初三数学一元二次方程试卷(一)

合集下载

人教版九年级数学上册一元二次方程测试题(含答案)4页

人教版九年级数学上册一元二次方程测试题(含答案)4页

人教版九年级数学上册一元二次方程测试题(含答案)4页(1)x^2-9x+8=0答案:x1=8x2=1(2)x^2+6x-27=0答案:x1=3x2=-9(3)x^2-2x-80=0答案:x1=-8x2=10(4)x^2+10x-200=0答案:x1=-20x2=10(5)x^2-20x+96=0答案:x1=12x2=8(6)x^2+23x+76=0答案:x1=-19x2=-4(7)x^2-25x+154=0答案:x1=14x2=11(8)x^2-12x-108=0答案:x1=-6x2=18(9)x^2+4x-252=0答案:x1=14x2=-18(10)x^2-11x-102=0答案:x1=17x2=-6(11)x^2+15x-54=0答案:x1=-18x2=3(12)x^2+11x+18=0答案:x1=-2x2=-9(13)x^2-9x+20=0答案:x1=4x2=5(14)x^2+19x+90=0答案:x1=-10x2=-9(15)x^2-25x+156=0答案:x1=13x2=12(16)x^2-22x+57=0答案:x1=3x2=19(17)x^2-5x-176=0答案:x1=16x2=-11(18)x^2-26x+133=0答案:x1=7x2=19(19)x^2+10x-11=0答案:x1=-11x2=1(20)x^2-3x-304=0答案:x1=-16x2=19(22)x^2+13x-48=0答案:x1=3x2=-16(23)x^2+5x-176=0答案:x1=-16x2=11(24)x^2+28x+171=0答案:x1=-9x2=-19(25)x^2+14x+45=0答案:x1=-9x2=-5(26)x^2-9x-136=0答案:x1=-8x2=17(27)x^2-15x-76=0答案:x1=19x2=-4(28)x^2+23x+126=0答案:x1=-9x2=-14(29)x^2+9x-70=0答案:x1=-14x2=5(30)x^2-1x-56=0答案:x1=8x2=-7(31)x^2+7x-60=0答案:x1=5x2=-12(32)x^2+10x-39=0答案:x1=-13x2=3(33)x^2+19x+34=0答案:x1=-17x2=-2(34)x^2-6x-160=0答案:x1=16x2=-10(35)x^2-6x-55=0答案:x1=11x2=-5(36)x^2-7x-144=0答案:x1=-9x2=16(37)x^2+20x+51=0答案:x1=-3x2=-17(38)x^2-9x+14=0答案:x1=2x2=7(39)x^2-29x+208=0答案:x1=16x2=13(40)x^2+19x-20=0答案:x1=-20x2=1(41)x^2-13x-48=0答案:x1=16x2=-3(42)x^2+10x+24=0答案:x1=-6x2=-4(44)x^2-8x-209=0答案:x1=-11x2=19(45)x^2+23x+90=0答案:x1=-18x2=-5(46)x^2+7x+6=0答案:x1=-6x2=-1(47)x^2+16x+28=0答案:x1=-14x2=-2(48)x^2+5x-50=0答案:x1=-10x2=5(49)x^2+13x-14=0答案:x1=1x2=-14(50)x^2-23x+102=0答案:x1=17x2=6(51)x^2+5x-176=0答案:x1=-16x2=11(52)x^2-8x-20=0答案:x1=-2x2=10(53)x^2-16x+39=0答案:x1=3x2=13(54)x^2+32x+240=0答案:x1=-20x2=-12(55)x^2+34x+288=0答案:x1=-18x2=-16(56)x^2+22x+105=0答案:x1=-7x2=-15(57)x^2+19x-20=0答案:x1=-20x2=1(58)x^2-7x+6=0答案:x1=6x2=1(59)x^2+4x-221=0答案:x1=13x2=-17(60)x^2+6x-91=0答案:x1=-13x2=7(61)x^2+8x+12=0答案:x1=-2x2=-6(62)x^2+7x-120=0答案:x1=-15x2=8(63)x^2-18x+17=0答案:x1=17x2=1(64)x^2+7x-170=0答案:x1=-17x2=10(65)x^2+6x+8=0答案:x1=-4x2=-2(66)x^2+13x+12=0答案:x1=-1x2=-12(67)x^2+24x+119=0答案:x1=-7x2=-17(68)x^2+11x-42=0答案:x1=3x2=-14(69)x^20x-289=0答案:x1=17x2=-17(70)x^2+13x+30=0答案:x1=-3x2=-10(71)x^2-24x+140=0答案:x1=14x2=10(72)x^2+4x-60=0答案:x1=-10x2=6(73)x^2+27x+170=0答案:x1=-10x2=-17(74)x^2+27x+152=0答案:x1=-19x2=-8(75)x^2-2x-99=0答案:x1=11x2=-9(76)x^2+12x+11=0答案:x1=-11x2=-1(77)x^2+17x+70=0答案:x1=-10x2=-7(78)x^2+20x+19=0答案:x1=-19x2=-1(79)x^2-2x-168=0答案:x1=-12x2=14(80)x^2-13x+30=0答案:x1=3x2=10(81)x^2-10x-119=0答案:x1=17x2=-7(82)x^2+16x-17=0答案:x1=1x2=-17(83)x^2-1x-20=0答案:x1=5x2=-4(84)x^2-2x-288=0答案:x1=18x2=-16(85)x^2-20x+64=0答案:x1=16x2=4(86)x^2+22x+105=0答案:x1=-7x2=-15(88)x^2-4x-285=0答案:x1=19x2=-15(89)x^2+26x+133=0答案:x1=-19x2=-7(90)x^2-17x+16=0答案:x1=1x2=16(91)x^2+3x-4=0答案:x1=1x2=-4(92)x^2-14x+48=0答案:x1=6x2=8(93)x^2-12x-133=0答案:x1=19x2=-7(94)x^2+5x+4=0答案:x1=-1x2=-4(95)x^2+6x-91=0答案:x1=7x2=-13(96)x^2+3x-4=0答案:x1=-4x2=1(97)x^2-13x+12=0答案:x1=12x2=1(98)x^2+7x-44=0答案:x1=-11x2=4(99)x^2-6x-7=0答案:x1=-1x2=7 (100)x^2-9x-90=0答案:x1=15x2=-6 (101)x^2+17x+72=0答案:x1=-8x2=-9 (102)x^2+13x-14=0答案:x1=-14x2=1 (103)x^2+9x-36=0答案:x1=-12x2=3 (104)x^2-9x-90=0答案:x1=-6x2=15 (105)x^2+14x+13=0答案:x1=-1x2=-13 (106)x^2-16x+63=0答案:x1=7x2=9 (107)x^2-15x+44=0答案:x1=4x2=11 (108)x^2+2x-168=0答案:x1=-14x2=12(110)x^2-6x-55=0答案:x1=11x2=-5 (111)x^2+18x+32=0答案:x1=-2x2=-16。

一元二次方程测试题(一二)(试卷版)

一元二次方程测试题(一二)(试卷版)

九年级数学第二十二章一元二次方程测试题(一)清华附中初三备课组提供一、选择题1.下列方程中,关于x 的一元二次方程是( )A.()()23121x x +=+ B.21120xx+-=C.20ax bx c ++=D. 2221x x x +=-2.已知m 方程210x x --=的一个根,则代数式2m m -的值等于( )A.-1B.0C.1D.2 3.方程22x x =的解为( )A.x =2B. x 1=x 2=0C. x 1=2,x 2=0D. x =0 4.解方程2(51)3(51)x x -=-的适当方法是( )A.开平方法B.配方法C.公式法D.因式分解法 5.用配方法解下列方程时,配方有错误..的是( )A.x 2-2x -99=0化为(x -1)2=100B.x 2+8x +9=0化为(x +4)2=25C.2t 2-7t -4=0化为2781()416t -=D.3y 2-4y -2=0化为2210()39y -=6.下面是李明同学在一次测验中解答的填空题,其中答对的是( )A.若x 2=4,则x =2B.方程x (2x -1)=2x -1的解为x =1C.若x 2-5xy-6y 2=0(xy≠),则x y=6或x y=-1 D.若分式2321x x x-+-值为零,则x =1,2 7.用配方法解一元二次方程20ax bx c ++=,此方程可变形为( )A.222424b b ac x a a -⎛⎫-= ⎪⎝⎭B.222424b ac b x a a -⎛⎫-= ⎪⎝⎭ C.222424b b ac x a a -⎛⎫+= ⎪⎝⎭D.222424b ac b x a a -⎛⎫+= ⎪⎝⎭8.据《武汉市2002年国民经济和社会发展统计公报》报告:武汉市2002年国内生产总值达1493亿元,比2001年增长11.8%.下列说法:① 2001年国内生产总值为1493(1-11.8%)亿元;②2001年国内生产总值为1493111.8%-亿元;③2001年 国内生产总值为1493111.8%+亿元;④若按11.8%的年增长率计算,2004年的国内生产总值预计为1493(1+11.8%)2亿元.其中正确的是( )A.③④B.②④C.①④D.①②③9.从正方形的铁皮上,截去2cm 宽的一条长方形,余下的面积是48cm 2,则原来的正方形铁皮的面积是 ( )A.9cm 2B.68cm 2C.8cm 2D.64cm 2二、填空题10.若方程mx 2+3x -4=3x 2是关于x 的一元二次方程,则m 的取值范围是 . 11.把方程(2x+1)(x —2)=5-3x 整理成一般形式后,得 , 其中二次项系数是 ,一次项系数是 ,常数项是 .12.配方:x 2 -3x+ = (x - )2; 4x 2-12x+15 = 4( )2+6 13.一元二次方程ax 2+bx+c=0 (a≠0)的求根公式是: . 14.认真观察下列方程,指出使用何种方法解比较适当:(1) 4x 2+16x =5,应选用 法;(2) 2(x +2)(x -1)=(x +2)(x +4),应选用 法; (3) 2x 2-3x -3=0,应选用 法.15.方程23x x =的解是____;方程()()230x x -+=的解是______________. 16.已知代数式7x (x +5)+10与代数式9x -9的值互为相反数,则x = . 17.若一个等腰三角形的三边长均满足方程x 2-6x +8=0,则此三角形的周长为 . 三、解答题18.用开平方法解方程:2(1)4x -=19.用配方法解方程:x 2—4x +1=020.用公式法解方程:3x2+5(2x+1)=021.用因式分解法解方程:3(x-5)2=2(5-x)四、应用题22.某校2005年捐款1万元给希望工程,以后每年都捐款,计划到2007年共捐款4.75万元,问该校捐款的平均年增长率是多少?23.有一面积为150平方米的矩形鸡场,鸡场的一边靠墙(墙长18米),另三边用竹篱笆围成,如果竹篱笆的长为35米.求鸡场的长和宽.五、综合题24.已知三角形的两边长分别是3和8,第三边的数值是一元二次方程x2-17x+66=0的根.求此三角形的周长.九年级数学第二十二章一元二次方程测试题(二)清华附中初三备课组提供一、选择题1.若方程||(2)310m m x mx +++=是关于x 的一元二次方程,则( )A .2m =±B .m =2C .m= -2D .2m ≠± 2.若方程()24x a -=有解,则a 的取值范围是( )A .0a ≤B .0a ≥C .0a >D .无法确定3.如果关于x 的一元二次方程x 2+px +q =0的两根分别为x 1=3,x 2=1,那么这个一元二次方程 是( )A. x 2+3x +4=0 B.x 2+4x -3=0 C.x 2-4x +3=0 D. x 2+3x -4=04.一元二次方程()224260m x m x m --+-=有两个相等的实数根,则m 等于( )A. -6B. 1C. 2D. -6或1 5.对于任意实数x ,多项式x 2-5x+8的值是一个( )A .非负数B .正数C .负数D .无法确定 6.已知代数式3x -与23x x -+的值互为相反数,则x 的值是( )A .-1或3B .1或-3C .1或3D .-1和-3 7.如果关于x 的方程ax 2+x –1= 0有实数根,则a 的取值范围是( )A .a >–14B .a ≥–14C .a ≥–14且a ≠0 D .a >–14且a ≠08.若t 是一元二次方程20(0)ax bx c a ++=≠的根,则判别式24b ac ∆=-和完全平方式2(2)M at b =+的关系是( )A.△=MB. △>MC. △<MD. 大小关系不能确定9.方程x 2+ax +1=0和x 2-x -a=0有一个公共根,则a 的值是( )A .0B .1C .2D .310.三角形两边的长分别是8和6,第三边的长是一元二次方程216600x x -+=的一个实数根,则该三角形的面积是 ( )A .24B .24或C .48D .二、填空题11.一元二次方程(x +1)(3x -2)=10的一般形式是 . 12.当m 时,关于x 的方程27(3)5mm x x ---=是一元二次方程;当m 时,此方程是一元一次方程.13.如果一元二次方程ax 2-bx +c =0有一个根为0,则c = ;关于x 的一元二次方程2x 2-ax -a 2=0有一个根为-1,则a = .14.把一元二次方程3x 2-2x -3=0化成3(x+m )2=n 的形式是 ;若多项式x 2-ax +2a -3是一个完全平方式,则a = .15.若方程20x m -=有整数根,则m 的值可以是 (只填一个). 16.已知两个连续奇数的积是15,则这两个数是__________. 17.已知2222(1)(3)5x y x y +++-=,则22x y +的值等于 . 18.已知2320x x --=,那么代数式32(1)11x x x --+-的值为 .19.当x = 时,. 三、解答题20.用配方法证明245x x -+的值不小于1.21.已知a 、b 、c 2|1|(3)0b c +++=,求方程20ax bx c ++=的根.四、应用题22.合肥百货大搂服装柜在销售中发现:―宝乐‖牌童装平均每天可售出20件,每件盈利40元.为了迎接―十·一‖国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少?五、综合题23.设m为整数,且4<m<40,方程22--+-+=有两个不相等的整数根,x m x m m2(23)41480求m的值及方程的根.第二十二章一元二次方程测试题(一)参考答案一、选择题1.A 2.C 3.C 4.D 5.B 6.C 7.C 8.B 9.D 二、填空题10.m ≠3 11.2270x -= 2 0 —7 12.232⎛⎫⎪⎝⎭32;32x -13.240)2x b ac a=-≥ 14.(1)配方;(2)因式分解;(3)公式法15.120,3x x ==;122,3x x ==- 16.151142--或 17.10三、解答题18.解:开平方,得12x -=±, 即1212x x -=-=-或, 所以123,1x x ==-. 19.解:移项,得241,x x -=-配方,得2443x x -+=,2(2)3x -=,2x -=1222x x =+=-.20.解:方程化为一般形式,得231050x x ++=,223,10,5,41043540,a b c b ac ===-=-⨯⨯=2363x ===⨯1233x x ==.21.解:移项,得23(5)2(5)0x x -+-=,(5)[3(5)2]0,x x --+=即(5)(313)0,x x --=503130,x x -=-=或 12135,3x x ==.四、应用题22.解:设该校捐款的平均年增长率是x ,则211(1)1(1) 4.75x x +⨯++⨯+=,整理,得23 1.75x x +=,解得120.550%, 3.5(,)x x ===-不合题意舍去, 答:该校捐款的平均年增长率是50%.23.解:设鸡场的一边长为x 米,则另一边长为(35—2x ),列方程,得(352)150,x x -=解得1210,7.5x x ==,当x =10时,35—2x =15<18,符合题意; 当x =7.5时,35—2x =20>18,不符合题意,舍去. 答:鸡场的长为15米,宽为10米. 五、综合题24.解:解方程x 2-17x +66=0,得126,11x x ==,当x =6时,3+8>6,8-3<6,可以构成三角形; 当x =11时,3+8=11,不能构成三角形. 所以三角形的周长为3+8+6=17.第二十二章一元二次方程测试题(二)参考答案一、选择题1.B 2.B 3.C 4.D 5.B 6.A 7.C 8.A 9.C 10.B 二、填空题11.23120x x +-= 12.3 3±±或 13.0 —1或2 14.2110333x ⎛⎫-= ⎪⎝⎭ 2或6 15.m 为完全平方数均可,如取0,或1,或4等 16.3和5或—3和—5 17.4 18.2 19.—5 三、解答题20.证明:245x x -+=2(2)1x -+, ∵2(2)0,x -≥∴2(2)1x -+≥1, ∴245x x -+的值不小于1.2120,|1|0,(3)0b c ≥+≥+≥,又∵2|1|(3)0b c +++=,∴2|1|(3)0b c =+=+=, ∴a =1,b =-1,c =-3,∴方程20ax bx c ++=为230x x --=,解得1222x x ==四、应用题22.解:设每件童装应降价x 元,则(40)20812004x x ⎛⎫-+⨯= ⎪⎝⎭,解得1220,10x x ==.因为要尽快减少库存,所以x =20. 答:每件童装应降价20元. 五、综合题23.解:解方程222(23)41480x m x m m --+-+=,得(23)2x m ==-±∵原方程有两个不相等的整数根,∴2m +1为完全平方数, 又∵m 为整数,且4<m <40, ∴m =12或24.∴当m =12时,243215x =-±=±,1226,16x x ==;当m =24时,12483457,52,38x x x =-±±==。

