一元一次方程配套问题
一元一次方程配套问题
![一元一次方程配套问题](https://img.taocdn.com/s3/m/56b8e3a2f61fb7360b4c65d2.png)
实际问题与一元一次方程(1)配套问题一、学习目标能寻找实际问题中的等量关系,建立数学模型。
解决相关的配套问题二、自主学习在实际问题中,大家常见到一些配套组合问题,如螺钉与螺母的配套,盒身与盒底的配套等.解决这类问题的方法是抓住配套关系,设出未知数,根据配套关系列出方程,通过解方程来解决问题.在配套问题中,一套物品的各个零部件之间会有一定的倍数关系,这个倍数关系就是列方程的关键。
1.配套与人员分配问题【例1】某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天生产的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?分析:(1)本题中的配套关系是:一个螺钉配个螺母,即螺钉数:螺母数= :(2)本题中其他的相等关系:+ =22(3)设分配x人加工螺钉,则加工螺母的为人,那每天可加工螺钉个,每天可加工螺母个,根据螺钉与螺母之间的配套关系可列方程解:针对训练:某车间有工人85人,平均每人每天可以加工大齿轮8个或小齿轮10个,又知1个大齿轮和三个小齿轮配为一套,问应如何安排劳力使生产的产品刚好成套?2.配套与物质分配问题例2 用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套.现在有36张白铁皮,用多少张制盒身,多少张制盒底,可使盒身与盒底正好配套?(分析:本题的配套关系是针对训练:一张方桌由1个桌面、4条桌腿组成,如果1立方米木料可以在方桌的桌面50个或做桌腿300条,现有5立方米木料,那么用多少立方米木料做桌面、多少立方米木料做桌腿,做出的桌面和桌腿,恰好配成方桌?能配成多少方桌?4个桌腿.)三、当堂训练1.某车间有28名工人,生产一种螺栓和螺帽,平均每人每小时能生产螺栓12个或螺帽18个,两个螺栓要配三个螺帽,应分配多少人生产螺栓,多少人生产螺帽,才能使生产的螺栓和螺帽刚好配套?2.某服装厂要生产某种型号的学生校服,已知3m长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,库内存这种布料600m,应如何分配布料做上衣和做裤子才能恰好配套?3. 某工地需要派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应该怎样安排人员,正好能使挖的土及时运走?(分析:本题的配套关系是:每天挖的土方等于每天运走的土方.)。
人教版七年级数学上册一元一次方程实际问题---配套、工程问题课件
![人教版七年级数学上册一元一次方程实际问题---配套、工程问题课件](https://img.taocdn.com/s3/m/fd01e9a1c9d376eeaeaad1f34693daef5ef713c1.png)
变式
解:设用 x 立方米的木材做桌面,则用 (10-x) 立方米的木材做桌腿 根据题意,得 4×50x = 300(10-x), 解得 x =6, 所以 10-x = 4, 可做方桌为50×6=300(张).
答:用6立方米的木材做桌面,4立方米的木材做桌腿,可做300张方桌。
变式
4、服装厂计划生产一批某种型号的学生服装,已知每3米长的某种布 料可做2件上衣或3条裤子,一件上衣和一条裤子为一套,现仓库内存 有这样的布料600米,应分别用多少布料做上衣和裤子,才能恰好配套?
2、用白铁皮做罐头盒,每张白铁皮可制盒身25个,或制盒底40 个,一个盒身与两个盒底配成一套罐头盒现有36张白铁皮,用多 少张制盒身,多少张制盒底可以使盒身与盒底正好配套?
变式
3、某家具厂生产一种方桌,1立方米的木材可做50个桌面或300条桌 腿,现有10立方米的木材,怎样分配生产桌面和桌腿使用的木材,才 能使桌面、桌腿刚好配套,共可生产多少张方桌?(一张方桌有1个桌 面,4条桌腿)
4x+8x+16=40 12x=24 x=2 答:应先安排 2人做4 h。
变式
1、一个道路工程,甲队单独施工9天完成,乙队单独做24天完 成.现在甲乙两队共同施工3天,因甲另有任务,剩下的工程由 乙队完成,问乙队还需几天才能完成?
2、甲计划用若干个工作日完成某项工作,从第二个工作日起, 乙加人此项工作,且甲、乙两人的工作效率相同,结果提前3 天完成任务,求甲计划完成此项工作的天数?
工程问题
例:整理一批图书,由一个人做要40 h 完成.现计划由一部分人先 做4 h,然后增加 2人与他们一起做8 h,完成这项工作. 假设这些 人的工作效率相同,具体应先安排多少人工作?
