理论力学习题课静力学部分-
理论力学练习题(静力学)
A.1kN
B.0.5kN
A
B
C. 2 kN
D.2 kN
L
L
题 21 图
22 已知图示斜面的倾角为θ,若要保持物块A静止,则物块与斜
面之间的摩擦因数fs所应满足的条件为:
A.tanθ ≤ f s
B.tanθ ≥ f s
C.cotθ ≤ f s
D.cotθ ≤ f s
23 物块重力为Q,放在粗糙的水平面上,其摩擦角ϕ =200,若力
D.无法判断
B
D
G
C
E
H
题5图
6 已知F1、F2、F3、F4为作用于刚体上的平面汇交力系,
F4
其力矢关系如图所示为平行四边形。由此可知:
F3
A.力系可合成为一个力偶
B.力系可合成为一个力
F1
C.力系简化为一个力和一个力偶 D.力系合力为零,力系平衡
题6图
F2
7 某平面任意力系向O点简化后,得到如图所示的一个主 矢FR′和一个主矩MO,则该力系的最后简化结果为:
P作用于摩擦角之外,并已知α=300,P = Q,物体是否能保持平衡: A.能 B.不能 C.处于临界状态 D.P 与 Q 的值比较小时能保持静止,否则不能
A θ
题 22 图
P α
Q
题 23 图
24 已知 W=100kN,P=80kN,摩擦因数 f = 0.2,物块将: A.向上运动 B.向下运动 C.静止不动 D.无法判断
h
P l
θ B
A
题3图
4 平面汇交力系(F1,F2, F3,F4,F5,)的力多边形如图
所示,则该力系的合力FR等于:
F2
F4
F1
《理论力学》静力学典型习题+答案
1-3 试画出图示各构造中构件AB的受力争1-4 试画出两构造中构件ABCD的受力争1-5 试画出图 a 和 b 所示刚系统整体各个构件的受力争1-5a1-5b1- 8 在四连杆机构的ABCD的铰链 B 和 C上分别作用有力F1和 F2,机构在图示位置均衡。
试求二力F1和 F2之间的关系。
解:杆 AB,BC, CD为二力杆,受力方向分别沿着各杆端点连线的方向。
解法 1( 分析法 )假定各杆受压,分别选用销钉 B 和 C 为研究对象,受力以下图:yyFBCC xB Fo45BCx30o o F60F2CDF AB F1由共点力系均衡方程,对 B 点有:F x0F2F BC cos4500对 C点有:F x0FBC F1 cos3000解以上二个方程可得:F12 6F2 1.63F23解法 2( 几何法 )分别选用销钉 B 和 C 为研究对象,依据汇交力系均衡条件,作用在 B 和C 点上的力构成关闭的力多边形,以下图。
F F2BCF AB o30o45CD60oFF BC F1对 B 点由几何关系可知:F2F BC cos450对 C 点由几何关系可知:F BC F1 cos300解以上两式可得:F1 1.63F22-3 在图示构造中,二曲杆重不计,曲杆AB 上作用有主动力偶 M。
试求 A 和 C 点处的拘束力。
解: BC为二力杆 ( 受力以下图 ) ,故曲杆 AB 在 B 点处遇到拘束力的方向沿BC 两点连线的方向。
曲杆AB遇到主动力偶M的作用, A 点和 B 点处的拘束力一定构成一个力偶才能使曲杆AB保持均衡。
AB受力以下图,由力偶系作用下刚体的均衡方程有(设力偶逆时针为正):M0 F A10a sin(450 )M 0F A0.354Ma此中:tan 1。
对 BC杆有:F C FB F A0.354M 3aA,C两点拘束力的方向以下图。
2-4解:机构中 AB杆为二力杆,点A,B 出的拘束力方向即可确立。
《理论力学》第四章 静力学应用专题习题解
第四章 力系的简化习题解[习题4-1] 试用节点法计算图示杵桁架各杆的内力。
解:(1)以整体为研究对象,其受力图如图所示。
由结构的对称性可知, kN R R B A 4==(2)以节点A 为研究对象,其受力图如图所示。
因为节点A 平衡,所以0=∑iyF0460sin 0=+AD N)(62.4866.0/4kN N AD -=-=0=∑ixF060cos 0=+AD AC N N)(31.25.062.460cos 0kN N N AD AC =⨯=-= (3)以节点D 为研究对象,其受力图如图所示。
因为节点D 平衡,所以 0=∑iyF0430cos 30cos 0'0=---AD D C N N 0866.0/4=++AD D C N N 0866.0/4866.0/4=+-D C N0=DC N0=∑ixF030sin 30sin 0'0=-+AD D C D E N N N 05.062.4=⨯+DE NkN4)(akN4AB RkN 2AC23N A )(31.2kN N DE -=(4)根据对称性可写出其它杆件的内力如图所示。
[习题4-2] 用截面法求图示桁架指定杆件 的内力。
解:(a)(1)求支座反力以整体为研究对象,其受力图如图所示。
由对称性可知,kN R R B A 12==(2)截取左半部分为研究对象,其受力图 如图所示。
因为左半部分平衡,所以0)(=∑i CF M0612422843=⨯-⨯+⨯+⨯N 063243=⨯-++N )(123kN N =kN2AC23N A0=∑ixF0cos cos 321=++N N N αθ01252252421=+⋅+⋅N N012515221=+⋅+⋅N N0512221=++N N ……..(1) 0=∑iyF02812sin sin 21=--++αθN N025*******=+⋅+⋅N N02525121=+⋅+⋅N N052221=++N N0544221=++N N ……..(2) 05832=-N)(963.53/582kN N ==)(399.1652963.5252221kN N N -=-⨯-=--=解:(b )截取上半部分为研究对象,其受力图如图所示。
理论力学 静力学 习题答案
F
解得
y
0 , FAy FB1 y 0
