数学七年级上册.绝对值

合集下载

初中数学七年级上册《绝对值》知识简要与举例

初中数学七年级上册《绝对值》知识简要与举例

初中数学七年级上册《绝对值》知识简要与举例1.绝对值的概念是代数的重要概念之一,它是学习代数后续内容的基础.同时,利用绝对值的概念,能使我们进一步认识已学过的概念.例如,我们可以把任何一个有理数看成是由符号与绝对值两部分组成;又如,互为相反数的两个数,其实质是绝对值相等而符号相反的两个数.像-6和6,它们的符号相反,而其绝对值|-6|=|6|=6.2.理解绝对值的意义,应注意以下三点:(1)绝对值的非负性即任何一个数a的绝对值,总是非负的.即|a|≥0.当a≠0时,|a|>0;当a=0时,|a|=0.(2)绝对值相等的两个数或相等,或互为相反数.如|2|=|+2|=2,|+2|=|-2|=2.一般地,若|x|=|y|,则有x=y或x=-y.(3)学习了绝对值的几何意义后,数轴的概念、画法、利用数轴比较数的大小、相反数以及绝对值,借助数轴,这些知识便都联系到一起了.3.用正负数可以表示具有相反意义的量.但在实际生产和生活中,有时不考虑方向性.如:计算汽车的耗油量时,知道行驶单位路程的耗油量,只需求出汽车行驶的总路程,便可求出耗油量,与行驶的方向无关而汽车所走的路程就只需用正数表示,因此,引出绝对值的概念.4.绝对值的三种表达方法.(1)文字语言表达法(绝对值的概念):一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零.(2)用数学式子法:设a为任意有理数,则(3)绝对值的几何意义:一个数的绝对值就是表示这个数的点离开原点的距离.[例1]判断题(2)|-0.01|<0.( )(3)-(-4)<|-4|.( )(4)|a|=a.( )(5)当a≤0时,|a|+a=0.( )答案:(1)√;(2)×;(3)×;(4)×;(5)√.说明:在有理数的大小比较中,如果含有绝对值或相反数时,可先化简,然后再进行比较.[例2]填空题(5)______________与它的绝对值互为相反数;(6)如果|a|=|-7|,那么a=________.说明:如果两个数相等或互为相反数,那么这两个数的绝对值相等;反之,如果这两个数的绝对值相等,那么这两个数相等或互为相反数.[例3]a为何值时,下列各式成立?(1)|a|=a;(2)|a|=-a;(3)|a|≥a;(4)|a|<a;(5)|a|=5;(6)|a|=-5.解:(1)a≥0;(2)a≤0;(3)a为任意有理数时,都使|a|≥a成立;(4)a为任意有理数时,|a|<a都不成立;(5)a=±5;(6)a为任意有理数时,|a|=-5都不成立.说明:本题解决的关键是牢固掌握绝对值的非负性,即|a|≥0.另外,(3)、(4)小题还要准确理解有理数大小的比较法则.[例4]比较大小:[例5]把下列各数按照从大到小的顺序用“>”连接起来:说明:学了绝对值的概念之后,比较两有理数大小的基本方法,我们便有了两种:(1)数轴法;(2)绝对值法.在这小节的后一部分,介绍了利用绝对值比较两个负数的大小的办法.这既可巩固绝对值的概念,又把比较有理数大小的方法提高了一步.利用绝对值来比较两有理数大小的方法是我们常用的方法之一.前面提到绝对值的概念是代数中重要的概念之一,我们应该很好地掌握它.[例6](1)若a>3,则|a-3|=________;(2)若a=3,则|a-3|=________;(3)若a<3,则|a-3|=________.分析:要想正确地化简|a-3|的结果.关键是确定a-3的符号.当a>3时,a -3>0,即a-3为正,由正数的绝对值是它本身,可得结果为a-3;当a=3时,a -3=0,所以|a-3|=|0|=0;当a<3时,a-3<0,即a-3为负数,由负数的绝对值等于它的相反数可得|a-3|=-(a-3).解:(1)a>3时,|a-3|=a-3;(2)a=3时,|a-3|=0;(3)a<3时,|a-3|=-(a-3)说明:由本题的解法说明,化简含有字母的式子的绝对值时,必须先讨论这个式子的计算结果的正负性.否则会出现错误,如|a-3|=a-3(×).。

七年级数学上册数学 2.4.2 绝对值与相反数-绝对值(六大题型)(解析版)

七年级数学上册数学 2.4.2 绝对值与相反数-绝对值(六大题型)(解析版)