工程问题
解:设安排 x 人先做4 h
一元一次方程配套问题
![一元一次方程配套问题](https://img.taocdn.com/s3/m/63348473f6ec4afe04a1b0717fd5360cbb1a8d61.png)
一元一次方程配套问题一元一次方程是一种简单且基础的代数方程,通常写成形如ax + b= 0的形式,其中a和b是已知的实数常数,而x是未知数。
在实际生活中,一元一次方程有很多应用场景,比如计算购买商品的总费用、计算时间和距离之间的关系等。
为了更好地理解一元一次方程,我们可以通过一些配套问题来加深对其应用的认识。
问题1:去商场购买商品假设你去一家商场购买商品,你知道每件商品的单价是30元,你购买了x件商品,并且还使用了一个100元的代金券。
问你购买了几件商品?解:根据题目可知,购买商品的总价为30x元,代金券的抵扣金额为100元。
根据题目要求,购买商品总价减去代金券的抵扣金额应该等于你支付的金额,即30x-100=你支付的金额。
这个问题可以表示成一个一元一次方程,即30x-100=0。
我们只需解这个方程,即可得到你购买的商品数量x。
问题2:时间和距离之间的关系假设你以每小时60公里的速度骑自行车去上班。
也许你很好奇,如果你的上班路程是d公里,你需要骑多长时间才能到达?解:假设你需要骑t小时才能到达。
根据速度等于路程除以时间的公式,我们可以得到60t=d,其中d是你的上班路程。
我们可以将60t-d=0写成一个一元一次方程,解这个方程就可以得到你需要骑的时间t。
问题3:买水果假设你在水果市场购买了一些苹果,每个苹果的价格是2元。
当你买了x个苹果后,你发现你只有10元钱了。
你买了几个苹果?解:根据题目可知,购买苹果的总价为2x元,你只有10元钱。
按照题目要求,购买苹果的总价应该等于你拥有的金额,即2x-10=0。
我们可以将这个方程表示为一个一元一次方程,解这个方程就可以得到你买的苹果数量x。
上述三个例子都是使用一元一次方程来计算未知数的值。
对一元一次方程的解,我们可以使用一些解法,如平衡法、消元法、代入法等。
对平衡法,我们可以将方程两边的式子按照运算法则进行平衡,使得方程两边都相等。
对消元法,我们可以通过增加、减少或者乘除方程的两边,使得未知数的系数减小或者消失,从而求解未知数。
人教版七年级数学上册实际问题与一元一次方程-配套问题课件
![人教版七年级数学上册实际问题与一元一次方程-配套问题课件](https://img.taocdn.com/s3/m/d9c6b9a505a1b0717fd5360cba1aa81144318fd7.png)
.
1200x 2 000(22 - x)
=
1 2
视察:第三个方 程与前两个方程 有什么不同?
小结:
列方程解决应用问题,其大致步骤有哪些? 1.审:审题,分析题目中的数量关系; 2.设:设未知数,并表示相关的数量关系;
3.列:根据题目中的等量关系列方程; 4.解:解这个方程;
5.答:检验方程的解是否符合题意并作答.
提出问题
玩 过 拉 力 器 吗
?提出问题AB此拉力器由两个拉手A和五个弹簧B
构成.
生产拉力器的厂家,会根据这里的 配比关系安排工人生产拉手A和弹簧B的。 同时厂家也会根据市场的需要调整弹簧 的个数来满足更多群体的需要,这就会 涉及比较多的配套问题。
小组讨论
内容拓展
1、2个A和1个B配成一套,则A:B= 2:1 ,
七年级上册
3.4实际问题与一元一次方程 ——配套问题
从前面学习解方程的过程中可以看 出,方程是分析和解决问题的一种很有用 的数学工具。本节课我们就重点讨论如何 用一元一次方程解决实际问题。
典型探究
问题:尝试解决下面问题. 例 某车间有24名工人,每人每天可以生
产1 200个螺钉,或2 000个螺母. 1个螺钉需
3.用一元一次方程解决实际问题的基本过 程是什么?
实际问题 设未知数,列方程 一元一次方 程
实际问题的 答案
一元一次方程的解 (x = a)
(只设未知数,列出方程)
练习: 《课本》106页复习巩固第2题。
2、制作一张桌子要用一个桌面和4条桌 腿,1m³木材可制作20个桌面,或者制作 400条桌腿,现有12m³木材,应怎样计划用 料才能制作尽可能多的桌子?
(只设未知数,列出方程)
一元一次方程配套问题
![一元一次方程配套问题](https://img.taocdn.com/s3/m/5857d58c26fff705cc170ad7.png)
方程配套问题:方法总结:配套之比等于数量之比1、某车间每天能制作甲种零件500只,或者乙种零件250只,甲、乙两种各一只配成一套产品,现要在30天内制作最多的成套产品,则甲、乙两种零件各应制作多少天2、制作一张桌子要用一个桌面和4条桌腿,1m的立方木材可制作20个桌面,或者制作400条桌腿,现有12m的立方木材,应怎样计划用料才能制作尽可能多的桌子3、某车间有22名工人,每人一天平均生产螺钉1200个或螺母2000个,一个螺钉配两螺母,为使每天的产品刚好配套则应该分配多少名工人生产螺钉多少名工人生产螺母4、一套仪器由一个A部件和三个B部件构成。
用1立方米钢材可做40个A部件或240个B部件。
现要用6立方米钢材做这种仪器,应用多少钢材做A、B两种部件,恰好配成这种仪器多少套5、机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大,小齿轮,才能使每天加工的大小齿轮刚好配套6、红光服装厂要生产某种学生服一批,已知每3米长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用600米长的这种布料生产学生服,应分别用多少布料生产上衣和裤子,才能恰好配套共能生产多少套7、包装厂有42人,每个人平均每小时生产圆片120片,或长方形片80片,将两张圆片与一张长方形片配成一套,问如何安排工人8、用铝片做听装饮料瓶,每张铝片可制瓶身16张或制瓶底43张,一个瓶身和两个瓶底可配成一套,有150张铝片,用多少张制瓶身和多少张制瓶底9、某工厂计划生产一种新型豆浆机,每台豆浆机需3个A种零件和5个B种零件正好配套已知车间每天能生产A种零件450个或B种零件300个,现在要使在21天中所生产的零件全部配套,那么应安排多少天生产甲种零件,多少天生产乙种零件10、某车间有工人16名,每人每天可加工甲零件5个或乙零件4个,已知每加工一个甲零件可获利16元,美加工一个乙零件可获利24元,若此车间一共获利1440元。