FAy F qa
A
M
解得
3 0 , M A q a a FB1 y a FB1x 3a 0 2 M A ( F qa ) / a
10
2-47 平 面 构 架 的 尺 寸 及 支 座 如 图 所 示 , 三 角 形 分 布 荷 载 的 最 大 集 度 q0 2kN/m ,
2
3
习题:2-3,2-5,2-6,2-8,2-12,2-14,2-18,2-10,2-40 2-3 如图示刚架的点B 作用一水平力F,刚架重量略去不计。求支座A,D 的约束力FA和FD。
解: 一、取刚架为研究对象,画受力图,如图(b)。 二、列平衡方程,求支座 A,D 的约束力 FA 和 FD。 由三力平衡汇交定理,支座A 的约束力FA 必通过点C,方向如图(b) 所示。取坐标系Cxy , 由平衡理论得
0.1m的滑轮。有一跨过滑轮的绳子,其一端水平系于墙上,另一端悬挂有重为P =1800 N的重物。
如AD = 0.2m,BD = 0.4m,ϕ = 45°,且不计梁、杆、滑轮和绳的重力。求铰链 A 和杆BC 对 梁的约束力。 解: 一、研究对象:整体,坐标及受力如图b所示 二、列方程,求铰链 A 和杆BC对梁的约束力
FsA f s FNA FsB f s FNB
联立以上5式,得
s 0.456l
4-10 均质箱体 A 的宽度 b = 1 m,高 h = 2 m,重力 P = 200 kN,放在倾角 θ = 20° 的斜面 上。 箱体与斜面之间的摩擦因数 fs =0.2 。 今在箱体的 C 点系一无重软绳, 方向如图所示, 绳的另一端绕过滑轮 D 挂一重物 E。 已知 BC = a = 1.8 m。 求使箱体处于平衡状态的重物 E 的重量。 解: 一、物体E重量较小时,临界受力如图b,此时为 1、 临界下滑
习题课_静力学
解:研究对象: 起重机 分析力:
Gb
ea
满载时
P, W, G, NA , NB
AP B
W
mB(F) NAd PeWa G(b d) 0
NA d NB
不向右翻倒,有NA 0
Pe Wa G(b d )
NA
d
0
解不等式得
G Wa Pe 54kN bd
Gb
e
空载时 P, G, NA , NB 不向左翻倒
mo (F) m SABr sin[180 ( )] 0
XO
m
NB A
整体考虑
m
S AB r
sin(
)
Prsin( ) cos
O
SAB’
YO
X XO P 0 XO P Y YO N B 0 YO Ptg
p.16
例题
例题
例17. 图示连续梁,载荷和尺寸如图,各杆的自重不计,A端
NB
Tc
sin (h d ) Tc
2b
cosb
1.67kN
代入第二式解得 N A TC cos NB 2.19kN
或利用两矩式
mE (F) NA 2b Tc sin (h d) Tc cosb 0
p.12
例题
例题
例13. 已知:图示L形杆AOBC自重不计,O处挂一重物重为P,
X
80
p.8
例题
例题
例8. 重力坝受力情况如图,长度单位为m, AB = 5.7m, G1 =
450kN, G2 = 200kN, P1=300kN, P2 = 70kN, =16o40’。
求力系向A点简化的结果,以及力系的最终简化结果。
解:先求力系向A点简化的主矢
工程力学——静力学部分习题第一章静力学公理与物体的受
B P2
(a)
2
C P
A
B
(b)
3
第二章 平面汇交力系与平面力偶系
一、判断题
1. 两个力 F1、F2 在同一轴上的投影相等,则这两个力大小一定相等。 2. 两个力 F1、F2 大小相等,则它们在同一轴上的投影大小相同。 3. 力在某投影轴方向的分力总是与该力在该轴上的投影大小相同。
() () ()
F a bc
计算题
17.如图示圆形截面杆,已知各段面积分别为 A1 = 125m2 , A2 = 60m2 , A3 = 50m2 ,各段 长度分别为 l1 = 1m,l2 = 1.5m,l3 = 2m ,作用力 P1 = 4kN, P2 = 2kN, P3 = 0.5kN ,弹性模量 E = 200GPa 。1.作内力图;2.求杆的最大应力;3.求杆的最大伸长线应变。
应。
()
2.根据力的平移定理,可以将一个力分解成一个力和一个力偶,反之,共面内一个力
和一个力偶肯定能合成为一个力。
3.平面任意力系对其面内某点主矩为零,则该力系必可简化成一个合力。 ( )
4.平面任意力系向平面内某点简化得到的主矢一定就是该力系的合力。 ( )
5.平面任意力系向某点简化得一合力,则一定存在适当的简化中心使该力系简化成一
四、计算题 1. 图示四个平面共点力作用于物体的 O 点。已知 F1=F2=200KN, F3=300KN ,
F4=400KN 力 F1 水平向右。试分别用几何法或解析法求它们的合力的大小和方向。
F2
150o 45o
60o O
F1
F3
F 4
2. 梁 AB 的支座如图所示,在梁的中点作用一力 P=20KN,力与梁的轴线成 45o 角。如
《理论力学》静力学典型习题+答案
1-3 试画出图示各结构中构件AB的受力图1-4 试画出两结构中构件ABCD的受力图1-5 试画出图a和b所示刚体系整体各个构件的受力图1-5a1-5b1- 8在四连杆机构的ABCD 的铰链B 和C 上分别作用有力F 1和F 2,机构在图示位置平衡。
试求二力F 1和F 2之间的关系。
解:杆AB ,BC ,CD 为二力杆,受力方向分别沿着各杆端点连线的方向。
解法1(解析法)假设各杆受压,分别选取销钉B 和C 为研究对象,受力如图所示:由共点力系平衡方程,对B 点有:∑=0x F 045cos 02=-BC F F对C 点有:∑=0x F 030cos 01=-F F BC解以上二个方程可得:22163.1362F F F ==解法2(几何法)分别选取销钉B 和C 为研究对象,根据汇交力系平衡条件,作用在B 和C 点上的力构成封闭的力多边形,如图所示。