2.4.2绝对值与相反数——绝对值分层练习考察题型一求一个数的绝对值1.下列各对数中,互为相反数的是()A .(5)-+与(5)+-B .12-与(0.5)-+C .|0.01|--与1(100--D .13-与0.3【详解】解:A .(5)5-+=-,(5)5+-=-,不合题意;B .(0.5)0.5-+=-,与12-相等,不合题意;C .|0.01|0.01--=-,11()0.01100100--==,0.01-与0.01互为相反数,符合题意;D .13-与0.3不是相反数,不合题意.故本题选:C .2.若m 、n 互为相反数,则|5|m n -+=.【详解】解:m 、n 互为相反数,|5||5|5m n -+=-=.故本题答案为:5.3.比较大小:3(15--)| 1.35|--.(填“<”、“>”或“=”)【详解】解:3(1) 1.65--=,| 1.35| 1.35--=-,因为1.6 1.35>-,所以3(15--)| 1.35|>--.故本题答案为:>.考察题型二绝对值的代数意义1.最大的负整数是,绝对值最小的数是.【详解】解:最大的负整数是1-,绝对值最小的数是0.故本题答案为:1-,0.2.如果|2|2a a -=-,则a 的取值范围是()A .0a >B .0aC .0aD .0a <【详解】解:|2|2a a -=- ,20a ∴-,解得:0a .故本题选:C .3.如果一个数的绝对值是它的相反数,则这个数是()A .正数B .负数C .正数或零D .负数或零【详解】解: 一个数的绝对值是它的相反数,设这个绝对值是a ,则||0a a =-,0a ∴.故本题选:D .4.已知实数满足|3|3x x -=-,则x 不可能是()A .1-B .0C .4D .3【详解】解:|3|3x x -=- ,30x ∴-,即3x .故本题选:C .5.下列判断正确的是()A .若||||a b =,则a b=B .若||||a b =,则a b =-C .若a b =,则||||a b =D .若a b =-,则||||a b =-【详解】解:若||||a b =,则a b =-或a b =,所以A ,B 选项错误;若a b =,则||||a b =,所以C 选项正确;若a b =-,则||||a b =,所以D 选项错误.故本题选:C .6.在数轴上有A 、B 两点,点A 在原点左侧,点B 在原点右侧,点A 对应整数a ,点B 对应整数b ,若||2022a b -=,当a 取最大值时,b 值是()A .2023B .2021C .1011D .1【详解】解: 点A 在点B 左侧,0a b ∴-<,||2022a b b a ∴-=-=,a 为负整数,则最大值为1-,此时(1)2022b --=,则2021b =.故本题选:B .7.若x 为有理数,||x x -表示的数是()A .正数B .非正数C .负数D .非负数【详解】解:(1)若0x 时,||0x x x x -=-=;(2)若0x <时,||20x x x x x -=+=<;由(1)(2)可得:||x x -表示的数是非正数.故本题选:B .8.如果||||||m n m n +=+,则()A .m 、n 同号B .m 、n 异号C .m 、n 为任意有理数D .m 、n 同号或m 、n 中至少一个为零【详解】解:当m 、n 同号时,有两种情况:①0m >,0n >,此时||m n m n +=+,||||m n m n +=+,故||||||m n m n +=+成立;②0m <,0n <,此时||m n m n +=--,||||m n m n +=--,故||||||m n m n +=+成立;∴当m 、n 同号时,||||||m n m n +=+成立;当m 、n 异号时,则:||||||m n m n +<+,故||||||m n m n +=+不成立;当m 、n 中至少一个为零时,||||||m n m n +=+成立;综上,如果||||||m n m n +=+,则m 、n 同号或m 、n 中至少一个为零.故本题选:D .考察题型三解方程:()0x a a =>,x a =±;0x =,0x =1.若|| 3.2a -=-,则a 是()A .3.2B . 3.2-C . 3.2±D .以上都不对【详解】解:|| 3.2a -=- ,|| 3.2a ∴=,3.2a ∴=±.故本题选:C .2.若0a <,且||4a =,则1a +=.【详解】解:若0a <,且||4a =,所以4a =-,13a +=-.故本题答案为:3-.3.已知||4x =,||5y =且x y >,则2x y -的值为()A .13-B .13+C .3-或13+D .3+或13-【详解】解:||4x = ,||5y =且x y >,y ∴必小于0,5y =-,当4x =或4-时,均大于y ,①当4x =时,5y =-,代入224513x y -=⨯+=;②当4x =-时,5y =-,代入22(4)53x y -=⨯-+=-;综上,23x y -=-或2x y -=13+.故本题选:C .4.已知||4m =,||6n =,且||m n m n +=+,则m n -的值是()A .10-B .2-C .2-或10-D .2【详解】解:||m n m n +=+ ,||4m =,||6n =,4m ∴=,6n =或4m =-,6n =,462m n ∴-=-=-或4610m n -=--=-.故本题选:C .5.若|2|1x -=,则x 等于.【详解】解:根据题意可得:21x -=±,当21x -=时,解得:3x =;当21x -=-时,解得:1x =;综上,3x =或1x =.故本题答案为:1或3.6.小明做这样一道题“计算|2-★|”,其中★表示被墨水染黑看不清的一个数,他翻开后面的答案得知该题的结果为6,那么★表示的数是.【详解】解:设这个数为x ,则|2|6x -=,所以26x -=或26x -=-,①26x -=,62x -=-,4x -=,4x =-;②26x -=-,62x -=--,8x -=-,8x =;综上,4x =-或8.故本题答案为:4-或8.考察题型四绝对值的化简1.若1a <,|1||3|a a -+-=.【详解】解:1a < ,10a ∴->,30a ->,∴原式1342a a a =-+-=-.故本题答案为:42a -.2.若|||4|8x x +-=,则x 的值为.【详解】解:|||4|8x x +-= ,∴当4x >时,48x x +-=,解得:6x =;当0x <时,48x x -+-=,解得:2x =-.故本题选:2-或6.3.已知20212022x =,则|2||1||||1||2|x x x x x ---+++-+的值是.【详解】解:20212022x = ,即01x <<,20x ∴-<,10x -<,10x +>,20x +>,|2||1||||1||2|x x x x x ∴---+++-+2(1)12x x x x x =---+++--2112x x x x x =--++++--x =20212022=.故本题答案为:20212022.4.若a 、b 、c 均为整数,且||||1a b c a -+-=,则||||||a c c b b a -+-+-的值为()A .1B .2C .3D .4【详解】解:a ,b ,c 均为整数,且||||1a b c a -+-=,||1a b ∴-=,||0c a -=或||0a b -=,||1c a -=,①当||1a b -=,||0c a -=时,c a =,1a b =±,所以||||||||||||0112a c c b b a a c a b b a -+-+-=-+-+-=++=;②当||0a b -=,||1c a -=时,a b =,所以||||||||||||1102a c c b b a a c c a b a -+-+-=-+-+-=++=;综上,||||||a c c b b a -+-+-的值为2.故本题选:B .5.用abc 表示一个三位数,已知这个三位数的低位上的数字不大于高位上的数字,当||||||a b b c c a -+-+-取得最大值时,这个三位数的最小值是.【详解】解:abc 表示一个三位数,已知这个三位数的低位上的数字不大于高位上的数字,a b c ∴,||||||a b b c c a ∴-+-+-a b b c a c =-+-+-22a c =-2()a c =-,当||||||a b b c c a -+-+-取得最大值时,即a c -取得最大值,而a 、b 、c 是自然数,9a ∴=,0c =,∴这个三位数的最小值为900.故本题答案为:900.【根据数轴上的点的位置化简绝对值】6.已知a 、b 、c 的大致位置如图所示:化简||||a c a b +-+的结果是()A .2a b c ++B .b c -C .c b -D .2a b c--【详解】解:由题意得:0b a c <<<,且||||c a >.0a c ∴+>,0a b +<,∴原式()a c a b =+---a c a b =+++2a b c =++.故本题选:A .7.已知a ,b ,c 的位置如图所示,则||||||a a b c b ++--=.【详解】解:由数轴可知:0b a c <<<,且||||||b c a >>,0a b ∴+<,0c b ->,||||||a abc b ∴++--()()a abc b =--+--a a b c b=----+2a c =--.故本题答案为:2a c --.8.有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b c -0,a b +0,c a -0.(2)化简:||||||b c a b c a -++--.【详解】解:(1)由图可知:0a <,0b >,0c >且||||||b a c <<,所以0b c -<,0a b +<,0c a ->,故本题答案为:<,<,>;(2)||||||b c a b c a -++--()()()c b a b c a =-+----c b a b c a=----+2b =-.【当0a >,1||aa =,当0a <时,1||aa =-】9.已知0ab ≠,则||||a b a b +的值不可能的是()A .0B .1C .2D .2-【详解】解:①当a 、b 同为正数时,原式112=+=;②当a 、b 同为负数时,原式112=--=-;③当a 、b 异号时,原式110=-+=.故本题选:B .10.已知a ,b 为有理数,0ab ≠,且2||3||a bM a b =+.当a ,b 取不同的值时,M 的值等于()A .5±B .0或1±C .0或5±D .1±或5±【详解】解:由于a ,b 为有理数,0ab ≠,当0a >、0b >时,且2||3235||a b M a b =+=+=;当0a >、0b <时,且2||3231||a b M a b =+=-=-;当0a <、0b >时,且2||3231||a b M a b =+=-+=;当0a <、0b <时,且2||3235||a b M a b =+=--=-.故本题选:D .11.已知a ,b ,c 为非零有理数,则||||||a b c a b c ++的值不可能为()A .0B .3-C .1-D .3【详解】解:当a 、b 、c 没有负数时,原式1113=++=;当a 、b 、c 有一个负数时,原式1111=-++=;当a 、b 、c 有两个负数时,原式1111=--+=-;当a 、b 、c 有三个负数时,原式1113=---=-;原式的值不可能为0.故本题选:A .12.若||||||a b ab x a b ab =++,则x 的最大值与最小值的和为()A .0B .1C .2D .3【详解】解:当a 、b 都是正数时,1113x =++=;当a 、b 都是负数时,1111x =--+=-;当a 、b 异号时,1111x =--=-;则x 的最大值与最小值的和为:3(1)2+-=.故本题选:C .13.已知:||2||3||a b b c c a m c a b+++=++,且0abc >,0a b c ++=.则m 共有x 个不同的值,若在这些不同的m 值中,最大的值为y ,则(x y +=)A .4B .3C .2D .1【详解】解:0abc > ,0a b c ++=,a ∴、b 、c 为两个负数,一个正数,a b c +=-,b c a +=-,c a b +=-,∴||2||3||c a b m c a b---=++,∴分三种情况说明:当0a <,0b <,0c >时,1234m =--=-,当0a <,0c <,0b >时,1230m =--+=,当0a >,0b <,0c <时,1232m =-+-=-,m ∴共有3个不同的值,4-,0,2-,最大的值为0,3x ∴=,0y =,3x y ∴+=.故本题选:B .14.已知||1abc abc =,那么||||||a b c a b c++=.【详解】解:1abcabc =,0abc ∴>,a ∴、b 、c 均为正数或一个正数两个负数,①当a 、b 、c 均为正数时,1113ab c ab c ++=++=;②a 、b 、c 中有一个正数两个负数时,不妨设a 为正数,b 、c 为负数,1111ab c a b c++=--=-;综上,3ab c++=或1-.故本题答案为:3或1-.考察题型五绝对值的非负性1.任何一个有理数的绝对值一定()A .大于0B .小于0C .不大于0D .不小于0【详解】解:由绝对值的定义可知:任何一个有理数的绝对值一定大于等于0.故本题选:D .2.对于任意有理数a ,下列结论正确的是()A .||a 是正数B .a -是负数C .||a -是负数D .||a -不是正数【详解】解:A 、0a =时||0a =,既不是正数也不是负数,故本选项错误;B 、a 是负数时,a -是正数,故本选项错误;C 、0a =时,||0a -=,既不是正数也不是负数,故本选项错误;D 、||a -不是正数,故本选项正确.故本题选:D .3.式子|1|3x --取最小值时,x 等于()A .1B .2C .3D .4【详解】解:|1|0x - ,∴当10x -=,即1x =时,|1|3x --取最小值.故本题选:A .4.当a =时,|1|2a -+会有最小值,且最小值是.