初中数学九年级上册一元二次方程试卷(含答案)

初中数学九年级上册一元二次方程试卷(含答案)

九年级(上)《一元二次方程》数学试卷(中难度)一.填空题(共4小题)1.已知关于x的一元二次方程:x2﹣2x﹣a=0,有下列结论:①当a>﹣1时,方程有两个不相等的实根;②当a>0时,方程不可能有两个异号的实根;③当a>﹣1时,方程的两个实根不可能都小于1;④当a>3时,方程的两个实根一个大于3,另一个小于3.以上4个结论中,正确的个数为.2.已知关于x的方程a(x+m)2+b=0(a、b、m为常数,a≠0)的解是x1=2,x2=﹣1,那么方程a(x+m+2)2+b=0的解.3.一个等腰三角形的底边长是6,腰长是一元二次方程x2﹣7x+12=0的一个根,则此三角形的周长是.4.设α、β是方程x2+2013x﹣2=0的两根,则(α2+2016α﹣1)(β2+2016β﹣1)=.二.解答题(共23小题)5.已知关于x的一元二次方程|x2﹣1|=(x﹣1)(kx﹣2):(1)若k=3,求方程的解;(2)若方程恰有两个不同解,求实数k的取值范围.6.某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每每次下降的百分率相同(1)求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?7.边长为整数的直角三角形若其两直角边长是方程x2﹣(k+2)x+4k=0的两根,求k的值并确定直角三角形三边之长.8.某汽车销售公司2017年10月份销售一种新型低能耗汽车20辆,由于该型号汽车经济适用性强,销量快速上升,12月份该公司销售该型号汽车达45辆.(1)求11月份和12月份的平均增长率;(2)该型号汽车每辆的进价为10万元,且销售a辆汽车,汽车厂队销售公司每辆返利0.03a万元,该公司这种型号汽车的售价为11万元/辆,若使2018年1月份每辆汽车盈利不低于2.6万元,那么该公司1月份至少需要销售该型号汽车多少辆?此时总盈利至少是多少万元?(盈利=销售利润+返利)9.已知:平行四边形ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?10.某花圃用花盆培育某种花苗,经过实验发现每盆的盈利于每盆的株数构成一定的关系,每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?11.已知关于x的一元二次方程(a+b)x2+2cx+(b﹣a)=0,其中a、b、c分别为△ABC 三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.12.南岸区正全力争创全国卫生城区和全国文明城区(简称“两城同创”).某街道积极响应“两城同创”活动,投入一定资金绿化一块闲置空地,购买了甲、乙两种树木共72棵,甲种树木单价是乙种树木单价的,且乙种树木每棵80元,共用去资金6160元.(1)求甲、乙两种树木各购买了多少棵?(2)经过一段时间后,种植的这批树木成活率高,绿化效果好.该街道决定再购买一批这两种树木绿化另一块闲置空地,两种树木的购买数量均与第一批相同,购买时发现甲种树木单价上涨了a%,乙种树木单价下降了,且总费用为6804元,求a的值.13.已知关于x的一元二次方程(m﹣2)x2+(2m+1)x+m=0有两个实数根x1,x2.(1)求m的取值范围.(2)若|x1|=|x2|,求m的值及方程的根.14.已知关于x的一元二次方程x2+2x+2k﹣4=0有两个不相等的实数根.(1)求k的取值范围:(2)若k为正整数,且该方程的根都是整数,求k的值及该方程的根.15.某学校机房有100台学生电脑和1台教师用电脑,现在教师用电脑被某种电脑病毒感染,且该电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有16台电脑被感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,多少轮感染后机房内所有电脑都被感染?16.如图1,某小区的平面图是一个占地长500米,宽400米的矩形,正中央的建筑区是与整个小区长宽比例相同的矩形,如果要使四周的空地所占面积是小区面积的19%,南北空地等宽,东西空地等宽.(1)求该小区四周的空地的宽度;(2)如图2,该小区在东、西、南三块空地上做如图所示的矩形绿化带,绿化带与建筑区之间为小区道路,小区道路宽度一致.已知东、西两侧绿化带完全相同,其长均为200米,南侧绿化带的长为300米,绿化面积为5500平方米,请算出小区道路的宽度.17.随着人民生活水平的不断提高,萧山区家庭轿车的拥有量逐年增加.据统计,某小区2007年底拥有家庭轿车81辆,2009年底家庭轿车的拥有量达到144辆.(1)若该小区2007年底到2009年底家庭轿车拥有量的年平均增长率都相同,求该小区到2010年底家庭轿车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资25万元再建造若干个停车位.据测算,建造费用分别为室内车位6000元/个,露天车位2000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的3倍,但不超过室内车位的4.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.18.已知实数a、b满足a2+ab+b2=1,且t=ab﹣a2﹣b2,求t的取值范围.19.已知k为非负实数,关于x的方程x2﹣(k+1)x+k=0和kx2﹣(k+2)x+k=0.(1)试证:前一个方程必有两个非负实数根;(2)当k取何值时,上述两个方程有一个相同的实数根.20.已知关于x的分式方程=2①和一元二次方程mx2﹣3mx+m﹣1=0②中,m为常数,方程①的根为非负数.(1)求m的取值范围;(2)若方程②有两个整数根x1、x2,且m为整数,求方程②的整数根.21.某电器商社从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,电器商社决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天电器商社销售B型空气净化器的利润为3200元,请问电器商社应将B型空气净化器的售价定为多少元?22.已知实数m、n满足3m2+6m﹣5=0,3n2+6n﹣5=0,求的值.23.已知关于x的方程x2﹣(m﹣2)x﹣=0.(1)求证:无论m为何值,方程总有两个不相等实数根.(2)设方程的两实数根为x1,x2,且满足(x1+x2)2=|x1|﹣|x2|+2,求m的值.24.某文具店去年8月底购进了一批文具1160件,预计在9月份进行试销.购进价格为每件10元.若售价为12元/件,则可全部售出.若每涨价0.1元.销售量就减少2件.(1)求该文具店在9月份销售量不低于1100件,则售价应不高于多少元?(2)由于销量好,10月份该文具进价比8月底的进价每件增加20%,该店主增加了进货量,并加强了宣传力度,结果10月份的销售量比9月份在(1)的条件下的最低销售量增加了m%,但售价比9月份在(1)的条件下的最高售价减少m%.结果10月份利润达到3388元,求m的值(m>10).25.已知方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1x2=q,反过来,如果x1+x2=﹣p,x1x2=q,那么以x1,x2为两根的一元二次方程是x2+px+q=0.请根据以上结论,解决下列问题:(1)已知关于x的方程x2+mx+n=0(n≠0),求出一个一元二次方程,使它的两根分别是已知方程两根的倒数.(2)已知a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求的值.(3)已知a、b、c均为实数,且a+b+c=0,abc=16,求正数c的最小值.26.解方程:(1)﹣1(2)4x(x﹣3)=x2﹣927.已知关于x的一元二次方程mx2﹣(4m+1)x+3m+3=0的两个不等实数根分别为x1,x2,n=x2﹣x1﹣2,设点A(1,a),B(b,2)两点在动点P(m,n)所形成的曲线上.(1)求P点所在的曲线解析式;(2)求直线AB的解析式;三.选择题(共3小题)28.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则其中正确的()A.只有①②B.只有①②④C.①②③④D.只有①②③29.已知一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,则方程a(x+m﹣2)2+n=0(a≠0)的两根分别为()A.1,5B.﹣1,3C.﹣3,1D.﹣1,530.若关于x的一元二次方程kx2﹣x+1=0有实数根,则k的取值范围是()A.k>且k≠0B.k<且k≠0C.k≤且k≠0D.k<人教版九年级(上)《一元二次方程》数学试卷(中等难度)参考答案与试题解析一.填空题(共4小题)1.已知关于x的一元二次方程:x2﹣2x﹣a=0,有下列结论:①当a>﹣1时,方程有两个不相等的实根;②当a>0时,方程不可能有两个异号的实根;③当a>﹣1时,方程的两个实根不可能都小于1;④当a>3时,方程的两个实根一个大于3,另一个小于3.以上4个结论中,正确的个数为3.【解答】解:∵x2﹣2x﹣a=0,∴△=4+4a,∴①当a>﹣1时,△>0,方程有两个不相等的实根,故①正确,②当a>0时,两根之积<0,方程的两根异号,故②错误,③方程的根为x==1±,∵a>﹣1,∴方程的两个实根不可能都小于1,故③正确,④若方程的两个实根一个大于3,另一个小于3.则有32﹣6﹣a<0,∴a>3,故④正确,故答案为3.2.已知关于x的方程a(x+m)2+b=0(a、b、m为常数,a≠0)的解是x1=2,x2=﹣1,那么方程a(x+m+2)2+b=0的解x3=0,x4=﹣3.【解答】解:∵关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,m,b均为常数,a≠0),∴方程a(x+m+2)2+b=0变形为a[(x+2)+m]2+b=0,即此方程中x+2=2或x+2=﹣1,解得x=0或x=﹣3.故答案为:x3=0,x4=﹣3.3.一个等腰三角形的底边长是6,腰长是一元二次方程x2﹣7x+12=0的一个根,则此三角形的周长是14.【解答】解:解方程x2﹣7x+12=0得:x=3或4,当腰为3时,三角形的三边为3,3,6,3+3=6,此时不符合三角形三边关系定理,此时不行;当腰为4时,三角形的三边为4,4,6,此时符合三角形三边关系定理,三角形的周长为4+4+6=14,故答案为:14.4.设α、β是方程x2+2013x﹣2=0的两根,则(α2+2016α﹣1)(β2+2016β﹣1)=﹣6056.【解答】解:∵α、β是方程x2+2013x﹣2=0的两实数根,∴α2+2013α﹣2=0,β2+2013β﹣2=0,α+β=﹣2013,αβ=﹣2,则(α2+2016α﹣1)(β2+2016β﹣1)=(α2+2013α﹣2+3α+1)(β2+2013β﹣2+3β+1)=(3α+1)(3β+1)=9αβ+3(α+β)+1=﹣18﹣6039+1=﹣6056.故答案为:﹣6056.二.解答题(共23小题)5.已知关于x的一元二次方程|x2﹣1|=(x﹣1)(kx﹣2):(1)若k=3,求方程的解;(2)若方程恰有两个不同解,求实数k的取值范围.【解答】解:(1)把k=3代入|x2﹣1|=(x﹣1)(kx﹣2)中,得|x2﹣1|=(x﹣1)(3x﹣2),当x2>1,即x>1或x<﹣1时,原方程可化为:x2﹣1=(x﹣1)(3x﹣2),解得,x=1(舍),或x=;当x2≤1,即﹣1≤x≤1时,原方程可化为:1﹣x2=(x﹣1)(3x﹣2),解得,x=1,或x=;综上,方程的解为x1=,x2=1,x3=;(2)∵x=1恒为方程|x2﹣1|=(x﹣1)(kx﹣2)的解,∴当x≠1时,方程两边都同时除以x﹣1得,,要使此方程只有一个解,只需函数y=与函数y=kx﹣2的图象只有一个交点.∵函数:,作出函数图象,由图象可知,当k<0时,直线y=kx﹣2与函数y=图象只有一个交点;当k=0时,直线y=kx﹣2=﹣2与函数y=图象只有一个交点;当k=1时,y=kx﹣2=x﹣2与y=x+1平行,则与函数y=图象只有一个交点;∵当直线y=kx﹣2过(1,2)点时,2=k﹣2,则k=4,∴函数图象可知,当k≥4时,直线y=kx﹣2与函数y=图象也只有一个交点,∴要使函数图象与y=kx﹣2图象有且只有一个交点,则实数k的取值范围是k≤0或k=1或k≥4.综上,实数k的取值范围:k≤0或k=1或k≥4.6.某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每每次下降的百分率相同(1)求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?【解答】解:(1)设每次下降的百分率为a,根据题意,得:50(1﹣a)2=32,解得:a=1.8(舍)或a=0.2,答:每次下降的百分率为20%;(2)设每千克应涨价x元,由题意,得(10+x)(500﹣20x)=6000,整理,得x2﹣15x+50=0,解得:x1=5,x2=10,因为要尽快减少库存,所以x=5符合题意.答:该商场要保证每天盈利6000元,那么每千克应涨价5元.7.边长为整数的直角三角形若其两直角边长是方程x2﹣(k+2)x+4k=0的两根,求k的值并确定直角三角形三边之长.【解答】解:设直角边为a,b(a<b),则a+b=k+2,ab=4k,因方程的根为整数,故其判别式为平方数,设△=(k+2)2﹣16k=n2⇒(k﹣6+n)(k﹣6﹣n)=1×32=2×16=4×8,∵k﹣6+n>k﹣6﹣n,∴或或,解得k1=(不是整数,舍去),k2=15,k3=12,当k2=15时,a+b=17,ab=60⇒a=5,b=12,c=13,当k3=12时,a+b=14,ab=48⇒a=6,b=8,c=10.∴当k=15时,三角形三边的长为:5,12,13.当k=12时,三角形三边的长为:6,8,10.8.某汽车销售公司2017年10月份销售一种新型低能耗汽车20辆,由于该型号汽车经济适用性强,销量快速上升,12月份该公司销售该型号汽车达45辆.(1)求11月份和12月份的平均增长率;(2)该型号汽车每辆的进价为10万元,且销售a辆汽车,汽车厂队销售公司每辆返利0.03a万元,该公司这种型号汽车的售价为11万元/辆,若使2018年1月份每辆汽车盈利不低于2.6万元,那么该公司1月份至少需要销售该型号汽车多少辆?此时总盈利至少是多少万元?(盈利=销售利润+返利)【解答】解:(1)设11月份和12月份的平均增长率为x,根据题意得:20(1+x)2=45,解得:x1=0.5=50%,x2=﹣2.5(舍去).答:11月份和12月份的平均增长率为50%.(2)根据题意得:11﹣10+0.03a≥2.6,解得:a≥53.∵a为整数,∴a≥54.∴此时总盈利为54×(11﹣10+0.03×54)=141.48(万元).答:该公司1月份至少需要销售该型号汽车54辆,此时总盈利至少是141.48万元.9.已知:平行四边形ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?【解答】解:(1)∵四边形ABCD是菱形,∴AB=AD.又∵AB、AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根,∴△=(﹣m)2﹣4×(﹣)=(m﹣1)2=0,∴m=1,∴当m为1时,四边形ABCD是菱形.当m=1时,原方程为x2﹣x+=0,即(x﹣)2=0,解得:x1=x2=,∴菱形ABCD的边长是.(2)把x=2代入原方程,得:4﹣2m+﹣=0,解得:m=.将m=代入原方程,得:x2﹣x+1=0,∴方程的另一根AD=1÷2=,∴▱ABCD的周长是2×(2+)=5.10.某花圃用花盆培育某种花苗,经过实验发现每盆的盈利于每盆的株数构成一定的关系,每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?【解答】解:设每盆花苗增加x株,则每盆花苗有(x+3)株,平均单株盈利为:(3﹣0.5x)元,由题意得:(x+3)(3﹣0.5x)=10.化简,整理,得x2﹣3x+2=0.解这个方程,得x1=1,x2=2,则3+1=4,2+3=5,答:要使每盆的盈利达到10元,每盆应植4株或者5株.11.已知关于x的一元二次方程(a+b)x2+2cx+(b﹣a)=0,其中a、b、c分别为△ABC 三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.【解答】解:(1)△ABC是等腰三角形,理由:当x=﹣1时,(a+b)﹣2c+(b﹣a)=0,∴b=c,∴△ABC是等腰三角形,(2)△ABC是直角三角形,理由:∵方程有两个相等的实数根,∴△=(2c)2﹣4(a+b)(b﹣a)=0,∴a2+c2=b2,∴△ABC是直角三角形;(3)∵△ABC是等边三角形,∴a=b=c,∴原方程可化为:2ax2+2ax=0,即:x2+x=0,∴x(x+1)=0,∴x1=0,x2=﹣1,即:这个一元二次方程的根为x1=0,x2=﹣1.12.南岸区正全力争创全国卫生城区和全国文明城区(简称“两城同创”).某街道积极响应“两城同创”活动,投入一定资金绿化一块闲置空地,购买了甲、乙两种树木共72棵,甲种树木单价是乙种树木单价的,且乙种树木每棵80元,共用去资金6160元.(1)求甲、乙两种树木各购买了多少棵?(2)经过一段时间后,种植的这批树木成活率高,绿化效果好.该街道决定再购买一批这两种树木绿化另一块闲置空地,两种树木的购买数量均与第一批相同,购买时发现甲种树木单价上涨了a%,乙种树木单价下降了,且总费用为6804元,求a的值.【解答】解:(1)设甲种树木的数量为x棵,乙种树木的数量为y棵,由题意得:,解得:,答:甲种树木的数量为40棵,乙种树木的数量为32棵;(2)由题意得甲种树木单价为×80(1+a%)=90(1+a%)元,乙种树木单价为80×(1﹣),由题意得:90(1+a%)×40+80×(1﹣)×32=6804,解得:a=25,答:a的值为25.13.已知关于x的一元二次方程(m﹣2)x2+(2m+1)x+m=0有两个实数根x1,x2.(1)求m的取值范围.(2)若|x1|=|x2|,求m的值及方程的根.【解答】解:(1)∵关于x的一元二次方程(m﹣2)x2+(2m+1)x+m=0有两个实数根x1,x2,∴,解得:m≥﹣且m≠2.(2)由|x1|=|x2|,可得:x1=x2或x1=﹣x2.当x1=x2时,△=(2m+1)2﹣4m(m﹣2)=0,解得:m=﹣,此时x1=x2=﹣=;当x1=﹣x2时,x1+x2=﹣=0,∴m=﹣,∵m≥﹣且m≠2,∴此时方程无解.综上所述:若|x1|=|x2|,m的值为﹣,方程的根为x1=x2=.14.已知关于x的一元二次方程x2+2x+2k﹣4=0有两个不相等的实数根.(1)求k的取值范围:(2)若k为正整数,且该方程的根都是整数,求k的值及该方程的根.【解答】解:(1)依题意得△=22﹣4(2k﹣4)>0,解得:k<:(2)因为k<且k为正整数,所以k=1或2,当k=1时,方程化为x2+2x﹣2=0,△=12,此方程无整数根;当k=2时,方程化为x2+2x=0 解得x1=0,x2=﹣2,所以k=2,方程的有整数根为x1=0,x2=﹣2.15.某学校机房有100台学生电脑和1台教师用电脑,现在教师用电脑被某种电脑病毒感染,且该电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有16台电脑被感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,多少轮感染后机房内所有电脑都被感染?【解答】解:(1)设每轮感染中平均每一台电脑会感染x台电脑,依题意得:1+x+(1+x)x=16,整理得(1+x)2=16,则x+1=4或x+1=﹣4,解得x1=3,x2=﹣5(舍去).答:每轮感染中平均一台电脑会感染3台电脑;(2)∵n轮后,有(1+x)n台电脑被感染,故(1+3)n=4n,∵n=3时,43=64,n=4时,44=256.答:4轮感染后机房内所有电脑都被感染.16.如图1,某小区的平面图是一个占地长500米,宽400米的矩形,正中央的建筑区是与整个小区长宽比例相同的矩形,如果要使四周的空地所占面积是小区面积的19%,南北空地等宽,东西空地等宽.(1)求该小区四周的空地的宽度;(2)如图2,该小区在东、西、南三块空地上做如图所示的矩形绿化带,绿化带与建筑区之间为小区道路,小区道路宽度一致.已知东、西两侧绿化带完全相同,其长均为200米,南侧绿化带的长为300米,绿化面积为5500平方米,请算出小区道路的宽度.【解答】解:(1)建筑区的面积是500×400×(1﹣19%)=162000(平方米).设建筑区的长度为5x米,则宽为4x米.根据题意得:5x•4x=162000,整理得x2=8100,解得x1=90,x2=﹣90(不合题意),则东西两侧道宽:(500﹣5x)÷2=25(米),南北两侧道宽:(400﹣4x)÷2=20(米).答:小区的东西两侧道宽为25米,南北两侧道宽为20米;(2)设小区道路的宽度为z米,则(20﹣z)×300+2×(25﹣z)×200=5500,解得z=15.答:小区道路的宽度是15米.17.随着人民生活水平的不断提高,萧山区家庭轿车的拥有量逐年增加.据统计,某小区2007年底拥有家庭轿车81辆,2009年底家庭轿车的拥有量达到144辆.(1)若该小区2007年底到2009年底家庭轿车拥有量的年平均增长率都相同,求该小区到2010年底家庭轿车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资25万元再建造若干个停车位.据测算,建造费用分别为室内车位6000元/个,露天车位2000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的3倍,但不超过室内车位的4.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.【解答】解:(1)设家庭轿车拥有量的年平均增长率为x,根据题意得:81(1+x)2=144,解得:x1=,x2=﹣(不合题意,舍去),∴144×(1+)=192,答:该小区到2010年底家庭轿车将达到192辆;(2)设建造室内车位a个,可建车位总数为w个,则建造室外车位(125﹣3a)个,根据题意得:3a≤125﹣3a≤4.5a,解得:≤a≤∵w=a+125﹣3a=﹣2a+125,∴当整数a取最小值17时,w取最大值,最大值为91,答:该小区最多可建车位总共91个.18.已知实数a、b满足a2+ab+b2=1,且t=ab﹣a2﹣b2,求t的取值范围.【解答】解:由已知得,(a+b)2﹣ab=1,t=﹣(a+b)2+3ab,由此可得:ab=,a+b=(t≥﹣3),∴a,b是关于方程x2x+=0的两个实根,由△=﹣2(t+1)≥0,解得t≤﹣,故t的取值范围是﹣3≤t≤﹣.故答案为:﹣3≤t≤﹣.19.已知k为非负实数,关于x的方程x2﹣(k+1)x+k=0和kx2﹣(k+2)x+k=0.(1)试证:前一个方程必有两个非负实数根;(2)当k取何值时,上述两个方程有一个相同的实数根.【解答】(1)证明:x2﹣(k+1)x+k=0,△=[﹣(k+1)]2﹣4k=k2﹣2k+1=(k﹣1)2≥0,即方程关于x的方程x2﹣(k+1)x+k=0一定有两个实数根;设方程的两根为x1,x2,则根据根与系数的关系得:x1+x2=k+1,x1•x2=k,∵k为非负实数,∴x1+x2=k+1>0,x1•x2=k≥0,∵由x1•x2=k≥0得出方程有同号两个根或有一个根为0;∴由x1+x2=k+1>0,x1•x2=k≥0得出方程有两个正实数根或有一个根为0,所以方程x2﹣(k+1)x+k=0必有两个非负实数根;(2)x2﹣(k+1)x+k=0,△=[﹣(k+1)]2﹣4k=k2﹣2k+1=(k﹣1)2≥0,方程的根为,即方程的根为k和1;当相同的根是k时,把x=k代入方程kx2﹣(k+2)x+k=0得:k3﹣(k+2)k+k=0,解得:k=0或k=或k=,∵k为非负实数,∴k=舍去,k=符合题意;当相同的根是1时,把x=1代入方程kx2﹣(k+2)x+k=0得:k﹣(k+2)+k=0,解得:k=2;所以当k=2或0或时,述两个方程有一个相同的实数根.20.已知关于x的分式方程=2①和一元二次方程mx2﹣3mx+m﹣1=0②中,m为常数,方程①的根为非负数.(1)求m的取值范围;(2)若方程②有两个整数根x1、x2,且m为整数,求方程②的整数根.【解答】解:(1)∵关于x的分式方程的根为非负数,∴x≥0且x≠1.又∵,且,∴解得m≥﹣3且m≠﹣1.又∵方程mx2﹣3mx+m﹣1=0为一元二次方程,∴m≠0.综上可得:m≥﹣3且m≠﹣1,m≠0(2)∵一元二次方程mx2﹣3mx+m﹣1=0有两个整数根x1、x2,m为整数,∴x1+x2=3,,∴为整数,∴m=1或﹣1,又∵m≥﹣3且m≠﹣1,m≠0,∴m=1,∴方程为x2﹣3x=0,解得:x=3或x=021.某电器商社从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,电器商社决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天电器商社销售B型空气净化器的利润为3200元,请问电器商社应将B型空气净化器的售价定为多少元?(1)设每台B型空气净化器的进价为x元,则每台A型净化器的进价为(x+300)【解答】解:元,根据题意得:=,解得:x=1200,经检验,x=1200是原方程的根,∴x+300=1500.答:每台B型空气净化器的进价为1200元,每台A型空气净化器的进价为1500元.(2)设B型空气净化器的售价为x元,根据题意得:(x﹣1200)(4+)=3200,整理得:(x﹣1600)2=0,解得:x1=x2=1600.答:电器商社应将B型空气净化器的售价定为1600元.22.已知实数m、n满足3m2+6m﹣5=0,3n2+6n﹣5=0,求的值.【解答】解:若m≠n,∵实数m、n满足3m2+6m﹣5=0,3n2+6n﹣5=0,∴m、n是方程3x2+6x﹣5=0的两根,∴m+n=﹣=﹣2,mn=﹣,∴====﹣;若m=n,则=1+1=2;综上可知的值为﹣或2.23.已知关于x的方程x2﹣(m﹣2)x﹣=0.(1)求证:无论m为何值,方程总有两个不相等实数根.(2)设方程的两实数根为x1,x2,且满足(x1+x2)2=|x1|﹣|x2|+2,求m的值.【解答】解:(1)∵△=[﹣(m﹣2)]2﹣4(﹣)=2m2﹣4m+4=2(m﹣1)2+2>0,∴方程总有两个不相等的实数根;(2)∵x1•x2=﹣≤0,∴x1,x2至少有一个为0或不同号,当x2<0,∵(x1+x2)2=|x1|﹣|x2|+2,∴(x1+x2)2=x1+x2+2,∴x1+x2=2,或x1+x2=﹣1,∴m﹣2=2,或m﹣2=﹣1,∴m=4,或m=1;当x1<0时,∵(x1+x2)2=|x1|﹣|x2|+2,∴(x1+x2)2=﹣x1﹣x2+2,∴x1+x2=﹣2,或x1+x2=1∴m﹣2=﹣2,或m﹣2=1,∴m=0,或m=3.故m的值为m=4或m=1或m=0或m=3.24.某文具店去年8月底购进了一批文具1160件,预计在9月份进行试销.购进价格为每件10元.若售价为12元/件,则可全部售出.若每涨价0.1元.销售量就减少2件.(1)求该文具店在9月份销售量不低于1100件,则售价应不高于多少元?(2)由于销量好,10月份该文具进价比8月底的进价每件增加20%,该店主增加了进货量,并加强了宣传力度,结果10月份的销售量比9月份在(1)的条件下的最低销售量增加了m%,但售价比9月份在(1)的条件下的最高售价减少m%.结果10月份利润达到3388元,求m的值(m>10).【解答】解:(1)设售价应为x元,依题意有1160﹣≥1100,解得x≤15.答:售价应不高于15元.(2)10月份的进价:10(1+20%)=12(元),由题意得:1100(1+m%)[15(1﹣m%)﹣12]=3388,设m%=t,化简得50t2﹣25t+2=0,解得:t1=,t2=,所以m1=40,m2=10,因为m>10,所以m=40.答:m的值为40.25.已知方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1x2=q,反过来,如果x1+x2=﹣p,x1x2=q,那么以x1,x2为两根的一元二次方程是x2+px+q=0.请根据以上结论,解决下列问题:(1)已知关于x的方程x2+mx+n=0(n≠0),求出一个一元二次方程,使它的两根分别是已知方程两根的倒数.(2)已知a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求的值.(3)已知a、b、c均为实数,且a+b+c=0,abc=16,求正数c的最小值.【解答】解:(1)设x2+mx+n=0(n≠0)的两根为x1,x2,则x1+x2=﹣m,x l x2=n,则所求新方程的两根为,.∵+==﹣,×==.所以,所求的方程为y2+y+=0,即ny2+my+1=0.(2)从a,b满足的同一种关系可知:①当a≠b时,a、b是一元二次方程x2﹣15x﹣5=0的两根,所以a+b=15,ab=﹣5,从而====﹣47.②当a=b时,从而=1+1=2.所以的值为﹣47或2.(3)由a+b+c=0,abc=16,得a+b=﹣c.ab=,因此,由给出的结论,得a、b是方程x2+cx+=0的实数根,所以△=c2﹣4×≥0,因为c>0,所以c3≥64,所以c≥4,故c的最小值为4.26.解方程:(1)﹣1(2)4x(x﹣3)=x2﹣9【解答】解:(1)方程两边都乘以3(x﹣2)得:3(5x﹣4)=4x+10﹣3(x﹣2),解得:x=2,检验:当x=2时,3(x﹣2)=0,所以x=2不是原方程的解,即原方程无解;(2)4x(x﹣3)=x2﹣9,4x(x﹣3)﹣(x+3)(x﹣3)=0,(x﹣3)[4x﹣(x+3)]=0,x﹣3=0,4x﹣(x+3)=0,x1=3,x2=1.27.已知关于x的一元二次方程mx2﹣(4m+1)x+3m+3=0的两个不等实数根分别为x1,x2,n=x2﹣x1﹣2,设点A(1,a),B(b,2)两点在动点P(m,n)所形成的曲线上.(1)求P点所在的曲线解析式;(2)求直线AB的解析式;【解答】解:令y=mx2﹣(4m+1)x+3m+3=0,则mx2﹣(4m+1)x+3m+3=0,∴x=3或x=,①当3﹣=n+2时,即n=﹣,P点所在的曲线解析式为y=﹣,把A(1,a),B(b,2)代入n=﹣中,∴A(1,﹣1),B(﹣,2),设直线AB的解析式为y=kx+b,代入得:,解得:,∴直线AB的解析式为y=﹣2x+1;②当﹣3=n+2时,即n=﹣4,P点所在的曲线解析式为y=﹣4,同理可求A(1,﹣3),B(,2),同理可得:直线AB的解析式为y=﹣6x+3.三.选择题(共3小题)28.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则其中正确的()A.只有①②B.只有①②④C.①②③④D.只有①②③【解答】解:①若a+b+c=0,则x=1是方程ax2+bx+c=0的解,由一元二次方程的实数根与判别式的关系可知△=b2﹣4ac≥0,故①正确;②∵方程ax2+c=0有两个不相等的实根,∴△=b2﹣4ac=0﹣4ac>0,∴﹣4ac>0,则方程ax2+bx+c=0的判别式△=b2﹣4ac>0,∴方程ax2+bx+c=0必有两个不相等的实根,故②正确;③∵c是方程ax2+bx+c=0的一个根,则ac2+bc+c=0,∴c(ac+b+1)=0若c=0,等式仍然成立,但ac+b+1=0不一定成立,故③不正确;④若x0是一元二次方程ax2+bx+c=0的根,则由求根公式可得:x0=或x0=∴2ax0+b=或2ax0+b=﹣∴故④正确.故选:B.29.已知一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,则方程a(x+m﹣2)2+n=0(a≠0)的两根分别为()A.1,5B.﹣1,3C.﹣3,1D.﹣1,5【解答】解:∵一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,∴方程a(x+m﹣2)2+n=0(a≠0)中x﹣2=﹣3或x﹣2=1,解得:x=﹣1或3,即方程a(x+m﹣2)2+n=0(a≠0)的两根分别为﹣1和3,故选:B.30.若关于x的一元二次方程kx2﹣x+1=0有实数根,则k的取值范围是()A.k>且k≠0B.k<且k≠0C.k≤且k≠0D.k<【解答】解:∵关于x的一元二次方程kx2﹣x+1=0有实数根,∴k≠0且△=(﹣1)2﹣4k≥0,解得:k≤且k≠0.故选:C.。

九年级数学解一元二次方程专项练习题(带答案)【40道】 (1)