对B 点由几何关系可知:0245cos BC F F = 对C 点由几何关系可知: 0130cos F F BC =解以上两式可得:2163.1F F =2-3 在图示结构中,二曲杆重不计,曲杆AB 上作用有主动力偶M 。
试求A 和C 点处的约束力。
解:BC 为二力杆(受力如图所示),故曲杆AB 在B 点处受到约束力的方向沿BC 两点连线的方向。
曲杆AB 受到主动力偶M 的作用,A 点和B 点处的约束力必须构成一个力偶才能使曲杆AB 保持平衡。
AB 受力如图所示,由力偶系作用下刚体的平衡方程有(设力偶逆时针为正):0=∑M 0)45sin(100=-+⋅⋅M a F A θ aM F A 354.0=其中:31tan =θ。
对BC 杆有:aM F F F A B C 354.0=== A ,C 两点约束力的方向如图所示。
2-4FF解:机构中AB杆为二力杆,点A,B出的约束力方向即可确定。
由力偶系作用下刚体的平衡条件,点O,C处的约束力方向也可确定,各杆的受力如图所示。
理论力学课后习题部分答案
B
A FAC FBA
P
(l)
(l1)
(l2)
(l3)
图 1-1
1-2 画出下列每个标注字符的物体的受力图。题图中未画重力的各物体的自重不计,所 有接触处均为光滑接触。
(a)
B
FN1
C
FN 2
P2 P1
FAy
A
FAx
(a2)
(b)
FN1
A
P1
FN
(b2)
C
FN′
P2
(a1)
B
FN1
FN 2
FN
P1
F Ay
FCy
FAx (f2)
C FC′x
FC′y F2
FBy
FBx B (f3)
FAy A FAx
FB
C B
(g)
FAy
FAx A
D FT C FCx
(g2)
FB
B
F1
FB′ B
FAy
A
FAx
(h)
(h1)
P (g1)
FC′y
FT
C
FC′x
P (g3)
D
FCy
FB
F2
C FCx
B
(h2)
A FAx
FAy
FCy
D FAy
A
FAx
(k3)
6
FB
F1
FB′
B B
FD D
(l) FD′ D
A FA
(l1) F2
C
FC (l2)
F1
D
F2
B
A
E
FE
FA
(l3) 或
F1
FB′
理论力学第I篇 静力学习题课
A
O
B
FOx
FBy
B
FBx
W1
FBx
W2
C
M
FCD
O
a0 0, W1l FBy
2
由式(1)、(2),得
F
y
0, FBy W2
1
W1 a # W2 l
附录: 习题解答
3-15
3-15 图示构架中,物体重1200N,由细绳跨过滑轮E而水平系于墙上,尺寸如 图所示。如不计杆和滑轮的自重,试求支承A和B处的约束力,以及杆BC的受力 FBC 。 C
例题2
F b
C
q
a B
M C
FC B q F'B B M
M M 0 , F b M 0 , F F # C C B b
a A
F
FB
F F
x
0 0, F FAx FB
1
2
MA FAx A FAy
y
0, FAy qa 0, FAy qa#
习题课-静力学
习题课-静力学
3.图示力偶中等效的是(B)
NEFU- Junkai Lu
(A) a和c (B) a和b (C) b和c (D) b和d
36Fd顺
36Fd顺
36Fd逆
48Fd顺
4.关于力对点之矩的说法,下列哪个是错误的(B)
(A) 互相平衡的两个力,对同一点之矩的代数和等于零。
(B) 力对点之矩与力的大小和方向有关,而与矩心位置无关。
4.关于力对点之矩的说法,下列哪个是错误的( ) (A) 互相平衡的两个力,对同一点之矩的代数和等于零。 (B) 力对点之矩与力的大小和方向有关,而与矩心位置无关。 (C) 力的数值为零、或力的作用线通过矩心时,力矩均为零。 (D) 力对点之矩不会因为力矢沿其作用线移动而改变。
10
School of Civil Engineering
习题课-静力学
NEFU- Junkai Lu
10. 力系的平衡
平面任意力系
Fx 0
Fy 0
M o 0
Fx 0
M A 0
M B 0
A、B两点 连线不得 与投影轴 x轴垂直
空间任意力系
Fix 0 Fiy 0 Fiz 0
(C) 力的数值为零、或力的作用线通过矩心时,力矩均为零。
(D) 力对点之矩不会因为力矢沿其作用线移动而改变。
力有关,力偶无关
11
School of Civil Engineering
习题课-静力学
NEFU- Junkai Lu
5.图示正方体顶角上作用着六个大小相等的力,此力系向任一点简化的结 果是( )
D
F3
理论力学静力学部分
静力学部分小题:简单计算题考点:力偶系平衡问题1. 如图所示平面结构,已知杆AB 和杆CD 的重量不计,且DC 杆在C 点靠在光滑的AB杆上,若作用在杆AB 上的力偶的力偶矩为1m ,则欲使系统保持平衡,求作用在CD 杆上的力偶的力偶矩2m 的大小。
2. 在图示平面结构中,杆AC 和杆BD 为无重杆,在C 处作用一力偶矩为M 的力偶,求A和B 处的约束反力。
3. 如图所示,在三铰拱结构的两半拱上,作用两个等值、反向、力偶矩为M 的力偶,如两半拱的重量不计,试求A 、B 处的约束力。
4. 如图所示平面结构,杆AC 、BC 为无重杆,其上作用两个等值、反向、力偶矩为M 的力偶,试求A 、B 处的约束反力。
A605. 外伸梁AC 的尺寸及受力如图所示,已知Q =Q ’=1200N ,M =400m N ,a =1m ,梁的自重不计,求支座A 、B 的约束反力。
6.A 、C 的约束反力。
7. 如图所示平面结构,一力偶矩为M 的力偶作用在直角曲杆ADB 上。
不计杆重,求支座A 、B 对杆的约束反力。
8. 如图所示平面结构,一力偶矩为M 的力偶作用在直角曲杆ADB 上。
不计杆重,求支座A 、B 对杆的约束反力。