【详解】解:|1|0a - ,|1|22a ∴-+,∴当10a -=,即1a =,此时|1|2a -+取得最小值2.故本题答案为:1,2.5.已知|2022||2023|0x y -++=,则x y +=.【详解】解:|2022|x - ,|2023|0y +,20220x ∴-=,20230y +=,2022x ∴=,2023y =-,202220231x y ∴+=-=-.故本题答案为:1-.6.如果|3||24|y x +=--,那么(x y -=)A .1-B .5C .5-D .1【详解】解:|3||24|y x +=-- ,|3||24|0y x ∴++-=,30y ∴+=,240x -=,解得:2x =,3y =-,235x y ∴-=+=.故本题选:B .7.若|2|2|3|3|5|0x y z -+++-=.计算:(1)x ,y ,z 的值.(2)求||||||x y z +-的值.【详解】解:(1)由题意得:203050x y z -=⎧⎪+=⎨⎪-=⎩,解得:235x y z =⎧⎪=-⎨⎪=⎩,即2x =,3y =-,5z =;(2)当2x =,3y =-,5z =时,|||||||2||3||5|2350x y z +-=+--=+-=.8.若a 、b 都是有理数,且|2||1|0ab a -+-=,求1111(1)(1)(2)(2)(2022)(2022)ab a b a b a b +++⋯⋯+++++++的值.【详解】解:由题意可得:20ab -=,10a -=,1a ∴=,2b =,原式1111 (12233420232024)=+++⨯⨯⨯⨯111111112233420232024=-+-+-++-112024=-20232024=.考察题型六绝对值的几何意义1.绝对值相等的两个数在数轴上对应的两点距离为6,则这两个数是()A .6,6-B .0,6C .0,6-D .3,3-【详解】解: 绝对值相等的两个数在数轴上对应的两个点间的距离是6,∴这两个数到原点的距离都等于3,∴这两个数分别为3和3-.故本题选:D .2.绝对值不大于π的所有整数为.【详解】绝对值不大于π的所有整数为0,1±,2±,3±.故本题答案为:0,1±,2±,3±.3.绝对值小于4的所有负整数之和是.【详解】解: 绝对值小于4的所有整数是3-,2-,1-,0,1,2,3,∴符合条件的负整数是3-,2-,1-,∴其和为:3216---=-.故本题答案为:6-.4.大家知道|5||50|=-,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离,又如式子|63|-,它在数轴上的意义是表示6的点与表示3的点之间的距离,类似地,式子|5|a +在数轴上的意义是.【详解】解:|5|a +在数轴上的意义是表示数a 的点与表示5-的点之间的距离.故本题答案为:表示数a 的点与表示5-的点之间的距离.5.计算|1||2|x x -++的最小值为()A .0B .1C .2D .3【详解】解:|1||2||1||(2)|x x x x -++=-+-- ,|1||2|x x ∴-++表示在数轴上点x 与1和2-之间的距离的和,∴当21x -时|1||2|x x -++有最小值3.故本题选:D .6.当a =时,|1||5||4|a a a -+++-的值最小,最小值是.【详解】解:当4a 时,原式5143a a a a =++-+-=,这时的最小值为3412⨯=,当14a <时,原式5148a a a a =++--+=+,这时的最小值为189+=,当51a -<时,原式51410a a a a =+-+-+=-+,这时的最小值接近为189+=,当5a -时,原式5143a a a a =---+-+=-,这时的最小值为3(5)15-⨯-=,综上,当1a =时,式子的最小值为9.故本题答案为:1,9.7.已知式子|1||2||3||4|10x x y y ++-+++-=,则x y +的最小值是.【详解】解:令12x x a ++-=,34y y b ++-=,根据绝对值几何意义:a 表示x 到1-与2两点之间的距离之和,b 表示y 到3-与4两点之间的距离之和, 当12x -,34y -时,正好有10a b +=,∴当1x =-,3y =-时,x y +的最小值为:1(3)4-+-=-.故本题答案为:4-.8.若不等式|2||3||1||1|x x x x a -+++-++对一切数x 都成立,则a 的取值范围是.【详解】解:数形结合:绝对值的几何意义:||x y -表示数轴上两点x ,y 之间的距离.画数轴易知:|2||3||1||1|x x x x -+++-++表示x 到3-,1-,1,2这四个点的距离之和.令|2||3||1||1|y x x x x =-+++-++,3x =-时,11y =,1x =-时,7y =,1x =时,7y =,2x =时,9y =,可以观察知:当11x -时,由于四点分列在x 两边,恒有7y =,当31x -<-时,711y <,当3x <-时,11y >,当12x <时,79y <,当2x 时,9y ,综上,7y ,即|2||3||1||1|7x x x x -+++-++对一切实数x 恒成立.∴a 的取值范围为7a .9.设|1|a x =+,|1|b x =-,|3|c x =+,则2a b c ++的最小值为.【详解】解:|1|2|1||3|x x x ++-++表示x 到1-、3-的距离以及到1的距离的2倍之和,当x 在1-和1之间时,它们的距离之和最小,此时26a b c ++=.故本题答案为:6.10.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示3-和2两点之间的距离是;一般地,数轴上表示数m 和数n 的两点之间的距离等于||m n -.(2)如果|1|3x +=,那么x =;(3)若|3|2a -=,|2|1b +=,且数a 、b 在数轴上表示的数分别是点A 、点B ,则A 、B 两点间的最大距离是,最小距离是.(4)若数轴上表示数a 的点位于4-与2之间,则|4||2|a a ++-=.【详解】解:(1)数轴上表示4和1的两点之间的距离是:413-=,表示3--=,-和2两点之间的距离是:2(3)5故本题答案为:3,5;(2)|1|3x+=,x+=-,x+=或1313x=或4x=-,2故本题答案为:2或4-;(3)|3|2b+=,,|2|1a-=b=-或3b=-,∴=或1,1a5当5b=-时,则A、B两点间的最大距离是8,a=,3当1b=-时,则A、B两点间的最小距离是2,a=,1则A、B两点间的最大距离是8,最小距离是2,故本题答案为:8,2;(4)若数轴上表示数a的点位于4-与2之间,++-=++-=.a a a a|4||2|(4)(2)6故本题答案为:6.11.同学们都知道,|5(2)|--表示5与2-之差的绝对值,实际上也可理解为5与2-两数在数轴上所对的两点之间的距离.试探索(1)求|5(2)|--=;(2)同样道理|1008||1005|x x+=-表示数轴上有理数x所对点到1008-和1005所对的两点距离相等,则x=;(3)类似的|5||2|++-表示数轴上有理数x所对点到5x x-和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|5||2|7x x++-=,这样的整数是.(4)由以上探索猜想对于任何有理数x,|3||6|-+-是否有最小值?如果有,写出最小值;如果没有,x x说明理由.【详解】解:(1)|5(2)|7--=,故本题答案为:7;(2)(10081005)2 1.5-+÷=-,故本题答案为: 1.5-;(3)式子|5||2|7++-=理解为:在数轴上,某点到5x x-所对应的点的距离和到2所对应的点的距离之和为7,所以满足条件的整数x 可为5-,4-,3-,2-,1-,0,1,2,故本题答案为:5-,4-,3-,2-,1-,0,1,2;(4)有,最小值为3(6)3---=.12.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示3-和2两点之间的距离是;一般地,数轴上表示数m 和数n 的两点之间的距离等于||m n -.如果表示数a 和1-的两点之间的距离是3,那么a =.(2)若数轴上表示数a 的点位于4-与2之间,则|4||2|a a ++-的值为;(3)利用数轴找出所有符合条件的整数点x ,使得|2||5|7x x ++-=,这些点表示的数的和是.(4)当a =时,|3||1||4|a a a ++-+-的值最小,最小值是.【详解】解:(1)|14|3-=,|32|5--=,|(1)|3a --=,13a +=或13a +=-,解得:4a =-或2a =,故本题答案为:3,5,4-或2;(2) 表示数a 的点位于4-与2之间,40a ∴+>,20a -<,|4||2|(4)[(2)]426a a a a a a ∴++-=++--=+-+=,故本题答案为:6;(3)使得|2||5|7x x ++-=的整数点有2-,1-,0,1,2,3,4,5,2101234512--++++++=,故本题答案为:12;(4)1a =有最小值,最小值|13||11||14|4037=++-+-=++=,故本题答案为:7.1.将2,4,6,8,⋯,200这100个偶数,任意分为50组,每组两个数,现将每组的两个数中任意数值记作a ,另一个记作b ,代入代数式1(||)2a b a b -++中进行计算,求出其结果,50组数代入后可求得50个值,则这50个值的和的最大值是.【详解】解:当a b >时,11(||)()22a b a b a b a b a -++=-++=,当a b <时,11(||)()22a b a b b a a b b -++=-++=,1021041062007550∴+++⋯⋯+=,∴这50个值的和的最大值是7550.故本题答案为:7550.2.39121239||||||||a a a aa a a a +++⋯+的不同的值共有()个.A .10B .7C .4D .3【详解】解:当0a >,1||a a =,当0a <时,1||aa =-,按此分类讨论:当1a 、2a 、3a 、⋯、9a 均为正数时,391212399||||||||a a a aa a a a +++⋯+=;当1a 、2a 、3a 、⋯、9a 有八个为正数,一个为负数时,39121239817||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有七个为正数,两个为负数时39121239725||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有六个为正数,三个为负数时,39121239633||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有五个为正数,四个为负数时,39121239541||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有四个为正数,五个为负数时,39121239451||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有三个为正数,六个为负数时,39121239363||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有两个为正数,七个为负数时,39121239275||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有一个为正数,八个为负数时,39121239187||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 均为负数时,391212399||||||||a a a aa a a a +++⋯+=-;所以共有10个值.故本题选:A .3.若x 是有理数,则|2||4||6||8||2022|x x x x x -+-+-+-+⋯+-的最小值是.【详解】解:当1012x =时,算式|2||4||6||2022|x x x x -+-+-+⋯+-的值最小,最小值=2|2|2|4|2|6|2|1012|x x x x -+-+-+⋯+-2020201620120=+++⋯+(20200)5062=+⨯÷20205062=⨯÷511060=.故本题答案为:511060.4.对于有理数x ,y ,a ,t ,若||||x a y a t -+-=,则称x 和y 关于a 的“美好关联数”为t ,例如,|21||31|3-+-=,则2和3关于1的“美好关联数”为3.(1)3-和5关于2的“美好关联数”为;(2)若x 和2关于3的“美好关联数”为4,求x 的值;(3)若0x 和1x 关于1的“美好关联数”为1,1x 和2x 关于2的“美好关联数”为1,2x 和3x 关于3的“美好关联数”为1,⋯,40x 和41x 关于41的“美好关联数”为1,⋯.①01x x +的最小值为;②12340x x x x +++⋯⋯+的最小值为.【详解】解:(1)|32||52|8--+-=,故本题答案为:8;(2)x 和2关于3的“美好关联数”为4,|3||23|4x ∴-+-=,|3|3x ∴-=,解得:6x =或0x =;(3)①0x 和1x 关于1的“美好关联数”为1,01|1||1|1x x ∴-+-=,∴在数轴上可以看作数0x 到1的距离与数1x 到1的距离和为1,∴只有当00x =,11x =时,01x x +有最小值1,故本题答案为:1;②由题意可知:12|2||2|1x x -+-=,12x x +的最小值123+=,34|4||4|1x x -+-=,34x x +的最小值347+=,56|6||6|1x x -+-=,56x x +的最小值5611+=,78|8||8|1x x -+-=,78x x +的最小值7815+=,......,3940|40||40|1x x -+-=,3940x x +的最小值394079+=,12340x x x x ∴+++⋯⋯+的最小值:371115...79+++++(379)202+⨯=820=,故本题答案为:820.。

