集合P ={x ∈R |x 2+b =0},Q ={x ∈R |(x +1)(x 2+3x -4)=0}.(1)若b =4,存在集合M 使得P M Q ,求这样的集合M ;(2)若集合P 是集合Q 的一个子集,求b 的取值范围.解:(1)当b =4时,方程x 2+4=0无实根,所以P =∅,又Q ={x ∈R |(x +1)(x 2+3x -4)=0}={-4,-1,1},所以P Q .由已知,得M 应是一个非空集合,且是Q 的一个真子集,用列举法可得这样的集合M 共有6个,分别为{-4},{-1},{1},{-4,-1},{-4,1},{-1,1}. (2)当P =∅时,P 是Q 的一个子集,此时b >0.当P ≠∅时,因为Q ={-4,-1,1},若P ⊆Q ,则b <0,P ={-b ,--b },则-b =1,b =-1.综上,满足条件的b 的取值范围是{b |b >0或b =-1}.。

集合间的基本关系练习题

集合间的基本关系练习题

集合间的基本关系练习题集合间的基本关系一、选择题1.集合 $A=\{x\leq x<3 \text{ 且 } x\in Z\}$ 的真子集的个数为()A。

5 B。

6 C。

7 D。

82.已知集合 $A=\{x-1<x<2\}$,$B=\{x<x<1\}$,则()A。

$A>B$ B。

$A\subseteq B$ C。

$A\capB=\varnothing$ D。

$A$ 与 $B$ 的关系不确定3.已知 $M=\{1,2,a^2-3a-1\}$,$N=\{1,3\}$,若 $3\inM$ 且 $N\nsubseteq M$,则 $a$ 的取值为()A。

1 B。

4 C。

$-1$ 或 $-3$ D。

$-4$ 或 14.已知集合$A=\{x^3=3k,k\in Z\}$,$B=\{x^6=k,k\in Z\}$,则()A。

$A>B$ B。

$A\subseteq B$ C。

$A\capB=\varnothing$ D。

$A$ 与 $B$ 的关系不确定5.满足 $\{a\}\subseteq M\subseteq \{a,b,c,d\}$ 的集合$M$ 共有()A。

6个 B。

7个 C。

8个 D。

15个6.已知集合 $A=\{x_1<x<2\}$,$B=\{x<x<a\}$,满足$A\cap B\neq \varnothing$,则()A。

$a\geq 2$ B。

$a\leq 1$ C。

$a\geq 1$ D。

$a\leq 2$二、填空题1.集合 $A$ 中有 $m$ 个元素,若在 $A$ 中增加一个元素,则它的子集增加的个数为 $\underline{\qquad}$。

2.设 $A=\{1,3,a\}$,$B=\{1,a^2-a+1\}$,若 $B\subseteqA$,则 $a$ 的取值为 $\underline{\qquad}$。

3.已知集合 $P=\{x|x^2=1\}$,$Q=\{x|ax=1\}$,若$Q\subseteq P$,则 $a$ 的取值 $\underline{\qquad}$。

集合间的基本关系(经典练习及答案详解)

集合间的基本关系(经典练习及答案详解)