9. 在图示平面结构中,已知力偶矩为M ,AC =L,构件自重不计,求支座A ,C 处的约束反力。
Q '10. 如图所示,已知P =P ’=3.96KN ,构件自重不计,求支座A 、C 的约束反力(AC =1m )。
11. 如图所示平面刚架,已知:123kN m 1kN m m m =⋅=⋅, ,转向如图。
a =1m ,试求图示刚架A 及B 处的约束反力。
12. 平面四连杆机构,在图示位置平衡,3090αβ=,=。
已知:O 1A =6a ,O 2B =8a 。
求此时12/m m 的值。
13. 在图示平面结构中,已知力偶矩M =4KN m ,AC =1m ,构件自重不计,求支座A ,C 的约束反力。
14. 如图所示平面刚架,已知:40kN m M =⋅,F =10kN,q =5kN/m 。
理论力学 静力学部分习题课
AC 1 MAy 0,FCz AC P 2 2 0, FCz 2 P 2 AC 1 MCy ' 0,( P1 FAz) AC P 2 2 0, FAz P1 2 P 2
Fx 0,F
Ax
FCx 0
(2)杆AB 为研究对象,受力及坐标如图所 示
取曲杆为研究对象受力及坐标如图列平衡方程fxayazazaydzazdyaydxdzdydxayazfxayazdzdydzazdyaydxdzdydxayaz方法二321和bc分别重p1和p2其端点a用球铰固定在水平面上另1端b由球铰链相连接靠在光滑的铅直墙上墙面与ac平行如图的支座约束力以及墙上点b所受的压力
12.图示三铰刚架受力 F 作用,则A支座约束力的大小 为___________,B支座约 束力的大小为__________。
2 F 2
2 F 2
13.正三棱柱的底面为等腰三角形, 已知OA=OB=a,在平面ABED内有 沿对角线AE的一个力,图中,此 力对各坐标轴之矩 M (F ) 0 为: ; 2 M (F ) Fa 。 2
解:AB 和BC 两杆为研究对象,受力及坐标如图所示。 由于未知力较多,尽可能用 轴矩式平衡方程(需保证方 程独立)求解,力求使取矩 轴与较多的未知力相交和平 行,从而使方程中所含未知 量最少。
1 MCz ' ' 0,( FN FAy) AC 0, FAy FN 2 ( P1 P 2)
x
y
结束
题2-46图 (a)所示结构AC、DF、BF及EC四杆组成,其中A、B、 C、D,E及F均为光滑铰链。各杆自重不计。试求支座A、D的 反力及杆BF、EC所受的力。
(完整版)理论力学习题集
习题一静力学公理和物体受力分析1.判断题(1)作用在一个物体上有三个力,当这三个力的作用线汇交于一点时,则此力系必然平衡。
( )(2)两端用光滑铰链连接的构件是二力构件。
()(3)力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。
()(4)悬挂的小球静止不动是因为小球对绳向下的拉力和绳对小球向上的拉力相互抵消的缘故。
()(5)作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同、大小相等、方向相反。
()(6)在任何情况下,体内任意两点的距离保持不变的物体叫刚体.()(7)凡在两个力作用下的构件称为二力构件。
()(8)凡是合力都大于分力。
()(9)根据力的可传性,力P可以由D点沿其作用线移到E点?( )题1-1-9图(10)光滑圆柱形铰链约束的约束反力,一般可用两个相互垂直的分力表示,该两分力一定要沿水平和铅垂方向。
( )(11)力平衡条件中的两个力作用在同一物体上;作用力和反作用力分别作用在两个物体上。
( )(12)刚体的平衡条件是变形体平衡的必要条件,而非充分条件。
()(13)约束力的方向必与该约束所阻碍的物体运动方向相反。
()(14)辊轴支座的约束力必沿垂方向,且指向物体内部。
( )。
(15)力可以沿着作用线移动而不改变它对物体的运动效应。
( )2.选择题(1)在下述原理、法则、定理中,只适用于刚体的有。
A.A。
三力平衡定理;B.力的平行四边形法则;C。
加减平衡力系原理;D。
力的可传性原理;E.作用与反作用定律.(2)三力平衡定理是。
A。
共面不平行的三个力相互平衡必汇交于一点;B。
共面三力若平衡,必汇交于一点;C.三力汇交于一点,则这三个力必互相平衡。
(3)作用在一个刚体上的两个力F A、F B,满足F A=—F B的条件,则该二力可能是。
A。
作用力与反作用力或一对平衡力;B。
一对平衡力或一个力偶;C.一对平衡力或一个力和一个力偶;D.作用力与反作用力或一个力偶。
理论力学练习册及答案同济
理论力学练习册及答案同济一、静力学基础1. 题目:一个均匀的木杆,长度为2m,重量为50kg,一端固定在墙上,另一端自由。
求木杆的重心位置。
答案:木杆的重心位于其几何中心,即木杆的中点。
由于木杆均匀,其重心距离固定端1m。
2. 题目:一个质量为10kg的物体,受到三个力的作用:F1=20N向右,F2=30N向上,F3=15N向左。
求物体的合力大小和方向。
答案:合力F = F1 + F2 + F3 = (20N, 0) + (0, 30N) + (-15N, 0) = (5N, 30N)。
合力大小F = √(5² + 30²) = √(25 + 900) = √925 ≈30.41N。
合力方向与水平线的夹角θ满足tanθ = 30N / 5N = 6,所以θ ≈ 80.53°。
二、动力学基础1. 题目:一个质量为2kg的物体,从静止开始沿直线运动,加速度为5m/s²。
求物体在第3秒末的速度和位移。
答案:速度v = at = 5m/s² × 3s = 15m/s。
位移s = 0.5at² = 0.5 × 5m/s² × (3s)² = 22.5m。
2. 题目:一个质量为5kg的物体,以20m/s的初速度沿直线运动,受到一个恒定的阻力,大小为10N。