七年级上册数学绝对值知识点总结

七年级上册数学绝对值知识点总结

七年级上册数学绝对值知识点总结宝子们,今天咱们来唠唠七年级上册数学里绝对值这个知识点哈。

一、绝对值是个啥玩意儿。

1. 定义。

- 简单来说,绝对值就是一个数在数轴上离原点的距离。

比如说,5这个数,它在数轴上离原点0的距离是5个单位长度,那|5|就等于5;同样的, - 5离原点的距离也是5个单位长度,所以| - 5|也等于5。

就像你从家到学校不管是向左走还是向右走,只要走的路程一样,那这个路程的长度就是绝对值啦。

2. 表示方法。

- 绝对值用两条竖线来表示,就像这样|a|,这里的a可以是正数、负数或者0。

二、绝对值的性质。

1. 非负性。

- 这可是绝对值的一个超重要的性质哦。

任何数的绝对值都是大于等于0的。

你想啊,距离哪有负的呢?就像你和朋友之间的距离,总不能是负的吧。

不管这个数是3也好, - 3也罢,|3| = 3,| - 3|=3,它们的绝对值都是正的或者0(0的绝对值就是0)。

2. 互为相反数的两个数绝对值相等。

- 比如说5和 - 5是互为相反数的,它们离原点的距离都是5,所以|5|=| -5|。

这就像你和你的小伙伴在原点的两边,但是你们离原点的距离是一样的呢。

3. 若|a| = a,则a≥0;若|a|=-a,则a≤0。

- 这个怎么理解呢?当一个数的绝对值等于它本身的时候,这个数肯定是正数或者0啦,就像|3| = 3,|0| = 0。

而当一个数的绝对值等于它的相反数的时候,这个数就是负数或者0啦,比如| - 3|=-(-3)=3,这里 - 3的绝对值就是它的相反数3,所以 - 3是符合|a|=-a(a = - 3时)这种情况的,这里的a就是小于等于0的。

三、绝对值的运算。

1. 简单数的绝对值计算。

- 这是最基础的啦。

像|4|就是4,| - 2|就是2,只要根据绝对值的定义,看这个数离原点的距离就好。

2. 含有绝对值的式子化简。

- 比如说|x - 3|,这时候就要分情况讨论了。

当x - 3≥0,也就是x≥3的时候,|x - 3|=x - 3;当x - 3<0,也就是x<3的时候,|x - 3|=-(x - 3)=3 - x。

七年级上册数学绝对值难题类型

七年级上册数学绝对值难题类型

七年级上册数学绝对值难题类型七年级上册数学绝对值难题类型及解析一、绝对值的定义与性质1. 绝对值的定义:数轴上表示数a的点与原点的距离叫做数a的绝对值,记作\vert a\vert。

