环形路上的行程问题
行程问题 路程问题 环形跑道相遇问题与追及问题以及综合题型练习题
![行程问题 路程问题 环形跑道相遇问题与追及问题以及综合题型练习题](https://img.taocdn.com/s3/m/282192df2dc58bd63186bceb19e8b8f67c1cef32.png)
环形跑道中的相遇问题与追及问题以及综合题型一、环形路线中同地出发的环形相遇问题周期性:1、环形跑道中的相遇问题:路程和:每相遇一次,两人合走一圈;环形跑道一周的长=速度和×相遇时间2、相遇时间:毎隔相同时间,相遇1次;相遇时间=环形跑道一周的长÷速度和3、第n次相遇所花的时间=相遇一次的时间×n某点与出发点之间的距离:1、看一个运动对象,根据运动时间求出路程;2、用带余除法求圈数,看余数;3、看小圈。
1.一条环形跑道长500米,萱萱每分钟跑260米,小明每分钟跑240米,两人同时同向出发,经过多长时间两人相遇?2.环形跑道的周长是800米,甲、乙两名运动员同时顺时针自起点出发,甲的速度是每分钟400米,乙的速度是每分钟375米,多少分钟后两人第一次相遇?甲、乙两名运动员各跑了多少米?甲、乙两名运动员各跑了多少圈?3.阳光小学圆形操场跑道的周长是1000米,小光与小阳同时同地背向而行.小光每分钟走56米,小阳每分钟走44米.经过多少分钟两人第一次相遇?经过多少分钟两人第六次相遇?4.小光和小阳在周长为2000米的环形跑道上同时同地背向而行.小光的速度是200米/分,小阳的速度是300米/分.经过多少分钟两人第一次迎面相遇?经过多少分钟两人第五次迎面相遇?5.小美的速度是4米/秒,小爱的速度是3米/秒。
跑道一圈长度是350米,那么她俩从同一地点同时反向出发,经过多长时间她们第4次相遇?第10次呢?6.阿呆、阿瓜两人在周长为600米的环形跑道上同时同地背向而行。
阿呆的速度是70米/分,阿瓜的速度是50米/分.两人第三次迎面相遇时,阿呆距离出发点多少米?7.高老师、张老师两人在周长为560米的环形跑道上同时同地背向而行。
高老师的速度是60米/分,张老师的速度是80米/分.两人第五次迎面相遇时,高老师距离出发点多少米?8.小美和小爱沿着周长为350米的操场跑,小美的速度是4米/秒,小爱的速度是3米/秒,若两人同时从同一点出发,背向而行,那两人第一次相遇的地点距离出发点有多远?9.周长为400米的圆形跑道上,有相距100米的A、B两点,甲乙两人分别从A、B两点同时相背而行,速度分别是2米/秒和3米/秒.请问:多少秒后两人第三次相遇?二、环形路线中同地出发的追及问题周期性:1、路程差:每追及一次,路程相差一圈;2、追及时间:每隔相同时间,追及1次;3、第n次追及所花的时间=追及一次的时间 x n某点与出发点之间的距离:1、看一个运动对象,根据运动时间求出路程;2、用带余除法求圈数,看余数;3、看小圈。
环形道路上的行程问题
![环形道路上的行程问题](https://img.taocdn.com/s3/m/5614ab039b89680202d82577.png)
环形道路上的行程问题环形道路上的行程问题(必胜课五年级)一、填空题。
1、甲、乙二人按顺时针方向沿圆形跑道练习跑步,已知甲跑一圈用12分钟,乙跑一圈用15分钟,如果他们分别从圆形跑道直径两端同时出发,那么出发分钟甲追上乙。
2、某市有一条环城公路,按逆时针方向行驶的公共汽车每隔10分钟从车站发出一辆,王师傅驾驶的货车用公共汽车的速度按顺时针方向行驶在同一公路上,在半小时中,王师傅最多能遇到辆公共汽车。
3、有一条长400米的环形跑道,甲、乙二人同时同地出发,反向而行,1分钟后第一次相遇,基二人同时同地出发,同向而行,则10分钟后第一次相遇。
若甲比乙快,那么甲、乙二人的速度分别为米/分和米/分。
4、一环形跑道周长为240米,甲与乙同向,丙与他们背向,三人都从同一地点出发,每秒钟甲跑8米,乙跑5米,丙跑7米,出发后三人第一次相遇时,丙跑了圈。
5、如图,A、B是圆的直径两端,甲在A点,乙在B点,同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇。
已知C在离A80米处;D在离B60米处(如图所示),那么这个圆形跑道周长为米。
6、在一圆形跑道上,甲从A点、乙从B点同时出发反向而行。
6分钟后两人相遇。
再过4分钟甲到达B点,又过8分钟两人再次相遇,则甲跑一圈用时分钟;乙跑一圈用时分钟。
五年级必胜课7、甲、乙两人沿400米环形跑道练习跑步。
两人同时从跑道上同一点A向相反方向跑去。
相遇后甲比原来速度每秒增加2米;乙比原来速度每秒减少2米,结果都用24秒同时回到原地,则甲原来的速度为每秒米。
8、右图是一条边长为100米的正方形花园小道,甲、乙两人同时从A点出发,甲逆时针每分钟行75米,乙顺时针每分钟行45米。
两人第一次在CD边上相遇(不在C、D两点)是出发后的第次相遇。
9、两辆电动车在周长为360米的圆形道上不断行驶,甲车每分钟行驶20米。
甲、乙两车分别从相距90米的A、B两点背向而行。
相遇后乙车立即返回,甲车不改变方向。
环形路上的行程问题
![环形路上的行程问题](https://img.taocdn.com/s3/m/82556289162ded630b1c59eef8c75fbfc77d94a4.png)
追及问题
相差路程÷速度之差=追上时间
追上时间×速度之差=相差路程
相差路程÷追上时间=速度之差
相遇问题
速度之和×相遇时间=相遇路程(路程之和) 相遇路程÷相遇时间=速度之和 相遇路程÷速度之和=相遇时间
复习:
1
2
3
4
5
6
STEP5
STEP4
STEP3
STEP2
STEP1
分析:
小明走4分钟的路程相当于小强走6分钟的路程。
16
1
3
5
7
9
11
13
15
1
2
3
4
5
6
7
8
8
则它们从出发到初次相遇经过的时间是: 1+3+5+7+9+11+13+15=64分钟 第一次相遇在下半圆,折返向上半圆爬去,须爬行17分钟。去掉在下半圆的8分钟,在上半圆须爬行17-8=9分钟。但在上半圆爬行8分钟就会相遇,因此总时间用去了8+8=16分钟。 即:在第一次64分钟相遇后再过16分钟第二次相遇。 (相遇位置在上半圆)
后一半用时:80-36=44(秒)
答:小明后一半路程用了44秒。
2.小明在360米长的环形跑道上跑了一圈。已知他前一半时间每秒跑5米,后一半时间每秒跑4米,那么小明后一半路程用了多少秒?
分析:
假设小王走了2小时10分:4×2=8(千米)
小张在这段时间走了:
2×[ (60-10)÷10]+1=11(千米)
8 .三个环形跑道相切排列,每个环形跑道的周长均为210厘米。甲、乙两只爬虫分别从A、B两地按箭头所示的方向出发,甲爬虫绕1、2号环形跑道作“8”字形循环运动,乙爬虫绕3、2号环形跑道作“8”字形循环运动,甲、乙两只爬虫的速度分别是每分钟20、15厘米。问甲、乙两爬虫第二次相遇时,甲爬虫爬了多少厘米?