集合间的基本关系1.(2020年福建高一期中)现有四个判断:2⊆{1,2};∅∈{0};{ 5 }⊆Q ;∅{0}.其中正确的个数是( )A .2B .1C .4D .3 【答案】B 【解析】元素与集合之间不能用包含关系,故2⊆{1,2}错误;∅与{0}是集合之间的关系,不能用“∈”,故∅∈{0}错误;因为 5 ∉Q ,所以{5}⊆Q 错误;空集是任何非空集合的真子集,故∅{0}正确.故选B .2.已知集合A ={x |a -1≤x ≤a +2},B ={x |3<x <5},则能使A ⊇B 成立的实数a 的取值范围是( )A .{a |3<a ≤4}B .{a |3≤a ≤4}C .{a |3<a <4}D .∅【答案】B 【解析】因为A ⊇B ,所以⎩⎪⎨⎪⎧ a -1≤3,a +2≥5.所以3≤a ≤4. 3.(2021年北京期末)下列正确表示集合M ={x |x 2-x =0}和N ={-1,0,1}关系的Venn 图是( )A BC D 【答案】D 【解析】由x 2-x =0,解得x =0或1,所以M N .故选D .4.(2020年铜仁高一期中)设集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈Z ⎪⎪ 62+x ∈N ,则集合B 的子集个数为( ) A .3B .4C .8D .16【答案】D 【解析】根据题意,集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈Z ⎪⎪ 62+x ∈N ={-1,0,1,4},有4个元素,其子集有24=16个.故选D .5.(2021年昆明期中)下列各式中,正确的个数是( )①{0}∈{0,2,4};②{0,2,4}⊆{4,2,0};③∅⊆{0,2,4};④∅={0};⑤{0,2}={(0,2)};⑥0={0}.A.1 B.2C.3 D.4【答案】B【解析】对于①,是集合与集合的关系,应为{0}{0,2,4};对于②,实际为同一集合,任何一个集合是它本身的子集;对于③,空集是任何集合的子集;对于④,{0}是含有单元素0的集合,空集不含任何元素,并且空集是任何非空集合的真子集,所以∅{0};对于⑤,{0,2}是含有两个元素0与2的集合,而{(0,2)}是以有序数组(0,2)为元素的单元素集合,所以{0,2}与{(0,2)}不相等;对于⑥,0与{0}是“属于与否”的关系,所以0∈{0}.故②③正确.6.用符号“∈”或“⊆”填空:若A={2,4,6},则4______A,{2,6}______A.【答案】∈⊆【解析】因为集合A中有4这个元素,所以4∈A,因为2∈A,6∈A,所以{2,6}⊆A.故答案为∈,⊆.7.已知集合A⊆{0,1,2},且集合A中至少含有一个偶数,则这样的集合A的个数为________.【答案】6【解析】集合{0,1,2}的子集为:∅,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2},其中含有偶数的集合有6个.8.已知集合A={x|x<3},集合B={x|x<m},且A⊆B,则实数m满足的条件是________.【答案】m≥3【解析】将数集A在数轴上表示出来,如图所示,要满足A⊆B,表示数m的点必须在表示3的点处或在其右边,故m≥3.9.设集合A={1,3,a},B={1,a2-a+1},且B⊆A,求a的值.解:因为B⊆A,所以a2-a+1=3或a2-a+1=a.当a2-a+1=3时,解得a=-1或a=2.经检验,满足题意.当a2-a+1=a时,解得a=1,此时集合A中的元素1重复,故a=1不合题意.综上所述,a=-1或a=2.B级——能力提升练10.(多选)图中反映的是“文学作品”“散文”“小说”“叙事散文”这四个文学概念之间的关系,则()A.A为小说B.B为文学作品C .C 为散文D .D 为叙事散文【答案】AB 【解析】由Venn 图可得A B ,C D B ,A 与D 之间无包含关系,A 与C 之间无包含关系.由“文学作品”“散文”“小说”“叙事散文”四个文学概念之间的关系,可得A 为小说,B 为文学作品,C 为叙事散文,D 为散文.11.已知集合A ={x |x =3k ,k ∈Z },B ={x |x =6k ,k ∈Z },则A 与B 之间的关系是( )A .A ⊆BB .A =BC .A BD .A B【答案】D 【解析】对于x =3k (k ∈Z ),当k =2m (m ∈Z )时,x =6m (m ∈Z );当k =2m -1(m ∈Z )时,x =6m -3(m ∈Z ).由此可知A B .12.(2020年太原高一期中)设集合A ={a ,b },B ={0,a 2,-b 2},若A ⊆B ,则a -b =( )A .-2B .2C .-2或2D .0【答案】C 【解析】因为集合A ={a ,b },B ={0,a 2,-b 2},且A ⊆B ,易知a ≠0且b ≠0.当 ⎩⎪⎨⎪⎧ a =a 2,b =-b 2时,因为a ≠0且b ≠0,所以⎩⎪⎨⎪⎧ a =1,b =-1,此时集合A ={1,-1},集合B ={0,1,-1},符合题意,所以a -b =2;当⎩⎪⎨⎪⎧ a =-b 2,b =a 2时,因为a ≠0且b ≠0,所以⎩⎪⎨⎪⎧a =-1,b =1,此时集合A ={1,-1},集合B ={0,1,-1},符合题意,所以a -b =-2.综上所求,a -b =2或-2.故选C .13.(2020年宁波高一期中)已知集合A =⎩⎨⎧⎭⎬⎫x ∈N |y =12x +3∈Z ,则列举法表示集合A =________,集合A 的真子集有________个.