求物体在第5秒末的速度。
答案:加速度a = F/m = -10N / 5kg = -2m/s²。
速度v = v0 + at = 20m/s - 2m/s² × 5s = 0m/s。
三、转动动力学1. 题目:一个半径为0.5m的均匀圆盘,质量为10kg,绕通过其中心的轴旋转。
若圆盘的角加速度为10rad/s²,求圆盘的转动惯量。
答案:转动惯量I = mr² = 10kg × (0.5m)² = 2.5kg·m²。
理论力学练习册静力学部分
理论力学练习册(静力学部分) 静力学目录第一章 静力学的基本概念和物体的受力分析1-1 概念题 题号1-1-1~1-1-21-2 受力分析 题号 1-2-1~2-1-2第二章 基本力系(汇交力系及力偶系)2-1 思考与判断 题号2-1-1~2-1-22-2 练习题 题号2-2-1~2-2-112-3 选作题 题号2-3-1~2-3-3第三章 平面力系3-1 概念题 题号3-1-1~3-1-43-2练习题 题号3-2-1~3-2-103-3综合练习题 题号3-3-1~3-3-5第四章 考虑摩擦的平衡问题4-1概念题 题号4-1-1~4-1-34-1练习题 题号4-2-1~4-2-9第五章 空间力系5-1概念题 题号5-1-1~5-1-25-2练习题 题号5-2-1~5-2-81-1-1是非题(正确的在括号内画√,错误在画×)。
1.作用于刚体上的力是滑动矢量,作用于变形体上的力是定位矢量。
(√)2.二力构件的约束反力是其作用线的方位沿二受力点的连线,指向可假设。
(√)3.加减平衡力系公理不但适用于刚体,还适用于变形体。
(×)4.若两个力相等,则这个力就等效。
(×)5.作用于A 点共线反向的两个力1F 和2F 且1F >2F ,则合力21F F R -=。
(×)7.两物体在光滑斜面m-n 处接触,不计自重,若力1F 和2F 的大小相等方向相反,且共线,则两个物体都处于平衡状态。
(×)8.力F 可沿其作用线由D 点滑移到E 点。
(×)1-1-2 选择题(将正确答案前面的序号写在括号内)1.二力平衡公理适用于(1)①刚体 ②变形体 ③刚体和变形体2.作用与反作用公理适用于(3)①刚体 ②变形体 ③刚体和变形体3.作用于刚体上三个相互平衡的力,若其中任何两上力的作用线相交于一点,则其余的一个力的作用线必定。
(2)①交于同一点 ②交于同一点,且三个力的作用线共面③不一定交于同一点4.作用于刚体上的平衡力系,如果作用到变形体上,则变形体( 3 )。
理论力学静力学典型习题+答案
1-3试画出图示各结构中构件AB的受力图1-4试画出两结构中构件ABCD勺受力图1-5试画出图a和b所示刚体系整体各个构件的受力图1-5a1-5b1- 8在四连杆机构的ABCD勺铰链B和C上分别作用有力F i和F2,机构在图示位置平衡。
试求二力F1和F2之间的关系。
解:杆AB BC CD为二力杆,受力方向分别沿着各杆端点连线的方向。
解法1(解析法)假设各杆受压,分别选取销钉B和C为研究对象,受力如图所示:由共点力系平衡方程,对B点有:F x 0 F2F BC COS45°0对C点有:F x 0 F BC F1COS300 0解以上二个方程可得:F12 6F 1.63F2解法2(几何法)分别选取销钉B和C为研究对象,根据汇交力系平衡条件,作用在B和C点上的力构成封闭的力多边形,如图所示。
对B点由几何关系可知:F2F BC COS450对C点由几何关系可知:F BC F1 COS300解以上两式可得:F1 1.63F22-3在图示结构中,二曲杆重不计,曲杆AB上作用有主动力偶M试求A和C 点处的约束力。
解:BC为二力杆(受力如图所示),故曲杆AB在B点处受到约束力的方向沿BC 两点连线的方向。
曲杆AB受到主动力偶M的作用,A点和B点处的约束力必须构成一个力偶才能使曲杆AB保持平衡。
AB受力如图所示,由力偶系作用下刚体的平衡方程有(设力偶逆时针为正):M 0 F A 10a sin(450) M 0 F A 0.354M其中:tan -。
对BC杆有:F C F B F A 0.354M3 aA,C两点约束力的方向如图所示。
2-4解:机构中AB 杆为二力杆,点A,B 出的约束力方向即可确定。
由力偶系作用下 刚体的平衡条件,点 0,C 处的约束力方向也可确定,各杆的受力如图所示。
对1313 -6aFFi FjF 2 FiF 3- F i - —Fj2 222F RFi3Fj M A■-3 Fak F R M A V3 d a F R2Fi24d3 a F X 0 PsinFB X0 F y 0 F By P P cos0 F X 04F A X F B X 0F y 0F AyF By0 M A 0 MA F Byl 0求解以上三式可得:M 1 3N m , F ABF OF C 5N ,方向如图所示Psi nAF BxF AxBC 杆有:M 0对AB 杆有: F B F AF B BC sin300 M 2对OA 杆有:M 0 M i F AOA 0F By , MFA X,FAy, FBX, M A 0 N D aG -cos F l coscos2F y 0 N D cosG F 0N D ,arccosf 2(F (2FG)a 卡G)l ]F Ay F By P(1 COS ) M A P(1 cos )1M y O p eta n F BC cos c F BC sin eta n 0 F BC60.6N 2M x' 0 P 1 aF B c F BC S in2a 0 F B100N F y 0 F Z0F Ay,F A;z M x 0 M DE 0 F2COS4500 F20 M AO 0 F6COS45° a F COS450 COS450 a 0 F6 2 F M BH 02F4COS450 a F6COS450 