环形路上的行程问题
![环形路上的行程问题](https://img.taocdn.com/s3/m/5c2d5d330b4c2e3f5727633d.png)
广东省育苗杯专题-张观生手录环形路上的行程问题1、一片草坪边有一条环形路,甲、乙二人在一条环形路上练习跑步,甲每分钟跑210米,乙每分钟跑180米,二人同时同地出发,背向而跑,4分钟相遇。
如果二人同时同地出发,同向而跑,甲多少分钟第一次追上乙?2、甲、乙、丙三人在长2970米的环形路上的同一地点同时出发,甲、乙同向,丙与甲、乙背向而走,甲每分钟走90米,乙每分钟走80米,丙在距离乙180米处遇见甲。
丙每分钟走多少米?3、甲、乙二人在400米环形跑道上的同一点同时出发,背向而跑,两人相遇后,乙立即回头跑,并把速度提高到原速的1.4倍,甲、乙二人同时回到出发点之后甲立即回头跑,并把速度提高到原速的1.5倍。
问甲从出发到二人再次相遇,一共跑了多少米?4、一个湖的湖边有一条小路环绕,小志从小路的A点,小华从小路的B点同时出发,背向而行走(如图)经9分钟二人相遇,再过6分钟,小志走到B点,再过12分钟,二人再次相遇,小志在这条小路绕湖这走一圈要多少分钟?5、一个游泳池长50米,甲、乙二人在两端同时开始往返游泳,甲每秒钟游1.6米,乙每秒钟游1.4米,游了10分钟,两人迎面相遇多少次?练习:1、甲、乙二人在一个环形道路上练习跑步,甲每分钟跑195米,乙每分钟跑225米,两人同时同地出发,同向而跑,乙跑28分钟追上甲;如果两人同时同地出发,背向而跑,多少分钟相遇?2、甲、乙、丙三人在一条环形路上的同一地点同时出发,甲、乙同向,丙与甲、乙背向而走,丙走12分钟遇见甲再过1.2分钟遇见乙。
已知甲每分钟走75米,乙每分钟走60米,那么这条环形路长多少米?3、甲、乙、丙三人在一环形公路上进行自行车的练习,三人同时在同一地点出发,甲、乙同向,丙与甲、乙背向而行,丙遇见乙1.6分钟后遇见甲。
已知甲每分钟行195米,乙每分钟行225米,丙每分钟行180米。
这一环形公路一圈有多少米?4、甲、乙二人在450米的环形跑道的同一点同时出发,背向而走,相遇后乙立即回头走,并把速度提高到原来的1.5倍,二人同时回到出发点,此后甲立即回头跑,并把速度提高到原来的1.25倍。
五年级奥数-环形道路上的行程问题
![五年级奥数-环形道路上的行程问题](https://img.taocdn.com/s3/m/95ec099676a20029bd642db4.png)
第五讲环形道路上的行程问题一、知识要点和基本方法1.行程问题中的基本数量关系式: 速度×时间=路程;路程÷时间=速度; 路程÷速度=时间. 2.相遇问题中的数量关系式:速度和×相遇时间=相遇路程; 相遇路程÷速度和=相遇时间; 相遇路程÷相遇时间=速度和. 3.追及问题中的数量关系式:速度差×追及时间=追及距离; 追及距离÷速度差=追及时间; 追及距离÷追及时间=速度差. 4.流水问题中的数量关系式:顺水速度=船速十水速; 逆水速度=船速一水速;船速=(顺水速度+逆水速度)÷2; 水速=(顺水速度-逆水速度)÷2. 5.应该注意到:(1)顺逆风中的行走问题与顺逆水中的航行问题考虑方法类似; (2)在一条路上往返行走与在环形路上行走解题思考方法类似,因此不要机械地去理解环形道路长的行程问题.二、例题精讲例1 李明和王林在周长为400米的环形道路上练习跑步.李明每分钟跑200米,是王林每分钟所跑路程的89.如果两人从同一地点出发,沿同一方向前进,问至少要经过几分钟两人才能相遇?分析 由于两人从同一地点同向出发,因此是追及问题,追及距离是400米,可用公式“追及距离÷速度差=追及时间”. 解 追及距离=400米;返及时的速度差=200÷89-200.由公式列出追及时间=400÷(200÷89-200)=400 ÷(225-200) =400 ÷ 25 =16(分).答 至少经过16分钟两人才能相遇.例2 如图5-1,A、B是圆的直径的两个端点,亮亮在点A,明明在点B,他们同时出发,反向而行.他们在C点第一次相遇,C点离A点100米;在D 点第二次相遇,D点离B点80米.求这个圆的周长.图5-1分析第一次相遇,两人合起来走了半圈,第二次相遇,两个人合起来又走了一圈,所以从开始出发到第二次相遇,两个人合起来走了一圈半.也就是说,第二次相遇时两人合起来所走的行程是第一次相遇时合起来所走的行程的3倍,也就是每个人在第二次相遇时所走的行程是第一次相遇时所走的行程的3倍,所以从A到D(A→C→B→D)的距离应该是从A到C(A直接到C)的距离的3倍.于是有解法如下.解 A 到D(A→C→B→D)的距离:100 × 3=300(米).半个圆圈长:300-80=220(米).整个圆圈长:220 × 2=440(米).答这个圆的周长是440米.例3 一个圆的周长为1.44米,两只蚂蚁从一条直径的两端同时出发,沿圆周相向爬行.l分钟后它们都调头而行,再过3分钟,他们又调头爬行,依次按照1、3、5、7,…(连续奇数)分钟数调头爬行.这两只蚂蚁每分钟分别爬行5.5厘米和3.5厘米.那么经过多少时间它们初次相遇?再次相遇需要多少时间?分析半圆的周长是÷..(米)=72(厘米).1442=072先不考虑往返的情况,那么两只蚂蚁从出发到相遇所花时间为÷(..)=8(分).7255+35再考虑往返的情况,则有表5-1.表5-1经过时间(分) 1 3 5 7 9 11 13 15 16在上半圆爬行时间 1 3 5 7 8在下半圆爬行时间 2 4 6 8此可求出它们初次相遇和再次相遇的时间.解由题意可知它们从出发到初次相遇经过时间=1+3+5+7+9+11+13+15=64(分).第一次相遇时,它们位于下半圆,折返向上半圆爬去,须爬行17分钟,此时,爬行在下半圆的时间仍为8分钟(与上次在下半圆爬行时间相同),爬行在上半圆的时间应为9(=17-8)分钟,但在上半圆(相向)爬行8分钟就会相遇,此时总时间又用去了16(=8+8)分钟,因此,第二次相遇发生在第一次相遇后又经过了16分钟(从总时间计算则为64+16=80(分)).此时,相遇位置在上半圆.答它们经过时分钟初次相遇,再经过16分钟再次相遇,例4 一个圆周长70厘米,甲、乙两只爬虫从同一地点,同时出发同向爬行,用以每秒4厘米的速度不停地爬行,乙爬行15厘米后,立即反向爬行,并且速度增加1倍,在离出发点30厘米处与甲相遇,问爬虫乙原来的速度是多少?图5-2分析根据题意画出示意图5-2.观察示意图可知:甲共行了70-30=40(厘米),所需时间是40÷4=10(秒).在10秒内,乙按原速度走了15厘米,按2倍的速度走了15+30=45(厘米),假如全按原速走,乙10秒共走15+45÷2=37.5(厘米),由此可求出乙原来的速度.解(70-30)÷4=40 ÷ 4=10(秒),[(30+15)÷2+15]÷ 10.÷10=375?.(厘米/秒).=375?答爬虫乙原来的速度是每秒爬3.75厘米例5 如图5-3,沿着边长为90米的正方形,按逆时针方向,甲从A出发,每分钟走65米,乙从B出发,每分钟走72米,当乙第一次追上甲时是在正方形的哪一条边上?图5-3分析这是环形追及问题.这类问题可以先看成“直线”追及问题,求出乙追上甲所需要的时间,再回到“环形”追及问题,根据乙在这段时间内所走路程,推算出乙应在正方形哪一条边上.解设追上甲时乙走了x分钟.依题意,甲在乙前方3 × 90=270(米),故有72x =65x + 270, 解得x =2707在这段时间内乙走了72×2707=277717由于正方形边长为90米,共四条边,所以由277717=3 0× 90+7717=(4× 7+2)×90+7717,可以推算出这时甲和乙应在正方形的AD 边上.答 当乙第一次追上甲时在正方形的AD 边上.例6 150人要赶到90千米外的某地去执行任务.已知步行每小时可行10千米.现有一辆时速为70千米的卡车,可乘50人.请你设计一种乘车及步行的方案,能使这150人在最短的时间内全部赶到目的地.其中,在中途每次换车(上、下车)时间均忽略不计.解 显然,只有人、车不停地向目标前进,车一直不停地往返载人,最后使150人与车同时到达目的地时,所用的时间才会最短.由于这辆车只能乘坐50人,因此将150分为3组,每组50人来安排乘车与步行.图5-4中,实线表示汽车往返路线(AE →EC →CF →FD →DB ),虚线表示步行路段.显然每组乘车、步行的路程都应一样多.所以图5-4AE =CF =DB ,且AC =CD =EF =FB . 若没AE =CF =DB =x ,AC =CD =EF =FB =y ,则290x y +=.且因为汽车在AE 十EC 上所用的时间与步行AC 所用时间相同,所以 ()7010x x y y+-= 解方程组290x y +=()7010x x y y+-=得60,15x y ==.则150人全部从A 到B 最短时间为602156370107⨯+=小时 答 方案是50人一组,共分3组,先后分别乘60千米车,先后分段步行30千米,由A 同时出发,最后同时到B ,最短时间是637小时.例7 甲、乙二人沿椭圆形跑道作变速跑训练:他们从同一地点出发,沿相反方向跑,每人跑完第一圈到达出发点后立即回头加速跑第二圈。
五年级奥数—环形路上的行程问题
![五年级奥数—环形路上的行程问题](https://img.taocdn.com/s3/m/14dbea05ec3a87c24128c452.png)
7.在 300 米的环形跑道上,甲,乙两从同时从起跑线出发反向而跑,甲每秒跑 4 米,乙每 秒跑 6 米,当他们第一次相遇在起跑点时,他们已在途中想遇多少次?
3
12.甲,乙两人绕周长为 1000 米的环形广场竞走,已知甲分钟走 125 米,乙的速度是甲的 2 倍。现在甲在乙的后面 250 米,乙追上甲需要多少分钟?
13.小红和小月两人骑车从同一地点出发,沿着长 4000 米环行湖堤行驶。如果小红,小月 同向行驶,小红每隔 20 分钟追上小月,如果反向行驶,两人经过 4 分钟相遇。问:小红, 小月两人的速度各是多少?
4
5
2
4.在一个长 800 米的环行湖边上,小明,小张两人同时从同一点出发,反向跑步,5 分钟两 人第一次相遇,小明每分钟跑 100 米,张静每分钟跑多少米?如果两人同时从同一点出发, 同向跑步,多少分钟后小明能追上张静?
5.有一条长 400 米的环形跑道,甲乙二人同时同地出发,反向而行,1 分钟后第一次相遇, 若二人同时同地出发,同向而行,则 10 钟后第一次相遇,若甲比乙快,那第甲乙二人的速 度分别是多少米?