一元一次方程之配套问题
![一元一次方程之配套问题](https://img.taocdn.com/s3/m/10b6a06e580102020740be1e650e52ea5518ce93.png)
资源分配问题。某公司需要分配不同部门的资源,每个部门有不同的需求和优先级,通过 设立多元一次方程组可以求解出各种资源的最优分配方案,使得公司整体效益最大化。
05 总结回顾与展望未来
关键知识点总结
一元一次方程的定义
只含有一个未知数,且未知数的最高次数为1的整式方程。
等式的基本性质
等式的两边同时加上或减去同一个数,等式仍成立;等式 的两边同时乘以或除以同一个不为0的数,等式仍成立。
求解一元一次方程方法
01
02
03
等式性质法
利用等式性质,通过移项、 合并同类项等步骤,将方 程化为ax=b(a≠0)的形 式,然后求解x的值。
配方法
通过配方,将方程化为完 全平方的形式,然后开方 求解。
公式法
对于形如ax^2+bx+c=0 (a≠0)的一元二次方程, 可以使用求根公式 x=(−b±√(b^2−4ac))/2a 求解。
解一元一次方程的基本步骤
去分母、去括号、移项、合并同类项、系数化为1。
常见误区及注意事项
01
02
03
04
忽略等式的基本性质, 错误地进行等式变形。
忽视方程中未知数的系 数,导致求解错误。
未能正确识别方程中的 同类项,导致合并错误。
忽视方程解的合理性检 验,导致错误解的出现。
未来发展趋势预测
一元一次方程作为数学基础知识,其 重要性将长期存在。
在日常生活中,掌握配套问题 的解决方法有助于更好地安排 时间和任务,提高生活质量。
02 一元一次方程基础知识
一元一次方程定义及性质
一元一次方程定义
只含有一个未知数,且未知数的 最高次数为1的整式方程。
一元一次方程性质
一元一次方程--配套问题
![一元一次方程--配套问题](https://img.taocdn.com/s3/m/083fadc5951ea76e58fafab069dc5022abea4652.png)
3.4(11)--配套问题一.【知识要点】1.配套关系:总数比=配套比二.【经典例题】1.某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天生产的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?2.红光服装厂要生产某种型号学生服一批,已知每3米长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套.计划用600米长的这种布料生产学生服,应分别用多少布料生产上衣才能和裤子恰好配套?共能生产多少套?3.用正方形使纸板做三棱柱盒子,每个盒子由3个长方形侧面和2个正三角形底面组成。
硬纸板以如图两种方法裁剪(裁剪后边角料不再利用)).A方法:剪6个侧面;B方法:剪4个侧面和5个底面。
现有19张硬纸板,裁剪时x张用A方法,其余用B方法。
(1)分别求裁剪出的侧面和底面的个数(用x的代数式表示)(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?三.【题库】【A】1.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套.现在有36张白铁皮,用多少张制盒身,多少张制盒底,可使盒身与盒底正好配套?2.某车间有28名工人,生产一种螺栓和螺母,每人平均能生产螺栓12个或螺母18个,若一个螺栓套两个螺母,则应分配多少工人生产螺栓,多少工人生产螺母,才能使生产出来的螺栓和螺母刚好配套?3.某工厂有100个工人生产一批螺钉和螺母,每个人只能生产14个螺钉或者22个螺母,规定每个螺钉配两个螺母,如果生产出来的螺钉和螺母刚好配套,那么如何分配工人?4.一套仪器由一个A部件和三个B部件构成.用钢材可做40个A部件或240个B部件.现要用钢材制作这种仪器,应用多少钢材做A部件?多少钢材做B部件?恰好配成这种仪器多少套?【B】1.一张桌子由一张桌面和四条桌腿组成,若现在有a张桌面和b条桌腿正好配成套,则a 与b满足的数量关系为;2.某工地调来72名员工挖土和运土,已知3人挖的土1人恰好可以全部运走,怎样调配员工才能正好时挖出的土能够及时运走?设有x名员工挖土,有名员工运土,可列方程;【C】1.一张方桌由1个桌面、4条桌腿组成,如果1立方米木料可以在方桌的桌面50个或做桌腿300条,现有5立方米木料,那么用多少立方米木料做桌面、多少立方米木料做桌腿,做出的桌面和桌腿,恰好配成方桌?能配成多少方桌?2.(2022年绵阳期末第11题)20名学生在进行一次科学实践活动时,需要组装一种实验仪器,仪器是由三个A部件和两个B部件组成.在规定时间内,每人可以组装好10个A部件或20个B部件.那么,在规定时间内,最多可以组装出实验仪器的套数为()A.50 B.60 C.100 D.150【D】1.某车间有技工85人,平均每天每人可加工甲种部件16个或乙种部件10个,2个甲种部件和3个乙种部件配一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?。
一元一次方程实际问题(配套问题)习题
![一元一次方程实际问题(配套问题)习题](https://img.taocdn.com/s3/m/c5d86d3e10661ed9ad51f3fa.png)
配套问题
1、一张方桌由一个桌面和四条腿组成,已知1立方米木料可制作桌面50张或桌腿300条,
现在要用5立方米木料制作桌子,为使桌面与桌腿恰好配套,则用来制作桌腿的木料是多少立方米?
2、某工地调来72人参加挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎
样安排人员,正好能使挖出的土及时运走而且不窝工?
3、零陵制衣厂某车间计划用10天时间加工一批出口童装和成人装共360件。
该车间的加
工能力是:每天能单独加工童装45件或成人装30件。
(1)该车间应该安排几天加工童装,几天加工成人装,才能如期完成任务?
(2)若加工两件童装和一件成人装共可获利280元,在这次交易中该车间共获利润36000元,求一件童装和一件成人装各获利多少元?
