三萜化合物结构解析

合集下载

第七章 三萜类化合物解读

第七章 三萜类化合物解读
28
12
27
19
18 13 14
C4、C5、C9、C14各 有一个β-CH3; C17多为CH3,也有-CHO、 -COOH、-CH2OH C13-CH3为α C2、C3常有羰基取代
1 2 4
H
5 10 25 6
24
H
9
H
15
17
16
8 7
26
3
23
Friedelanes
二、结构与分类
从雷公藤(tripterygium wilfordii) 中分离得到的 雷公藤酮:
29 20 30
H H H H HO H CH2OH
21 22
COOH
23-Hydroxybetulinic acid
二、结构与分类
21
4、木栓烷型
11 2 3 A 4 5 1 C 10 B 9 6 8 7 12 14
20 19 E 18 13 D 15 16
11
22 17
30
29 20 21 22
第七章
第七章 三萜类化合物
一、概述
二、结构与分类
三、理化性质 四、提取分离 五、鉴别
一、 概述
一、概述 多数三萜( triterpenoids)是由 30 个碳原子组成 的萜类化合物,根据“异戊二烯法则”,多数三 萜被认为是由6个异戊二烯(三十个碳)缩合而成 的,该类化合物在自然界广泛存在. 有的以游离形式存在 有的则与糖结合成苷的形式存在,该苷类化合物 多数可溶于水,水溶液振摇后产生似肥皂水溶液
26
H H
6 8
H
29 28
Tirucallanes Euphane
二、结构与分类 从藤桔属植物Paramignya monophylla 的果实分离得到:

38.1三萜类化合物的结构四环三萜

38.1三萜类化合物的结构四环三萜

20
24
O
OH
OR3
R1
环黄芪醇
H
R2 R3 HH
R1O
黄芪苷Ⅰ xyl(2,3-diAc) glc H
OR2
黄芪苷Ⅳ
xyl
黄芪苷V glc(1→2)xyl-
HH H glc
黄芪苷Ⅶ
xyl
glc glc
黄芪苷IV(astragaloside IV):又名黄芪甲苷,其皂苷元的3 位羟基与糖相连,是最重要的,也是控制药材质量的指标性 成分之一。
喷瓜
葫芦素类生理活性:抑制肿瘤、抗菌、消炎、催吐、 致泻等。
雪胆(Hemsleya amabilis) 中分出的雪胆甲素和乙素 (cucurbitacinⅠa、Ⅱb),临床上用于急性痢疾、肺结核、 慢性气管炎的治疗,均取得较好疗效。
雪胆甲素 R=Ac 雪胆乙素 A=H
雪胆(蛇莲)
5.环阿屯烷(cycloartane)型
3.甘遂烷(tirucallane)型
又名大戟烷型; 基本碳架同羊毛脂甾 烷,取代基构型不同, 即是13α、14β、17 α -羊毛脂甾烷。
17 13
H 14
H H
甘遂烷
羊毛脂甾烷型为13 β,14 α,17 β
大戟醇(euphol)存在于许多大戟属植物乳液中,在甘遂、 狼毒和千金子中均有大量存在。
17 13 14金子
4.葫芦素烷(cucurbitane)型
基本骨架同羊毛甾烷型,
唯其A/B环上的取代基不同, 即有5β-H、8β-H、10α-H、9
葫芦素烷
位连有β-CH3。
羊毛脂烷型的10-CH3转到9-CH3
许多来源于葫芦科植物的中药,如甜瓜蒂、 丝瓜子、苦瓜、喷瓜等均含有此类成分,总称 为葫芦素类(cucurbitacins)。