九年级数学解一元二次方程专项练习题(带答案)【40道】 (1)

解一元二次方程专项练习题(带答案)1、用配方法解下列方程:(1) 025122=++x x (2) 1042=+x x(3) 1162=-x x (4)0422=--x x2、用配方法解下列方程:(1) 01762=+-x x (2) x x 91852=-(3) 52342=-x x (4)x x 2452-=3、用公式法解下列方程:(1) 08922=+-x x (2) 01692=++x x(3) 38162=+x x (4)01422=--x x4、运用公式法解下列方程:(1) 01252=-+x x (2) 7962=++x x(3) 2325x x =+ (4) 1)53)(2(=--x x5、用分解因式法解下列方程:(1)01692=++x x (2) x x x 22)1(3-=-(3))32(4)32(2+=+x x (4)9)3(222-=-x x6、用适当方法解下列方程:(1) 22(3)5x x -+= (2) 230x ++=(3) 2)2)(113(=--x x ; (4) 4)2)(1(13)1(+-=-+x x x x7、 解下列关于x 的方程:(1) x 2+2x -2=0 (2) 3x 2+4x -7=(3) (x +3)(x -1)=5 (4) (x -2)2+42x =08、解下列方程(12分)(1)用开平方法解方程:4)1(2=-x (2)用配方法解方程:x 2 —4x +1=0(3)用公式法解方程:3x 2+5(2x+1)=0 (4)用因式分解法解方程:3(x -5)2=2(5-x )9、用适当方法解下列方程:(1)0)14(=-x x (2)027122=++x x(3)562+=x x (4)45)45(+=+x x x(5)x x 314542=- (6)0242232=-+-x x(7)12)1)(8(=-++x x (8)14)3)(23(+=++x x x解一元二次方程专项练习题 答案1、【答案】(1)116±-; (2) 142±-; (3) 523±; (4) 51± 2、【答案】(1)11=x ,612=x (2)31=x ,562=-x(3)41=x ,4132=-x (4)5211±-=x3、【答案】 (1) 4179±=x (2) 3121=-=x x (3) 411=x ,432=-x (4)262±=x4、【答案】 (1) x 1=561,5612--=+-x (2). x 1=-3+7,x 2=-3-7(3)21=x ,312=-x (4)61311±=x 5、【答案】(1)3121=-=x x (2)11=x ,322=-x(3)231=-x ,212=x (4)31=x ,92=x6、【答案】(1)11=x ,22=x (2)321=-=x x (3)4,3521==x x ; (4)3,221-==x x7、【答案】(1)x =-1±3; (2)x 1=1,x 2=-37(3)x 1=2,x 2=-4; (4)25.x 1=x 2=-2 8、【答案】解:(1) 1,321-==x x (2)32,3221-=+=x x(3)3105,310521--=+-=x x (4)313,521==x x 。

一元二次方程初三数学试卷

一元二次方程初三数学试卷

一、选择题(每题5分,共25分)1. 下列方程中,不是一元二次方程的是()A. x^2 - 2x + 1 = 0B. 3x^2 - 4x + 1 = 0C. x^2 - 3x + 2 = 0D. 2x + 3 = 02. 若一元二次方程ax^2 + bx + c = 0(a≠0)有两个相等的实数根,则()A. b^2 - 4ac > 0B. b^2 - 4ac = 0C. b^2 - 4ac < 0D. b^2 - 4ac = 0 或 b^2 - 4ac > 03. 若一元二次方程x^2 - 3x + 2 = 0的解为x1、x2,则x1 + x2的值为()A. 2B. 3C. 1D. 44. 若一元二次方程x^2 - 4x + 3 = 0的解为x1、x2,则x1 x2的值为()A. 1B. 3C. 4D. 55. 若一元二次方程2x^2 - 3x - 1 = 0的解为x1、x2,则x1 + x2的值为()A. 1C. 1/2D. -1二、填空题(每题5分,共25分)6. 一元二次方程x^2 - 5x + 6 = 0的解为______。

7. 若一元二次方程ax^2 + bx + c = 0(a≠0)的解为x1、x2,则x1 + x2 = -______。

8. 若一元二次方程x^2 - 2x - 3 = 0的解为x1、x2,则x1 x2 = ______。

9. 若一元二次方程2x^2 - 3x - 1 = 0的解为x1、x2,则x1 + x2 = ______。

10. 若一元二次方程ax^2 + bx + c = 0(a≠0)有两个实数根,则b^2 - 4ac ______ 0。

三、解答题(每题10分,共30分)11. 解方程:x^2 - 6x + 9 = 0。

12. 解方程:2x^2 - 5x - 3 = 0。

13. 已知一元二次方程x^2 - 3x + 2 = 0,求x^2 + 5x - 6的值。

(完整版)一元二次方程全章测试题(基础卷)

(完整版)一元二次方程全章测试题(基础卷)

一元二次方程(一)一、选择题1.一元二次方程2210x x --=的根的情况为( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根2.若关于z 的一元二次方程 2.20x x m -+=没有实数根,则实数m 的取值范围是 ( )A .m<lB .m>-1C .m>lD .m<-1 3.一元二次方程x 2+x +2=0的根的情况是 ( ) A .有两个不相等的正根 B .有两个不相等的负根 C .没有实数根D .有两个相等的实数根4.用配方法解方程2420x x -+=,下列配方正确的是( )A .2(2)2x -=B .2(2)2x +=C .2(2)2x -=-D .2(2)6x -=5.已知函数2y ax bx c =++的图象如图(7)所示,那么关于x 的方程220ax bx c +++=的根的情况是A .无实数根B .有两个相等实数根C .有两个异号实数根D .有两个同号不等实数根6.关于x 的方程20x px q ++=的两根同为负数,则( )A .0p >且q >0B .0p >且q <0C .0p <且q >0D .0p <且q <07.若关于x 的一元二次方程22430x kx k ++-=的两个实数根分别是12,x x ,且满足1212x x x x +=.则k 的值为( )A.-1或34B.-1C.34D.不存在 8.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )A.x 2+4=0B.4x 2-4x +1=0C.x 2+x +3=0D.x 2+2x -1=09.某商品原价200元,连续两次降价a %后售价为148元,下列所列方程正确的是( )A.200(1+a%)2=148B.200(1-a%)2=148图(7)C.200(1-2a%)=148D.200(1-a 2%)=148 10.下列方程中有实数根的是( ) A.x 2+2x +3=0B.x 2+1=0C.x 2+3x +1=0D.111x x x =-- 11.已知关于x 的一元二次方程22x m x -= 有两个不相等的实数根,则m 的取值范围 是 ( ) A . m >-1 B . m <-2 C .m ≥0 D .m <0 12.如果2是一元二次方程x 2=c 的一个根,那么常数c 是( ) A.2 B.-2 C.4 D.-4二、填空题13.已知一元二次方程22310x x --=的两根为1x 、2x ,则12x x += 14.方程()214x -=的解为 。

人教版九年级数学上册:《一元二次方程》测试卷(含答案解析)

人教版九年级数学上册:《一元二次方程》测试卷(含答案解析)

《一元二次方程》测试卷一、精心选一选(每小题3分,共30分)1.下列方程中是一元二次方程的是( ).A.xy +2=1B. 09212=-+x x C. x 2=0 D.02=++c bx ax 2.配方法解方程2420x x -+=,下列配方正确的是( )A .2(2)2x -=B .2(2)2x +=C .2(2)2x -=-D .2(2)6x -= 3.(20XX 山东潍坊)已知反比例函数y abx =,当x >0时,y 随x 的增大而增大,则关于x 的方程220ax x b -+=的根的情况是( )A.有两个正根B.有两个负根C.有一个正根一个负根D.没有实数根4.若1762+--x x x 的值等于零,则x 的值是( ) A 7或-1 B -7或1 C 7 D -15.已知一元二次方程02=++c bx ax ,若0=++c b a ,则该方程一定有一个根为( )A. 0B. 1C. -1D. 26.方程0134)2(||=++++m x x m m 是关于x 的一元二次方程,则( )A. m=±2B. m=2C. m= -2D. m ≠±27.白云航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有飞机场( )A .4个B .5个C .6个D .7个8.已知a ,b ,c 是△ABC 三条边的长,那么方程cx 2+(a+b)x+4c =0的根的情况是( ). A .没有实数根 B .有两个不相等的正实数根 C .有两个不相等的负实数根 D .有两个异号实数根9.下面是某同学在一次数学测验中解答的填空题,其中答对的是( )A .若x 2=4,则x=2B 若3x 2=6x ,则x=2C .02=-+k x x 的一个根是1,则k=2D .若分式()xx x 2- 的值为零,则x=2 10.等腰三角形的底和腰是方程2680x x -+=的两个根,则这个三角形的周长是( )A .8B .10C .8或10D . 不能确定二、耐心填一填(每小题3分,共24分)1.方程2(1)5322x x -+=化为一元二次方程的一般形式是________,它的一次项系数是______.2.如果2x 2+1与4x 2-2x-5互为相反数,则x 的值为________.3.已知代数式532++x x 的值是7,则代数式2932-+x x 的值是4.(20XX 江苏宿迁)已知一元二次方程032=++px x 的一个根为3-,则_____=p5.阅读材料:设一元二次方程20ax bx c ++=的两根为1x ,2x ,则两根与方程系数之间有如下关系:12b x x a +=-,a c x x =⋅21.根据该材料填空:已知1x ,2x 是方程2630x x ++=的两实数根,则2112x x x x +的值为______ . 6.若()()06522222=-+-+y x y x ,则=+22y x __________。

九年级上册数学一元二次方程测试题

九年级上册数学一元二次方程测试题

九年级上册数学一元二次方程测试题一、选择题(每题3分,共15分)1. 一元二次方程x^2-2x = 0的根是()- A. x = 0- B. x = 2- C. x = 0或x=-2- D. x = 0或x = 2解析:对于方程x^2-2x = 0,提取公因式x得x(x - 2)=0,则x = 0或者x-2 = 0,解得x = 0或x = 2,所以答案是D。

2. 方程(x + 1)^2=4的解是()- A. x_1=1,x_2=-3- B. x = 1- C. x=-3- D. x_1=2,x_2=-2解析:对于方程(x + 1)^2=4,开平方得x + 1=±2。

当x + 1 = 2时,x=1;当x + 1=-2时,x=-3。

所以x_1=1,x_2=-3,答案是A。

3. 一元二次方程x^2-3x - 1 = 0与x^2-x + 3 = 0的所有实数根的和等于()- A. 2.- B. -4.- C. 4.- D. 3.解析:对于一元二次方程ax^2+bx + c = 0(a≠0),其根的判别式Δ=b^2-4ac。

在方程x^2-3x - 1 = 0中,Δ=(-3)^2-4×1×(-1)=9 + 4 = 13>0,方程有两个实数根,根据韦达定理,两根之和为x_1+x_2=-(b)/(a)=3。

在方程x^2-x + 3 = 0中,Δ=(-1)^2-4×1×3=1 - 12=- 11<0,方程没有实数根。

所以这两个方程的所有实数根的和等于3,答案是D。

4. 若关于x的一元二次方程kx^2-2x - 1 = 0有两个不相等的实数根,则k的取值范围是()- A. k>-1- B. k>-1且k≠0- C. k<1- D. k<1且k≠0解析:因为方程kx^2-2x - 1 = 0是一元二次方程,所以k≠0。

又因为方程有两个不相等的实数根,所以Δ =(-2)^2-4k×(-1)>0,即4 + 4k>0,4k>-4,解得k>-1。

九年级数学上册一元二次方程试题

九年级数学上册一元二次方程试题

九年级数学上册一元二次方程试题一、一元二次方程的概念相关题目1. 题目:下列方程中,是一元二次方程的是()- 公式- 公式- 公式- 公式解析:- 一元二次方程的一般形式是公式。

- 对于选项公式,它含有两个未知数公式和公式,所以它是二元二次方程,不是一元二次方程。

- 对于选项公式,它是分式方程,因为方程中含有分式公式,不符合一元二次方程的整式方程要求。

- 对于选项公式,它符合一元二次方程的一般形式,其中公式,公式,公式。

- 对于选项公式,先将左边展开得到公式,则原方程变为公式,化简后为公式,它是一元一次方程,不是一元二次方程。

答案:公式2. 题目:若关于公式的方程公式是一元二次方程,则公式的值为多少?解析:- 因为方程公式是一元二次方程,所以根据一元二次方程的定义,公式的最高次数为公式,且二次项系数不为公式。

- 首先公式,解方程公式,得到公式。

- 又因为二次项系数公式,即公式。

- 所以公式。

答案:公式二、一元二次方程的解法相关题目1. 题目:用直接开平方法解方程公式。

解析:- 直接开平方法的原理是如果公式,那么公式。

- 对于方程公式,则公式。

- 当公式时,解得公式;- 当公式时,解得公式。

答案:公式或公式2. 题目:用配方法解方程公式。

解析:- 配方法的步骤:首先将方程移项,使得常数项在等号右边,即公式。

- 然后在方程两边加上一次项系数一半的平方,一次项系数为公式,一半为公式,平方为公式,得到公式。

- 左边可以写成完全平方式公式。

- 然后用直接开平方法,公式。

- 解得公式。

答案:公式3. 题目:用公式法解方程公式。

解析:- 对于一元二次方程公式,其求根公式为公式。

- 在方程公式中,公式,公式,公式。

- 先计算判别式公式。

- 然后将公式、公式、公式的值代入求根公式,公式。

答案:公式4. 题目:用因式分解法解方程公式。

解析:- 因式分解法就是将方程左边分解因式,使得方程化为两个一次因式乘积等于公式的形式。

初中数学解一元二次方程经典练习题(含答案)

初中数学解一元二次方程经典练习题(含答案)