4、有41人参加劳动,有30根扁担,要安排多少人抬,多少人挑,才可使扁担和人数相
配不多不少?。
一元一次方程配套问题
![一元一次方程配套问题](https://img.taocdn.com/s3/m/f4b139f988eb172ded630b1c59eef8c75fbf958b.png)
一元一次方程配套问题一元一次方程是初中数学中的基础知识之一,它是由一个未知数和一个常数构成的线性方程。
解一元一次方程可以帮助我们解决很多实际问题,下面我将通过几个配套问题来说明一元一次方程的应用。
1. 问题一:小明买了一些苹果,每个苹果的价格是2元,他一共花了10元,请问他买了几个苹果?解答:设小明买了x个苹果,根据题意可以列出方程2x=10。
解这个方程可以得到x=5,所以小明买了5个苹果。
2. 问题二:某地气温每小时下降2摄氏度,现在的气温是20摄氏度,问多少小时后气温降到10摄氏度?解答:设降温的小时数为x,根据题意可以列出方程20-2x=10。
解这个方程可以得到x=5,所以需要5小时后气温降到10摄氏度。
3. 问题三:某商店举行打折活动,所有商品都打7折,现在一件衣服原价是100元,打完折后的价格是多少?解答:设打完折后的价格为x,根据题意可以列出方程0.7*100=x。
解这个方程可以得到x=70,所以打完折后的价格是70元。
4. 问题四:某座大楼的电梯每秒上升3层楼,现在电梯在第5层,请问它上升到第15层需要多少秒?解答:设上升的秒数为x,根据题意可以列出方程3x=15-5。
解这个方程可以得到x=10,所以电梯上升到第15层需要10秒。
通过以上的配套问题,我们可以看到一元一次方程在解决实际问题中的应用。
通过设定适当的未知数,列出方程并解方程,我们可以求解出问题中所需的未知数的值。
这样的方法不仅能够提高我们的数学运算能力,还能够培养我们的问题解决能力和逻辑思维能力。
在实际生活中,一元一次方程的应用非常广泛。
例如,在购物、计算时间、打折等问题中,我们可以利用一元一次方程来求解。
此外,在物理学、经济学等领域,一元一次方程也有着重要的应用。
例如,利用一元一次方程可以计算物体的运动速度、解决经济中的供求问题等。
一元一次方程是数学中的基础知识,它能够帮助我们解决很多实际问题。
通过学习和掌握一元一次方程的解法,我们可以提高自己的数学能力和问题解决能力。
一元一次方程配套问题
![一元一次方程配套问题](https://img.taocdn.com/s3/m/f5edb7c74793daef5ef7ba0d4a7302768e996f2a.png)
一元一次方程配套问题1.一套仪器由一个A部件和三个B部件构成。
用1m³钢材可以做40个A部件或240个B部件。
现要用6m³钢材制作这种仪器,应该用多少钢材做A部件,多少钢材做B部件,才能恰好配成这种仪器多少套?答:用6m³钢材可以制作240个A部件或1440个B部件。
因此,如果要制作一套仪器,需要1个A部件和3个B部件,即需要用1m³钢材制作1个A部件和3m³钢材制作3个B部件。
所以,用2m³钢材制作2个A部件,用4m³钢材制作12个B部件,可以恰好配成5套这种仪器。
2.某车间有62名工人,生产甲、乙两种零件。
每人每天平均能生产甲种零件12个或乙种零件23个。
应该分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的甲种零件和乙种零件刚好配套?(已知3个甲种零件和2个乙种零件配成一套)答:每个工人每天可以生产甲种零件12/23个或乙种零件23/12个。
为了使生产的甲种零件和乙种零件刚好配套,需要满足以下条件:3n个甲种零件=2m个乙种零件其中,n和m都是正整数。
将上式变形得:n/m=2/3因此,需要分配的工人数满足以下条件:62x(2/5)=24.862x(3/5)=37.2所以应该分配25名工人生产甲种零件,37名工人生产乙种零件。
3.某纺织厂有纺织工人300名,为增产创收,该纺织厂又增设了制衣车间,准备将这300名纺织工人合理分配到纺织车间和制衣车间。
现在知道工人每人每天平均能织布30米或制4件成衣,每件成衣用布1.5米。
若使生产出的布匹刚好制成成衣,求应有多少人去生产成衣?答:每个工人每天可以织布30米或制作4/1.5=8/3件成衣。
为了使生产的布匹和成衣刚好配套,需要满足以下条件:30n=8m/3其中,n和m都是正整数。
将上式变形得:n/m=8/90因此,需要分配的工人数满足以下条件:300x(8/98)=24.49300x(90/98)=275.51所以应该分配25名工人生产成衣。
一元一次方程应用题配套问题知识点
![一元一次方程应用题配套问题知识点](https://img.taocdn.com/s3/m/52a4b4ac80c758f5f61fb7360b4c2e3f572725e9.png)
一元一次方程应用题配套问题知识点
一元一次方程应用题中的配套问题,主要考察的是对等量关系的应用和理解。
这类问题通常涉及到生产、生活中的各种物品的配比关系,如零件的装配、物资的调配等。
解决这类问题,关键在于理清各个部分之间的关系,并用数学模型将这种关系表达出来。
知识点主要包括:
1. 等量关系:在配套问题中,各个部分之间存在一定的等量关系,如数量相等、总价相等等。
理解并找出这种等量关系是解题的关键。
2. 一元一次方程:通过设未知数,根据等量关系建立一元一次方程,是解决配套问题的常用方法。
3. 方程的解法:解一元一次方程的方法包括移项、合并同类项、去括号、系数化为1等。
根据方程的特点选择合适的解法是必要的。
4. 实际问题中的数量关系:在配套问题中,除了数学关系外,还需要理解实际问题的背景和数量关系,如生产效率、时间、成本等。
综上所述,一元一次方程应用题中的配套问题知识点主要包括等量关系、一元一次方程、方程的解法和实际问题中的数量关系。
通过理解和运用这些知识点,可以更好地解决这类问题。
一元一次方程(配套问题)省公开课获奖课件市赛课比赛一等奖课件
![一元一次方程(配套问题)省公开课获奖课件市赛课比赛一等奖课件](https://img.taocdn.com/s3/m/eeb2502ba517866fb84ae45c3b3567ec102ddcac.png)
( 2 )只青蛙( 2 )张嘴, ( 4 )只眼睛( 8 )条腿
( 3 )只青蛙( 3 )张嘴, ( 6 )只眼睛( 12)条腿
……
( n )只青蛙( n )张嘴, (2n )只眼睛(4n )条腿
青蛙数量 = ( 1 )
眼睛数量
( 2)
之苦.