三萜类化合物

三萜类化合物

二、结构与分类
4、环菠萝蜜烷型
β构型
21
22
24 25 26
12 18 20
23
11 19
H
1317 16 14
27
2 1 10 9 8
15
α构型
35
30
4
67
H
Cycloartanes
29 28
二、结构与分类
从中药黄芪(Astragalus membranaceus中分离到的
黄芪苷 I :
24
二、结构与分类
二)单环三萜 菊科蓍属植物-----蓍醇A
HO
蓍醇A
二、结构与分类
三)双环三萜
从海洋生物Asteropus sp. 中分离得到 pouoside A-E是一类具有双环骨架的三萜乳糖苷类。
OR4
OH
OO
OH
OR3
OAc
R1 O
OR2
二、结构与分类
四)三环三萜 蕨类植物、楝科植物等。
常见的糖有D-葡萄糖、D-半乳糖、D-木糖、L-阿拉伯糖、 L-鼠李糖、D-葡萄糖醛酸、D-半乳糖醛酸,另外还有D夫糖、D-鸡纳糖、D-芹糖、乙酰基和乙酰氨基糖等,多 数苷为吡喃型糖,但也有呋喃型糖。
有些苷元或糖上还有酰基等。这些糖多以低聚糖形式与 苷元成苷,成苷位置多为3位或与28位羧基成酯皂苷 (ester saponins),另外也有与16、21、23、29位等羟 基成苷的。
第七章 三萜类化合物
一、概述 二、结构与分类 三、理化性质 四、提取分离 五、鉴别
一、 概述
一、概述
多数三萜(triterpenoids)是由30个碳原子组成 的萜类化合物,根据“异戊二烯法则”,多数三 萜被认为是由6个异戊二烯(三十个碳)缩合而成 的,该类化合物在自然界广泛存在. 有的以游离形式存在

第九章_三萜类解析

第九章_三萜类解析
作用,并能减低血浆中胆固醇和甘油三酯的 水平。
七叶皂苷具有明显的抗渗出、抗炎、抗瘀血作
用,能恢复毛细血管的正常的渗透性,提高 毛细血管张力,控制炎症,改善循环,对脑 外伤及心血管病有较好的治疗作用。
(一)四环三萜皂苷元
在生源上可视为由鲨烯变为甾体的中间体,大 多数结构和甾醇很相似,亦具有环戊烷骈多氢菲的 四环甾核。在4、4、14位上比甾醇多三个甲基,也 有认为是植物甾醇的三甲基衍生物。
H COOH
20
O
HO
13 17
H 14
10
O
H
O
OH
H
ganoderic acid C
羊毛脂烷型皂苷存在
灵芝 海洋生物:海参、海星等
(二) 五环三萜皂苷
多数三萜皂苷苷元以五环三萜形 式存在。其C3-OH与糖结合成苷,苷 元中常含有羧基,故又称酸性皂苷, 在植物体中常与钙、镁等离子结合 成盐。五环三萜主要有下面几种类 型:
熊果酸(Ursolic acid)来源于木犀科植物女贞
(Ligustrum lucidum Ait.)叶中。具有镇静、抗炎、抗菌、 抗糖尿病、抗溃疡、降低血糖等多种生物学效应。近年 来发现熊果酸具有抗致癌、抗促癌、诱导F9畸胎瘤细胞 分化和抗血管生成作用。极有可能成为低毒有效的新型 抗癌药物。
H
COOH
C17位有侧链,多为β型。
17
C 13 D
9
A 10 B 8 14
5
17
C 13 D
9
A 10 B 8 14
5
(一)甾体皂苷元的结构特点
1、含A、B、C、D、E、F六 个环,A、B、C、D组成甾体母 核,化合物的四个环之间,每两 个环以碳碳单键稠和时,可以是 顺式的(取代基在同一侧),也 可以是反式的(取代基在两侧)。

三萜类化合物

三萜类化合物

一、 概述
三萜类化合物的生理活性:
溶血 抗肿瘤 抗炎 抗菌
抗病毒
降低胆固醇 杀软体动物 抗生育
一、 概述
三萜类化合物的生合成路线:

O PP +Fra bibliotekO PP

焦磷酸金合欢酯
焦磷酸金合欢酯
鲨烯
不同的环化方式
不同的三萜类化合物
第七章 三萜类化合物
一、概述
二、结构与分类
三、理化性质 四、提取分离 五、鉴别
2、大戟烷型( Euphane )
3、达玛烷型( Dammaranes )
4、环菠萝蜜烷型( Cycloartanes )环阿屯烷型 5、葫芦素烷型 (Cucurbitanes) 6、楝烷型(Meliacanes)
二、结构与分类
1、羊毛脂烷型
21
R构型
22 20 17 14 30 23 16 15 27 24 25 26
三萜皂苷在豆科、五加科、葫芦科、毛莨科、
石竹科、伞形科、鼠李科、报春花科等植物分布 较多。
一、 概述
三萜皂苷 三萜皂苷元(triterpene sapogenins)和糖组成的,常见 的苷元为四环三萜和五环三萜。 常见的糖有D-葡萄糖、D-半乳糖、D-木糖、L-阿拉伯糖、 L-鼠李糖、D-葡萄糖醛酸、D-半乳糖醛酸,另外还有D夫糖、D-鸡纳糖、D-芹糖、乙酰基和乙酰氨基糖等,多 数苷为吡喃型糖,但也有呋喃型糖。 有些苷元或糖上还有酰基等。这些糖多以低聚糖形式与 苷元成苷,成苷位置多为3位或与28位羧基成酯皂苷 (ester saponins),另外也有与16、21、23、29位等羟 基成苷的。 根据糖链的多少,可分单糖链苷(monodemosides)双 糖链苷(bisdemosides)、三糖链皂苷(tridesmosidic saponins)。当原生苷由于水解或酶解,部分糖被降解 时,所生成的苷叫次皂苷(prosapogenins)。