19.小明在 330 米长的环形跑道上跑了一圈,已知他前一半的时间每秒跑 6 米,后一半的时 间每秒跑 5 米,那么后一半路程小明跑了( )秒
20.甲乙两人分别从圆的直径两端同时出发,沿圆周行进。若逆向行行走则 50 秒相遇,若 同向行走则甲追上乙需 300 秒。甲的速度是乙的速度的多少倍?(把圆的半周长看作 300 个单位)
环形路行程问题
![环形路行程问题](https://img.taocdn.com/s3/m/9c5e687b2f60ddccda38a062.png)
第七讲环形路上的行程问题环形路行程问题本质:①追及②相遇【追及知识要点】追及概念:两运动物体同时做同向运动,速度慢者在前,快者在后,经一定时间快者追上慢者,像这样的数学问题叫追及问题。
追及问题主要研究下面三种数量之间关系:追及距离:快者和慢者所走的路程差速度差:快者、慢者速度之差追及时间:快者追上慢车者所用时间追及问题中主要的数量关系式:追及距离= 速度差×追及时间〖适用于所有追及问题〗下面来看环形路上的追及问题:追及距离 = 二人初始距离 + 环形道路之长倍数(几倍是看第几次追上)(只适用于环形路)相遇距离 = 二人从出发到相遇所行路程总和例1:如下图,甲乙在环形跑道长跑,甲250 m/min,乙200 m/min。
甲乙同时同地同向出发,45 min后,甲第一次追上乙。
若二人同时同地反向跑,几分钟后相遇(三分钟思考时间)思路:关键是求环形路总长吗甲1 min比乙多跑50 m,那45 min多跑多少米多跑的路程是环形路长吗为什么家庭作业:甲、乙同时同地同向起跑,绕300 m长环行跑道跑,甲6 m/min,乙4 m/min,甲第二次追上乙时,跑了几圈(提示:追及时间×速度差=追及距离)例2:已知等边三角形ABC周长360 m,甲从A点出发,逆时针,速度55 m/min,乙从BC 边上D点(距C点30 m)出发,顺时针,速度50 m/min。
两人同时出发,几分钟相遇当乙到达A点时,甲在哪条边上,离C点多远思路:相遇问题,快者所走路程+慢者所走路程=初始相距路程例3:甲、乙村相距6 km,小张、小王分别从甲、乙两村同时出发,在两村间往返走(到达另一村后就马上返回).在出发后40 min两人第一次相遇.小王到达甲村后返回,在离甲村2km的地方两人第二次相遇.小张、小王的速度各是多少例4:绕湖一周是24 km,小张、小王从湖边某一地点同时反向而行.小王速度4 km/h,每走1 h 后休息5 min,小张以6 km/h速度每走50 min后休息10 min。
第12讲 环形行程问题
![第12讲 环形行程问题](https://img.taocdn.com/s3/m/d313149bf18583d0496459aa.png)
第12讲环形行程问题【知识要点】<要点1> 同地背向情景设置:两人从同一个地点相背出发①环形1次相遇,相遇时间=路程和÷速度和,路程和=整个环形长度,这里使用1份时间;②环形2次相遇,这里使用2份时间;③环形3次相遇,这里使用3份时间;……环形跑道问题同一地点出发,如果是相背出发,则每合走一圈相遇一次<要点2> 同地相向情景设置:两人从同一个地点同向出发①环形1次相遇,相遇时间=路程差÷速度差,路程差=整个环形长度,这里使用1份时间;②环形2次相遇,这里使用2份时间;③环形3次相遇,这里使用3份时间;……环形跑道问题同一地点出发,如果是同向出发,则每追上一圈相遇一次【精讲精练】<例题1>一个圆形操场跑道的周长是500米,两个学生同时同地背向而行.黄莺每分钟走66米,麻雀每分钟走59米.经过几分钟第一次相遇?再过多少分钟第二次相遇?<练习1>甲、乙两人骑自行车从环形公路上同一地点同时出发,背向而行。
这条公路长2400米,甲骑一圈需要10分钟。
如果第一次相遇时甲骑了1440米。
请问:乙骑一圈需要多少分钟?再过多久他们第二次相遇?<例题2>甲、乙两人在300米长的环形跑道上跑步,他俩同时同地同向出发,甲的速度是每秒5米,乙的速度是每秒3米,那么过多少时间后甲第一次追上乙?再过多少时间甲第三次追上乙?<练习2>一条环形跑道长400米,甲骑自行车每分钟骑450米,乙跑步每分钟250米,两人同时从同地同向出发,经过多少分钟两人相遇?再过多少分钟第4次相遇?上海小学有一长300米长的环形跑道,小亚和小胖同时从起跑线起跑,小亚每秒钟跑6米,小胖每秒钟跑4米,(1)小亚第一次追上小胖时两人各跑了多少米?(2)小亚第二次追上小胖两人各跑了多少圈?<练习3>幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈?<例题4>在300米的环形跑道上,田奇和王强同学同时同地起跑,如果同向而跑2分30秒相遇,如果背向而跑则半分钟相遇,求两人的速度各是多少?<练习4>在环形跑道上,两人在一处背靠背站好,然后开始跑,每隔4分钟相遇一次;如果两人从同处同向同时跑,每隔20分钟相遇一次,已知环形跑道的长度是1600米,那么两人的速度分别是多少?甲和乙两人分别从圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇。
环形路上的行程问题――例题加练习
![环形路上的行程问题――例题加练习](https://img.taocdn.com/s3/m/07768da68662caaedd3383c4bb4cf7ec4bfeb64f.png)
环形路上的行程问题――例题加练习环形路上的行程问题相遇问题:路程=速度和×时间=(甲速度+乙速度)×时间赴援问题:时间=路程÷时间差=路程÷(甲速度-乙速度)备注:甲>乙例1小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是180米/分,小张的速度是220米/分。
(1)小张和小王同时从同一点启程,逆向跑步,小张走多久后就可以第一次冲上小王?(2)小张和小王同时从同一点出发,同一方向跑步,小张跑多久后才能第一次追上小王?例2一片草坪存有一条环形路,甲、乙二人在乎条环形路上练跑步,甲每分钟走210米,乙每分钟走180米,二人同时同地启程,背向而走,4分钟碰面。
如果二人同时同地启程,同向而走,甲多少分钟第一次甩开乙?提示信息:碰面问题与赴援问题的切换练习:甲、乙二人在一个环形道路上练习跑步,甲每分钟跑195米,乙每分钟跑225米,两人同时同地出发,同向而跑,乙跑28分钟追上甲;如果两人同时同地出发,背向而跑,多少分钟相遇?基准3甲、乙、丙三人在长2970米的环形路上的同一地点同时出发,甲、乙同向,丙与甲、乙背向行走,甲每分钟走90米,乙每分钟走80米,丙在距离乙180米处遇见甲。
丙每分钟走多少米?练:1、甲、乙、丙三人在一条环形路上的同一地点同时启程,甲、乙同向,丙与甲、乙背向而跑,丙跑12分钟邂逅甲再过1.2分钟邂逅乙。
未知甲每分钟跑75米,乙每分钟跑60米,那么这条环形路长多少米?2、甲、乙、丙三人在一环形公路上进行骑自行车的练习,三人同时在同一地点出发,甲、乙同向,丙与甲、乙背向而行,丙遇见乙1.6分钟后遇见甲。
已知甲每分钟行195米,乙每分钟行225米,丙每分钟行180米。
这一环形公路一圈有多少米?。
奥数行程问题环形跑道
![奥数行程问题环形跑道](https://img.taocdn.com/s3/m/444b863c53d380eb6294dd88d0d233d4b14e3f01.png)
行程问题——环形跑道环形跑道问题就是封闭路线上的追及问题,关键是要掌握从并行到下次追及的路程差恰好是一圈的长度.1、相遇问题:题型特点:甲、乙两人同时从同地反向出发.解题规律:两人相遇时一起走一圈〔跑道周长〕.之后每见面一次, 就一起走1圈;见面n次,两人一起走n个周长.2、追及问题:题型特点:甲、乙两人同时从同地同向出发.解题规律:开始出发时由于速度不同两人之间的距离会越来越远,之后快的会追上慢的,此时快的人比慢的人多走1圈〔路程差为跑道周长〕.之后每追上一次,就多走1圈;追上n次,快的就比慢的多走n个周长.3、需要处理的问题:a、环形跑道中速度、时间、路程之间的关系处理.b、屡次追及问题的处理.c、不同地点出发的追及问题.1、一个圆形荷花池的周长为400米,甲、乙两人绕荷花池顺时针跑步.甲每分钟跑250米,乙每分钟跑200米,现在甲在乙后面50米, 甲第二次追上乙需要多少分钟?2、一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑140 米,两人同时反向出发,经过几分钟两人相遇?3、上海小学有一长300米长的环形跑道,小亚和小胖同时从起跑线起跑,小亚每秒钟跑6米,小胖每秒钟跑4米,小亚第一次追上小胖时,小胖跑了多少米?4、幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第2次追上晶晶时,冬冬跑了多少圈?5、甲、乙二人骑自行车从环形公路上的同一地点出发,背向而行. 现在甲走一圈的时间为75分钟,如果在出发后第50分钟甲、乙两人相遇,那么乙走一圈的时间是多少分钟?6、甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行现在甲走一圈的时间是70分钟,如果在出发后45分钟甲、乙二人相遇,那么乙走一圈的时间是多少分钟?7、两名运发动在湖的周围环形道上练习长跑.甲每分钟跑250米, 乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙;如果两人同时同地反向出发,经过几分钟两人相遇?8、在400米的环形跑道上,甲、乙两人同时同地起跑,如果同向而行3分20秒相遇,如果背向而行40秒相遇,甲比乙快,求甲的速度是多少米/秒?9、环形跑道的周长是800米,甲乙两名运发动同时顺时针自起点出发,甲的速度是每分钟400米,乙的速度是每分钟375米.