小明:我设x名志愿者搭建帐篷,怎样列方程? 小红:我设x名志愿者安顿灾民,一)审张方配套桌百四分比条腿,1m³木料可加工30个桌面或者
80个桌腿,既有12m³木料,怎样安排生产可使生产 出旳桌面和桌腿恰好配套?
桌面数 桌腿数
=
(1) (4)
×
×
三、学以致用,献计献策
审 一张方桌四条腿,1m³木料可加工30个桌面或者80个桌腿,
既有(122)m³木填料表,怎样安排生×产可使生产出旳桌面和桌腿恰好
配套?
=
类型 桌面 桌腿
立方米数 每每立立方方米米加加工工数数量量 总总数数量量
x×
30
= 30 x
12﹣x ×
80
=80(12-x)
12立方米木材
4×桌面数=桌腿数
课堂总结
列一元一次方程解应用题旳环节
(1)审题,配套百分比和列表。
(2)设元,用相应代数式填表。 (3)列出一元一次方程。 (4)解方程,求出未知数旳值。
(5)答
天气突变,寒冷将 至,北方旳少数民族旳 灾民们遇到难题了。
然而他们开始已经行 动了,你呢?你们想不 想加入他们呢?
爱心接力
争当自愿者
2023年冬天 ,新疆牧民遭受雪灾,我校选派30名志愿者 ,去帮忙搭建帐篷和安顿灾民们住进帐篷,1名志愿者要帮忙 搭建3顶帐篷或安顿4名灾民住进帐篷,一顶帐篷能容纳两名灾 民住下,目前请你安排人员,使灾民们尽快住进帐篷免受寒冷
人教版七年级上册数学一元一次方程应用题(配套问题)专题训练
![人教版七年级上册数学一元一次方程应用题(配套问题)专题训练](https://img.taocdn.com/s3/m/19d8691003768e9951e79b89680203d8cf2f6a69.png)
人教版七年级上册数学一元一次方程应用题(配套问题)专题训练1.某瓷器厂共有工人120人,每个工人一天能做200只茶杯或50只茶壶.如果8只茶杯和一只茶壶为一套.(1)应安排多少人生产茶杯,可使每天生产的瓷器配套.(2)按(1)中的安排,每天可以生产多少套茶具?2.列方程解应用题:某车间有15个工人,生产水桶、扁担两种商品;已知每人每天平均能生产水桶80个或扁担110个,则应分配多少人生产水桶、多少人生产扁担,才能使每天生产的水桶和扁担刚好配套?(每2个水桶和1个扁担配成一套)3.一个车间加工轴杆和轴承,每人每天平均可以加工轴杆6根或者轴承8个,1根轴杆与2个轴承为一套,该车间共有40人,应该怎样调配人力,才能使每天生产的轴承和轴杆正好配套?4.某服装厂加工一批西服,每1米布料能裁上衣1件或裁裤子2件.现有布料15米,为了使上衣和裤子配套,裁上衣和裤子的布料各几米?5.某校七年级(2)班共有42名学生,在一节科技活动课上作长方体纸盒,已知每名同学一节课可制作盒身20个或盒盖30个,一个盒身和两个盒盖配成一个长方体纸盒.为使一节课制作的盒身、盒盖刚好配套,应安排制作盒身和盒盖的同学各多少名?6.3月12日是植树节,七年级170名学生参加义务植树活动,如果男生平均一天能挖树坑3个,女生平均一天能种树7棵,正好使每个树坑种上一棵树,问该年级的男女生各多少人?7.某生产教具的厂家准备生产正方体教具,教具由塑料棒和金属球组成(一条棱用一根塑料棒,一个顶点由一个金属球镶嵌),安排一个车间负责生产这款正方体教具,该车间共有34名工人,每个工人每天可生产塑料棒100根或金属球75个,如果你是车间主任,你会如何分配工人成套生产正方体教具?8.某车间有94个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每1个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?每天能生产成多少套?(列一元一次方程求解)9.某工厂生产茶具,每套茶具有1个茶壶和4只茶杯组成,生产这套茶具的主要材料是紫砂泥,用1千克紫砂泥可做2个茶壶或8只茶杯.现要用6千克紫砂泥制作这些茶具,应用多少千克紫砂泥做茶壶,多少个千克紫砂泥做茶杯,恰好配成这种茶具多少套?10.某服装厂要生产同一种型号的服装,已知3m长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套.(1)现库存有布料300m,应如何分配布料做上衣和做裤子才能恰好配套?可以生产多少套衣服?(2)如果恰好有这种布料227m,最多可以生产多少套衣服?本着不浪费的原则,如果有剩余,余料可以做几件上衣或裤子?(本问直接写出结果)11.某车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1800条或脖子上的丝巾1200条,一条脖子上的丝巾要配两条手上的丝巾,为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?12.某车间有技术工人50人,平均每天每人可加工甲种部件18个或乙种部件14个,1个甲种部件和2个乙种部件配成一套,问加工甲、乙两种部件各安排多少人才能使每天加工的两种部件刚好配套?并求出加工了多少套13.某玩具生产厂家A车间原来有30名工人,B车间原来有20名工人,现将新增25名工人分配到两车间,使A A车间工人总数是B车间工人总数的2倍.(1)新分配到A、B车间各是多少人?(2)A车间有生产效率相同的若干条生产线,每条生产线配置5名工人,现要制作一批玩具,若A车间用一条生产线单独完成任务需要30天,问A车间新增工人和生产线后比原来提前几天完成任务?14.某校新进了一批课桌椅,七年(2)班的学生利用活动课时间帮助学校搬运部分课桌椅,已知七年(2)班共有学生45人,其中男生的人数比女生人数的2倍少24人,要求每个学生搬运60张桌子或者搬运150张椅子.请解答下列问题:(1)七年(2)班有男生、女生各多少人?(2)一张桌子配两把椅子,为了使搬运的桌子和椅子刚好配套,应该分配多少个学生搬运桌子,多少个学生搬运椅子?15.某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在18天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?16.某服装厂要生产同一种型号的服装,已知3m长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套.(1)现库内存有布料180m,应如何分配布料做上衣和做裤子才能恰好配套?