【答案】{0,1,3,9} 15 【解析】因为集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈N ⎪⎪ y =12x +3∈Z ,所以列举法表示集合A ={0,1,3,9},集合A 的真子集有24-1=15个.故答案为{0,1,3,9},15.14.(2020年安康高一期中)定义集合运算:A ⊗B ={z |z =x +y ,x ∈A ,y ∈B },设A ={0,1},B ={2,3},则集合A ⊗B 的真子集的个数为________.【答案】7 【解析】因为A ⊗B ={z |z =x +y ,x ∈A ,y ∈B },A ={0,1},B ={2,3},所以集合A ⊗B ={2,3,4},所以集合A ⊗B 的真子集的个数为23-1=7.15.已知集合A ={x |1≤x ≤2},B ={x |1≤x ≤a ,a ≥1}.(1)若A B ,求a 的取值范围;(2)若B ⊆A ,求a 的取值范围.解:(1)若A B ,由图可知a >2.故a 的取值范围为{a |a >2}.(2)若B ⊆A ,由图可知1≤a ≤2.故a 的取值范围为{a |1≤a ≤2}.C 级——探究创新练16.已知集合P ={x |x 2-3x +b =0},Q ={x |(x +1)(x 2+3x -4)=0}.(1)若b =4,是否存在集合M 使得PM ⊆Q ?若存在,求出所有符合题意的集合M ,若不存在,请说明理由;(2)P 能否成为Q 的一个子集?若能,求出b 的值或取值范围,若不能,请说明理由. 解:(1)因为集合Q ={x |(x +1)(x 2+3x -4)=0}={x |(x +1)(x +4)(x -1)=0}={-1,1,-4}, 当b =4时,集合P =∅,再由 P M ⊆Q 可得,M 是Q 的非空子集,共有 23-1=7 个,分别为{-1},{1},{-4},{-1,1},{-1,4},{1,4},{-1,1,-4}.(2)因为P ⊆Q ,对于方程x 2-3x +b =0,当P =∅,Δ=9-4b <0时,有b >94. 当P ≠∅,Δ=9-4b ≥0时,方程x 2-3x +b =0有实数根,且实数根是-1,1,-4中的数, 若-1是方程x 2-3x +b =0的实数根,则有b =-4,此时P ={-1,4},不满足P ⊆Q ,故舍去;若1是方程x 2-3x +b =0的实数根,则有b =2,此时P ={1,2},不满足P ⊆Q ,故舍去; 若-4是方程x 2-3x +b =0的实数根,则有b =-28,此时P ={-4,7},不满足P ⊆Q ,故舍去.综上可得,实数b 的取值范围为⎩⎨⎧⎭⎬⎫b ⎪⎪b >94.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.集合与集合的关系练习题
班学生
1.下列六个关系式,其中正确的有()
①{a,b}={b,a};②{a,b}⊆{b,a};③∅={∅};④{0}=∅;⑤∅{0};⑥0∈{0}.
A.6个B.5个C.4个D.3个及3个以下
2.已知集合A,B,若A不是B的子集,则下列命题中正确的是()
A.对任意的a∈A,都有a∉B B.对任意的b∈B,都有b∈A
C.存在a0,满足a0∈A,a0∉B D.存在a0,满足a0∈A,a0∈B
3.设A={x|1<x<2},B={x|x<a},若A B,则a的取值范围是()
A.a≥2 B.a≤1 C.a≥1 D.a≤2
4.集合M={x|x2-3x-a2+2=0,a∈R}的子集的个数为________.
5.如果A={x|x>-1},那么()
A.0⊆A B.{0}∈A C.∅∈A D.{0}⊆A
6.已知集合A={x|-1<x<2},B={x|0<x<1},则()
A.A>B B.A B C.B A D.A⊆B
7.定义A-B={x|x∈A且x∉B},若A={1,3,5,7,9},B={2,3,5},则A-B等于()
A.A B.B C.{2} D.{1,7,9}
8.以下共有6组集合.
(1)A={(-5,3)},B={-5,3};(2)M={1,-3},N={3,-1};
(3)M=∅,N={0};(4)M={π},N={3.1415};
(5)M={x|x是小数},N={x|x是实数};(6)M={x|x2-3x+2=0},N={y|y2-3y+2=0}.
其中表示相等的集合有()
A.2组B.3组C.4组D.5组
9.定义集合间的一种运算“*”满足:A*B={ω|ω=xy(x+y),x∈A,y∈B}.若集合A={0,1},B={2,3},则A*B的子集的个数是()
A.4 B.8 C.16 D.32
10.设B={1,2},A={x|x⊆B},则A与B的关系是()
A.A⊆B B.B⊆A C.A∈B D.B∈A
11.设x,y∈R,A={(x,y)|y=x},B={(x,y) | y
x=1},则A、B间的关系为________.
12.设集合A={1,3,a},B={1,a2-a+1},且A⊇B,则a的值为________.
13.已知A={x|x<-1或x>5},B={x|a≤x<a+4},若A B,则实数a的取值范围是________.14.已知集合A={a,a+b,a+2b},B={a,ac,ac2},若A=B,求c的值.
15.已知集合A={x|1≤x≤2},B={x|1≤x≤a,a≥1}.
(1)若A B,求a的取值范围;
(2)若B⊆A,求a的取值范围.
16.若集合A ={x |x 2+x -6=0},B ={x |mx +1=0},且B
A ,求实数m 的值.
集合间的基本关系
1、在下列各式:①{}2,1,01∈;②{}{}2,1,01∈;③{}{}2,1,02,1,0⊆;④{}2,1,0≠⊂∅;
⑤{}{}1,0,22,1,0=。