三萜类化合物详解

三萜类化合物详解

7
结构共同特点
1、具有环戊烷骈多氢菲的基本母核(17个碳原子)。 、具有环戊烷骈多氢菲的基本母核( 个碳原子 个碳原子)。 环戊烷骈多氢菲的基本母核 2、C17位有一个由 个碳原子组成的侧链。 个碳原子组成的侧链。 、 位有一个由8个碳原子组成的侧链 3、母核上有 个角甲基,4个连接在 4、C4、C10、C14、另一 个角甲基, 个连接在 个连接在C 、母核上有5个角甲基 个编号为C 的甲基连于C 位上。 个编号为 18的甲基连于 8或C13位上。
4
结构与分类
多数三萜为四环三萜和五环三萜,也有少数为链状、 多数三萜为四环三萜和五环三萜,也有少数为链状、 单环、双环和三环三萜, 单环、双环和三环三萜,如: 无环三萜: 无环三萜:鲨烯 单环三萜: 单环三萜:蓍醇
HO 蓍 醇 A achilleol A
5
结构与分类
双环三萜: 双环三萜:
O R2 R1 O
13 H 10 5 4 H 9 H 8 14
27
H
H
H
28
25 4 24 23
26
friedelane
26
一、物理性质
1、性状: 、性状: • 三萜类化合物多有较好结晶,皂苷尤其寡糖皂苷, 三萜类化合物多有较好结晶,皂苷尤其寡糖皂苷, 由于糖分子的引入,使羟基数目增多,极性加大, 由于糖分子的引入,使羟基数目增多,极性加大, 不易结晶,因而皂苷大多为无色无定形粉末。 不易结晶,因而皂苷大多为无色无定形粉末。
2
生物合成
对三萜类化合物生物合成(biosynthesis)的研究表明三萜是由鲨 的研究表明三萜是由鲨 对三萜类化合物生物合成 经过不同的途径环合而成, 烯(squalene)经过不同的途径环合而成,鲨烯是由倍半萜金合 经过不同的途径环合而成 欢醇(farnesol)的焦磷酸酯尾尾缩合生成。 的焦磷酸酯尾尾缩合生成。 欢醇 的焦磷酸酯尾尾缩合生成

三萜类化合物详解.ppt

三萜类化合物详解.ppt
OR
glc-glc-o
罗汉果甜素V
中药罗汉果中的成分,味甜,0.02 %的溶液比蔗糖甜256倍。可作调 味剂。
15
五、原萜烷型(protostane)
HO
H O
H
OH OH
OH
结构特点:
①10β-CH3 ,14β-CH3,8αCH3。
② C-20 为S构型。
HO
H O
H
O OH
泽泻萜醇A、B具有降低血 清总胆固醇的作用。
③ 17-а侧链,C-20 为S构型。
19 1
H
10 H
4
H6
29
28
21
20 18
23
17
14
30
euphane
26 25
27
11
三、达玛烷型 (dammarane)
达玛烷型四环三萜是由环氧鲨烯全椅式构象形成,其结构特点: ① 8位有角甲基,且为β-构型 ② 13位连有β-H,10位有β-CH3 ③ 17位有β-侧链 ④ C-20构型为R或S
羊毛脂烷型四环三萜是环氧鲨烯经椅-船-椅构象式环合而成。 其结构特点: ① A/B,B/C,C/D环均为反式 ② 17-β侧链,C-20为R构型 ③10,13,14位分别连有β,β,α-CH3
21
18 20
23
12
17
1 19
H
10 H
4
H6
29
28
13
15 30
26 25
27
lanostane
16
六、楝烷型 (meliacane)
楝科楝属植物苦楝果实及树皮中含多种三萜成分,具苦味,总 称为楝苦素类成分(meliacins),其由26个碳构成,属于楝烷型。