可以生产多少套衣服?(2)如果恰好有这种布料202m,最多可以生产多少套衣服?本着不浪费的原则,如果有剩余,余料可以做几件上衣或裤子?(本问直接写出结果)17.某丝巾厂家70名工人义务承接了2020年上海进博会上志愿者佩戴的手环、丝巾的制作任务.已知每人每天平均生产手环180个或者丝巾120条,一条丝巾要配两个手环.(1)为了使每天生产的丝巾和手环刚好配套,应分配多少名工人生产手环,多少名工人生产丝巾?(2)在(1)的方案中,能配成套.18.某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人.(1)调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产1200个螺柱或2000个螺母,1个螺柱需要2个螺母,为使每天生产的螺桩和螺母刚好配套,应该安排生产螺柱和螺母的工人各多少名?19.糕点厂中秋节前要制作一批盒装月饼,每盒装2块大月饼和4块小月饼,制作1块大月饼要用0.05kg面粉,1块小月饼要用0.02kg面粉.(1)若制作若干盒月饼共用了450kg面粉,请问制作大小两种月饼各用了多少面粉?(列方程解应用题)(2)在(1)的条件下,该糕点厂将销售价定为每盒108元,测算发现每盒月饼可盈利80%,若该厂按此售价销售完这批月饼,共可盈利多少元?20.在手工制作课上,老师组织七年级2班的学生用硬纸制作圆柱形茶叶筒.七年级2班共有学生50人,其中男生人数比女生人数少2人,并且每名学生每小时剪筒身40个或剪筒底120个.(1)七年级2班有男生、女生各多少人?(2)原计划男生负责剪筒底,女生负责剪筒身,要求一个筒身配两个筒底,那么每小时剪出的筒身与筒底能配套吗如果不配套,那么如何进行人员调配,才能使每小时剪出的筒身与筒底刚好配套?参考答案:1.(1)80人(2)2000(套)2.分配11人生产水桶,4人生产扁担,才能使每天生产的水桶和扁担刚好配套3.安排16人加工轴杆,24人加工轴承4.裁上衣的布料为10米,裁裤子的布料为5米5.18名同学制作盒身,24名同学制作盒盖6.该年级的男生有119人,那么女生有51人7.18个工人生产塑料棒,16个工人生产金属球8.46人生产甲种零件,48人生产乙种零件,每天生产552套9.应用3千克紫砂泥做茶壶,3千克紫砂泥做茶杯,恰好配成这种茶具6套10.(1)做上衣用布料180m,则做裤子用布料120m,可以生成120套衣服(2)最多可以生产90套衣服,余料可以做2条裤子11.应分配30名工人生产脖子上的丝巾,40名工人生产手上的丝巾.12.安排14人加工甲部件,安排36人加工乙部件才能使每天加工的两种部件刚好配套,一共加工了252套13.(1)新分配到A车间20人,分配到B车间5人(2)A车间新增工人和生产线后比原来提前2天完成任务14.(1)七年(2)班有男生22人、女生23人(2)应该分配25名学生搬运桌子,20名学生搬运椅子15.甲种零件生产10天,乙种零件生产8天.16.(1)做上衣用布料108m,则做裤子用布料72m;72套;(2)最多可以生产80套衣服,余料可以做1件上衣或2条裤子.17.(1)应分配40名工人生产手环,30名工人生产丝巾;(2)360018.(1)调入6名工人;(2)10名工人生产螺柱,12名工人生产螺母.19.(1)用了250kg面粉制作大月饼,200kg制作小月饼;(2)120000元.20.(1)七年级2班有男生有24人,女生有26人;(2)男生应向女生支援4人时,才能使每小时剪出的筒身与筒底刚好配套.。
一元一次方程配套问题教案
![一元一次方程配套问题教案](https://img.taocdn.com/s3/m/c0959d554b7302768e9951e79b89680203d86beb.png)
一元一次方程配套问题教案一、教学目标:1. 知识与技能:学生能够理解一元一次方程的概念及其解法。
学生能够运用一元一次方程解决实际问题。
2. 过程与方法:学生通过自主学习与合作交流,掌握解一元一次方程的基本步骤。
学生能够运用数学符号和语言表达解题过程。
3. 情感态度价值观:学生培养对数学的兴趣和自信心,克服数学恐惧心理。
学生培养逻辑思维能力和解决问题的能力。
二、教学重点与难点:1. 教学重点:一元一次方程的定义及其解法。
一元一次方程在实际问题中的应用。
2. 教学难点:理解一元一次方程的解法步骤。
将实际问题转化为方程形式并求解。
三、教学方法与手段:1. 教学方法:采用问题驱动法,引导学生主动探究一元一次方程的解法。
运用案例分析法,让学生通过解决实际问题巩固知识。
组织小组讨论,促进学生之间的交流与合作。
2. 教学手段:使用多媒体课件,生动展示一元一次方程的解法过程。
提供练习题和案例,帮助学生巩固知识。
四、教学内容与步骤:1. 导入新课:利用生活实例引入一元一次方程的概念,激发学生兴趣。
2. 知识讲解:讲解一元一次方程的定义及解法步骤。
引导学生通过小组讨论,总结解一元一次方程的规律。
3. 案例分析:提供一些实际问题,让学生将其转化为方程形式并求解。
分析解题过程中遇到的问题,引导学生思考和解决。
4. 课堂练习:布置一些练习题,让学生独立完成,巩固所学知识。
五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,评价学生的学习态度和积极性。
2. 练习题完成情况:检查学生完成练习题的正确率,评价学生对一元一次方程的理解和应用能力。
3. 小组讨论:评价学生在小组讨论中的表现,包括合作态度、交流能力和问题解决能力。
六、教学拓展与深化:1. 引导学生思考:一元一次方程在实际生活中的应用有哪些?还有哪些类似一元一次方程的问题?2. 讲解相关概念:介绍一元一次方程的变形和化简。
引导学生理解方程的解和解集的概念。
一元一次方程应用---配套问题
![一元一次方程应用---配套问题](https://img.taocdn.com/s3/m/1ca87390bb68a98271fefaeb.png)
120x=2406 x 化简得 x=26 x
配套问题应用举例
例4.加工车间有85名工人,平均每天每人加工大齿轮16个或小齿轮 10个,已知2个大齿轮与3个小齿轮配成一套,问需安排多少名工人 加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?