多少分钟后两人第一次相遇?甲乙两名运发动各跑了多少米?甲乙两名运动员各跑了多少圈?10、环形跑道的周长是400米,甲、乙两名运发动同时顺时针自起点出发,甲的速度是每分钟300米,乙的速度是每分钟275米,两人第一次相遇时乙运发动跑了多少圈?11、A、B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇.C离A有75 米,D离B有55米,求这个圆的周长是多少米?①点不在BC之间〕12、两辆电动小汽车在周长为360米的圆形道上不断行驶,甲车每分行驶20米.甲、乙两车同时分别从相距90米的A, B两点相背而行, 相遇后乙车立即返回,甲车不改变方向,当乙车到达B点时,甲车过B点后恰好又回到A 点.此时甲车立即返回〔乙车过B点继续行驶〕, 再过多少分与乙车相遇?13、周长为400米的圆形跑道上,有相距100米的A, B两点.甲、乙两人分别从A, B两点同时相背而跑,两人相遇后,乙即转身与甲同向而跑,当甲跑到A时,乙恰好跑到B.如果以后甲、乙跑的速度和方向都不变,那么甲追上乙时,甲从出发开始,共跑了多少米?14、在一圆形跑道上,甲从A点、乙从B点同时出发反向而行,6分后两人相遇,再过4分甲到达B点,又过8分两人再次相遇.乙环行一周需要多少时间?15、甲、乙、丙在湖边散步,三人同时从同一点出发,绕湖行走,甲速度是每小时千米,乙速度是每小时千米,她们二人同方向行走,丙与她们反方向行走,半个小时后甲和丙相遇,再过5分钟,乙与丙相遇.那么绕湖一周的行程是多少千米?16、甲、乙两车同时从同一点A出发,沿周长6千米的圆形跑道以相反的方向行驶.甲车每小时行驶65千米,乙车每小时行驶55千米.一旦两车迎面相遇,那么乙车马上调头;一旦甲车从后面追上一车,那么甲车马上调头,那么两车出发后第11次相遇的地点距离A有多少米?17、周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走55米,周老师每分钟走65米.林荫道周长是480米,他们从同一地点同时背向而行.在他们第10次相遇后,王老师再走多少米就回到出发点. 18、二人沿一周长400米的环形跑道均速前进,甲行一圈4分钟,乙行一圈7分钟,他们同时同地同向出发,甲走10圈,改反向出发, 每次甲追上乙或迎面相遇时二人都要击掌.问第十五次击掌时,乙走多少米路程?〔保存2位小数点〕19、在400米的环行跑道上,A, B两点相距100米.甲、乙两人分别从A, B两点同时出发,按逆时针方向跑步.甲每秒跑5米,乙每秒跑4米,每人每跑100米,都要停10秒钟.那么假设B在A前面时,甲追上乙需要时间是多少秒?20、下如右图所示,某单位沿着围墙外面的小路形成一个边长300米的正方形.甲、乙两人分别从两个对角处沿逆时针方向同时出发.如果甲每分走90米,乙每分走70米,那么经过多少时间甲才能看到乙?〔做题格式为几分几秒〕21、如图,一个长方形的房屋长13米,宽8米.甲、乙两人分别从房屋的两个墙角出发,甲每秒钟行3米,乙每秒钟行2米.问:经过多长时间甲第一次看见乙?〔结果保存2位小数〕1322、等边三角形ABC的周长为360米,甲从A点出发,按逆时针方向前进,每分钟走55米.乙从BC边上D点〔距C点30米〕出发, 按顺时针方向前进,每分钟走50米.两人同时出发,当乙到达A点时,甲在哪条边上?23、甲乙丙三人在圆形跑道上跑步,速度相等,每人跑完一圈都用14 分钟,并规定当两人相遇时立即各自反向以原速跑步.开始时,甲乙丙分别在圆形跑道直径的两个端点处,那么第一次全部都回到各自出发点需用几分钟?〔出发时,甲乙在同一端点处,反向而行,丙在另一端点处,与乙相向而行〕24、甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去.相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地.求甲原来的速度为米每秒〔结果保存2位小数〕.25、环形跑道周长是500米,甲、乙两人从起点按顺时针方向同时出发.甲每分跑120米,乙每分跑100米,两人都是每跑200米停下休息1分.甲第一次追上乙需多少分钟?26、甲、乙二人在同一条椭圆形跑道上作特殊练习:他们同时从同一地点出发,沿相反方向跑,每人跑完第一圈到达出发点后立即回头加速跑第二圈,跑第一圈时,乙的速度是甲速度的2/3.甲跑第二圈时速度比第一圈提升了 1/3;乙跑第二圈时速度提升了 1/5.沿跑道看从甲、乙两人第二次相遇点到第一次相遇点的最短路程是190 米,那么这条椭圆形跑道长多少米?27、甲乙两人在环形跑道的直径两端,反向而行,第一次相遇品外点60米,相遇后两人继续跑,当甲第二次跑回A点时,甲乙两人恰好在A 点,第七次相遇〔途中共相遇6次〕,那么跑道的周长是多少米?〔直径的两端是A、B,出发时甲在A,乙在B〕28、甲和乙两人分别从圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇, 在甲走完一周前60米处又第二次相遇.求此圆形场地的周长多少米?29、有甲、乙、丙3人,甲每分钟行走120米,乙每分钟行走100米, 丙每分钟行走70米.如果3个人同时同向,从同地出发,沿周长是300 米的圆形跑道行走,那么几分钟之后,3人又可以相聚在跑道上同一处?30、如图,A、B是圆的直径的两端,小张在A点,小王在B点同时出发反向行走,他们在C点第一次相遇,C离A点80米;在D点第二次相遇,D点离B点6O米.求这个圆的周长是多少米.31、甲、乙两人从周长为1600米的正方形水池ABCD相对的两个顶点A, C同时出发绕池边沿ATBTCTDTA的方向行走.甲每分行50米, 乙每分行46米,甲、乙第一次在同一边上行走,是发生在出发后的几分钟?32、在一个周长90厘米的圆上,有三个点将圆周三等分.A, B, C 三个爬虫分别在这三点上,它们每秒依次爬行10厘米、5厘米、3厘米.如果它们同时出发按顺时针方向沿圆周爬行,那么它们第一次到达同一位置需多少秒?33、如图2, 一个边长为50米的正方形围墙,甲、乙两人分别从A、C两点同时出发,沿墙按顺时针方向运动,甲每秒走5米,乙每秒走3米,那么至少经过多少秒,甲、乙走到正方形的同一条边上.34、某人在360米的环形跑道上跑了一圈,他前一半时间每秒跑5米,后一半时间每秒跑4米,那么他后一半路程跑了多少秒?35、两人在环形跑道上跑步,两人从同一地点出发,小明每秒跑3 米,小雅每秒跑4米,反向而行,45秒后两人相遇.如果同向而行, 几秒后两人再次相遇?36、上海小学有一长300米长的环形跑道,小亚和小胖同时从起跑线起跑,小亚每秒钟跑6米,小胖每秒钟跑4米,小亚第二次追上小胖时,小胖跑了多少圈?37、幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时冬冬跑了多少米?38、两人在环形跑道上跑步,两人从同一地点出发,小明每秒跑4米, 小雅每秒跑5米,反向而行,30秒后两人相遇.如果同向而行,几秒后两人再次相遇?39、在环形跑道上,两人都按顺时针方向跑时,每12分钟相遇一次, 如果两人速度不变,其中一人改成按逆时针方向跑,每隔4分钟相遇一次,问慢的那个人跑一圈需要几分钟?40、在一圆形跑道上,甲从A点、乙从B点同时出发反向而行,6分后两人相遇,再过4分甲到达B点,又过8分两人再次相遇.乙环行一周各需要多少分?41、甲、乙二人在操场的400米跑道上练习竞走,两人同时出发,出发时甲在乙后面,出发后6分甲第一次超过乙,22分时甲第二次超过乙.假设两人的速度保持不变,问:出发时甲在乙后面多少米? 42、有一条长400米的环形跑道,甲、乙二人同时同地出发,反向而行.1分钟后第一次相遇,假设二人同时同地出发,同向而行,那么10 分钟后第一次相遇.假设甲比乙快,那么乙的速度是米/分?43、一环形跑道周长为240米,甲与乙同向,丙与他们背向,三人都从同一地点出发,每秒钟甲跑8米,乙跑5米,丙跑7米,出发后三人第一次相遇时,丙跑了几圈?〔结果写成假分数〕44、林玲在450米长的环形跑道上跑一圈,他前一半时间每秒跑 5米,后一半时间每秒跑4米,那么他后一半路程跑了多少秒? 45、一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑 210米,两人同时出发,经过多少分钟两人相遇〔不用解方程〕? 46、一个圆形操场跑道的周长是500米,两个学生同时同地背向而行.黄莺每分钟走66米,麻雀每分钟走59米.经过几分钟才能相遇? 47、小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是200米/分.小张和小王同时从同一地点出发,反向跑步, 1分钟后两人第一次相遇,小张的速度是多少米/分?48、两名运发动在湖的周围环形道上练习长跑.甲每分钟跑250米, 乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙;如果两人同时同地反向出发,经过多少分钟两人相遇?49、小新和正南在操场上比赛跑步,小新每分钟跑250米,正南每分钟跑210米,一圈跑道长800米,他们同时从起跑点出发,那么小新第三次超过正南需要多少分钟?50、甲、乙两人从400米的环形跑道上一点A背向同时出发,8分钟后两人第五次相遇,每秒钟甲比乙多走米,那么两人第五次相遇的地点与点A沿跑道上的最短路程是多少米?51、在环形跑道上,两人在一处背靠背站好,然后开始跑,每隔4分钟相遇一次;如果两人从同处同向同时跑,每隔20分钟相遇一次, 环形跑道的长度是1600米,那么两人中速度较快的一人的速度是多少米每分?52、甲、乙二人按顺时针方向沿圆形跑道练习散步.甲跑一圈用 12分钟,乙跑一分钟用15分钟.如果他们分别从圆形跑道直径两端同时出发,那么出发多少分钟甲追上乙?53、某市有一条环形公路,按逆时针方向行驶的公共汽车每隔10分钟从车站发出一辆,王师傅驾驶的货车用公共汽车的速度按顺时针方向行驶在同一公路上,在半小时中,王师傅最多能遇到几辆公共汽车?。