a 0 F4 2F M AD 02F1 a F6COS450 a F sin450 a 0 £ 1 2 F M CD 02F1 a F3 a F sin45°a 0 F3 1F M BC 02F x 0F3 a F5 a F4COS450 a 0 F50 M 1500N cm Fy 0M O0以下几题可看一看!FA , F NA , FB , F NB ,tan3( f sif s2)FNB 0ta n 6002aM cf s2f si2 3F By 2a 0 F ByM H 0 F D y a Fa 0 F Dy FM BF DX a F 2a 0 F DX2FF y 0F AyF DyF By 0F AyF M A0 FD X a FB X 2aFB XFM BF AX 2aFD Xa0 FA XFM c 0 F D bF XF D-F M A0 F B bF XbF i F 2 (F i2Mpcos45° psin45° F 2)DF N 2 N iF i F 2f s N i f s N 2F i ,N i ,F 2,N 2, f s:s 2p D F e f 2M0 f siF By0.223, f s2 4.49 FB x N iP(i _f s2) _2( i —f ;2)f s%.223450F xF yM AT cosAC sinF N T sinF s T cos pT sin AC cosAB . sin 2FN , F s , T, fsf s 0.646a l . a几F NB a Pcos-Psi n 022 3F NA a P cos-Psin a 小 —— 02 2、3 F AF BPsi nM A 0M B 0 F x 0F A F Bf si F NAS 2F NBS24.49 i2MF D )b F ACAyD 2MF (bF 2x)F B F I F AAa b F A F 3 FxAy F i F 3 cos450F 1M2qa F yF 2aF2 Z M r ( 2qa) F x 0 FAXF 3 cos45(F AX(MaaF AyF 2 F 3si n450 P 4qa 0F AyP 4qa M A F 2 a P 2a 4qa 2a F 3S in450 '3aMM A 24qa 2 Pa M M A0 F By 2a F2a 0 F ByF Ay 2a F 2a 0 F A 『FF x 0 F AXFBx FF 32qa) F 0 F EF2 M C 0 F Bx a F By aV 2(MF AX2q x a) a F E sin450 a 0 F BxM eM BF By FF NDF 3 sin450F yM AM B0F BXM AN 13r P 3rcos60020 N i 6.93(N)F xFA XN 1 sin 60°F AX 6(N) F y 0F AyN 1cos600P 0 F Ay 12.5'(N) FN 1cos300 Tcos300 6.93(N)M A F N 2Lsin2P -cos2 M BF N LsinP Lcos F s Lcos2F S P F SFNtan100 F RC ,F RD F RC , F RD F RC , F RD2 2M A 0 F ND aI 0F ND44M A0F NC a F l 0F NC -FF NDaM O 0 F SC R F SD R 0FNCF X 0sinF — ----------- F----- FS D NCN D1 cos 1 cossin 1 costan —, f SD tanFRC,F2 221 cosF RCSDF NDF SD 0tan — 2 I FaFla cos —2PF RCsi n[180°(1800 2,sin ] ftanFl sinISD (Pa Fl )(1 cos )F yF NDP F SC sin F ND PFl ( (cosasin tan —)2f SD tanFl sin(Pa Fl )(1 cos )F B F ACFBF AC tan1 F3(F ND P) R MDF B \M E (P F NE )1RtanF NDM D M E!FRM DF NDBPL FaM AM EF yF x 4 f sP 4f sP } f s ,1 3f s }F SC%F X0 F NC costa nFl sin (Pa Fl )(1 cos )F NCsinF SC cos F SD 0FNDFSDM E 1FFNE F NE F SD tan2FNDF min{ —P,」 P,R R 3 1 F SD F NE F SE F 02P R M DF SE RF SD 3FFSDf s F ND M FM GF SE;FF SE f s F NEF max 0.362.该系统的位置可通过杆OA 与水平方向的夹角B 完全确定,有一个自由度。
理论力学课后答案一
四川大学 建筑与环境学院 力学科学与工程系 魏泳涛
静力学习题及解答—静力学基础
1.5 正三棱柱 OABCDE 的高为10 2cm ,底面正三角形的边长为10cm 。大小为 10N 的力 FP 作用于棱角 D ,力的作用线沿侧面的对角线 DB ,如图示。设沿图示 各坐标轴的基矢量为 i 、 j 和 k ,试求力 FP 的矢量表示,以及力 FP 对 O 点之矩 和对 CE 轴之矩。
网 0 4 −3 案 根据力系关系定理, F2 对各坐标轴之矩为 答 mx (F2 ) = −12N ⋅ cm , my (F2 ) = 24N ⋅ cm , mz (F2 ) = 32N ⋅ cm
后
课
四川大学 建筑与环境学院 力学科学与工程系 魏泳涛
静力学习题及解答—静力学基础