初中数学解一元二次方程经典练习题(含答案)解下列解一元二次方程:1、x2=121;2、(2x+3)2=9;3、3(4x+5)2-147=0;4、(2x−7)2+9 =6(2x-7);5、7x(x-6)=3(12-2x);6、(3x-5)(2x+5)= x+7;7、3(3x-4)+ x(4-3x)=0;8、x(2x+5)=4(2x-1)+3;9、(x−3)2+4=5(3-x);10、4x2+7x +1=0;11、512x2+ 13= x;12、(x−1)(x−2)2 -1 = (x+1)(x−3)3;13、14[12(x+1)+13(x+2)+2] =x2;14、(x+1)(x+2)+(x+3)(x+4)=(x+2)(x+3)+32;15、x= 2(0.3x+21)3 - (0.2x−1)(x+2)2;16、x2+(1+ 2√5)x +( 4+√5)=0;参考答案1、x2=121;解:x2=121等式两边同时开平方x= 11故原方程的根是:x1=11,x2= -112、(2x +3)2=9;解:(2x +3)2=9等式两边同时开平方(2x +3)=±3令2x +3 = 3,即2x=0,解得x=0令2x +3 =-3,即2x=-6,解得x=-3故原方程的根是:x 1=0,x 2=-33、3(4x +5)2-147=0;解:3(4x +5)2-147=03(4x +5)2=147等式两边同时除以3(4x +5)2= 49等式两边同时开平方4x+5=±7令4x+5=7, 解得x= 12 令4x+5= -7,解得x=-3故原方程的根是:x 1= 12,x 2=-34、(2x −7)2+9 =6(2x-7);解:(2x −7)2 +9 =6(2x-7)右边的项移到等号左边(2x−7)2-6(2x-7)+9 =0(2x−7)2 -2・3・(2x-7)+32=0[(2x−7)−3 ]2=0令(2x−7)−3 =0,解得 x=5故原方程的根是:x1=x2=55、7x(x-6)=3(12-2x);解:7x(x-6)=3(12-2x)等号左边提取-27x(x-6)=-6(x-6)右边的项移到等号左边7x(x-6)+6(x-6)=0提取公因式(x-6)(x-6)(7x+6)=0令x-6=0,解得x=6令7x+6=0,解得x= - 67故原方程的根是:x1=6,x2=- 676、(3x-5)(2x+5)= x+7;解(3x-5)(2x+5)= x+7等号左边去括号6x2+15x-10x-25 =x+76x2+5x-25=x+76x2+4x-32=03x2+2x-16=0(3x+8)(x-2)=0令3x+8=0,解得x= - 83令x-2 =0,解得x=2故原方程的根是:x1=- 8,x2=237、3(3x-4)+ x(4-3x)=0;解:3(3x-4)+ x(4-3x)=0 3(3x-4)- x(3x-4)=0 提取公因式(3x-4)(3x-4)(3- x)=0令3x-4=0,解得x= 43令3- x =0,解得x=3,x2=3 故原方程的根是:x1= 438、x(2x+5)=4(2x-1)+3;解:x(2x+5)=4(2x-1)+3 2x2 +5x =8x-4+32x2 +5x =8x-12x2 -3x +1=0(2x-1)(x-1)=0令2x-1=0,解得x= 12 令x-1=0,解得x=1故原方程的根是:x 1= 12 ,x 2=19、(x −3)2 +4=5(3-x );解:(x −3)2 +4= 5(3-x )等号左边提取-1(x −3)2 +4= -5(x-3)右边的项移到等号左边(x −3)2 +5(x-3)+4=0[(x -3)+1][(x-3)+4]=0(x-2)(x+1)=0令x-2=0,解得x=2令x+1=0,解得x=-1故原方程的根是:x 1=2,x 2=-110、4x 2+7x +1=0;解:4x 2+7x +1=0判别式△=72 -4×4×1 =33x= −7 ±√332×4 = −7 ±√338故原方程的根是:x 1=−7 +√338,x 2=−7 −√33811、512x 2 + 13 = x ; 解:512x 2 + 13 = x等式两边同时乘以125x 2 +4 =12x5x 2 +4 -12x =0(5x-2)(x-2)=0令5x-2=0,解得x= 25 令x-2=0,解得x=2故原方程的根是:x 1= 25,x 2=212、(x−1)(x−2)2-1 = (x+1)(x−3)3 ; 解:(x−1)(x−2)2 -1 = (x+1)(x−3)3 等式两边分子去括号x 2−3x+22 -1 = x 2−2x−33等式两边同时乘以63(x 2−3x +2)-6 =2(x 2−2x −3) 3x 2 -9x+6 -6= 2x 2 -4x −6x 2 -5x +6=0(x-2)(x-3)=0令x-2=0,解得x=2令x-3=0,解得x=3故原方程的根是:x 1=2,x 2=313、 14[12(x+1)+13(x+2)+2] =x 2;解:14[12(x+1)+13(x+2)+2] =x 2等号两边同时乘以412(x+1)+13(x+2)+2 =4x 2等号两边同时乘以63(x+1)+2(x+2)+12 =24x 23x+3+2x+4+12=24x 224x 2-5x-19=0(24x+19)(x-1)=0令24x+19=0,解得x= −1924令x-1=0,解得x= 1故原方程的根是:x 1=−1924,x 2= 114、(x+1)(x+2)+(x+3)(x+4)=(x+2)(x+3)+32;解:(x+1)(x+2)+(x+3)(x+4)=(x+2)(x+3)+32 等号两边去括号x 2+3x+2+x 2+7x+12 =x 2+5x+6+32整理得x 2+5x-24=0(x+8)(x-3)=0令x+8=0,解得x= -8令x-3=0,解得x= 3故原方程的根是:x 1=-8,x 2= 315、x=2(0.3x+21)3 - (0.2x−1)(x+2)2 ; 解:x= 2(0.3x+21)3 - (0.2x−1)(x+2)2等号两边同时乘以66x=4(0.3x+21)-3(0.2x-1)(x+2) 去括号6x=1.2x+84-0.6x 2+1.8x+6整理得0.6x 2+3x-90=0等号两边同时乘以10,然后再除以6 x 2+5x-150=0(x+15)(x-10)=0令x+15=0,解得x= -15令x-10=0,解得x= 10故原方程的根是:x 1= -15,x 2= 1016、x 2+(1+ 2√5)x +( 4+√5)=0; 解:x 2+(1+ 2√5)x +( 4+√5)=0 判别式△=(1+ 2√5)2-4・1・( 4+√5)=1+4√5+20-16-4√5=5x= −(1+ 2√5)±√52∙1即x= −(1+ 2√5)+√52=−(1+ √5)2或 x= −(1+ 2√5)−√52=−(1+3 √5)2故原方程的根是:x1=−(1+ √5)2,x2= −(1+3 √5)2。

初三数学一元二次方程试题

初三数学一元二次方程试题

初三数学一元二次方程试题1.下列方程中,有两个不等实数根的是()A.B.C.D.【答案】D.【解析】根据一元二次方程根的判别式可知:选项A、B没有实数根;选项C有两个相等的实数根,选项D有两个不等实数根.故选D.【考点】根的判别式.2.解方程(x﹣1)2﹣5(x﹣1)+4=0时,我们可以将x﹣1看成一个整体,设x﹣1=y,则原方程可化为y2﹣5y+4=0,解得y1=1,y2=4.当y=1时,即x﹣1=1,解得x=2;当y=4时,即x﹣1=4,解得x=5,所以原方程的解为:x1=2,x2=5.则利用这种方法求得方程(2x+5)2﹣4(2x+5)+3=0的解为()A.x1=1,x2=3B.x1=﹣2,x2=3C.x1=﹣3,x2=﹣1D.x1=﹣1,x2=﹣2【答案】D【解析】此题主要考查了利用换元法解一元二次方程,解题的关键是利用换元法简化方程,然后利用一元二次方程的解法解决问题.首先根据题意可以设y=2x+5,方程可以变为 y2﹣4y+3=0,然后解关于y的一元二次方程,接着就可以求出x.解:(2x+5)2﹣4(2x+5)+3=0,设y=2x+5,方程可以变为 y2﹣4y+3=0,∴y1=1,y2=3,当y=1时,即2x+5=1,解得x=﹣2;当y=3时,即2x+5=3,解得x=﹣1,所以原方程的解为:x1=﹣2,x2=﹣1.故选D.3.某商场今年二月份的营业额为400万元,三月份由于经营不善,其营业额比二月份下降10%.后来通过加强管理,五月份的营业额达到518.4万元.求三月份到五月份营业额的月平均增长率.【答案】20%.【解析】设三月份到五月份营业额的月平均增长率为x,则四月份的营业额400×(1-10%)(1+x),五月份的营业额为400×(1-10%)(1+x)2,列出方程求解即可.试题解析:设三月份到五月份营业额的月平均增长率为x,根据题意得,400×(1-10%)(1+x)2=518.4,解得,x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:三月份到五月份营业额的月平均增长率为20%.考点: 一元二次方程的应用.4.若关于的一元二次方程有实数根,则()A.B.C.≥D.≤【答案】D【解析】把原方程移项,得.由于实数的平方均为非负数,故,•则.5.若矩形的长是,宽是,一个正方形的面积等于该矩形的面积,则正方形的边长是_______.【答案】.【解析】设正方形的边长为,则,解得.因为边长不能为负,所以舍去,故.6.解方程:【答案】.【解析】应用配方法或公式法求解即可.试题解析:配方得,两边开平方得,即,∴原方程的解为.【考点】解一元二次方程.7.已知方程x²-3x-8=0的两个解分别为a、b,则a+b、ab值分别是()A.3,-8B.-3,-8C.-3,8D.3,8【答案】A.【解析】根据根与系数的关系x1+x2=-,x1x2=解题.∵已知方程x²-3x-8=0的两个解分别为a、b,∴x1+x2=-,x1x2=故选A.考点: 根与系数的关系.8.雅安地震牵动全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动,第一天收到捐款10000元,第三天收到捐款12100元。

九年级数学一元二次方程测试题及参考答案-word

九年级数学一元二次方程测试题及参考答案-word

九年级数学一元二次方程测试题及参考答案学习是一个边学新知识边巩固的过程,对学过的知识一定要多加练习,这样才能进步。

因此,小编精心为大家整理了这篇九年级数学一元二次方程测试题及参考答案,供大家参考。

一、选择题(每小题3分,共30分)1、已知方程x2-6x+q=0可以配方成(x-p)2=7的形式,那么x2-6x+q=2可以配方成下列的( )A、(x-p)2=5B、(x-p)2=9C、(x-p+2)2=9D、(x-p+2)2=52、已知m是方程x2-x-1=0的一个根,则代数式m2-m的值等于( )A、-1B、0C、1D、23、若、是方程x2+2x-2019=0的两个实数根,则2+3+的值为( )A、2019B、2019C、-2019D、40104、关于x的方程kx2+3x-1=0有实数根,则k的取值范围是( )A、k-B、k- 且k0C、k-D、k- 且k05、关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是( )A、 x2+3x-2=0B、x2-3x+2=0C、x2-2x+3=0D、x2+3x+2=06、已知关于x的方程x2-(2k-1)x+k2=0有两个不相等的实根,那么k的最大整数值是( )A、-2B、-1C、0D、17、某城2019年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2019年底增加到363公顷,设绿化面积平均每年的增长率为x,由题意所列方程正确的是( ) A、300(1+x)=363 B、300(1+x)2=363C、300(1+2x)=363D、363(1-x)2=3008、甲、乙两个同学分别解一道一元二次方程,甲因把一次项系数看错了,而解得方程两根为-3和5,乙把常数项看错了,解得两根为2+ 和2- ,则原方程是( )A、 x2+4x-15=0B、x2-4x+15=0C、x2+4x+15=0D、x2-4x-15=09、若方程x2+mx+1=0和方程x2-x-m=0有一个相同的实数根,则m的值为( )A、2B、0C、-1D、10、已知直角三角形x、y两边的长满足|x2-4|+ =0,则第三边长为( )A、 2 或B、或2C、或2D、、2 或二、填空题(每小题3分,共30分)11、若关于x的方程2x2-3x+c=0的一个根是1,则另一个根是 .12、一元二次方程x2-3x-2=0的解是 .13、如果(2a+2b+1)(2a+2b-1)=63,那么a+b的值是 .14、等腰△ABC中,BC=8,AB、AC的长是关于x的方程x2-10x+m=0的两根,则m的值是 .15、2019年某市人均GDP约为2019年的1.2倍,如果该市每年的人均GDP增长率相同,那么增长率为 .16、科学研究表明,当人的下肢长与身高之比为0.618时,看起来最美,某成年女士身高为153cm,下肢长为92cm,该女士穿的高根鞋鞋根的最佳高度约为 cm.(精确到0.1cm) 17、一口井直径为2m,用一根竹竿直深入井底,竹竿高出井口0.5m,如果把竹竿斜深入井口,竹竿刚好与井口平,则井深为 m,竹竿长为 m.18、直角三角形的周长为2+ ,斜边上的中线为1,则此直角三角形的面积为 .19、如果方程3x2-ax+a-3=0只有一个正根,则的值是 .20、已知方程x2+3x+1=0的两个根为、,则 + 的值为 .三、解答题(共60分)21、解方程(每小题3分,共12分)(1)(x-5)2=16 (2)x2-4x+1=0(3)x3-2x2-3x=0 (4)x2+5x+3=022、(8分)已知:x1、x2是关于x的方程x2+(2a-1)x+a2=0的两个实数根,且(x1+2)(x2+2)=11,求a的值.23、(8分)已知:关于x的方程x2-2(m+1)x+m2=0(1) 当m取何值时,方程有两个实数根?(2) 为m选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根.24、(8分)已知一元二次方程x2-4x+k=0有两个不相等的实数根(1) 求k的取值范围(2) 如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0与x2+mx-1=0有一个相同的根,求此时m的值.25、(8分)已知a、b、c分别是△ABC中A、B、C所对的边,且关于x的方程(c-b)x2+2(b-a)x+(a-b)=0有两个相等的实数根,试判断△ABC的形状.26、(8分)某工程队在我市实施棚户区改造过程中承包了一项拆迁工程,原计划每天拆迁1250m2,因为准备工作不足,第一天少拆迁了20%,从第二天开始,该工程队加快了拆迁速度,第三天拆迁了1440m2求:(1)该工程队第二天第三天每天的拆迁面积比前一天增长的百分数相同,求这个百分数.27、(分)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克(1) 现该商场要保证每天盈利6000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2) 若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?小编再次提醒大家,一定要多练习哦!希望这篇九年级数学一元二次方程测试题及参考答案,能够帮助你巩固学过的相关知识。

(完整版)初三一元二次方程练习题及答案

(完整版)初三一元二次方程练习题及答案

九年级数学(一元二次方程)一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。

每题3分,共24分):1.下列方程中不一定是一元二次方程的是( )A.(a-3)x 2=8 (a ≠3)B.ax 2+bx+c=0232057x +-= 2下列方程中,常数项为零的是( )A.x 2+x=1B.2x 2-x-12=12;C.2(x 2-1)=3(x-1)D.2(x 2+1)=x+23.一元二次方程2x 2-3x+1=0化为(x+a)2=b 的形式,正确的是( ) A. 23162x ⎛⎫-= ⎪⎝⎭; B.2312416x ⎛⎫-= ⎪⎝⎭; C. 231416x ⎛⎫-= ⎪⎝⎭; D.以上都不对 4.关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 值为( )A 、1B 、1-C 、1或1-D 、125.已知三角形两边长分别为2和9,第三边的长为二次方程x 2-14x+48=0的一根, 则这个三角形的周长为( )A.11B.17C.17或19D.196.已知一个直角三角形的两条直角边的长恰好是方程22870x x -+=的两个根,则这个直角三角形的斜边长是( )A 、、3 C 、6 D 、97.使分式2561x x x --+ 的值等于零的x 是( ) A.6 B.-1或6 C.-1 D.-68.若关于y 的一元二次方程ky 2-4y-3=3y+4有实根,则k 的取值范围是( ) A.k>-74 B.k ≥-74 且k ≠0 C.k ≥-74 D.k>74且k ≠0 9.已知方程22=+x x ,则下列说中,正确的是( )(A )方程两根和是1 (B )方程两根积是2(C )方程两根和是1- (D )方程两根积比两根和大210.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( )A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x =1000D.200[1+(1+x)+(1+x)2]=1000二、填空题:(每小题4分,共20分)11.用______法解方程3(x-2)2=2x-4比较简便.12.如果2x 2+1与4x 2-2x-5互为相反数,则x 的值为________.13.22____)(_____3-=+-x x x14.若一元二次方程ax 2+bx+c=0(a ≠0)有一个根为-1,则a 、b 、c 的关系是______.15.已知方程3ax 2-bx-1=0和ax 2+2bx-5=0,有共同的根-1, 则a= ______, b=______.16.一元二次方程x 2-3x-1=0与x 2-x+3=0的所有实数根的和等于____.17.已知3-2是方程x 2+mx+7=0的一个根,则m=________,另一根为_______.18.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________.19.已知x x 12,是方程x x 2210--=的两个根,则1112x x +等于__________.20.关于x 的二次方程20x mx n ++=有两个相等实根,则符合条件的一组,m n 的实数值可以是m = ,n = .三、用适当方法解方程:(每小题5分,共10分)21.22(3)5x x -+= 22.22330x x ++=四、列方程解应用题:(每小题7分,共21分)23.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.24.如图所示,在宽为20m ,长为32m 的矩形耕地上,修筑同样宽的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为570m 2,道路应为多宽?25.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。

初三数学一元二次方程测试题

初三数学一元二次方程测试题

初三数学一元二次方程测试题一、选择题(每题3分,共15分)1. 解一元二次方程 \( ax^2 + bx + c = 0 \) 的判别式是:A. \( b^2 - 4ac \)B. \( b^2 + 4ac \)C. \( 4b^2 - a^2 \)D. \( 4ac - b^2 \)2. 方程 \( x^2 - 5x + 6 = 0 \) 的解是:A. \( x = 2 \) 或 \( x = 3 \)B. \( x = -2 \) 或 \( x = -3 \)C. \( x = 1 \) 或 \( x = 6 \)D. 无实数解3. 若 \( x_1 \) 和 \( x_2 \) 是方程 \( x^2 + 2x - 15 = 0 \) 的根,则 \( x_1 + x_2 \) 的值是:A. -2B. 2C. 5D. -54. 方程 \( 2x^2 - 3x + 1 = 0 \) 的根的判别式 \( \Delta \) 值是:A. 1B. 3C. 7D. 115. 一元二次方程 \( x^2 + 6x + 9 = 0 \) 的根的情况是:A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法判断二、填空题(每题2分,共10分)6. 方程 \( x^2 - 4x + 4 = 0 \) 的根是 __________。

7. 若 \( x_1 \) 和 \( x_2 \) 是方程 \( x^2 + 5x + 6 = 0 \) 的根,则 \( x_1 \cdot x_2 = ________ \)。