环形路上行程问题
![环形路上行程问题](https://img.taocdn.com/s3/m/ae968dfb102de2bd960588be.png)
五年奥数环形路上行程问题1\一个圆形操场跑道的周长是500米,两个学生同时同地背向而行.黄莺每分钟走66米,麻雀每分钟走59米.经过几分钟才能相遇?2\环形跑道周长400米,甲、乙两名运动员同时顺时针自起点出发,甲每分钟跑400米,乙每分钟跑375米。
求多少时间后甲、乙相遇?3\ 两人在环形跑道上跑步,两人从同一地点出发,小明每秒跑3米,小雅每秒跑4米,反向而行,45秒后两人相遇。
如果同向而行,几秒后两人再次相遇?4\甲、乙两人沿着300米环形跑道从同一地点同时出发背向跑步。
甲每秒跑3.5米,乙每秒跑2.5米,第5次相遇时,甲还要跑_____米才回到出发点。
5\在400米的环形跑道上,甲、乙两人同时从起跑线出发,反向而跑,甲每秒跑4米,乙每秒跑6米,当他们第一次相遇在起跑点时,经过了多少秒?6、一个圆的周长为126厘米米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行。
这两只蚂蚁每秒分别爬行5.5厘米和3.5厘米。
它们每爬行1秒、3秒、5秒••(连续奇数)就调头爬行。
那么,它们相遇时,已爬行的时间是_____秒。
7、在环形跑道上,两人在一处背靠背站好,然后开始跑,每隔4分钟相遇一次;如果两人从同处同向同时跑,每隔20分钟相遇一次,已知环形跑道的长度是1600米,那么两人的速度分别是多少?8、A、B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇.已知C离A有75米,D离B有55米,求这个圆的周长是多少米?9\一只蚂蚁沿等边三角形的三条边由A点开始爬行一周。
在三条边上爬行的速度分别为每分钟50厘米、每分钟20厘米、每分钟30厘米。
求它爬行一周的平均速度。
10\小张、小王、小李同时从湖边同一地点出发,绕湖行走。
小张速度是每小时5.4千米,小王速度是每小时4.2千米,他们两人同方向行走,小李与他们反方向行走。
半小时后小张与小李相遇,再过5分钟,小李与小王相遇。
第五讲环形道路上的行程问题
![第五讲环形道路上的行程问题](https://img.taocdn.com/s3/m/bde17c84680203d8ce2f2411.png)
第五讲环形道路上的行程问题一、知识要点和基本方法1.行程问题中的基本数量关系式:速度×时间=路程;路程÷时间=速度;路程÷速度=时间.2.相遇问题中的数量关系式:速度和×相遇时间=相遇路程;相遇路程÷速度和=相遇时间;相遇路程÷相遇时间=速度和.3.追及问题中的数量关系式:速度差×追及时间=追及距离;追及距离÷速度差=追及时间;追及距离÷追及时间=速度差.4.流水问题中的数量关系式:顺水速度=船速十水速;逆水速度=船速一水速;船速=(顺水速度+逆水速度)÷2;水速=(顺水速度-逆水速度)÷2.5.应该注意到:(1)顺逆风中的行走问题与顺逆水中的航行问题考虑方法类似;(2)在一条路上往返行走与在环形路上行走解题思考方法类似,因此不要机械地去理解环形道路长的行程问题.二、例题精讲例1 李明和王林在周长为400米的环形道路上练习跑步.李明每分钟跑200米,是王林每分钟所跑路程的89.如果两人从同一地点出发,沿同一方向前进,问至少要经过几分钟两人才能相遇?分析 由于两人从同一地点同向出发,因此是追及问题,追及距离是400米,可用公式“追及距离÷速度差=追及时间”.解 追及距离=400米;返及时的速度差=200÷89-200. 由公式列出追及时间=400÷(200÷89-200) =400 ÷(225-200)=400 ÷ 25=16(分).答 至少经过16分钟两人才能相遇.例2 如图5-1,A、B是圆的直径的两个端点,亮亮在点A,明明在点B,他们同时出发,反向而行.他们在C点第一次相遇,C点离A点100米;在D 点第二次相遇,D点离B点80米.求这个圆的周长.图5-1分析第一次相遇,两人合起来走了半圈,第二次相遇,两个人合起来又走了一圈,所以从开始出发到第二次相遇,两个人合起来走了一圈半.也就是说,第二次相遇时两人合起来所走的行程是第一次相遇时合起来所走的行程的3倍,也就是每个人在第二次相遇时所走的行程是第一次相遇时所走的行程的3倍,所以从A到D(A→C→B→D)的距离应该是从A到C(A直接到C)的距离的3倍.于是有解法如下.解 A 到D(A→C→B→D)的距离:100 × 3=300(米).半个圆圈长:300-80=220(米).整个圆圈长:220 × 2=440(米).答这个圆的周长是440米.例3 一个圆的周长为1.44米,两只蚂蚁从一条直径的两端同时出发,沿圆周相向爬行.l分钟后它们都调头而行,再过3分钟,他们又调头爬行,依次按照1、3、5、7,…(连续奇数)分钟数调头爬行.这两只蚂蚁每分钟分别爬行5.5厘米和3.5厘米.那么经过多少时间它们初次相遇?再次相遇需要多少时间?分析半圆的周长是÷..(米)=72(厘米).1442=072先不考虑往返的情况,那么两只蚂蚁从出发到相遇所花时间为÷(..)=8(分).7255+35再考虑往返的情况,则有表5-1.表5-1经过时间(分) 1 3 5 7 9 11 13 15 16在上半圆爬行时间 1 3 5 7 8在下半圆爬行时间 2 4 6 8此可求出它们初次相遇和再次相遇的时间.解由题意可知它们从出发到初次相遇经过时间=1+3+5+7+9+11+13+15=64(分).第一次相遇时,它们位于下半圆,折返向上半圆爬去,须爬行17分钟,此时,爬行在下半圆的时间仍为8分钟(与上次在下半圆爬行时间相同),爬行在上半圆的时间应为9(=17-8)分钟,但在上半圆(相向)爬行8分钟就会相遇,此时总时间又用去了16(=8+8)分钟,因此,第二次相遇发生在第一次相遇后又经过了16分钟(从总时间计算则为64+16=80(分)).此时,相遇位置在上半圆.答它们经过时分钟初次相遇,再经过16分钟再次相遇,例4 一个圆周长70厘米,甲、乙两只爬虫从同一地点,同时出发同向爬行,用以每秒4厘米的速度不停地爬行,乙爬行15厘米后,立即反向爬行,并且速度增加1倍,在离出发点30厘米处与甲相遇,问爬虫乙原来的速度是多少?图5-2分析根据题意画出示意图5-2.观察示意图可知:甲共行了70-30=40(厘米),所需时间是40÷4=10(秒).在10秒内,乙按原速度走了15厘米,按2倍的速度走了15+30=45(厘米),假如全按原速走,乙10秒共走15+45÷2=37.5(厘米),由此可求出乙原来的速度.解(70-30)÷4=40 ÷ 4=10(秒),[(30+15)÷2+15]÷ 10.÷10=375?.(厘米/秒).=375?答爬虫乙原来的速度是每秒爬3.75厘米例5 如图5-3,沿着边长为90米的正方形,按逆时针方向,甲从A出发,每分钟走65米,乙从B出发,每分钟走72米,当乙第一次追上甲时是在正方形的哪一条边上?图5-3分析这是环形追及问题.这类问题可以先看成“直线”追及问题,求出乙追上甲所需要的时间,再回到“环形”追及问题,根据乙在这段时间内所走路程,推算出乙应在正方形哪一条边上.解设追上甲时乙走了x分钟.依题意,甲在乙前方3 × 90=270(米),故有72x =65x + 270,解得x =2707 在这段时间内乙走了72×2707=277717 由于正方形边长为90米,共四条边,所以由277717=3 0× 90+7717=(4× 7+2)×90+7717, 可以推算出这时甲和乙应在正方形的AD 边上.答 当乙第一次追上甲时在正方形的AD 边上.例6 150人要赶到90千米外的某地去执行任务.已知步行每小时可行10千米.现有一辆时速为70千米的卡车,可乘50人.请你设计一种乘车及步行的方案,能使这150人在最短的时间内全部赶到目的地.其中,在中途每次换车(上、下车)时间均忽略不计.解 显然,只有人、车不停地向目标前进,车一直不停地往返载人,最后使150人与车同时到达目的地时,所用的时间才会最短.由于这辆车只能乘坐50人,因此将150分为3组,每组50人来安排乘车与步行.图5-4中,实线表示汽车往返路线(AE →EC →CF →FD →DB ),虚线表示步行路段.显然每组乘车、步行的路程都应一样多.所以图5-4AE =CF =DB ,且AC =CD =EF =FB .若没AE =CF =DB =x ,AC =CD =EF =FB =y ,则290x y +=.且因为汽车在AE 十EC 上所用的时间与步行AC 所用时间相同,所以()7010x x y y +-= 解方程组290x y += ()7010x x y y +-=得60,15x y ==.则150人全部从A 到B 最短时间为602156370107⨯+=小时 答 方案是50人一组,共分3组,先后分别乘60千米车,先后分段步行30千米,由A 同时出发,最后同时到B ,最短时间是637小时. 例7 甲、乙二人沿椭圆形跑道作变速跑训练:他们从同一地点出发,沿相反方向跑,每人跑完第一圈到达出发点后立即回头加速跑第二圈。
小升初培优专题五环形线路问题行程问题篇