配套比为:大齿轮数量:小齿轮数量 2 : 3
反思小结
这节课重点研究了什么问题?
配套问题 解决配套问题的关键是什么?
确定配套比
如何列方程解决配套问题? 总量比等于配套比
配套比为:桌面量:桌腿量 1 : 4
设用xm3木料做桌面,则用 5 x m3木料做桌腿
桌面量 50x ,桌腿量 3005 x .
列方程得 50x : 3005 x 1: 4
依据比例的基本性质:两外项之积等于两内项之积
200x=3005 x 化简得 2x=35 x
配套问题应用举例
例2.车间每天能制作甲零件500只,或者乙零件250只,甲乙零件各 一只配成一套产品,现要在30天内制作最多的成套产品,则甲乙 两种零件各应制作多少天?
配套比为:圆片数量: 长方形数量 2 :1
设x名工人制作圆片,则 42 x 名工人制作长方形片 圆片数量 120x ,长方形片数量 8042 x .
列方程得 120x : 8042 x =2 :1
依据比例的基本性质:两外项之积等于两内项之积
120x=16042 x 化简得 3x=442 x
例3.一套仪器由一个A部件和三个B部件组成,用1立方米钢材可做 40个A部件或240个B部件.现要用6立方米钢材做这种仪器,应用 多少钢材做A部件,恰好配成这种仪器多少件?
配套比为:A部件量: B部件量 1: 3
一元一次方程应用题10大类型例题精讲+学后练习
![一元一次方程应用题10大类型例题精讲+学后练习](https://img.taocdn.com/s3/m/477d002249d7c1c708a1284ac850ad02de80070c.png)
一元一次方程应用题10大类型例题精讲+学后练习1.配套问题【例题】某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.生产螺钉和螺母的工人各为多少人时,才能使生产的铁片恰好配套?【解析】设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由一个螺钉配两个螺母可知,螺母的个数是螺钉个数的2倍。
从而得出等量关系列出方程。
【解答】解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母由题意得1000(26﹣x)=2×800x解得x=10,则26﹣x=16答:生产螺钉的工人为10人,生产螺母的工人为16人。
【学后练习】油桶制造厂的某车间主要负责生产制造油桶用的圆形铁片和长方形铁片,该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片,一个油桶由两个圆形铁片和一个长方形铁片相配套。
生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?2. 增长率问题【例题】甲、乙班组工人,按计划本月应共生产680个零件,实际甲组超额20%,乙组超额15%完成了本月任务,因此比原计划多生产118个零件。
问本月原计划每组各生产多少个零件?【解析】设本月原计划甲组生产x个零件,那么乙组生产(680-x)个零件;实际甲组超额20%,实际甲组生产了(1+20%)x;乙组超额15%,实际生产了(1+15%)(680-x);本月共生产680个零件,实际比原计划多生产118个零件,也就是实际生产了798个零件。
从而得出等量关系列出方程。
【解答】解:设本月原计划甲组生产x个零件,则乙组生产(680-x)个零件由题意可得:(1+20%)x+(1+15%)(680-x)=798解得x=320则680-x=360答:本月原计划甲组生产320个零件,则乙组生产360个零件。
【学后练习】已知甲、乙两种商品的原单价和为100元,因市场变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两种商品的单价和比原单价和提高了2%,求甲、乙两种商品的原单价各是多少元?3. 数字问题【例题】一个两位数,十位数与个位上的数之和为11,如果把十位上的数与个位上的数对调得到比原来的数大63,原来的两位数是多少?【解析】数字问题,千位数字×1000、百位数字×100、十位数字×10、个位数字×1相加后才是所求之数,以此类推,切忌位数数字直接相加。
配套问题的解题思路一元一次方程公式
![配套问题的解题思路一元一次方程公式](https://img.taocdn.com/s3/m/5d7962cccd22bcd126fff705cc17552707225e86.png)
配套问题的解题思路一元一次方程公
式
一元一次方程公式是解决配套问题的重要工具。
它可以帮助我们找到未知数的值,使方程两边的表达式相等。
下面是一些解题思路,帮助你更好地理解和应用一元一次方程公式。
首先,我们需要明确方程中的未知数是什么,并将其表示为字母。
通常使用 x 表示未知数,但也可以使用其他字母。
然后,我们需要根据问题的描述建立方程。
例如,如果问题中提到了“一辆汽车每小时行驶 x 公里,行驶 t 小时后,汽车行驶了多少公里?”我们可以建立方程为:x = t * x。
接下来,解方程以求得未知数的值。
在这个例子中,由于只有一个未知数 x,我们可以直接解出它的值。