8. 方程 \( 3x^2 - 6x + 2 = 0 \) 的判别式 \( \Delta \) 是__________。

9. 已知 \( x_1 \) 和 \( x_2 \) 是方程 \( x^2 - 7x + 12 = 0 \) 的根,求 \( x_1^2 + x_2^2 \) 的值是 __________。

初三数学一元二次试卷

初三数学一元二次试卷

一、选择题(每题5分,共25分)1. 下列方程中,不是一元二次方程的是:A. x^2 - 5x + 6 = 0B. 2x^2 + 3x - 2 = 0C. x^2 + 3 = 0D. 3x + 2 = 02. 一元二次方程 x^2 - 4x + 3 = 0 的两个根分别是:A. x1 = 1, x2 = 3B. x1 = 3, x2 = 1C. x1 = -1, x2 = -3D. x1 = -3, x2 = -13. 若方程 x^2 - (a+3)x + a = 0 的两根互为相反数,则 a 的值为:A. 0B. 1C. 2D. 34. 方程 x^2 - 5x + 6 = 0 的解为:A. x1 = 2, x2 = 3B. x1 = 3, x2 = 2C. x1 = -2, x2 = -3D. x1 = -3, x2 = -25. 一元二次方程 x^2 - 2ax + a^2 = 0 的两个根分别是:A. x1 = a, x2 = 2aB. x1 = 2a, x2 = aC. x1 = -a, x2 = -2aD. x1 = -2a, x2 = -a二、填空题(每题5分,共25分)6. 若一元二次方程 x^2 + 2px + p^2 = 0 的两根为实数,则 p 的取值范围是_______。