![小升初培优专题五环形线路问题行程问题篇](https://img.taocdn.com/s3/m/91a80825178884868762caaedd3383c4ba4cb45f.png)
小升初培优专题五环形线路问题行程问题篇在小学奥数的行程问题中,环形线路问题是一个比较有挑战性的专题。
今天,我们就来深入探讨一下环形线路中的行程问题。
首先,我们来了解一下环形线路的基本概念。
环形线路,简单来说,就是一个封闭的曲线形状的道路,比如圆形跑道、环形公园小路等。
在环形线路上运动,物体的运动方向可以是同向的,也可以是反向的。
我们先来看同向运动的情况。
假设甲和乙在环形跑道上同时同地出发,甲的速度比乙快。
由于甲的速度快,所以甲会逐渐追上乙。
当甲第一次追上乙时,甲比乙多跑了一圈。
举个例子,环形跑道的周长是 400 米,甲的速度是每分钟 250 米,乙的速度是每分钟 200 米。
那么甲每分钟比乙多跑 250 200 = 50 米。
甲第一次追上乙所用的时间就是跑道的周长除以甲每分钟比乙多跑的距离,即 400 ÷ 50 = 8 分钟。
接下来,我们再看反向运动的情况。
还是在同样的环形跑道上,甲和乙同时同地出发,方向相反。
那么两人相遇时,他们所跑的路程之和就是跑道的周长。
比如说,跑道周长依然是 400 米,甲的速度是每分钟 250 米,乙的速度是每分钟 200 米。
两人的速度之和就是 250 + 200 = 450 米/分钟。
所以他们相遇所用的时间就是 400 ÷ 450 = 8/9 分钟。
下面我们来看一些稍微复杂一点的环形线路行程问题。
例 1:在一个周长为 600 米的环形跑道上,甲、乙两人同时从同一地点按顺时针方向跑步,甲的速度是每分钟 300 米,乙的速度是每分钟 250 米。
问经过多少分钟甲第一次追上乙?思路:甲要追上乙,就要比乙多跑一圈,也就是 600 米。
甲每分钟比乙多跑 300 250 = 50 米,所以追上乙所用的时间就是 600 ÷ 50 = 12 分钟。
例 2:在周长为 400 米的圆形操场上,小明和小红同时从 A 点出发,小明逆时针跑步,速度是每分钟 200 米,小红顺时针跑步,速度是每分钟 150 米。
行程问题——环形路(教师版)
![行程问题——环形路(教师版)](https://img.taocdn.com/s3/m/b0b5d64fc850ad02de80411f.png)
行程问题——环形路(教师版)一、【本讲知识点】在环行道路上的行程问题本质上讲是追及问题或相遇问题。
当二人(或物)同向运动就是追及问题,追及距离是二人初始距离及环形道路之长的倍数之和;当二人(或物)反向运动时就是相遇问题,相遇距离是二人从出发到相遇所行路程和。
二、【本讲经典例题】【铺垫】如下图,两名运动员在沿湖周长为2250米的环形跑道上练习长跑。
甲每分钟跑250米,乙每分钟跑200米。
两人同时同地同向出发,多少分钟后甲第1次追上乙?若两人同时同地反向出发,多少分钟后甲、乙第1次相遇?分析与解答:2250÷(250-200)=2250÷50=45(分钟),即45分钟后甲第1次追上乙;2250÷(250+200)=2250÷450=5(分钟),即5分钟后甲、乙第1次相遇. 【例1】如下图,两名运动员在沿湖的环形跑道上练习长跑。
甲每分钟跑250米,乙每分钟跑200米。
两人同时同地同向出发,45分钟后甲追上了乙。
如果两人同时同地反向而跑,经过多少分钟后两人相遇?(1)(2)分析与解答:根据图(1)用追及问题公式求出环形跑道的长,因从同一点出发,距离差=跑道长。
(250-200)×45=2250(米)。
同理,在环形跑道上,若反向而行,从同一点出发两人相遇所经过的路程和=跑道长。
如图(2),2250÷(250+200)=5(分钟)即经过5分钟两人相遇。
【随堂练习1】如下图,两名运动员在沿湖的环形跑道上练习长跑。
甲每分钟跑250米,乙每分钟跑200米。
两人同时同地同向出发,54分钟后甲追上乙。
如果两人同时同地反向而跑,经过多少分钟后两人相遇?一问分析与解答:具体分析见例题。
环形跑道周长:(250-200)×54=2700(米),两人相遇时间:2700÷(250+200)=2700÷450=6(分钟),即经过6分钟后两人相遇。
第5讲 环形路上的行程问题
![第5讲 环形路上的行程问题](https://img.taocdn.com/s3/m/aef30c58ed630b1c59eeb588.png)
第5讲环形路上的行程问题(一)例题1、如图,两名运动员在沿湖的环形跑道上练习长跑。
甲每分钟跑250米,乙每分钟跑200米。
两人同时同地同向出发,45分钟后甲追上了乙。
如果两人同时同地反向而跑,经过多少分钟后两人相遇?(答案:5)米/分米/分250米/分200米/2、如图是一个图形中央花园,A、B是直径的两端。
小军在A点,小明在B点,同时出发相向而行,他俩第1次在C点相遇,C点离A点有50米;第2次在D点相遇,D点离B点有30米。
问这个花园一周长多少米?(答案:240)3、如图,一个边长为100米的正方形跑道。
甲从A点出发,乙从C点出发都逆时针同时起跑,甲的速度每秒7米,乙的速度每秒5米。
他们拐弯处都要停留5秒,当甲第一次追上乙时,乙跑了多少米?(答案:600)乙4、如图所示是一个玩具火车轨道,A点有个变轨开关,可以连结B或者C。
小圈轨道的周长是1.5米,大圈轨道的周长是3米。
开始时,A连结C,火车从A点出发,按照顺时针方向在轨道上移动,同时变轨开关每隔1分钟变换一次轨道连结。
若火车的速度是每分钟10米,则火车第10次回到A点时用了几分钟?(答案:2.1)B5、甲乙两人在一条圆形跑道上同时同向出发,绕圆形跑道跑步。
已知两人在跑步过程中速度均保持不变,且甲跑得比乙快。
当甲第一次追上乙时,乙离开出发点250米;当甲第二次追上乙时,乙离开出发点50米。
求跑道长。
(答案:150或550)6、如图,三个环形跑道相切排列,每个环形跑道周长均为210厘米。
甲、乙两只爬虫分别从A、B两地按箭头所示方向出发。
甲爬虫绕1、2号环形跑道作“8”字形循环运动,乙爬虫绕3、2号环形跑道作“8”字循环运动,已知甲乙两只爬虫的速度分别是每分钟20、15厘米。
问甲、乙两爬虫第二次相遇时,甲爬虫爬了多少米?(答案:300)(二)练习1、甲乙两运动员在周长为400米的环形跑道上同向竞走,已知乙的平均速度是每分钟80米,甲的平均速度是乙的1.25倍,甲在乙前面100处。
最新小学奥数 环形路上的行程问题学生版
![最新小学奥数 环形路上的行程问题学生版](https://img.taocdn.com/s3/m/f7cd83a9d5bbfd0a79567370.png)
最新小学奥数环形路上的行程问题例1小张和小王各以一定速度,在周长为500 米的环形跑道上跑步.小王的速度是180 米/分.(1)小张和小王同时从同一地点出发,反向跑步,75 秒后两人第一次相遇,小张的速度是多少米/分?(2)小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王?例2、小君在360米长的环形跑道上跑一圈。
已知他前一半时间每秒跑5米,后一半时间每秒跑4米。
那么小君后一半路程用了多少秒?例2 如图,A、B 是圆的直径的两端,小张在A 点,小王在B 点同时出发反向行走,他们在C 点第一次相遇,C离A点80米;在D 点第二次相遇,D点离B 点6O米.求这个圆的周长.例3 甲村、乙村相距6 千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回).在出发后40 分钟两人第一次相遇.小王到达甲村后返回,在离甲村2 千米的地方两人第二次相遇.问小张和小王的速度各是多少?例4 小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5 千米处第一次相遇,在离乙村2 千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?解:画示意图如下.例5 绕湖一周是24 千米,小张和小王从湖边某一地点同时出发反向而行.小王以4 千米/小时速度每走1 小时后休息5 分钟;小张以6 千米/小时速度每走50 分钟后休息10 分钟.问:两人出发多少时间第一次相遇?例6 一个圆周长90 厘米,3 个点把这个圆周分成三等分,3 只爬虫A,B,C 分别在这3 个点上.它们同时出发,按顺时针方向沿着圆周爬行.A 的速度是10 厘米/秒,B 的速度是5 厘米/秒,C 的速度是3 厘米/秒,3 只爬虫出发后多少时间第一次到达同一位置?例7 图上正方形ABCD 是一条环形公路.已知汽车在AB 上的速度是90 千米/小时,在BC 上的速度是120 千米/小时,在CD 上的速度是60 千米/小时,在DA 上的速度是80 千米/小时.从CD 上一点P,同时反向各发出一辆汽车,它们将在AB 中点相遇.如果从PC 中点M,同时反向各发出一辆汽车,它们将在AB 上一点N 处相遇.求巩固练习:1.一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑210米,两人同时出发,经过多少分钟两人相遇(不用解方程)2.两人在环形跑道上跑步,两人从同一地点出发,小明每秒跑3米,小雅每秒跑4米,反向而行,45秒后两人相遇。
第六讲环形道路上行程问题
![第六讲环形道路上行程问题](https://img.taocdn.com/s3/m/65cbc086866fb84ae55c8d4a.png)
• 【例1】小张和小王各自以一定的速度在周长为 800米的环形跑道上跑步。小王每分钟跑 100米。 (1>小张和小王同时从同一个地点出发,反向跑 步,5分钟后两人相遇,求小张的速度.