如果方程中有更多的未知数,我们需要使用适当的数学方法解方程,如消元法、代入法或等价转化法。
最后,我们需要检验解的合理性。
将求得的解代入原方程中,确保左右两边相等。
如果相等,说明我们的解是正确的;如果不等,则需要重新检查或重新解方程。
需要注意的是,一元一次方程公式不仅适用于解决配套问题,还适用于其他实际问题,如数学建模、经济学等领域。
掌握了这个基础的数学工具,我们能够更好地理解和解决各种实际问题。
总结起来,解决配套问题的一元一次方程公式要求我们明确未知数、建立方程、解方程并检验解的合理性。
通过熟练掌握这些解题思路,我们能够有效地应对各种配套问题,并得到准确的解答。
七年级数学一元一次方程:配套问题(有答案)
![七年级数学一元一次方程:配套问题(有答案)](https://img.taocdn.com/s3/m/99f004c0f80f76c66137ee06eff9aef8941e4809.png)
七年级数学一元一次方程:配套问题(有答案)1、某车间可以制作甲种零件和乙种零件,每天甲种零件可以制作500只,乙种零件可以制作250只。
一套产品需要一只甲种零件和一只乙种零件。
现在需要在30天内制作尽可能多的成套产品,问甲、乙两种零件各应制作多少天?解:设甲种零件制作x天,那么乙种零件制作(30-x)天。
因为总数量相等,所以有500x=250(30-x),解得x=10,即甲种零件制作10天,乙种零件制作20天。
2、制作一张桌子需要一个桌面和四条桌腿,现在有12立方米的立方木材,1立方米木材可以制作20个桌面或400条桌腿。
问如何计划用料才能制作尽可能多的桌子?解:设用x立方米木材制作桌面,那么用(12-x)立方米木材制作桌腿。
因为总数量相等,所以有20x=400(12-x),解得x=2.4,即用2.4立方米木材制作桌面,用9.6立方米木材制作桌腿。
3、某车间有22名工人,每人每天平均可以生产1200个螺钉或2000个螺母。
一只螺钉需要配两只螺母。
为了使每天的产品刚好配套,问应该分配多少名工人生产螺钉?多少名工人生产螺母?解:设生产螺钉的工人数为x,那么生产螺母的工人数为(22-x)。
因为总数量相等,所以有1200x=2000(22-x),解得x=12,即应该安排12名工人生产螺钉,10名工人生产螺母。
4、一套仪器由一个A部件和三个B部件构成。
现在有6立方米的钢材,1立方米钢材可以制作40个A部件或240个B部件。
问应该用多少钢材制作A、B两种部件,才能恰好配成这种仪器多少套?解:设用x立方米钢材制作A部件,那么用(6-x)立方米钢材制作B部件。
因为总数量相等,所以有40x=240(6-x),解得x=1,即用1立方米钢材制作A部件,用5立方米钢材制作B部件。
因为每套仪器需要一个A部件和三个B部件,所以可以制作1个A部件和15个B部件,即可以制作5套仪器。
5、机械厂加工车间有85名工人,平均每人每天可以加工16个大齿轮或10个小齿轮。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方程配套问题:
方法总结:配套之比等于数量之比
1、某车间每天能制作甲种零件500只,或者乙种零件250只,甲、乙两种各一只配成一套产品,现要在30天内制作最多的成套产品,则甲、乙两种零件各应制作多少天?
2、制作一张桌子要用一个桌面和4条桌腿,1m的立方木材可制作20个桌面,或者制作400条桌腿,现有12m的立方木材,应怎样计划用料才能制作尽可能多的桌子?
3、某车间有22名工人,每人一天平均生产螺钉1200个或螺母2000个,一个螺钉配两螺母,为使每天的产品刚好配套则应该分配多少名工人生产螺钉?多少名工人生产螺母?
4、一套仪器由一个A部件和三个B部件构成。
用1立方米钢材可做40个A部件或240个B部件。
现要用6立方米钢材做这种仪器,应用多少钢材做A、B两种部件,恰好配成这种仪器多少套?
5、机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大,小齿轮,才能使每天加工的大小齿轮刚好配套?
6、红光服装厂要生产某种学生服一批,已知每3米长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用600米长的这种布料生产学生服,应分别用多少布料生产上衣和裤子,才能恰好配套?共能生产多少套?
7、包装厂有42人,每个人平均每小时生产圆片120片,或长方形片80片,将两张圆片与一张长方形片配成一套,问如何安排工人?
8、用铝片做听装饮料瓶,每张铝片可制瓶身16张或制瓶底43张,一个瓶身和两个瓶底可配成一套,有150张铝片,用多少张制瓶身和多少张制瓶底?
9、某工厂计划生产一种新型豆浆机,每台豆浆机需3个A种零件和5个B种零件正好配套已知车间每天能生产A种零件450个或B种零件300个,现在要使在21天中所生产的零件全部配套,那么应安排多少天生产甲种零件,多少天生产乙种零件?
10、某车间有工人16名,每人每天可加工甲零件5个或乙零件4个,已知每加工一个甲零件可获利16元,美加工一个乙零件可获利24元,若此车间一共获利1440元。
则这一天一共有几名工人加工甲零件?。