2. 绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。

互为相反数的两个数的绝对值相等。

二、绝对值的化简1. 已知字母的取值范围化简绝对值当a \geq 0时,\vert a\vert = a;当a 0时,\verta\vert = a。

例如:已知x 0,化简\vert x 2\vert。

因为x 0,所以x 2 0,则\vert x 2\vert = (x 2) = 2 x。

2. 多重绝对值的化简从内向外依次化简绝对值。

例如:化简\vert\vert 3 x\vert 1\vert,需要先求出\vert 3 x\vert的值,再进一步化简。

三、绝对值方程1. 形如\vert x\vert = a(a > 0)的方程方程的解为x = \pm a。

例如:\vert x\vert = 5,则x = \pm 5。

2. 形如\vert ax + b\vert = c(c > 0)的方程当ax + b \geq 0时,ax + b = c;当ax + b 0时,ax + b = c。

例如:\vert 2x 1\vert = 3,当2x 1 \geq 0,即x\geq \frac{1}{2}时,2x 1 = 3,解得x = 2;当2x 1 0,即x \frac{1}{2}时,2x 1 = 3,解得x = 1。

四、绝对值不等式1. 形如\vert x\vert a(a > 0)的不等式不等式的解集为a x a。

例如:\vert x\vert 2,则2 x 2。

2. 形如\vert x\vert > a(a > 0)的不等式不等式的解集为x a或x > a。

例如:\vert x\vert > 3,则x 3或x > 3。

七年级数学上册绝对值知识梳理人教版

七年级数学上册绝对值知识梳理人教版

1 / 2绝对值【知识梳理】1、什么叫绝对值?在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值.例如+5的绝对值等于5,记作|+5|=5;-3的绝对值等于3,记作|-3|=3.2、绝对值的特点有哪些?(1)一个正数的绝对值是它本身;例如,|4|=4 , |+7.1| = 7.1 (2)一个负数的绝对值是它的相反数;例如,|-2|=2,|-5.2|=5.2 (3)0的绝对值是0.容易看出,两个互为相反数的数的绝对值相等.如|-5|=|+5|=5.若用a 表示一个数,当a 是正数时可以表示成a >0,当a 是负数时可以表示成a <0,这样,上面的绝对值的特点可用用符号语言可表示为:(1) 如果a >0,那么|a|=a ; (2) 如果a <0,那么|a|=-a ; (3) 如果a =0,那么|a|=0。

3、绝对值在本节课中的应用――比较两个负数的大小由于绝对值是表示数的点到原点的距离,则离原点越远的点表示的数的绝对值越大.负数的绝对值越大,表示这个数的点就越靠左边,因此,两个负数比较,绝对值大的反而小.【重点难点】重点:(1)绝对值的概念; (2)化简;(3)用绝对值比较两个负数的大小。

难点:绝对值的化简;用绝对值比较两个负数的大小。

【典例解析】例1 、已知|x |=5,求x 的值。

解:因为|x |=5,所以x =5或x =-5。

﹡拓展:|x -3|=5,求x 的值.解:因为|x -3|=5所以x -3=5或x -3=-5,则x=8或x=-2 例2、绝对值小于5的整数有哪些?解:有4+,4-,3+,3-,2+,2-,1+,1-,0。

例3、 比较87-和76-的大小. 分析 比较两个负数的大小,应先比较它们绝对值的大小,再根据“两个负数,绝对值大的反而小”来判断它们的大小.解 564987|87|==-,564876|76|==-, 56485649>,所以87-<76- 【过关试题】1、下列说法中正确的有( )① 互为相反数的两个数的绝对值相等;②正数和零的绝对值都等于它本身;③只有负数的绝对值是它的相反数;④一个数的绝对值相反数一定是负数。

七年级数学上册《绝对值》知识点整理

七年级数学上册《绝对值》知识点整理

七年级数学上册《绝对值》知识点整理绝对值绝对值是数学中的一个重要概念,用来表示一个数与零的距离。

在七年级数学上册中,我们学习了关于绝对值的基本性质和应用。

本文将对这些知识点进行整理和总结。

一、绝对值的定义与表示方法绝对值的定义:对于任意实数a,假设a≥0,那么a的绝对值就是a;假设a<0,那么a的绝对值就是-a。

绝对值的表示方法:用两个竖线将数值括起来,例如|3|,表示数3的绝对值。

二、绝对值的基本性质1. 非负性:对于任意实数a,|a|≥0,即绝对值大于等于零。

2. 自身性:对于任意实数a,如果a≥0,则|a|=a;如果a<0,则|a|=-a。

3. 三角不等式:对于任意实数a和b,有|a+b|≤|a|+|b|。

4. 相反数性:对于任意实数a,有|a|=|-a|。

5. 乘法性:对于任意实数a和b,有|a·b|=|a|·|b|。

三、绝对值的应用1. 求绝对值问题:通过绝对值的定义和基本性质,可以求解带有绝对值的方程和不等式,例如:(1) |2x-1|=5,可以拆分为2x-1=5或2x-1=-5,进而解得x=3或x=-2。

(2) |3x+4|<7,可以拆分为-7<3x+4<7,再解出不等式,得到-11/3<x<1。

2. 表示范围问题:绝对值也常用来表示数的范围。

(1) 对于所有实数x,当|x-5|<3时,x的取值范围是(2, 8)。

(2) 对于所有实数x和y,当|y|≤2时,表示平面上所有与原点距离不超过2的点的集合。

3. 复数的模问题:在复数的表示中,绝对值被称为复数的模。

复数的模定义为复数与原点之间的距离,例如,对于复数z=a+bi,其模表示为|z|=√(a²+b²)。

通过绝对值的性质,可以进行复数的模运算,例如:(1) |(2+3i)·(4-5i)| = |2+3i|·|4-5i| = √(2²+3²)·√(4²+(-5)²) = √4(2²+3²+4²+(-5)²) = 9。

七年级数学上《绝对值》知识解析

七年级数学上《绝对值》知识解析

《绝对值》知识解析
课标要求
理解绝对值的含义,会求一个数的绝对值,理解绝对值的几何定义和代数定义。

知识结构
1.绝对值的几何意义:数轴上表示数a的点到原点的距离叫做这个数a的绝对值,它是一个数的几何特征,利用一个数的绝对值的几何意义可以直观地将数和点联系起来.更有利于研究它的性质.
2.绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
3.任给一个有理数,求它的绝对值.
内容解析
教材首先通过实例提出决定一个数不仅是符号,还有它到原点的距离---绝对值,然后利用数轴提出绝对值的几何意义——数轴上表示数a的点到原点的距离叫做这个数a的绝对值,在数轴上研究不同类别的数的绝对值,归纳总结出绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.从而使学生学会求一个数的绝对值,了解有理数的绝对值的特征.
重点难点
本节的重点是正确理解绝对值的定义,能求一个数的绝对值.难点是正确理解一个数的绝对值的几何定义和代数定义.
教法导引
利用数轴引导学生观察绝对值的几何意义,总结绝对值的代数意义,通过数形结合,启发、诱导、讨论的方法学会找一个数的绝对值.
学法建议
联系生活实际,利用类推,归纳,相互讨论的方式来学习绝对值.。

七年级数学《绝对值》教案【优秀9篇】

七年级数学《绝对值》教案【优秀9篇】

七年级数学《绝对值》教案【优秀9篇】学习难点: 篇一绝对值的综合运用绝对值教案篇二绝对值教学目标:通过数轴,使学生理解绝对值的概念及表示方法1、理解绝对值的意义,会求一个数的绝对值及进行有关的简单计算2、通过绝对值概念、意义的探讨,渗透数形结合、分类讨论等数学思想方法3、通过学生合作交流、探索发现、自主学习的过程,提高分析、解决问题的能力教学重点:理解绝对值的概念、意义,会求一个数的绝对值教学难点:绝对值的概念、意义及应用教学方法:探索自主发现法,启发引导法设计理念:绝对值的意义,在初中阶段是一个难点,要理解绝对值这一抽象概念的途径就是把它具体化,从学生生活周围熟悉的事物入手,借助数轴,使学生理解绝对值的几何意义。