• (2)小张和小王同时从同一地点出发,沿同一方向 _,经过多少分钟两人第•次在途中 相遇?解答环 形行程问题时要采用化曲为直的方法,两人同时 间地竹向而彳/,那么 相遇时两人和走了一个环形 全程;如果两人同时同地同向而行,那么相遇时 正好快的追]:了 慢的一个环形全程。
• ①速度和:800÷5=160(米/分)小张:160-100= 60(米/分)
• ② 追及问题:800÷160=5(分钟)800÷(10060)=20(米/分)
• 【例2】有一条长400米的环形跑道,甲、乙两人 同时同地出发,反向而行,1分钟后第一 次相遇, 若二人同时同地出发,同向而行,则10分钟后第 一次相遇,若甲比乙快,那么甲、乙二人的速度 分别是多少?
• 2、入冬前,妈妈买来了一筐苹果,清理时, 发现这筐苹果2个、2个的数,余1个; 3个、 3个的数,余2个; 4个、4个的数,余3个; 5个、5个的数,余4个; 6个、6个 的数,余 5个。你知道这筐苹果至少有多少个吗?
• 答:苹果个数比2,3,4,5,6的最小公倍数 小1,(2,3,4,5,6)=60
• 60-1=59(个)
• 答:这筐苹果至少有59个。
第六讲环形道路上的行程问题
1、 “环形跑道”,也是称为封闭回路,它 可以是圆形的、长方形的、三角形的,也可以 是 由长方形和两个半圆组成的运动场形状。解 题时,我们可以运动“转化法”把线路“拉直” 或“截断”,从而把物体在“环形路道”上的 运动转化亨我们熟悉的物体在直线上的运动。 2、 在行程问题中,与环形有关的行程问题 的解决方法長一般行程问题的方法类似,但有 两 点值得注意•• 一是两人同地背向运动,从第 一次相遇到下一次相遇共行一个全程.二是同地、 同向运动时,甲追上乙时甲比乙多行一个行程。
环形线路行程问题(完整资料).doc
![环形线路行程问题(完整资料).doc](https://img.taocdn.com/s3/m/1e1ea34419e8b8f67d1cb942.png)
【思路点拨】3分钟两人共跑3圈,且甲比乙多跑1圈,即甲跑2圈乙跑1圈.
【思路点拨】 先求出林玲在环形跑道上跑一圈的时间,(可变为两个两圈路程除以速度和)就可以求出前一半时间所跑的路程,即求出后一半路程所用的时间.
解:450×2÷(4+5)=100
因为前一半时间跑5×(100÷2)=250(米),
所以前一半路程都是用每秒5米的速度跑的,用了(450÷2)÷5=45(秒),后一半路跑了
2.爷爷和孙子两人同时从同一地点反向绕一条环路跑步,在第一次相遇后,爷爷又跑了8分钟回到原地,已知孙子跑一圈需要6分钟,爷爷跑一圈的时间为偶数,爷爷跑一圈需要多少分钟?
3.在田径运动会上,甲、乙、丙三人沿400米环形跑道进行800米跑比赛.当甲跑完1圈时,乙比甲多跑 圈,丙比甲少跑 圈.如果他们各自跑步的速度始终不变,那么,当乙到达终点时,丙离终点还有______米.
※例3有一个圆形水池,周长500米.甲乙二人同时、同地出发围绕水池相背而行,5分钟相遇;如果同时、同地、同向而行,50分钟相遇(甲追上乙).每人每分钟各走多少米?
【思路点拨】 根据相遇问题的规律求出速度和,再根据追及问题的规律求出速度差,最后根据和差问题的规律求出个人的速度.
解:①500÷5=100(米) 速度和
100-45=55(秒).
练一练5甲乙两人绕周长为1000米的环形广场竞走,已知甲每分钟走125米,乙的速度是甲的2倍,现在甲在乙后面250米,乙追上甲需要多少分钟?
环形路上行程问题
![环形路上行程问题](https://img.taocdn.com/s3/m/df1190826bec0975f465e26e.png)
环形路上行程问题例1:一条长400米的环形跑道,小明骑自行车,每分钟骑560米;小强跑步,每分钟行240米,两人同时从同地同向出发,经过多少分钟两人相遇?例2:爸爸和小辉沿着600米的环形跑道锻炼,他们两人同时在同一起点顺时针跑步,每隔12分钟相遇一次,若两人速度不变,还是在原出发点同时出发,爸爸改为逆时针方向跑,则每隔4分钟相遇一次,求两人跑一圈各要多少分钟?例3:跑马场一周之长为1080米,甲、乙两人骑自行车从同一地点同时出发,朝同一方向行驶,经过54分钟后,甲追上乙,如果甲每分钟减少50米,乙每分钟增加30米,从同一地点同时背向而行,则经过3分钟后两人相遇,求原来甲、乙每分钟各行多少米?例4:如图:沿着边长为90米的正方形,按逆时针方向,甲从A出发,每分钟走63米,乙从B出发,每分钟走72米,求当乙第一次追上甲时是在正方形的那一条边上?AB例5:张、李、赵三位同学在一个周长为400米的跑道上锻炼身体,他们三人同时同地按顺时针方向出发,如果张每分钟行走120米,李每分钟行走100米,赵每分钟行走80米,那么,出发后至少多少分钟,张、李、赵三人同时相遇?习题1.爸爸和小明沿着周长为800米的湖边晨练,他们二人同时从同一地点同方向出发,爸爸每分钟跑300米,小明每分钟跑250米,求他们至少经过几分钟爸爸追上小明?2.小王和小张同时从同一地点出发,沿着相同的方向在环形跑道上跑步,小王每分钟跑150米,小张每分钟跑120米,如果跑道全长900米,求小王经过几分钟追上小张?3.有一条长80米的圆形走廊,兄弟两人同时从同一处,同一方向沿着走廊出发,弟弟以每秒1米的速度步行,哥哥以每秒5米的速度奔跑,求哥哥在第二次追上弟弟时,所用的时间是多少秒?4.在长600米的环形跑道上,甲、乙两人同时同地同向跑步,出发后400秒,甲从乙身后追上了乙,已知甲、乙的速度和为每秒6.5米,求甲、乙两人的速度各是多少?5.在一圆形跑道上,甲从A点,乙从B点同时反向而行,6分钟后两人相遇,再过4分钟甲到达B点,又过8分钟两人再次相遇,甲、乙各行一周各需要多少分钟?6.两名运动员在湖的周围环形跑道上练习长跑,甲每分钟比乙多跑50米,如果两人同时同地同向出发,则经过45分钟甲追上乙,如果两人同时同地反方向出发,则经过5分钟可以相遇,求甲、乙两人的速度?7.甲、乙两人绕周长是400米的跑道跑步,如果两人同时从同一地点出发背向而行,那么经过2分钟相遇;如果两人从同一地点出发,那么经过20分钟两人相遇,已知甲的速度比乙快,求甲、乙两人跑步的速度是多少?8.周长为200米的圆形跑道上A 、B两点,A、B 相距100米,甲、乙两人骑车分别以每秒6米、5米的速度同时同向出发,沿跑道行驶,求用多少分钟甲追上乙5次?9.甲、乙两人在400米的环形跑道上跑步,甲以每分钟300米的速度从起跑点跑出1分钟时,乙才从起点跑出,从这时起,甲用了5分钟赶上了乙,求乙每分钟跑了多少米?。
五年级奥数——环形路上的的行程问题
![五年级奥数——环形路上的的行程问题](https://img.taocdn.com/s3/m/c1b41db64431b90d6d85c753.png)
年 级五年级 授课日期 授课主题 第7讲——环形路上的行程问题教学内容i.检测定位在环形道路上的行程问题本质上就是追及问题或相遇问题.当两人(或物)同向运动时就是追及问题,追及距离是两人初始距离及环形道路之长的倍数之和;当两人(或物)反向运动时就是相遇问题,相遇问题是两人从出发到相遇所行路程和.【例1】如图7-1,两名运动员在沿湖的环形跑道上练习长跑.甲每分钟跑250米,乙每分钟跑200米.两人同时同地同向出发,45分钟后甲追上了乙.如果两人同时同地反向跑,经过多少分钟后两人相遇?分析与解 根据图7-1①用追及问题公式求出环形跑道的长,因从同一点出发,距离差=跑道长..225045200-250(米))(=⨯ 同理在环形跑道上,若反向而行,从同一点出发两人相遇所经过的路程和=跑道长.(图7-1②).52002502250(分钟))(=+÷即经过5分钟两人相遇.随堂练习1甲乙两运动员在周长为400米的环形跑道上同向竞走,已知乙的平均速度是每分钟80米,甲的平均速度是乙的1.25倍,甲在乙前面100米处.问几分钟后,甲第1次追上乙?【例2】如图7-2是一个圆形中央花园,A 、B 是直径的两个端点.小军在A 点,小勇在B 点,同时出发相向而行.他俩第一次在C 点相遇,C 点离A 点有50米;第2次在D 点相遇,D 点离B 点有30米.问这个花园一周长多少米?分析与解 第1次相遇,两人合起来走了半周长,从C 点开始第2次在D 点相遇两人走了一周长,两次共走了一周长半.小军从A →C →D 走了50米的3倍,即走了.150350(米)=⨯去掉BD 之间30米的距离,就是半个圆周的长,所以一周的长度为.240230-150米)(=⨯ 随堂练习2如图7-3,A 、B 是圆直径的两个端点,亮亮在A 点,明明在B 点,相向而行.他们在C 点第一次相遇,C 点离A 点有100米;在D 点第2次相遇,D 点离B 点有80米.求圆的周长.【例3】如图7-4,一个边长为100米的正方形跑道.甲从A 点出发,乙从C 点出发都逆时针同时起跑,甲的速度每秒7米,乙的速度每秒5米.他们拐弯处都要停留5秒,当甲第一次追上乙时,乙跑了多少米?分析与解 如图7-4,由题意知甲(在后)、乙(在前)相距200米(即追及距离200米)且甲第一次追及乙要多拐两个弯,即要多休息.1025秒=⨯设甲纯跑步时间为y 秒,则乙纯跑步时间为秒10+y .则有,200)10(57+⨯-y y解得 ).(125秒=y甲应跑路程为.8757125米=⨯当甲跑了800米又到达A 点时,用时为秒,28.149757800≈⨯+÷他将在A 点逗留5秒,到秒28.154528.149=+又离开A 点.而乙跑完600(=800-200)米到达A 点时,用时.145555600秒=⨯+÷而在第秒1505145=+时离开A 点.因此,从起跑到149.28秒至150秒的间隔内甲、乙都在A 点,即甲第1次追上乙,此时乙跑了600米.随堂练习3如图7-5,有一条长方形跑道,甲从A 点出发,乙从C 点出发,同时按逆时针方向奔跑.甲速每秒6025米,乙速每秒5米.跑道长100米,宽为60米.当甲、乙每次跑到拐点A 、B 、C 、D 时都要停留5秒.问当甲第1次追上乙时,甲、乙各跑了多少米?【例4】图7-6所示是一个玩具火车轨道,A 点有个变轨开关,可以连结B 或者C 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例9小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是180米/分.