1.4 轴 AB 在 Ayz 平面内,与铅锤的 Az 轴成α 角。悬臂 CD 垂直地固定在 AB 轴上, 与 Ayz 平面成θ 角,如图所示。如在 D 点作用铅直向下的力 FP 。并设 CD = a , AC = h ,试求力 FP 对 A 点之矩及对 AB 轴之矩。
静力学习题及解答—静力学基础
1.7 给定三力:F1 = 3i + 4 j + 5k ,作用点为 (0,2,1) ;F2 = −2i + 2 j − 6k ,作用点为 (1,−1,4) ;F3 = −i − 3 j + 2k ,作用点为 (2,3,1) 。试求力系的主矢,及其对坐标原点 O 的主矩。
网 案 答 后 课
四川大学 建筑与环境学院 力学科学与工程系 魏泳涛
静力学习题及解答—静力学基础
1.2 给定力 F = 3(−i + 2 j + 3k) ,其作用点的坐标为 (−3,−4,−6) 。已知 OE 轴上的
清华大学版理论力学课后习题答案大全 第3章静力学
清华大学版理论力学课后习题答案大全第3章静力学清华大学版理论力学课后习题答案大全-----第3章静力学第三章静态平衡问题3-1图示两种正方形结构所受荷载f均已知。
试求其中1,2,3各杆受力。
解决方案:图(a):2f3cos45??F0f3?2f(拉)2f1=f3(拉)f2?2f3cos45??0f2=f(受压)图(b):f3?f3??0f1=0F2=f(张力)FF3f33a451f2f1(a-1)图3-1:练习内容fdaf3f3df2(a-2)f3?f1(b-1)(b-2)f3?3-2图示为一绳索拔桩装置。
绳索的e、c两点拴在架子上,点b与拴在桩a上的绳索ab连接,在点d加一铅垂向下的力f,ab可视为铅垂,db可视为水平。
已知?=0.1rad.,力f=800n。
试求绳ab中产生的拔桩力(当?很小时,tan?≈?)。
联邦调查局人员?dfcbfdb?fdb?练习B的图3-2f(a)(b)晶圆厂解决方案:?fy?0,联邦调查局??被激怒了??外汇?0,fedcos??fdbfdb?fsi?nf?10ftan?从图(a)中的计算结果可以推断,图(b)中的Fab=10fdb=100F=80KN。
3-3起重机由固定塔ac与活动桁架bc组成,绞车d和e分别控制桁架bc和重物w的运动。
桁架bc用铰链连接于点c,并由钢索ab维持其平衡。
重物w=40kn悬挂在链索上,链索绕过点b的滑轮,并沿直线bc引向绞盘。
长度ac=bc,不计桁架重量和滑轮摩擦。
试用角?=∠acb的函数来表示钢索ab的张力fab以及桁架上沿直线bc的压力fbc。
法比?2.fbcwwx习题3-3图(a)―1―解:图(a):?fx?0,fabcos?2?wsin??0,fab?2wsin?2fy?0,fbc?W世界海关组织??fabsin2s?2wsin是FBC吗?W世界海关组织??2.02wwcosw(1cos)2w3-4杆AB及其两端滚轮的整体重心位于点G,滚轮放置在一个倾斜的光滑刚性平面上,如图所示。
理论力学静力学部分
一、判断题:1. 力系的合力一定比各分力大。
( )2. 作用与反作用定律只适用于刚体。
( )3. 在同一平面内的两个力偶,只要这两个力偶的力偶矩大小相等,那么这两个力偶必然等效。
( )4. 力对于一点的矩不因力沿其作用线移动而改变。
( )5、作用在一个物体上有三个力,当这三个力的作用线汇交于一点时,则此力系必然平衡。
( )6、二力构件的约束反力,其作用线是沿二受力点连线,指向可任意假设。
( )7、一平面力系的主矢不为零,则此力系分别向A 、B 两点简化,结果相同。
( )8、由于零力杆不承受力,所以它是无用杆,它的存在与否对桁架结构没有影响。
( )9、作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。
( )10、在有摩擦的情况下,全约束力与法向约束力之间的夹角称为摩擦角。
( ) 11、若两个力的大小相等,其在同一轴上的投影也一定相等。
( ) 12、力偶无合力,就是说力偶的合力等于零。
( ) 13、凡是两点受力的构件都是二力构件。
( )14、光滑铰链类约束反力,可以用任意两个相互垂直的分力表示。
( )15、在保持力偶矩不变的前提下,力偶可在同一平面内,或相互平行的平面内任意移动,不改变力偶对刚体的作用效果。
( )16、加减平衡力系原理不但适用于刚体,而且适用于变形体。
( ) 17、一力F,沿某一轴的投影是唯一的;沿该方向的分力也是唯一的。
( ) 18.平面任意力系平衡的充要条件是力系的合力等于零。
( )19.若某力系在任意轴上的投影都等于零,则该力系一定是平衡力系。
( ) 20.不论什么物体,其重心和形心总是在同一点上。
( ) 21、力偶只能使刚体转动而不能使刚体移动。
( )22、在任何情况下,摩擦力的大小总等于摩擦系数与正压力的乘积。
( ) 23、处于平衡状态的三个力必须共面 ( ) 24、只要两力大小相等,方向相反,该两力就组成一力偶。
( )25、摩擦力是未知约束反力,其大小和方向完全可以平衡方程来确定。
理论力学练习册(静力学)
文档南昌工程学院工程力学练习册(理论力学静力学部分)姓名:学号:年级、专业、班级:土木与建筑工程学院力学教研室第一章静力学公理和物体的受力分析一、是非题1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。
()2.在理论力学中只研究力的外效应。
()3.两端用光滑铰链连接的构件是二力构件。
()4.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。
()5.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。
()6.作用于刚体上的三个力,若其作用线共面且相交于一点,则刚体一定平衡。
( ) 7.平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。