7. 方程 x^2 - 3x + 2 = 0 的两根之积为 _______。

8. 若方程 x^2 - (a+1)x + a = 0 的两根之差为2,则 a 的值为 _______。

9. 方程 x^2 - 4x + 4 = 0 的两根之和为 _______。

10. 若方程 x^2 - 3x + c = 0 的两根相等,则 c 的值为 _______。

三、解答题(每题10分,共40分)11. 解一元二次方程 x^2 - 6x + 9 = 0。

12. 若方程 x^2 - 4x + k = 0 的两根之和为4,求 k 的值。

初三一元二次方程数学试题含答案

初三一元二次方程数学试题含答案

一.解答题(共30小题)1.(2013•淄博)关于x的一元二次方程(a﹣6)x2﹣8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求的值.2.(2013•孝感)已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)是否存在实数k使得≥0成立?若存在,请求出k的值;若不存在,请说明理由.3.(2013•南充)关于x的一元二次方程为(m﹣1)x2﹣2mx+m+1=0.(1)求出方程的根;(2)m为何整数时,此方程的两个根都为正整数?4.(2013•荆州)已知:关于x的方程kx2﹣(3k﹣1)x+2(k﹣1)=0(1)求证:无论k为何实数,方程总有实数根;(2)若此方程有两个实数根x1,x2,且|x1﹣x2|=2,求k的值.5.(2012•庆阳)已知关于x的方程k2x2﹣2(k+1)x+1=0有两个实数根.(1)求k的取值范围;(2)当k=1时,设所给方程的两个根分别为x1和x2,求+的值.6.(2010•孝感)关于x的一元二次方程x2﹣x+p﹣1=0有两实数根x1,x2, (1)求p的取值范围;(2)若[2+x1(1﹣x1)][2+x2(1﹣x2)]=9,求p的值.7.(淄博)已知x1,x2是方程x2﹣2x+a=0的两个实数根,且x1+2x2=3﹣.(1)求x1,x2及a的值;(2)求x13﹣3x12+2x1+x2的值.8.(江津区)已知a、b、c分别是△ABC的三边,其中a=1,c=4,且关于x的方程x2﹣4x+b=0有两个相等的实数根,试判断△ABC的形状.9.(鄂州)已知关于x的方程kx2﹣2(k+1)x+k﹣1=0有两个不相等的实数根.(1)求k的取值范围;(2)是否存在实数k,使此方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,说明理由.10.(濮阳)已知x1,x2是关于x的一元二次方程x2﹣6x+k=0的两个实数根,且x12x22﹣x1﹣x2=115.(1)求k的值;(2)求x12+x22+8的值.11.(孝感)已知关于x的一元二次方程x2+(m﹣1)x﹣2m2+m=0(m为实数)有两个实数根x1、x2.(1)当m为何值时,x1≠x2;(2)若x12+x22=2,求m的值.12.已知关于x的一元二次方程x2+4x+m﹣1=0.(1)请你为m选取一个合适的整数,使得到的方程有两个不相等的实数根;(2)设α,β是(1)中你所得到的方程的两个实数根,求α2+β2+αβ的值.13.已知关于x的方程2x2﹣kx+1=0的一个解与方程的解相同.(1)求k的值;(2)求方程2x2﹣kx+1=0的另一个解.14.已知:关于x的一元二次方程x2﹣(2m+1)x+m2+m﹣2=0.(1)求证:不论m取何值,方程总有两个不相等的实数根;(2)若方程的两个实数根x1,x2满足,求m的值.15.已知关于x的一元二次方程x2+kx﹣1=0,(1)求证:方程有两个不相等的实数根;(2)设方程的两根分别为x1,x2,且满足x1+x2=x1•x2,求k的值.16.已知关于x的一元二次方程kx2﹣2(k+1)x+k﹣1=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)是否存在实数k,使+=1成立?若存在,请求出k的值;若不存在,请说明理由.17.已知:△ABC的两边AB、AC的长是关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0的两个实数根,第三边BC的长为5.试问:k取何值时,△ABC是以BC为斜边的直角三角形?18.已知α,β是关于x的一元二次方程(m﹣1)x2﹣x+1=0的两个实数根,且满足(α+1)(β+1)=m+1,求实数m 的值.19.已知关于x的方程(m﹣1)x2﹣2mx+m=0有两个不相等的实数根x1、x2;(1)求m的取值范围;(2)若(x1﹣x2)2=8,求m的值.20.已知:关于x的方程x2﹣(k+1)x+k2+1=0的两根是一个矩形两邻边的长.(1)k取何值时,方程有两个实数根;(2)当矩形的对角线长为时,求k的值.21.设关于x的一元二次方程x2﹣4x﹣2(k﹣1)=0有两个实数根x1、x2,问是否存在x1+x2<x1•x2的情况?22.关于x的方程x2+(2k+1)x+k2﹣1=0有两个实数根.(1)求实数k的取值范围;(2)是否存在实数k,使方程的两个实数根的平方和与两个实数根的积相等?若存在,求出k的值;若不存在,说明理由.23.已知关于x的方程x2+2(2﹣m)x+3﹣6m=0.(1)求证:无论m取什么实数,方程总有实数根;(2)如果方程的两个实数根x1、x2满足x1=3x2,求实数m的值.(1)当a、c异号时,试证明该方程必有两个不相等的实数根;(2)当a、c同号时,该方程要有实数根,还须满足什么条件?请你找出一个a、c同号且有实数根的一元二次方程,然后解这个方程.25.已知关于x的一元二次方程,(1)求证:不论k取何值,方程总有两个不相等的实数根;(2)设x1、x2是方程的两个根,且x12﹣2kx1+2x1x2=5,求k的值.26.已知关于x的方程x2﹣2(m+1)x+m2﹣3=0.(1)当m取何值时,方程有两个不相等的实数根?(2)设x1、x2是方程的两根,且(x1+x2)2﹣(x1+x2)﹣12=0,求m的值.27.设a,b,c是△ABC三边的长,且关于x的方程c(x2+n)+b(x2﹣n)﹣2ax=0(n>0)有两个实数根,求证:△ABC是直角三角形.28.(2013•乐山模拟)选做题:题乙:已知关于x的一元二次方程x2﹣2kx+k2+2=2(1﹣x)有两个实数根x1、x2.(1)求实数k的取值范围;(2)若方程的两实数根x1、x2满足|x1+x2|=x1x2﹣1,求k的值.29.(2012•张家港市模拟)若关于x的方程x2+4x﹣a+3=0有实数根.(1)求a的取值范围;(2)当a=2012时,设方程的两根为x1、x2,求x12+3x1﹣x2的值.30.(2012•金堂县一模)用适当的方法解下列方程①(x+4)2=5(x+4)②x2﹣6x+5=0 ③(x+3)2=(1﹣2x)2 ④2x2﹣10x=3.一.解答题(共30小题)1.(2013•淄博)关于x的一元二次方程(a﹣6)x2﹣8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求的值.考点:根的判别式;解一元二次方程-公式法.分析:(1)根据一元二次方程的定义和根的判别式得到△=64﹣4×(a﹣6)×9≥0且a﹣6≠0,解得a≤且a≠6,然后在次范围内找出最大的整数;(2)①把a的值代入方程得到x2﹣8x+9=0,然后利用求根公式法求解;②由于x2﹣8x+9=0则x2﹣8x=﹣9,然后把x2﹣8x=﹣9整体代入所求的代数式中得到原式=2x2﹣=2x2﹣16x+,再变形得到2(x2﹣8x)+,再利用整体思想计算即可.解答:解:(1)根据题意△=64﹣4×(a﹣6)×9≥0且a﹣6≠0,解得a≤且a≠6,所以a的最大整数值为7;(2)①当a=7时,原方程变形为x2﹣8x+9=0,△=64﹣4×9=28,∴x=,∴x1=4+,x2=4﹣;②∵x2﹣8x+9=0,∴x2﹣8x=﹣9,所以原式=2x2﹣=2x2﹣16x+=2(x2﹣8x)+=2×(﹣9)+=﹣.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义和解法以及整体思想.2.(2013•孝感)已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)是否存在实数k使得≥0成立?若存在,请求出k的值;若不存在,请说明理由.分析:(1)根据已知一元二次方程的根的情况,得到根的判别式△≥0,据此列出关于k的不等式[﹣(2k+1)]2﹣4(k2+2k)≥0,通过解该不等式即可求得k的取值范围;(2)假设存在实数k使得≥0成立.利用根与系数的关系可以求得,然后利用完全平方公式可以把已知不等式转化为含有两根之和、两根之积的形式≥0,通过解不等式可以求得k的值.解答:解:(1)∵原方程有两个实数根,∴[﹣(2k+1)]2﹣4(k2+2k)≥0,∴4k2+4k+1﹣4k2﹣8k≥0∴1﹣4k≥0,∴k≤.∴当k≤时,原方程有两个实数根.(2)假设存在实数k使得≥0成立.∵x1,x2是原方程的两根,∴.由≥0,得≥0.∴3(k2+2k)﹣(2k+1)2≥0,整理得:﹣(k﹣1)2≥0,∴只有当k=1时,上式才能成立.又∵由(1)知k≤,∴不存在实数k使得≥0成立.点评:本题综合考查了根的判别式和根与系数的关系,在解不等式时一定要注意数值的正负与不等号的变化关系.3.(2013•南充)关于x的一元二次方程为(m﹣1)x2﹣2mx+m+1=0.(1)求出方程的根;(2)m为何整数时,此方程的两个根都为正整数?考点:解一元二次方程—公式法;一元二次方程的解.专题:压轴题.分析:(1)利用求根根式x=解方程;(2)利用(1)中x的值来确定m的值.解答:解:(1)根据题意,得m≠1.则x1==,x2=1;(2)由(1)知,x1==1+,∵方程的两个根都为正整数,∴是正整数,∴m﹣1=1或m﹣1=2,解得,m=2或3.即m为2或3时,此方程的两个根都为正整数.点评:本题考查了公式法解一元二次方程.要会熟练运用公式法求得一元二次方程的解.4.(2013•荆州)已知:关于x的方程kx2﹣(3k﹣1)x+2(k﹣1)=0(1)求证:无论k为何实数,方程总有实数根;(2)若此方程有两个实数根x1,x2,且|x1﹣x2|=2,求k的值.考点:根的判别式;根与系数的关系.分析:(1)确定判别式的范围即可得出结论;(2)根据根与系数的关系表示出x1+x2,x1x2,继而根据题意可得出方程,解出即可.解答:(1)证明:①当k=0时,方程是一元一次方程,有实数根;②当k≠0时,方程是一元二次方程,∵△=(3k﹣1)2﹣4k×2(k﹣1)=(k+1)2≥0,∴无论k为何实数,方程总有实数根.(2)解:∵此方程有两个实数根x1,x2,∴x1+x2=,x1x2=,∵|x1﹣x2|=2,∴(x1﹣x2)2=4,∴(x1+x2)2﹣4x1x2=4,即﹣4×=4,解得:=±2,即k=1或k=﹣.点评:本题考查了根的判别式及根与系数的关系,属于基础题,这些用到的知识点是需要我们熟练记忆的内容.5.(2012•庆阳)已知关于x的方程k2x2﹣2(k+1)x+1=0有两个实数根.(1)求k的取值范围;(2)当k=1时,设所给方程的两个根分别为x1和x2,求+的值.考点:根的判别式;根与系数的关系.专题: 计算题.分析:(1)根据一元二次方程的定义和根的判别式的意义得到k2≠0且△=4(k+1)2﹣4k2≥0,然后解两个不等式,求出它们的公共部分即可;(2)先把k=1代入方程,再根据根与系数的关系得到x1+x2=4,x1•x2=1,然后把所求的代数式变形得到+=,然后利用整体思想进行计算.解答:解:(1)根据题意得k2≠0且△=4(k+1)2﹣4k2≥0,解得k≥﹣且k≠0;(2)k=1时方程化为x2﹣4x+1=0,则x1+x2=4,x1•x2=1,+===14.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的根与系数的关系.6.(2010•孝感)关于x的一元二次方程x2﹣x+p﹣1=0有两实数根x1,x2,(1)求p的取值范围;(2)若[2+x1(1﹣x1)][2+x2(1﹣x2)]=9,求p的值.考点:根与系数的关系;根的判别式.分析:(1)一元二次方程有实根,△≥0,根据判别式的公式代入可求p的取值范围;(2)将等式变形,结合四个等式:x1+x2=1,x1•x2=p﹣1,x12﹣x1+p﹣1=0,x22﹣x2+p﹣1=0,代入求p,结果要根据p的取值范围进行检验.解答:解:(1)由题意得:△=(﹣1)2﹣4(p﹣1)≥0解得,p≤;(2)由[2+x1(1﹣x1)][2+x2(1﹣x2)]=9得,(2+x1﹣x12)(2+x2﹣x22)=9∵x1,x2是方程x2﹣x+p﹣1=0的两实数根,∴x12﹣x1+p﹣1=0,x22﹣x2+p﹣1=0,∴x1﹣x12=p﹣1,x2﹣x22=p﹣1∴(2+p﹣1)(2+p﹣1)=9,即(p+1)2=9∴p=2或p=﹣4,∵p≤,∴所求p的值为﹣4.点评:本题考查了一元二次方程的根的判别式运用,根与系数关系的运用以及等式变形的能力.7.(2009•淄博)已知x1,x2是方程x2﹣2x+a=0的两个实数根,且x1+2x2=3﹣.(1)求x1,x2及a的值;(2)求x13﹣3x12+2x1+x2的值.考点:根与系数的关系;解二元一次方程组;一元二次方程的解.分析:(1)将x1+2x2=3﹣与两根之和公式、两根之积公式联立组成方程组即可求出x1,x2及a的值;(2)欲求x13﹣3x12+2x1+x2的值,先把代此数式变形为两根之积或两根之和的形式,代入数值即可求出x13﹣3x12+2x1+x2的值.解答:解:(1)由题意,得,解得x1=1+,x2=1﹣.所以a=x1•x2=(1+)(1﹣)=﹣1;(2)由题意,得x12﹣2x1﹣1=0,即x12﹣2x1=1∴x13﹣3x12+2x1+x2=x13﹣2x12﹣x12+2x1+x2=x1(x12﹣2x1)﹣(x12﹣2x1)+x2=x1﹣1+x2=(x1+x2)﹣1=2﹣1=1.点评:若一元二次方程有实数根,则根与系数的关系为:x1+x2=﹣,x1•x2=,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.8.(2009•江津区)已知a、b、c分别是△ABC的三边,其中a=1,c=4,且关于x的方程x2﹣4x+b=0有两个相等的实数根,试判断△ABC的形状.考点:等腰三角形的判定;根的判别式.专题: 压轴题.分析:先根据关于x的方程x2﹣4x+b=0有两个相等的实数根,可知△=(﹣4)2﹣4b=0,求出b的值为4,再根据a,c的值来判断△ABC的形状.解答:解:∵方程x2﹣4x+b=0有两个相等的实数根∴△=(﹣4)2﹣4b=0(3分)∴b=4(4分)∵c=4∴b=c=4(5分)∴△ABC为等腰三角形.(6分)点评:本题考查了一元二次方程根的判别式的应用和利用边与边之间的关系判断三角形的形状.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.9.(2009•鄂州)已知关于x的方程kx2﹣2(k+1)x+k﹣1=0有两个不相等的实数根.(1)求k的取值范围;(2)是否存在实数k,使此方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,说明理由.考点:根与系数的关系;一元二次方程的定义;根的判别式.分析:(1)根据方程有两个不相等的实数根可知△=[﹣2(k+1)]2﹣4k(k﹣1)>0,求得k的取值范围;(2)可假设存在实数k,使得方程的两个实数根x1,x2的倒数和为0,列出方程即可求得k的值,然后把求得的k值代入原式中看看与已知是否矛盾,如果矛盾则不存在,如果不矛盾则存在.解答:解:(1)∵方程有两个不相等的实数根,∴△=[﹣2(k+1)]2﹣4k(k﹣1)=12k+4>0,且k≠0,解得k>﹣,且k≠0,即k的取值范围是k>﹣,且k≠0;(2)假设存在实数k,使得方程的两个实数根x1,x2的倒数和为0,则x1,x2不为0,且,即,且,解得k=﹣1,而k=﹣1与方程有两个不相等实根的条件k>﹣,且k≠0矛盾,故使方程的两个实数根的倒数和为0的实数k不存在.点评:本题主要考查了根的判别式的运用和给定一个条件判断是否存在关于字母系数的值令条件成立.解决此类问题,要先假设存在,然后根据条件列出关于字母系数的方程解出字母系数的值,再把求得的字母系数值代入原式中看看与已知是否矛盾,如果矛盾则不存在,如果不矛盾则存在.10.(2008•濮阳)已知x1,x2是关于x的一元二次方程x2﹣6x+k=0的两个实数根,且x12x22﹣x1﹣x2=115.(1)求k的值;(2)求x12+x22+8的值.考点: 根与系数的关系;解一元二次方程—直接开平方法;根的判别式.专题:压轴题.分析:(1)方程有两个实数根,必须满足△=b2﹣4ac≥0,从而求出实数k的取值范围,再利用根与系数的关系,x1x2﹣x1﹣x2=115.即x1x2﹣(x1+x2)=115,即可得到关于k的方程,求出k的值.(2)根据(1)即可求得x1+x2与x1x2的值,而x12+x22+8=(x1+x2)2﹣2x1x2+8即可求得式子的值.解答:解:(1)∵x1,x2是方程x2﹣6x+k=0的两个根,∴x1+x2=6,x1x2=k,∵x12x22﹣x1﹣x2=115,∴k2﹣6=115,解得k1=11,k2=﹣11,当k1=11时,△=36﹣4k=36﹣44<0,∴k1=11不合题意当k2=﹣11时,△=36﹣4k=36+44>0,∴k2=﹣11符合题意,∴k的值为﹣11;(2)∵x1+x2=6,x1x2=﹣11∴x12+x22+8=(x1+x2)2﹣2x1x2+8=36+2×11+8=66.点评:总结:(1)一元二次方程根的情况与判别式△的关系:①△>0⇔方程有两个不相等的实数根;②△=0⇔方程有两个相等的实数根;③△<0⇔方程没有实数根.(2)根与系数的关系是:x1+x2=,x1x2=.根据根与系数的关系把x12x22﹣x1﹣x2=115转化为关于k的方程,解得k的值是解决本题的关键.11.(2007•孝感)已知关于x的一元二次方程x2+(m﹣1)x﹣2m2+m=0(m为实数)有两个实数根x1、x2.(1)当m为何值时,x1≠x2;(2)若x12+x22=2,求m的值.考点: 根与系数的关系;解一元二次方程—因式分解法;根的判别式.