中药化学:8-三萜类化合物

中药化学:8-三萜类化合物

17 13 14
HO H
大戟醇
(大戟属植物乳液中)
大戟烷型
COOH
9 8
7
O
H
乳香二烯酮酸 △7(8)
• 母核的17位上有一个由8个碳原子组成的侧链;
R 17
14
甾醇
• 在母核上一般有5个甲基,即4位有偕二甲基、10位和
14位各有一个甲基、另一个甲基常连接在13位或8位上。
• 在4、4、14位上比甾醇多三个甲基,也有认为是植物
甾醇的三甲基衍生物。
2. 四环三萜或其皂苷苷元主要类型
达玛烷、羊毛脂烷、甘遂烷、环阿屯烷(环菠萝蜜烷
• 根据三萜类化合物碳环的有无和多少进行分类。 多数为四环三萜和五环三萜。
21
2224ຫໍສະໝຸດ 26菲H 20
23
12
(二)四环三萜
27
11 19
18 13
17
9
在中药中分布很广。
1 10 8
15
34
H 7 30
四环三萜
1. 结构特征:
29 28 H
A BCD
• 它们大部分具有环戊烷骈多氢菲的基本母核;
3 4
型)、葫芦烷、楝烷型三萜类。
① 达玛烷型
结构特点:A/B、B/C、C/D 环均为反式, C8位有-CH3,C13位 有-H, C17有侧链,C20构型为R或 S。
1 34
21
22
24
26
H 20 23
12
27
11 19
18 13
17
9
10 8
15
H 7 30
29 28 H
达玛烷型 (dammarane)
11C=O,15C=O,23C=O,27-CH3→27-COOH,是羊 毛甾烷的高度氧化物。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E D
C B
• 异环共轭双键,最大吸收在240,250,260nm
• 同环共轭双键,最大吸收在285nm
IR用于区别骨架类型
A(1355~1392cm-1) B(1245~1330cm-1) 齐墩果烷型 乌苏烷型 四环三萜类 2个峰 3个峰 1个峰 3个峰 3个峰 1个峰
(二)MS的应用:
质谱可用于确定分子量及求算分
17
+ ·
RDA
R1 R2
C
D
R3
+
A R1 R2
B
(I)
(a)
(b)
R4
R4 R5 E
+ CH2
A R1 R2 B
R5
+ CH2
+
C D
17
+
(g)
(d)
(c)
(f)
• (a)是三萜烯的特征碎片
• C-17为-COOH、-COOMe、内酯时,(a) 易失去上述基团生成(c),(c)强度稍大
于或等于(a)
3-βH δ5.00~5.48ppm δ4.08~4.30ppm dd δ3.77~3.80ppm dd
若C-16位连有羟基则27位甲基质子信号由于 去屏蔽效应向低场位移,出现在1.70-1.90 之
间;16位氢信号则在5.0-5.50 处出现一单峰,
H-3及H-18信号通常在3.22-3.88 之间呈dd峰。
纯化方法
• 分配柱色谱法要比吸附柱色谱法好,常用 硅胶为支持剂。(薄层硅胶多加压) • 常用溶剂系统: • 氯仿:甲醇:水(6:4:1; 7:3:0.5;
• • 8:2:0.25 等单一系统或梯度洗脱) 正丁醇:醋酸:水(4:1:5,上层) 氯仿:甲醇:乙酸乙酯:水 (2:2:4:1,下层)
纯化方法
三萜及其皂苷的结构研究
沈阳药科大学天然药化 宋少江
一、概述 二、结构解析规律 三、结构解析实例
四、小结
一、概述
• 三萜皂苷由三萜皂苷元与糖或糖醛酸组成。 • 糖的组成主要有葡萄糖、半乳糖、鼠李糖、 阿拉伯糖、以及其它戊糖类。 常见的糖醛酸主要有葡萄糖醛酸及半乳糖醛 酸等。 • 苷元主要包括四环三萜(如人参皂苷)及五 环三萜(如甘草皂苷)。
• 反相液相色谱(图谱) • 对于酸性皂苷(尤其是连有葡萄糖醛酸的 皂苷类,需加入少量酸,如0.1%磷酸), 但要注意最后要脱盐处理。 • 检测器:最好用通用检测器,如蒸发光散 射检测器、示差检测器等;若用紫外检测 波长203~207nm。