()8.约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。
()二、选择题1.若作用在A点的两个大小不等的力F1和F2,沿同一直线但方向相反。
则其合力可以表示为。
①1-2;②2-1;③1+2;2.作用在一个刚体上的两个力A、B,满足A=-B的条件,则该二力可能是。
①作用力和反作用力或一对平衡的力;②一对平衡的力或一个力偶。
③一对平衡的力或一个力和一个力偶;④作用力和反作用力或一个力偶。
3.三力平衡定理是。
①共面不平行的三个力互相平衡必汇交于一点;②共面三力若平衡,必汇交于一点;③三力汇交于一点,则这三个力必互相平衡。
4.已知1、2、3、4为作用于刚体上的平面共点力系,其力矢关系如图所示为平行四边形,由此。
①力系可合成为一个力偶;②力系可合成为一个力;③力系简化为一个力和一个力偶;④力系的合力为零,力系平衡。
5.在下述原理、法则、定理中,只适用于刚体的有。
①二力平衡原理;②力的平行四边形法则;③加减平衡力系原理;④力的可传性原理;⑤作用与反作用定理。
三、填空题1.二力平衡和作用反作用定律中的两个力,都是等值、反向、共线的,所不同的是:。
2.已知力沿直线AB作用,其中一个分力的作用与AB成30°角,若欲使另一个分力的大小在所有分力中为最小,则此二分力间的夹角为度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FA’ C x2
E
F’ C y1
F’ C y3
F’ C y2
FE
E
D
D
2020/5/30
ABC+C+CG
CDE+C+CG
11
销钉的处理方法
2020/5/30
12
总结
约束反力的类型及其表示:5种常见约束的表示 二力杆的形式:
二力杆不一定是杆,中间不受力和力偶作用 销钉的处理方式:
连接物体多余3个,施加有作用力,单独取出 规范作图
注意:1 约束反力偶 2 正方向
6
Michael Jackson—Smooth Criminal
违背地心引力定律?
Michael Jackson 45 度前倾
G G M 0
MA FN FN
《Method and means for creating anti-gravity illusion》
A
Fy Fx
A 中间铰链 F y B 固定铰支座
CF滑x 动铰支座
F y 1-13-d
Fy Fx
Fx Fy
2020/5/30
5
光滑铰链约束
约束类型及其表示
•柔性约束 •光滑面约束 •光滑铰链约束 •链杆约束 •固定端约束
FAy MA
FAx A
固定端约束
1-13-f 1-14-d 1-15-d
2020/5/30
• 取出销钉后,与销钉连接的各个构件之间并不存 在力的相互作用关系
• 将销钉置于某一构件之上,那么二者之间的作用 力转化为内力,并不画出
销钉的处理方法
C
FC y1
FC y2
FC y3
C F
FC x1 FC
MG G
FC x2 FG y
CM
FG x
FC x3 M
B
A
B
FA F’ C x1
C F’ C x3
力系平衡的分析思路
1 选坐标轴最好是与未知力垂直的投影轴; 2 取矩点最好选在未知力的交叉点上; 3 有效判断二力构件,确定受力方向。
Fy FCy
Fx
FB
FA Fy
FCx
C
B
A
Fx
2020/5/30
15
习题1
图示构架自重不计,DE杆靠在AC杆的C端,接触面光滑。
已知:P, M=Pa, q=P/a,求固定端A及铰支座E的约束力。
柔性约束
约束类型及其表示
•柔性约束 •光滑面约束 •光滑铰链约束 •链杆约束 •固定端约束
2020/5/30
方约向F 束沿反公力法作线用,F 在指接向触受点力处F物,1体-14-c
F
F
F
F3
F
F
F1
F2
光滑面约束
4
约束类型及其表示
•柔性约束 •光滑面约束 •光滑铰链约束 •链杆约束 •固定端约束
2020/5/30
13
力系平衡的分析思路
按照一定顺序,恰当地选择研究对象
整体
分离体
一个方程解一个未知量
在一般情况下,首先以系统的整体为研究对象,这 样则不出现未知的内力,易于解出未知量。当不能求 出未知量时应立即选取单个物体或部分物体的组合为 研究对象,一般应先选受力简单而作用有已知力的物 体为研究对象,求出部分未知量后,再研究其他物体。
习题3
图示结构由丁字梁与直梁铰接而成,自重不计。已知: P1 2KN, q 0.5KN / m, M 5KN m, L 2m 。 试求支座 C 及固定端 A 的反力。
2020/5/30
18
谢谢
2020/5/30
19
理论力学习题课
静力学部分(I)
内容介绍
约束类型与常用表示方法 二力杆的处理方法 销钉的处理方法
画受力图需要注意的内容 力系平衡的分析思路 相关习题
约束类型及其表示
•柔性约束 •光滑面约束 •光滑铰链约束 •链杆约束 •固定端约束
由柔软的绳索、链条 或皮带构成的约束
T
P
P
S1 S'1 S2 S'2
P D q
P a
FAy q
C
MA
A
a
BC
FC
FAxaaMaMFEy
F’C
2020/5/30
60 E
FEx 16
习题2
图示结构中,A、E 为固定铰支座,B 为滑动铰支座,C、
D 为中间铰。已知 F 及 q,试求 A、B 两处的约束力。
D
q
A
B
F C
a
2020/5/30
a
a
a
2
2
2a 2a
F
E a
17
二力杆的处理方法 F A
FB
F Ay
F A F Ax AA
二力杆
• 两端铰接中间不受力或者力偶作用
F By
F B x • 在两个力的作用下而处于平衡的构件
BB F B
• 二力杆不一定是杆,或者直杆
2020/5/30
1-14-b
9
销钉的处理方法
• 当销钉连接的构件数量多于3个,或者直受到集 中力作用时应单独取出研究