分析:(1)当m为何值时x1≠x2,即方程有两个不同的根,则根的判别式△>0.(2)依据根与系数关系,可以设方程的两根是x1、x2,则可以表示出两根的和与两根的积,依据x12+x22=(x1+x2)2﹣2x1x2,即可得到关于m的方程,即可求得m的值.解答:解:(1)x2+(m﹣1)x﹣2m2+m=0(m为实数)有两个实数根x1、x2.∵a=1,b=m﹣1,c=﹣2m2+m,∴△=b2﹣4ac=(m﹣1)2﹣4(﹣2m2+m)=m2﹣2m+1+8m2﹣4m=9m2﹣6m+1=(3m﹣1)2,要使x1≠x2,则应有△>0,即△=(3m﹣1)2>0,∴m≠;(2)根据题意得:x1+x2=﹣=1﹣m,x1•x2==﹣2m2+m∵x12+x22=2,即x12+x22=(x1+x2)2﹣2x1x2,即(1﹣m)2﹣2(﹣2m2+m)=2,解得m1=,m2=1.点评:本题是常见的根的判别式与根与系数关系的结合试题.把求未知系数m的问题转化为解方程问题是解决本题的关键.12.(2006•沈阳)已知关于x的一元二次方程x2+4x+m﹣1=0.(1)请你为m选取一个合适的整数,使得到的方程有两个不相等的实数根;(2)设α,β是(1)中你所得到的方程的两个实数根,求α2+β2+αβ的值.考点:根的判别式;根与系数的关系.专题:计算题;开放型;判别式法.分析:(1)根据△>0求得m的取值范围,再进一步在范围之内确定m的一个整数值;(2)根据根与系数的关系,对α2+β2+αβ进行变形求解.解答:解:(1)根据题意,得△=b2﹣4ac=16﹣4(m﹣1)>0,解得m<5.∴只要是m<5的整数即可.如:令m=1.(2)当m=1时,则得方程x2+4x=0,∵α,β是方程x2+4x=0的两个实数根,∴α+β=﹣4,αβ=0,∴α2+β2+αβ=(α+β)2﹣αβ=(﹣4)2﹣0=16.点评:(1)一元二次方程根的情况与判别式△的关系:①△>0⇔方程有两个不相等的实数根;②△=0⇔方程有两个相等的实数根;③△<0⇔方程没有实数根.(2)一元二次方程的两根之和等于,两个之积等于.13.(2006•旅顺口区)已知关于x的方程2x2﹣kx+1=0的一个解与方程的解相同.(1)求k的值;(2)求方程2x2﹣kx+1=0的另一个解.考点:根与系数的关系;一元二次方程的解;解分式方程.分析:(1)分式方程较完整,可先求出分式方程的解,代入整式方程即可求得k的值.(2)根据两根之和=﹣即可求得另一根的解.解答:解:(1)解方程:,得2x+1=4﹣4x.∴.经检验是原方程的解.把代入方程2x2﹣kx+1=0.解得k=3.(2)当k=3时,方程为2x2﹣3x+1=0.由根与系数关系得方程另一个解为:x=﹣=1.点评:此题主要考查方程解的意义,及同解方程、解方程等知识.注意运用根与系数的关系使运算简便.14.(2006•龙岩)已知:关于x的一元二次方程x2﹣(2m+1)x+m2+m﹣2=0.(1)求证:不论m取何值,方程总有两个不相等的实数根;(2)若方程的两个实数根x1,x2满足,求m的值.考点:根与系数的关系;解一元二次方程—因式分解法;根的判别式;解分式方程.专题: 计算题;证明题.分析:(1)方程总有两个不相等的实数根的条件是△>0,由△>0可推出m的取值范围.(2)欲求m的值,先把代数式变形为两根之积或两根之和的形式,然后与两根之和公式、两根之积公式联立组成方程组,解方程组即可求m的值.解答:解:(1)△=[﹣(2m+1)]2﹣4(m2+m﹣2).=4m2+4m+1﹣4m2﹣4m+8=9>0∴不论m取何值,方程总有两个不相等实数根.(2)解法一:根据根与系数的关系有x1+x2=2m+1,x1•x2=m2+m﹣2.又.∴.整理得m2=4解得m1=2,m2=﹣2经检验m=﹣2是增根,舍去.∴m的值为2.解法二:由原方程可得[x﹣(m﹣1)][x﹣(m+2)]=0∴x1=m+2,x2=m﹣1又∵∴∴m=2经检验:m=2符合题意.∴m的值为2.点评:本题考查了一元二次方程根的判别方法,根与系数关系的灵活运用等知识.根据一元二次方程的根与系数的关系把求m的问题转化为解方程的问题,是解决本题的关键.15.(2006•江西)已知关于x的一元二次方程x2+kx﹣1=0,(1)求证:方程有两个不相等的实数根;(2)设方程的两根分别为x1,x2,且满足x1+x2=x1•x2,求k的值.考点:根与系数的关系;根的判别式.专题:计算题;证明题.分析:当△>0时方程有两个不相等的实数根,本题中△=k2﹣4×1×(﹣1)=k2+4>0.利用两根之和公式、两根之积公式与x1+x2=x1•x2联立组成方程组,解方程组即可求出k的值.解答:证明:(1)∵△=k2﹣4×1×(﹣1)=k2+4>0.∴原方程有两个不相等的实数根.解:(2)由根与系数的关系,得x1+x2=﹣k,x1•x2=﹣1.∵x1+x2=x1•x2,∴﹣k=﹣1,解得k=1.点评:命题立意:考查一元二次方程根的判别式与根与系数的关系及推理论证能力.16.(2006•黑龙江)已知关于x的一元二次方程kx2﹣2(k+1)x+k﹣1=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)是否存在实数k,使+=1成立?若存在,请求出k的值;若不存在,请说明理由.考点:根的判别式;一元二次方程的定义;根与系数的关系.专题:开放型.分析:(1)根据一元二次方程的根的判别式,建立关于k的不等式,求得k的取值范围.(2)利用根与系数的关系,根据+=,即可求出k的值,看是否满足(1)中k的取值范围,从而确定k的值是否存在.解答:解:(1)由题意知,k≠0且△=b2﹣4ac>0∴b2﹣4ac=[﹣2(k+1)]2﹣4k(k﹣1)>0,即4k2+8k+4﹣4k2+4k>0,∴12k>﹣4解得:k>﹣且k≠0(2)不存在.∵x1+x2=,x1•x2=,又有+==1,可求得k=﹣3,而﹣3<﹣∴满足条件的k值不存在.点评:总结:1、一元二次方程根的情况与判别式△的关系:①△>0⇔方程有两个不相等的实数根;②△=0⇔方程有两个相等的实数根;③△<0⇔方程没有实数根.2、一元二次方程的根与系数的关系为:x1+x2=﹣,x1x2=3、一元二次方程的二次项系数不为017.(2006•广安)已知:△ABC的两边AB、AC的长是关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0的两个实数根,第三边BC的长为5.试问:k取何值时,△ABC是以BC为斜边的直角三角形?考点:根与系数的关系;解一元二次方程-因式分解法;勾股定理.分析:△ABC是以BC为斜边的直角三角形,即AB,AC的平方和是25,则一元二次方程x2﹣(2k+3)x+k2+3k+2=0的两个实数根的平方和是25,根据韦达定理和勾股定理解出k的值,再把k的值代入原方程,检查k是哪个值时,△ABC是以BC为斜边的直角三角形则可.解答:解:设边AB=a,AC=b∵a、b是方程x2﹣(2k+3)x+k2+3k+2=0的两根∴a+b=2k+3,a•b=k2+3k+2又∵△ABC是以BC为斜边的直角三角形,且BC=5∴a2+b2=52,即(a+b)2﹣2ab=52,∴(2k+3)2﹣2(k2+3k+2)=25∴k2+3k﹣10=0∴k1=﹣5或k2=2当k=﹣5时,方程为:x2+7x+12=0解得:x1=﹣3,x2=﹣4(舍去)当k=2时,方程为:x2﹣7x+12=0解得:x1=3,x2=4∴当k=2时,△ABC是以BC为斜边的直角三角形.点评:此题主要考查一元二次方程的根与系数的关系及勾股定理的应用.求出k的值后,一定要代入原方程进行检验.18.(2005•徐州)已知α,β是关于x的一元二次方程(m﹣1)x2﹣x+1=0的两个实数根,且满足(α+1)(β+1)=m+1,求实数m的值.考点:根与系数的关系;一元二次方程的定义;解分式方程.分析:α,β是关于x的一元二次方程(m﹣1)x2﹣x+1=0的两个实数根,有α+β=,αβ=,且(α+1)(β+1)=(α+β)+αβ+1代入可得(α+1)(β+1)=m+1.即可得到关于m的方程,从而求解.解答:解:∵一元二次方程(m﹣1)x2﹣x+1=0有两个实数根α,β.∴,解之得m≤且m≠1,而α+β=,αβ=,又(α+1)(β+1)=(α+β)+αβ+1=m+1,∴+=m,解之得m1=﹣1,m2=2,经检验m1=﹣1,m2=2都是原方程的根.∵m≤,∴m2=2不合题意,舍去,∴m的值为﹣1.注:如果没有求出m的取值范围,但在求出m值后代入原方程检验,舍去m=2也正确.点评:本题考查一元二次方程ax2+bx+c=0的根与系数关系即韦达定理,两根之和是,两根之积是.利用根与系数的关系把求m的问题转化为方程的问题,是解决本题的关键.19.(2005•龙岩)已知关于x的方程(m﹣1)x2﹣2mx+m=0有两个不相等的实数根x1、x2;(1)求m的取值范围;(2)若(x1﹣x2)2=8,求m的值.考点:根与系数的关系;根的判别式;解分式方程.分析:(1)根据一元二次方程的根的判别式△>0时,方程有两个不相等的实数根,建立关于m的不等式,然后求出m的取值范围;(2)把根与系数的关系式代入(x1﹣x2)2=8即(x1﹣x2)2=(x1+x2)2﹣4x1x2=8,代入即可得到一个关于m的方程,求得m的值.解答:解:(1)∵a=m﹣1,b=﹣2m,c=m,而方程有两个不相等的实数根,∴△=b2﹣4ac=4m2﹣4(m﹣1)m=4m>0,∴m>0(m≠1);(2)∵,,∴(x1﹣x2)2=(x1+x2)2﹣4x1x2==8,解得:m1=2,m2=.经检验2和都是方程的解.点评:总结:1、一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根(3)△<0⇔方程没有实数根.2、若一元二次方程有实根,则根与系数的关系为:x1+x2=,x1•x2=.20.(2005•荆门)已知:关于x的方程x2﹣(k+1)x+k2+1=0的两根是一个矩形两邻边的长.(1)k取何值时,方程有两个实数根;(2)当矩形的对角线长为时,求k的值.考点:根与系数的关系;根的判别式;勾股定理;矩形的性质.分析:(1)根据一元二次方程根的判别式,方程有两个实数根,则判别式△≥0,得出关于k的不等式,求出k的取值范围.(2)根据勾股定理和根与系数的关系得出关于k的方程,求出k的值并检验.解答:解:(1)设方程的两根为x1,x2则△=[﹣(k+1)]2﹣4(k2+1)=2k﹣3,∵方程有两个实数根,∴△≥0,即2k﹣3≥0,∴k≥∴当k≥,方程有两个实数根.(2)由题意得:,又∵x12+x22=5,即(x1+x2)2﹣2x1x2=5,(k+1)2﹣2(k2+1)=5,整理得k2+4k﹣12=0,解得k=2或k=﹣6(舍去),∴k的值为2.点评:解决本题的关键是利用一元二次方程根与系数的关系和勾股定理,把问题转化为解方程求得k的值.21.(2005•江西)设关于x的一元二次方程x2﹣4x﹣2(k﹣1)=0有两个实数根x1、x2,问是否存在x1+x2<x1•x2的情况?考点:根与系数的关系;根的判别式.分析:本题运用一元二次方程根与系数的关系即可把x1+x2<x1•x2转化为关于k的不等式,检验所得值,是否能使方程的判别式△≥0.解答:解:不存在.∵一元二次方程x2﹣4x﹣2(k﹣1)=0有两个实数根x1、x2.∴x1+x2=4,x1•x2=﹣2(k﹣1).假设存在x1+x2<x1•x2,即有4<﹣2(k﹣1),k<﹣1.又∵所给方程有实根,由根的判别式△=(﹣4)﹣4[﹣2(k﹣1)]≥0.得k≥﹣1.∴k值不存在.即不存在x1+x2<x1•x2的情况.点评:将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.22.(2004•荆州)关于x的方程x2+(2k+1)x+k2﹣1=0有两个实数根.(1)求实数k的取值范围;(2)是否存在实数k,使方程的两个实数根的平方和与两个实数根的积相等?若存在,求出k的值;若不存在,说明理由.考点:根与系数的关系;根的判别式.专题:计算题.分析:(1)根据判别式△≥0即可求解;(2)根据根与系数的关系,得到关于K的方程即可求解.解答:解:(1)方程的判别式△=4k+5,依题意,△=4k+5≥0,∴k≥﹣5/4;(2)设方程的两个实数根分别为x1、x2,x12+x22=x1•x2,得k=﹣2时k=﹣2时,△<O,故不存在实数k,使方程的两个实数根的平方和与两个实数根的积相等.点评:本题考查了根与系数的关系及根的判别式,属于基础题,关键是掌握根与系数的关系.23.(2003•盐城)已知关于x的方程x2+2(2﹣m)x+3﹣6m=0.(1)求证:无论m取什么实数,方程总有实数根;(2)如果方程的两个实数根x1、x2满足x1=3x2,求实数m的值.考点:根的判别式;解一元二次方程-因式分解法;根与系数的关系.专题:计算题;证明题.分析:(1)证明一元二次方程根的判别式恒大于0,即可解答;(2)根据一元二次方程根与系数的关系x1+x2=4x2=﹣2(2﹣m)=2m﹣4,以及x1•x2=3x22=3﹣6m即可求得m的值.解答:解:(1)证明:∵关于x的方程x2+2(2﹣m)x+3﹣6m=0中,△=4(2﹣m)2﹣4(3﹣6m)=4(m+1)2≥0, ∴无论m取什么实数,方程总有实数根.(2)如果方程的两个实数根x1,x2满足x1=3x2,则x1+x2=4x2=﹣2(2﹣m)=2m﹣4∴x2=﹣1 ①∵x1•x2=3x22=3﹣6m,∴x22=1﹣2m②,把①代入②得m(m+4)=0,即m=0,或m=﹣4.答:实数m的值是0或﹣4点评:解答此题的关键是熟知一元二次方程根的情况与判别式△的关系,及根与系数的关系: (1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.(4)若一元二次方程有实数根,则x1+x2=﹣,x1x2=.24.(2002•海南)对关于x的一元二次方程ax2+bx+c=0(a≠0).(1)当a、c异号时,试证明该方程必有两个不相等的实数根;(2)当a、c同号时,该方程要有实数根,还须满足什么条件?请你找出一个a、c同号且有实数根的一元二次方程,然后解这个方程.考点:根的判别式;解一元二次方程—因式分解法.专题:证明题;开放型.分析:利用一元二次方程根的情况与判别式△的关系解答.解答:解:(1)∵a、c异号,∴ac<0,∴﹣4ac>0,又∵b2≥0,∴△=b2﹣4ac>0,∴方程有两个不相等的实数根.(2)当a、c同号时,方程ax2+bx+c=0(a≠0)有实数根还需满足b2﹣4ac≥0,如a=1,b=﹣3,c=2时,△=b2﹣4ac=(﹣3)2﹣4×1×2=1>0,方程为x2﹣3x+2=0,解得:x1=1,x2=3.点评:解答此题要根据一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根25.(2001•苏州)已知关于x的一元二次方程,(1)求证:不论k取何值,方程总有两个不相等的实数根;(2)设x1、x2是方程的两个根,且x12﹣2kx1+2x1x2=5,求k的值.考点: 根与系数的关系;根的判别式.专题:计算题;证明题;压轴题.分析:(1)要保证方程总有两个不相等的实数根,就必须使△>0恒成立;(2)欲求k的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.解答:解:(1)已知关于x的一元二次方程,∴△=(﹣2k)2﹣4×(k2﹣2)=2k2+8,∵2k2+8>0恒成立,∴不论k取何值,方程总有两个不相等的实数根.(2)∵x1、x2是方程的两个根,∴x1+x2=2k,x1•x2=k2﹣2,∴x12﹣2kx1+2x1x2=x12﹣(x1+x2)x1+2x1x2=x1x2=k2﹣2=5,解得k=±.点评:此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.26.(2001•福州)已知关于x的方程x2﹣2(m+1)x+m2﹣3=0.(1)当m取何值时,方程有两个不相等的实数根?(2)设x1、x2是方程的两根,且(x1+x2)2﹣(x1+x2)﹣12=0,求m的值.考点:根与系数的关系;解一元二次方程-因式分解法;根的判别式.专题: 压轴题.分析:(1)若一元二次方程有两不等实数根,则根的判别式△=b2﹣4ac>0,建立关于m的不等式,求出m的取值范围.(2)给出方程的两根,根据所给方程形式,可利用一元二次方程根与系数的关系得到x1+x2=2(m+1),代入且(x1+x2)2﹣(x1+x2)﹣12=0,即可解答.解答:解:(1)∵方程有两个不相等的实数根,∴△=b2﹣4ac=[﹣2(m+1)]2﹣4×1×(m2﹣3)=16+8m>0,解得:m>﹣2;(2)根据根与系数的关系可得:x1+x2=2(m+1),∵(x1+x2)2﹣(x1+x2)﹣12=0,∴[2(m+1)]2﹣2(m+1)﹣12=0,解得:m1=1或m2=﹣(舍去)∵m>﹣2;∴m=1.点评:根据方程的根的情况即可得到关于未知系数的不等式,转化为结不等式的问题,另外(2)把求未知系数的问题,根据一元二次方程的根与系数的关系即可转化为方程的问题.27.(1998•山西)设a,b,c是△ABC三边的长,且关于x的方程c(x2+n)+b(x2﹣n)﹣2ax=0(n>0)有两个实数根,求证:△ABC是直角三角形.考点:根的判别式;勾股定理的逆定理.专题:证明题;压轴题.分析:先把关于x的方程整理成一元二次方程的一般形式,再根据方程由两个相等的实数根即可得出a、b、c的关系,进而得出结论.解答:证明:关于x的方程c(x2+n)+b(x2﹣n)﹣2ax=0(n>0)可化为(c+b)x2﹣2a x+(c﹣b)n=0, ∵方程有两个相等的实数根,∴△=(﹣2a)2﹣4n(c+b)(c﹣b)=0,即a2=b2+c2,∵a,b,c是△ABC三边的长,∴△ABC是直角三角形.点评:本题考查的是根的判别式及勾股定理的逆定理,熟知一元二次方程的根与判别式之间的关系是解答此题的关键.28.(2013•乐山模拟)选做题:题乙:已知关于x的一元二次方程x2﹣2kx+k2+2=2(1﹣x)有两个实数根x1、x2.(1)求实数k的取值范围;(2)若方程的两实数根x1、x2满足|x1+x2|=x1x2﹣1,求k的值.考点:根与系数的关系;根的判别式.专题:计算题.分析:(1)先把方程化为一般式得到x2﹣2(k﹣1)x+k2=0,根据根的判别式的意义得到△=4(k﹣1)2﹣4k2≥0,然后解不等式即可;。