通过“想一想”,“议一议”,“做一做”,“试一试”,“练一练”等,让学生在观察、思考,合作交流中,经历和体验绝对值概念的形成过程,充分发挥学生在教学活动中的主体地位,从而逐步渗透数形结合、分类讨论等数学思想方法,提高学生分析、解决问题的能力。

教学过程:一、创设情境,复习导入。

今天我们来学习一个重要而很实际的数学概念,提高我们的数学本领,先请大家看屏幕,思考并解答题中的问题。

(用多媒体出示引例)星期天张老师从学校出发,开车去游玩,她先向东行千米,到了游乐园,下午她又向西行千米,回到家中(学校、游乐园、家在同一直线上),如果规定向东为正,①用有理数表示张老师两次所行的路程;②如果汽车每公里耗油升,计算这天汽车共耗油多少升?① 千米,千米;②()×升。

在学生讨论的基础上,教师指出:这个例子涉及两个问题,第一问中的向东和向西是相反意义的量,用正负数表示,第二问是计算汽车的耗油量,因为汽车的耗油量只与行驶的路程有关,而与行驶的方向没有关系,所以没有负数。

这说明在实际生活中,有些问题中的量,我们并不关注它们所代表的意义,只要知道具体数值就行了。

你还能举出其他类似的例子吗?。

小组讨论,有的同学在思考,有的在交流,有些例子被否定,有的得到同伴的赞许,气氛热烈。

[初中数学]绝对值+课件++人教版数学七年级上册

[初中数学]绝对值+课件++人教版数学七年级上册

(2)a,b表示任意有理数,若|a|=|b|,则a与b之间有什么关 系? 解:a=±b.
19 一条直线流水线上有5个机器人,它们站的位置在数轴 上依次用点A1,A2,A3,A4,A5表示,如图所示.
(1)站在点___A_1上的机器人表示的数的绝对值最大,站 在点__A_和2 点___A_5,点___A_3和点___A上4 的机器人到原点 的距离分别相等;
7 (7) --72 =_2_;
(2) -(-1)=_1__; (4) -|-11|=__-__1_1_; (6) +|-20|=__2_0_;
(8) |-3.1|+|1.9|=__5_.
绝对值的应用 6.一只蚂蚁从某点P出发在一条直线上来回爬行,假定向右爬行的路 程记为正,向左爬行的路程记为负,爬行的各段路程依次为(单位: 米): +5,-4,+10,-8,-5,+12,-10. 若蚂蚁共用了9分钟完成上面的路程,那么蚂蚁每分钟走多少路程?
14 下列各式中,等号不成立的是( D )
A. |-5|=5 B.-|-4|=-|4| C. |-3|=3 D.-|-2|=2
15 若a与1互为相反数,则|a+2|等于( C ) A. 2 B.-2 C.1 D.-1
16 如图,已知数轴上A,B两点表示的数分别是a,b,则 计算|b|-|a|正确的是( C ) A. b-a B.a-b C.a+b D.-a-b
17.若 a,b 都是非零的有理数,那么|aa|+|bb|的值是多少? 解:当 a>0,b>0 时,|aa|+|bb|=2;
当 a,b 异号时,|aa|+|bb|=0;
当 a<0,b<0 时,|aa|+|bb|=-2.
综上所述,|aa|+|bb|的值是±2 或 0.
1.|-6|=( B ) A.-6 C.-16

人教版七年级数学上册课件:.4绝对值

人教版七年级数学上册课件:.4绝对值

做一做:
(1)在数轴上表示下列各数,并比较它 们的大小;
- 1.5 , - 3 , - 1 , - 5 ;
(2)求出(1)中各数的绝对值,并比 较它们的大小;
(3)你发现了什么?
解:(1)如图 -5 -4 -3 -2 -1 0 1 2 3
∴ - 5 < - 3 <- 1.5 < - 1 (2)| -1.5 | = 1.5 ; | - 3 | = 3;
试一试: 若பைடு நூலகம்母a表示一个有理数,
你知道a的绝对值等于什么吗?
正数的绝对值是它本身
(1)当a是正数时,|a|=_a___;
a
(2)当a是负数时,|a|=_-a_; | a | a
(3)当a=0时,|a|=_0__负是. 数它的的相绝反对数值 0
(a 0) (a 0) (a 0)
0的绝对值是0
因为- 2.7在 -
5 6
的左边,所以-
2.7﹤ -
5 6
例2 比较 7 和 6 的大小.
8
7
分析: 比较两个负数的大小,应先比较它们绝
对值的大小,再根据“两个负数,绝对值大的
反而小”来判断它们的大小.
解:∵ | 6 | 6 48
7 7 56
| 7 | 7 49 8 8 56
49 48 56 56
1、正数都大于零,负数都小于零,
正数大于一切负数.
2、两个正数比较大小,绝对值大的数大; 两个负数比较大小,绝对值大的数反而小.
填一填
(1)绝对值小于 3 的整数有 __________________.
(2)绝对值不大于 3 的负整数是 ________________.
(3)绝对值大于 2/3 而小于 8/3 的整数 是_________.

1.4 绝 对 值 考点梳理与突破(课件)华东师大版(2024)数学七年级上册

1.4 绝 对 值 考点梳理与突破(课件)华东师大版(2024)数学七年级上册
B.- |-(-6)| =-6,故 B 项正确;
C.- |-5|=-5,故 C 项错误;
D.-[-(+8)]=8,故 D 项错误.
[答案]B
返回目录
1.4 绝 对 值
重 ■题型一 绝对值非负性的应用

例 1 已知 |a-3| 与 |2b-4| 互为相反数.


(1)求 a 与 b 的值;


(2)若|x|=2a+4b,求 x 的相反数.
1.4 绝 对 值
返回目录
变式衍生 数轴上点 A 表示的数的绝对值是 3,且在


题 原点的左侧,B,C 两点表示的数互为相反数,且点 B 到
型 点 A 的距离是 2,则点 C 表示的数应该是________.
5或1


1.4 绝 对 值
返回目录
解题通法 在数轴上表示互为相反数的两个点在原点的

返回目录
1.4 绝 对 值






返回目录
[答案] 解:(1)因为|a-3|与 |2b-4|互为相反数,
所以 |a-3|+ |2b-4| =0,所以 a-3=0,2b-4=0,
解得 a=3,b=2;
(2)因为 a=3,b=2,
所以 |x| =2a+4b=2×3+4×2=6+8=14,
所以 x=±14,所以 x 的相反数为-14 或 14.