纯化方法
• 制备薄层(必要 时可二次展开)
二、结构解析规律
用于判断结构类型、某些取代基位置及构型
(一)UV和IR
UV用于判断齐墩果烷三萜类化合物双键类型
• 一个双键,205~250nm有微弱吸收
• α,β-不饱和羰基(-C=C-C=O),最大吸收
242~250nm
C18-βH(D/E cis),248~249nm
C18-αH(D/E trans),242~243nm
H O 11 12 18 13
子式。此外,还可由分子离子丢失的
离子碎片的m/z推定或复核分子的部分 结构。
五环三萜类的共同规律
• 有环内双键,RDA开裂;无环内双键,从C环断裂;
• 有时RDA和C环开裂同时发生。
1. 饱和三萜化合物
E
C A
HO
D
C环断裂
CH 2
+
E
A
HO
B
B
+
D
(g)
2. 不饱和三萜化合物
R5 R4 R4 R5 R3 E
• C-17为CH2OAc时,(c)大于(a) • C-17为-CH3时,(c)是(a)的三分之一
• 当C-11位氧代的Δ12的结构时,除RDA开裂外, 还有麦氏重排
O R' H CR2 -CR2=CH2 R' R'= -H,-R,-OH,-OR,-NR2 H O.+ R' H O+ CH2 . R' O + H CH2 .
尽管三萜皂苷的结构解析较为繁琐, 但还是有其规律可循。可从下几个方面加 以考虑: 分子量及分子式的确定; 母核类型、糖基个数、种类及苷化位置; 糖基连接位置及顺序; 苷键的构型;
• • • •
• 最常用的方法就是红外光谱、质谱及核磁共 振谱。 • 紫外光谱较少用(三萜皂苷不饱和键少)。 • 此外,化学方法在确定皂苷的结构时也具有 不可替代的作用。如苷元结构的确定也可采 用脱水、氧化、还原、甲基或双键转位、乙 酰化、甲酯化等化学反应将未知苷元结构转 变为已知化合物,然后将其 IR 、 mp. 、 Rf 或 其它光谱数据与已知物数据对照的方法推测 其结构。也可采用半合成或全合成方法制备 相应的合成产物以确证天然产物的结构
12 11 9
R2
R1
29
18 13
26
28
• 甲基质子:δ0.625~1.500 ppm 最高场甲基(26-CH3)
3
27
24
23
δ<0.775ppm(28-COOCH3) δ>0.775ppm(28-CH2OH、CH3或内酯) 最低场甲基 δ1.13~1.15ppm(27-CH3)其它小于1.0ppm
环外双键 δH<5 ppm
同环双烯与异环双烯的比较:
2个烯氢信号 5.50~5.60 均为二重峰
H H
5.40~5.60 双峰 6.40~6.80 2个二重峰
H H
H
同环双烯
异环双烯
氧取代的氢信号C4-CH2OAc 24-H 23-H
δ4.00~4.75ppm
1.82~2.07 乙酰基中甲基
H3C
30 29
3.6 左右 甲酯中甲基
O CH3
O
CH3 H
H3 C H
0.8~1.0 J = ~ 6~ Hz 均为二重峰
CH 3
H
1.4~1.7 O J = 5.5~7.0 Hz 二重峰
乌苏烷型
6-去氧- 5甲基糖
• 烯氢信号:判断双键取代情况
环内双键 δH>5 ppm
COOH H OH HO
1H-NMR
COOH
COOH OH HO
COOH
COOH OH HO CH2OH
HO
HO
CH2OH
观察氢谱中δ4.70-6.33 范围内端基质 子及碳谱中δ95-110 端基碳的个数,可以 确定糖的个数。糖的端基质子多数呈特 征性的双峰,少数呈单峰。
(四)13C-NMR
重排必须具备的条件: ①适当位置的杂原子(如:O)
②π -体系(通常一个双键)
③可除去的氢(对C=O体系的γ 位)
+ .
RDA
O (I) O
HO
Mclafferty
HO
11-oxo,
12
Rearrangement
(II)
+
30
(三)1H-NMR
甲基质子、与氧同碳质 子、双键上烯氢质子、糖的端基质子等。
相关文档
最新文档