(1)小张和小王同时从同一地点出发,反向跑步,75秒后两人第一次相遇,小张的速度是多少米/分?
(2)小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王?
例10 如图,A、B是圆的直径的两端,小张在A点,小王在B点同时出发反向行走,他们在C点第一次相遇,C离A点80米;在D点第二次相遇,D点离B点6O米.求这个圆的周长.
小张和小王各自以一定的速度在周长为500米的环形跑道上跑步。
小王每分跑180米。
(1)小张和小王同时从一个地点出发,反向跑步,75秒后两人相遇,求小张的速度。
(2)小张和小王同时从同一地点出发,沿同一方向跑步,经过多少分两人第一次在途中相遇?
例11 甲村、乙村相距6千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回).在出发后40分钟两人第一次相遇.小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇.问小张和小王的速度各是多少?
解:画示意图如下:
如图,第一次相遇两人共同走了甲、乙两村间距离,第二次相遇两人已共同走了甲、乙两村间距离的3倍,因此所需时间是
40×3÷60=2(小时).
从图上可以看出从出发至第二次相遇,小张已走了
6×2-2=10(千米).
小王已走了 6+2=8(千米).
因此,他们的速度分别是
小张 10÷2=5(千米/小时),
小王 8÷2=4(千米/小时).
答:小张和小王的速度分别是5千米/小时和4千米/小时.
例12小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?
解:画示意图如下.
第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了
3.5×3=10.5(千米).
从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是
10.5-2=8.5(千米).
每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时,两人已共同走了两村距离(3+2+2)倍的行程.其中张走了
3.5×7=2
4.5(千米),
24.5=8.5+8.5+7.5(千米).
就知道第四次相遇处,离乙村
8.5-7.5=1(千米).
答:第四次相遇地点离乙村1千米.
下面仍回到环行路上的问题.
例13 绕湖一周是24千米,小张和小王从湖边某一地点同时出发反向而行.小王以4千米/小时速度每走1小时后休息5分钟;小张以6千米/小时速度每走50分钟后休息10分钟.问:两人出发多少时间第一次相遇?
解:小张的速度是6千米/小时,50分钟走5千米我们可以把他们出发后时间与行程列出下表:
12+15=27比24大,从表上可以看出,他们相遇在出发后2小时10分至3小时15分之间.
出发后2小时10分小张已走了
此时两人相距
24-(8+11)=5(千米).
由于从此时到相遇已不会再休息,因此共同走完这5千米所需时间是
5÷(4+6)=0.5(小时).
2小时10分再加上半小时是2小时40分.
答:他们相遇时是出发后2小时40分.
例14 一个圆周长90厘米,3个点把这个圆周分成三等分,3只爬虫A,B,C分别在这3个点上.它们同时出发,按顺时针方向沿着圆周爬行.A的速度是10厘米/秒,B的速度是5厘米/秒,C的速度是3厘米/秒,3只
爬虫出发后多少时间第一次到达同一位置?
解:先考虑B与C这两只爬虫,什么时候能到达同一位置.开始时,它们相差30厘米,每秒钟B能追上C(5-3)厘米0.
30÷(5-3)=15(秒).
因此15秒后B与C到达同一位置.以后再要到达同一位置,B要追上C一圈,也就是追上90厘米,需要
90÷(5-3)=45(秒).
B与C到达同一位置,出发后的秒数是
15,,105,150,195,……
再看看A与B什么时候到达同一位置.
第一次是出发后
30÷(10-5)=6(秒),
以后再要到达同一位置是A追上B一圈.需要
90÷(10-5)=18(秒),
A与B到达同一位置,出发后的秒数是
6,24,42,,78,96,…
对照两行列出的秒数,就知道出发后60秒3只爬虫到达同一位置.
答:3只爬虫出发后60秒第一次爬到同一位置.
请思考, 3只爬虫第二次到达同一位置是出发后多少秒?
例15 图上正方形ABCD是一条环形公路.已知汽车在AB上的速度是90千米/小时,在BC上的速度是120千米/小时,在CD上的速度是60千米/小时,在DA上的速度是80千米/小时.从CD上一点P,同时反向各发出一辆汽车,它们将在AB中点相遇.如果从PC中点M,同时反向各发出一辆汽车,它们将在AB上一点N处相遇.求
解:两车同时出发至相遇,两车行驶的时间一样多.题中有两个“相遇”,解题过程就是时间的计算.要计算方便,取什么作计算单位是很重要的.
设汽车行驶CD所需时间是1.
根据“走同样距离,时间与速度成反比”,可得出
分数计算总不太方便,把这些所需时间都乘以24.这样,汽车行驶CD,BC,AB,AD所需时间分别是24,12,16,18.
从P点同时反向各发一辆车,它们在AB中点相遇.P→D→A与 P→C→B所用时间相等.
PC上所需时间-PD上所需时间
=DA所需时间-CB所需时间
=18-12
=6.
而(PC上所需时间+PD上所需时间)是CD上所需时间24.根据“和差”计算得
PC上所需时间是(24+6)÷2=15,
PD上所需时间是24-15=9.
现在两辆汽车从M点同时出发反向而行,M→P→D→A→N与M→C→B→N所用时间相等.M是PC中点.P→D→A→N与C→B →N时间相等,就有
BN上所需时间-AN上所需时间
=P→D→A所需时间-CB所需时间
=(9+18)-12
= 15.
BN上所需时间+AN上所需时间=AB上所需时间
=16.
立即可求BN上所需时间是15.5,AN所需时间是0.5.
从这一例子可以看出,对要计算的数作一些准备性处理,会使问题变得简单些.
1、一个周长为400米的正方形ABCD跑道,甲在B点,乙在A点,甲的速度是每秒25米,乙的速度是是每秒5米,问多长时间后甲乙第一次相遇?
2、在400米的环形跑道上,A、B两点相距100米,。
甲、乙两人分别从A、B两点同时出发,按照逆时针方向跑步,甲每秒跑5米,乙每秒跑4米,每人每跑100米,都要停10秒钟。
那么,甲追上乙需要的时间是多少秒?
3.两人在环形跑道上跑步,两人从同一地点出发,小明每秒跑3米,小雅每秒跑4米,反向而行,45秒后两人相遇。
如果同向而行,几秒后两人再次相遇
4.甲、乙两人同时从同一地点出发,同向绕一环形跑道赛跑,甲每秒跑4米,乙每秒跑6米,过了4分钟,乙追上了甲,问跑道一周长多少米?
5.甲、乙两人同时从A点背向出发沿400米的环形跑道行走,甲每分走80米,乙每分走50米,这二人最少用多少分钟在A点相遇?
6.甲骑车、乙跑步,二人同时从一点出发沿着长4千米的环形公路同方向进行晨练。
出发后10分钟,甲便从乙身后追上了乙,已知二人的速度和是每分钟行700米。
求甲、乙二人的速度各是多少? 7.姐弟二人在周长为420米圆形花圃边玩,从同一地点同时背向绕水池行走。
姐姐每分钟走60米,弟弟每分钟走40米。
他们第五次相遇时需要多少时间?
8.甲、乙二人绕一环形跑道顺时针跑步,圆形跑道的长是600米,甲每分钟跑300米,乙每分钟跑280米,现在甲在乙后面40米,甲第二次追上乙需要多少分钟?
9.两辆电动小汽车在周长为360米的圆形道上不断行驶,甲车每分行驶20米.甲、乙两车同时分别从相距90米的A,B 两点相背而行,相遇后乙车立即返回,甲车不改变方向,当乙车到达B点时,甲车过B点后恰好又回到A点.此时甲车立即返回(乙车过B点继续行驶),再过多少分与乙车相遇?。