[答案] C
[易错] D
[错因]|a| = |b| ,忽略了 a=-b 这种情况.
1.4 绝 对 值
返回目录
易错警示 两个数的绝对值相等时,这两个数可能相等

七年级上册数学绝对值讲解

七年级上册数学绝对值讲解

七年级上册数学中的绝对值讲解一、绝对值的定义绝对值是一个数值不考虑它的符号的值。

具体来说,一个数 a 的绝对值 |a| 是一个定义了 a 与原点的距离的数。

如果 a 是非负的,那么 |a| = a;如果 a 是负的,那么 |a| = -a。

绝对值在数学中有着广泛的应用,它帮助我们解决许多问题,如求解方程和不等式,进行距离计算等。

二、绝对值性质绝对值具有以下性质:1.|a| ≥ 0:无论 a 是正数、负数还是零,其绝对值都大于等于零。

2.|a| = |-a|:一个数的绝对值等于其相反数的绝对值。

3.|a + b| ≤ |a| + |b|:两个数的和的绝对值小于或等于它们各自绝对值的和。

4.|ab| = |a| × |b|:两个数的乘积的绝对值等于它们各自绝对值的乘积。

三、实例讲解例如,我们要求解方程 |x - 3| = 5。

首先,我们知道 |x - 3| ≥ 0,所以 x - 3 = 5 或 x - 3 = -5。

从这两个方程中,我们可以解出 x = 8 或 x = -2。

因此,方程 |x - 3| = 5 的解为 x = 8 或 x = -2。

四、题型分析与解题技巧求解绝对值问题时,我们需要注意以下题型及其解题技巧:1.求绝对值方程:我们需要根据绝对值的定义,将问题转化为求解非绝对值方程的问题。

2.求绝对值不等式:我们需要先确定不等式的解集,然后确定符合条件的所有可能解。

3.利用绝对值的几何意义:我们可以通过绘制数轴或坐标系来帮助我们理解和解决绝对值问题。

五、扩展应用绝对值的概念在许多实际问题中都有应用,例如测量距离、计算误差等。

同时,它也与其他数学概念相关联,例如不等式、函数等。

此外,通过解决各种与绝对值相关的问题,我们可以提高我们的逻辑推理能力和问题解决能力。

六、注意事项在处理与绝对值相关的问题时,我们需要特别注意以下几点:1.要理解绝对值的定义和性质,以便正确地处理问题。

2.在求解绝对值方程或不等式时,需要小心处理不同的可能性,以确保答案的正确性。

七年级上册绝对值知识点

七年级上册绝对值知识点

七年级上册绝对值知识点在数学中,绝对值是一个非常重要的概念。

它已经成为了我们求解问题中不可缺少的一部分。

在七年级上册学习中,绝对值也成为了必学知识点之一。

本篇文章将为大家详细介绍七年级上册绝对值知识点,希望可以帮助大家更好地掌握这一知识。

一、绝对值的概念绝对值是指一个数与零点之间的距离,因此绝对值始终为正数。

在数学符号上,绝对值用竖线包围数值表示,比如|3|表示3的绝对值。

二、绝对值的运算法则1.同号相加,不同号相减如果a、b都是正数或都是负数,则|a|+|b|=|a+b|。

如果a、b分别是正数和负数,则|a|-|b|=|a+b|。

2.绝对值的分段函数表示当x≥0时,|x|=x;当x<0时,|x|=-x。

三、绝对值的应用1.求距离我们可以通过绝对值来求两个点之间的距离。

比如,点A(-5,0)和点B(3,0)之间的距离,可以表示为|3-(-5)|=8。

可以利用勾股定理求得这条线段长度为8。

2.判断大小有时候,我们需要判断两个数谁比较大。

对于正数a和b,如果|a|>|b|,则a的值较大;如果|a|<|b|,则b的值较大;如果|a|=|b|,则a和b的值相等。

3.解不等式绝对值在解不等式中也很常用。

比如,|x+3|>5,我们可以通过将不等式转化为二元一次不等式进行求解,也可以通过绝对值的定义直接求解。

通过上述三个绝对值的应用,我们可以看出绝对值在数学中的重要性。

在学习绝对值的过程中,不仅需要掌握相关定义和运算方法,还需要灵活运用,并结合几何和代数的知识,来解决实际问题。

四、举例说明例1.计算-5与3的绝对值之和。

|(-5)|+|3|=5+3=8。

因此,-5与3的绝对值之和为8。

例2.计算|-5-3|。

|-5-3|=|-8|=8。

因此,|-5-3|=8。

例3.解不等式|2x-6|≥4。

当2x-6≥0时,|2x-6|=2x-6;当2x-6<0时,|2x-6|=-(2x-6)。

七年级数学上册 绝对值

七年级数学上册 绝对值

绝对值(基础)要点一、绝对值1.定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a|. 要点诠释:(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小.(3)一个有理数是由符号和绝对值两个方面来确定的.2.性质:绝对值具有非负性,即任何一个数的绝对值总是正数或0.要点二、有理数的大小比较1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b .2.法则比较法: 两个数比较大小,按数的性质符号分类,情况如下: 两数同号 同为正号:绝对值大的数大 同为负号:绝对值大的反而小 两数异号正数大于负数 -数为0 正数与0:正数大于0负数与0:负数小于0要点诠释:利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小;(3)判定两数的大小.3. 作差法:设a 、b 为任意数,若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,a <b ;反之成立.4. 求商法:设a 、b 为任意正数,若,则;若,则;若,则;反之也成立.若a 、b 为任意负数,则与上述结论相反.5. 倒数比较法:如果两个数都大于0,那么倒数大的反而小.【典型例题】类型一、绝对值的概念1.求下列各数的绝对值.,-0.3,0, 1a b >a b >1a b =a b =1a b<a b <112-132⎛⎫-- ⎪⎝⎭【思路点拨】,-0.3,0,在数轴上位置距原点有多少个单位长度,这个数字就是各数的绝对值.还可以用绝对值法则来求解.【答案与解析】解法一:因为到原点距离是个单位长度,所以. 因为-0.3到原点距离是0.3个单位长度,所以|-0.3|=0.3.因为0到原点距离为0个单位长度,所以|0|=0.因为到原点的距离是个单位长度,所以. 解法二:因为,所以. 因为-0.3<0,所以|-0.3|=-(-0.3)=0.3.因为0的绝对值是它本身,所以|0|=0.因为,所以. 【总结升华】求一个数的绝对值有两种方法:一种是利用绝对值的几何意义求解(如方法1),一种是利用绝对值的代数意义求解(如方法2),后种方法的具体做法:首先判断这个数是正数、负数还是0.再根据绝对值的意义,确定去掉绝对值符号的结果是它本身,是它的相反数,还是0.从而求出该数的绝对值.2.下列说法正确的是( )A. 一个数的绝对值一定比0大B. 一个数的相反数一定比它本身小C. 绝对值等于它本身的数一定是正数D. 最小的正整数是1【答案】D .【解析】A 、一个数的绝对值一定比0大,有可能等于0,故此选项错误;B 、一个数的相反数一定比它本身小,负数的相反数,比它本身大,故此选项错误;C 、绝对值等于它本身的数一定是正数,0的绝对值也等于其本身,故此选项错误;D 、最小的正整数是1,正确.【总结升华】此题主要考查了绝对值以及有理数和相反数的定义,正确掌握它们的区别是解题关键.举一反三:【变式1】求绝对值不大于3的所有整数.【答案】绝对值不大于3的所有整数有-3、-2、-1、0、1、2、3.【变式2】已知一个数的绝对值是4,则这个数是 .【答案】±4.【变式3】数轴上的点A 到原点的距离是6,则点A 表示的数为 .112132⎛⎫-- ⎪⎝⎭112-112111122-=132⎛⎫-- ⎪⎝⎭132113322⎛⎫--= ⎪⎝⎭1102-<111111222⎛⎫-=--= ⎪⎝⎭1302⎛⎫--> ⎪⎝⎭113322⎛⎫--= ⎪⎝⎭【答案】6或-6类型二、比较大小3.比较大小: ﹣(﹣ 1.8)(填“>”、“<”或“=”).【思路点拨】先化简,再比较大小,即可解答.【答案】<.【解析】解:|﹣1|=1=1.75,﹣(﹣1.8)=1.8,∵1.75<1.8,∴|﹣1|<﹣(﹣1.8),故答案为:<.【总结升华】本题考查了有理数大小比较,解决本题的关键是掌握绝对值的化简以及多重复号的化简方法.举一反三:【变式1】比大小:______ ; -|-3.2|______-(+3.2); 0.0001______-1000; ______-1.384; -π______-3.14.【答案】>;=;>;>;<【变式2】下列各数中,比-1小的数是( )A .0B .1C .-2D .2【答案】C【变式3】数a 在数轴上对应点的位置如图所示,则a ,-a ,-1的大小关系是( ).A .-a <a <-1B .-1<-a <aC .a <-1<-aD .a <-a <-1【答案】C 类型三、绝对值非负性的应用4. 已知|2-m|+|n-3|=0,试求m-2n 的值.【思路点拨】由|a |≥0即绝对值的非负性可知,|2-m |≥0,|n-3|≥0,而它们的和为0.所以|2-m |=0,|n-3|=0.因此,2-m =0,n-3=0,所以m =2,n =3.【答案与解析】因为|2-m|+|n-3|=0且|2-m|≥0,|n-3|≥0所以|2-m|=0,|n-3|=0即2-m =0,n-3=0653-763-1.38-所以m=2,n=3故m-2n=2-2×3=-4.【总结升华】若几个数的绝对值的和为0,则每个数都等于0,即|a|+|b|+…+|m|=0时,则a=b=…=m=0.类型四、绝对值的实际应用5.正式足球比赛对所用足球的质量有严格的规定,下面是6个足球的质量检测结果,用正数记超过规定质量的克数,用负数记不足规定质量的克数.检测结果(单位:克):-25,+10,-20,+30,+15,-40.裁判员应该选择哪个足球用于这场比赛呢?请说明理由.【答案】因为|+10|<|+15|<|-20|<|-25|<|+30|<|-40|,所以检测结果为+10的足球的质量好一些.所以裁判员应该选第二个足球用于这场比赛.【解析】根据实际问题可知,哪个足球的质量偏离规定质量越小,则足球的质量越好.这个偏差可以用绝对值表示,即绝对值越小偏差也就越小,反之绝对值越大偏差也就越大.【点评】绝对值越小,越接近标准.举一反三:【变式1】某企业生产瓶装食用调和油,根据质量要求,净含量(不含包装)可以有0.002L 的误差.现抽查6瓶食用调和油,超过规定净含量的升数记作正数,不足规定净含量的升数记作负数.检查结果如下表:请用绝对值知识说明:(1)哪几瓶是合乎要求的(即在误差范围内的)?(2)哪一瓶净含量最接近规定的净含量?【答案】(1)绝对值不超过0.002的有4瓶,分别是检查结果为+0.0018,-0.0015,+0.0012,+0.0010的这四瓶.(2)第6瓶净含量与规定的净含量相差最少,最接近规定的净含量.【变式2】一只可爱的小虫从点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,小虫爬行的各段路程(单位:cm)依次记为:+5,-3,+10,-8,-6,+12,-10,在爬行过程中,如果小虫每爬行1cm就奖励2粒芝麻,那么小虫一共可以得到多少粒芝麻?【答案】小虫爬行的总路程为:|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=5+3+10+8+6+12+10=54(cm) .小虫得到的芝麻数为54×2=108(粒) .。