其中错误的个数是( )
A. 1个
B. 2个
C. 3个
D.4个
2、已知非空集合A 满足:①{}4,3,2,1,⊆A ;②若A x ∈,则5-x A ∈.符合上述要求的集合A 的个数是( )
A.32
B. 8
C. 5
D. 3
3、满足{}{}d c b a M a ,,,≠⊂⊆的集合M 共有( )个
A. 6
B. 7
C. 8
D.15
4、设集合⎭
⎬⎫⎩⎨⎧≤--=023|x x x M ,集合N=()(){}014|≤-⋅-x x x ,则M 与N 的关系是( ) A. M=N B.M ∈N C. N M ≠⊃ D. N M ≠⊂
5、已知{}x y R y M =∈=|, N={}2|m x R x =∈,则下列关系中正确的是( )
A. N M ≠⊃
B. M=N
C. M ≠N
D. M N ≠⊃
6、集合{}{}{}Z m m z z S Z l l y y P Z k k x x M ∈+==∈+==∈-==,16|,,13|,,23|之间的关系是( )
A. M P S ≠⊂≠⊂
B. M P S ≠⊂=
C. M P S =≠⊂
D. M P S =≠⊃
7{},12|2+-==x x y x A {},12|2+-==x x y y B {},012|2=+-=x x x C {},012|2<+-=x x x D (){},12|,2+-==x x y y x E (){}
,,012|,2R y x x y x F ∈=+-=则下列结论正确的是( )
A. D C B A ⊆⊆⊆
B. A B C D ≠⊂≠⊂≠⊂
C. E=F
D.A=B=E
8、已知集合{}1|2==x x P ,集合{}1|==ax x Q ,若P Q ⊆,那么a 的值为_
9、设{}{}0|,21|<-=<<=a x x B x x A ,若B A ≠⊂,则a 的取值范围是_
10、已知{}{}31|,21|≤≤=<<+=x x B k x k x A ,且A B ⊆,求实数k 的取值范围。

11已知{}{}{}A x x z z C A x R a a x y y B x x A ∈==∈∈-==≤≤-=,|,,,2|,21|2,是否存在实数a ,使C ⊆B ?若存在,求出a 的范围;若不存在,说明理由。

相关文档
最新文档