九年级数学一元二次方程测试题一(含答案)

九年级数学一元二次方程测试题一(含答案)

《一元二次方程》磨练题姓名: [测验时光90分钟,共100分]一.选择题(每题3分)1.用配办法解方程2250x x --=时,原方程应变形为( )A .()216x +=B .()216x -=C .()229x +=D .()229x -=2 若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值规模是( )A .1k >- B.1k >-且0k ≠ C.1k < D.1k <且0k ≠3.关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是( )A .6B .7C .8D .94.方程29180x x -+=的两个根是等腰三角形的底和腰,则这个三角形的周长为( )A .12B .12或15C .15D .不克不及肯定5设a b ,是方程220090x x +-=的两个实数根,则22a a b ++的值为( )A .2006B .2007C .2008D .20096.为了让江西的山更绿.水更清,2008年省委.省当局提出了确保到2010年实现全省丛林笼罩率达到63%的目的,已知2008年我省丛林笼罩率为60.05%,设从2008年起我省丛林笼罩率的年平均增长率为x ,则可列方程( )A .()60.051263%x +=B .()60.051263x +=C .()260.05163%x +=D .()260.05163x +=7. 如图5,在ABCD 中,AE BC ⊥于E ,AE EB EC a ===,且a 是一元二次方程2230x x +-=的根,则ABCD 的周长为( )A.4+ B.12+.2+ D.212+ 8.在一幅长为80cm,宽为50cm 的矩形景致画的周围镶一条雷同宽度的金色纸边,制成一幅矩形挂图,如图5所示,假如要使全部挂图的面积是5400cm 2,设金色纸边的宽为x cm,那么x 知足的方程是( )A .213014000x x +-=B .2653500x x +-=C .213014000x x --=D .2653500x x --=二.填空题:(每题3分)9.请你任写一个根分离为2和-5的一元二次方程是.10.若关于x 的一元二次方程2(3)0x k x k +++=的一个根是2-,则另一个根是.11.关于x 的一元二次方程2210x mx m -+-=的两个实数根分离是12x x 、,且22127x x +=,则212()x x -的值是. 12.在实数规模内界说运算“⊕”,其轨则为:22a b a b ⊕=-,则方程(4⊕3)⊕24x =的解为.13 .将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是cm 2.14.浏览材料:设一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:x 1+x 2=-b a ,x 1·x 2=c a .依据该材料填空:已知x 1.x 2是方程x 2+6x +3=0的两实数根,则21x x +12x x 的值为. 15.市当局为懂得决市平易近看病难的问题,决议下调药品的价钱.A DCE B 图5某种药品经由持续两次降价后,由每盒200元下调至128元,求这种药品平均每次降价的百分率是.三.盘算题:(每题4分)16.用恰当的办法解下列一元二次方程:(1)x 2-6x+8=0 (2)x 2-4ax-12a 2=0(3)(x+1)(x-2)+2=0 (4)(2x+3)2=x 2四.解答题(17题10分,18题15分,19题17分)17.有大小两个正方形,小正方形的边长比大正方形的边长的一半多4cm,大正方形的面积比小正方形的面积2倍少32cm 2,.求大.小正方形边长18.关于x 的方程04)2(2=+++k x k kx 有两个不相等的实数根.(1)求k 的取值规模.(2)是否消失实数k,使方程的两个实数根的倒数和等于0?若消失,求出k 的值;若不消失,解释来由19.常州春秋观光社为吸引市平易近组团去天水湾景致区旅游,推出了如下收费尺度:某单位组织员工去天水湾景致区旅游,共付出给春秋观光社旅游费用27000元,请问该单位此次共有若干员工去天水湾景致区旅游?参考答案:一.选择题1. B2. B3. C4. C5. C6. D7. A8. B假如人数不超出25人,人均旅游费用为1000元假如人数超出25人,每增长1人,人均旅游费用下降20元,但人均旅游费用不得低于700元二.填空题:9.略10. 111.1312.5x =± 13.252或12.5 14. 10 15.20%;三.盘算题:16. 解:(1)2,4 (2)2a,6a (3)0,1 (4)-1,-3四.解答题17.大小正方形的边长各是16cm,12cm18.解:(1)由△=(k+2)2-4k ·4k >0 ∴k >-1 又∵k ≠0 ∴k 的取值规模是k >-1,且k ≠0(2)不消失相符前提的实数k来由:设方程kx 2+(k+2)x+4k =0的两根分离为x 1.x 2,由根与系数关系有:x 1+x 2=k k 2+-,x 1·x 2=41, 又01121=+x x 则 kk 2+-=0 ∴2-=k 由(1)知,2-=k 时,△<0,原方程无实解∴不消失相符前提的k 的值.米.19.设该单位此次共著名x 员工去天水湾景致区旅游,因为2700025000251000 =⨯,所以员工人数必定超出25人. 可得方程[]27000)25(201000=--x x解得:30,4521==x x . 当451=x 时,700600)25(201000 =--x ,故舍去1x 当452=x 时,700900)25(201000 =--x ,相符题意 答:该单位此次共有30名员工去天水湾景致区旅游.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学一元二次方程试卷(一)
班级: 姓名: 学号:
一、精心选一选(8×3)
1.一元二次方程2
20x x +-=的两根之积是( )
A .-1
B .-2
C .1
D .2
2.用配方法解方程2
250x x --=时,原方程应变形为( )
A .()2
16x += B .()2
16x -=C .()2
29x +=
D .()2
29x -=
3.三角形两边的长是3和4,第三边的长是方程2
12350x x -+=的根,则该三角形的周长为( ) A .14
B .12
C .12或14
D .以上都不对
4.已知n m ,是方程0122
=--x x 的两根,且8)763)(147(22=--+-n n a m m ,则a 的值等于( )
A .-5 B.5 C.-9 D.9
5.已知方程2
0x bx a ++=有一个根是(0)a a -≠,则下列代数式的值恒为常数的是( )
A .ab
B .a
b
C .a b +
D .a b - 6.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值
范围是( ) A.k >14-
B.k >14-且0k ≠ C .k <1
4
- D.14k ≥-且0k ≠
7.若关于x 的一元二次方程0235)1(2
2
=+-++-m m x x m 有一个根为0,则m 的值等于( )
A.1
B.2
C.1或2
D.0
8.已知a 、b 、c 分别是三角形的三边,则方程(a + b )x 2
+ 2cx + (a + b )=0的根的情况是( ) A .没有实数根
B .可能有且只有一个实数根
C .有两个相等的实数根
D .有两个不相等的实数根
二、细心填一填(10×3)
9.方程042=-x x 的解是_____________
10.某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设 平均每次降价的百分率为x ,可列方程为
11.若关于x 的一元二次方程2
(3)0x k x k +++=的一个根是2-,则另一个根是______
12.已知关于x 的一元二次方程m 2x 2
+(2m -1)x+1=0有两个不相等的实数根,则m 的取值范围 是
13.若(a 2+b 2)(a 2+b 2-2)=8,则a 2+b 2=
14.等腰三角形的边长是方程0862
=+-x x 的解,则这个三角形的周长是_____ 15.关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是 16.m 是方程21x x +-=0的根,则式子201022
3++m m 的值为 17.设a b ,是方程020102=-+x x 的两个实数根,则2
2a a b ++的值为 18.设x 1、x 2 是一元二次方程x 2+4x -3=0的两个根,2x 1(x 22+5x 2-3)+a =2,则a = 三、用心做一做 19.解方程(6×4)
(1)01522
=--x x (2)x 2
-8x-10=0(配方法)
(3)
2
3(3)(3)0x x x -+-= (4))1(322+=x x
20.先用配方法说明:不论x 取何值,代数式2
57x x -+的值总大于0。

再求出当x 取何值时,代数式2
57x x -+的值最小?最小是多少?(8分)
21.关于x 的一元二次方程1201x p x x 有两实数根=-+-、.2x (10分) (1)求p 的取值范围;
(2)若p x x x x 求,9)]1(2)][1(2[2211=-+-+的值.
23.在等腰△ABC 中,三边分别为a 、b 、c ,其中5a =,若关于x 的方程()2260x b x b +++-=有两个相等的实数根,求△ABC 的周长.(10分)
24.如图①,在一幅矩形地毯的四周镶有宽度相同的花边. 如图②,地毯中央的矩形图案长6米、宽3米,整个地毯的面积是40平方分米.求花边的宽.(10分)
25.某公司生产某种产品,每件产品成本是3元,售价是4元,年销售量为10万件。

为了获得更好的效益,公司准备那出一定的资金做广告。

根据经验,每年投入广告费为x(万元)时,
产品的年销售量将是原销售量的y 倍,且10
7
107102++-
=x x y 。

如果把利润看作是销售额减去成本费和广告非,试求当年利润为16万元时,广告费x 为多少万元?(10分)


26.某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓是单价为40元,设第二个月单价降低x元。

(12分)
(1)填表(不需化简)
(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?
27.在Rt△ABC中,AB=BC=12cm,点D从点A开始沿边AB以2cm/s的速度向点B移动,移动过程中始终保持DE∥BC,DF∥AC。

?(12分)
(1)试写出四边形DFCE的面积S(cm2)与时间t(s)之间的函数关系式并写出自变量t 的取值范围.
(2)试求出当t为何值时四边形DFCE的面积为20m2?
(3)四边形DFCE的面积能为40吗?如果能,求出D到A的距离;如果不能,请说明理由。

(4)四边形DFCE的面积S(cm2)有最大值吗?有最小值吗?若有,求出它的最值,并求出此时t的值。

相关文档
最新文档