人教版七年级数学上册绝对值课件

人教版七年级数学上册绝对值课件

课堂小结
一般地,数轴上表示数 a 的点与原点的距离 叫做数 a 的绝对值,记作|a|.
由绝对值的定义可知: (1)若a > 0,则| a | = a; (2)若a < 0,则| a | = -a; (1)若a = 0,则| a | = 0;
1.2.4 绝对值
第2课时 有理数的大小比较
R·七年级上册
讨论下面3个问题: (1)有没有绝对值等于-2的数? (2)一个数的绝对值会是负数吗?为什么? (3)不论有理数a取何值,它的绝对值总是 什么数?
不论有理数a取何值,它的绝对值总是正数 或0(非负数),即对任意有理数a,总有| a |≥ 0.
判断:
a=0
Ⅰ.若a = -a,则a<0. ( × ) 还有0 Ⅱ.绝对值等于它本身的数一定是正数. ( × )
3
思考 ①比较两数大小时,如果有括号和绝对值时, 怎么办?
先将括号和绝对值化简,再比较大小. ②异号两数大小怎样比较?同号两数大小怎 样比较?
若两数异号,则正数大于负数;若两数同号, 先考虑它们的绝对值.
说说你对绝对值的认识?有理数怎样比较大小?
归纳: (1)一个正数的绝对值是它本身;一个负数的
Ⅲ.绝对值最小的数是1. ( × )
Ⅳ.任何有理数的绝对值都是正数. ( × )
0的绝对值是0,但0不是正数
互为相反数的两个数的绝对值有什么关系? 分析:一对相反数虽然分别在原点两边,但 它们到原点的距离是相等的.
结论:互为相反数的两个数的绝对值相等.
【课本P11 练习 第1题】
练习:写出下列各数的绝对值:
0 < 1,1 < 2,2 < 3,… 任意两个有理数(例如-4和-3, -2和0,-1 和1)怎样比较大小呢?

七年级上册数学绝对值知识点总结

七年级上册数学绝对值知识点总结

七年级上册数学绝对值知识点总结绝对值是七年级数学中的一个基本概念,它在很多数学运算和实际应用中都有重要意义。

绝对值的引入可以帮助学生理解数轴、数与数之间的距离以及负数与正数的关系。

掌握绝对值的概念和性质是进一步学习代数、几何等数学领域的基础。

一、绝对值的定义1.绝对值的概念:绝对值表示一个数与零之间的距离。

每个实数都有一个绝对值,绝对值总是非负的。

2.数学表示:对于任何实数x,绝对值的表示为|x|。

如果x≥0,则|x|=x;如果x<0,则|x|=-x。

二、绝对值的几何意义1.数轴上的表示:在数轴上,任意一点与原点之间的距离就体现了该点的绝对值。

2.距离的计算:绝对值不仅可以用于表示数与零的距离,还可以表示两个数之间的距离。

对于任意两个实数a和b,a与b之间的距离可以表示为|a - b|。

三、绝对值的基本性质1.非负性:对于任何实数x,|x|≥0,表示绝对值永远是非负数。

2.自反性:|x|=0当且仅当x=0。

3.现实性:|x|的值与x的符号无关,只与数的大小有关。

4.乘法性质:|a * b| = |a| * |b|。

5.加法性质:|a + b| ≤ |a| + |b|(三角不等式)。

四、绝对值的运算1.加法运算:对于两个绝对值相加,一定要注意计算哪部分是负数,需要根据具体的数值来判断。

2.减法运算:|a - b|并不等于|a| - |b|,需要根据数的大小关系进行判断。

3.乘法和除法:两数的绝对值相乘或相除时,绝对值的乘法和除法性质仍然成立。

五、绝对值方程1.绝对值方程的定义:包含绝对值的方程,例如|x|=a,其中a为非负数。

2.求解绝对值方程的方法:根据定义,分情况讨论。

例如|x|=3可以分为x=3和x=-3两种情况。

3.抽象方程的解决:复杂的绝对值方程需要通过建立方程或不等式进行逐步求解。

六、绝对值不等式1.绝对值不等式的形式:一般形式为|x|<a、|x|>a。

2. |x|<a:对于这种不等式,解集为-x<a<x。

七年级数学上册《绝对值》知识点整理

七年级数学上册《绝对值》知识点整理

七年级数学上册《绝对值》知识点整理绝对值是数学中的一个重要概念,它在数学运算、方程与不等式的求解等方面起着重要的作用。

本文将对七年级数学上册中有关"绝对值"的知识点进行整理。

一、绝对值的定义及性质绝对值是一个数与零点之间的距离,通常用两个竖杠“| |”表示。

对于任意实数a,其绝对值记作|a|,其定义如下:1. 当a≥0时,|a|=a。

2. 当a<0时,|a|=-a。

根据绝对值的定义,我们可以得到以下一些重要的性质:1. |a|≥0,绝对值不小于零。

2. |a|=0的充分必要条件是a=0。

3. 如果a和b是任意两个实数,则|ab|=|a|·|b|。

4. 如果a是任意一个实数,则|a|=|-a|。

根据性质4,我们可以将绝对值运算简化为先求出a的相反数,再取相反数的绝对值。

这对于简化绝对值运算是很有帮助的。

二、绝对值的运算规则在我们进行绝对值的运算时,需要了解以下几个重要的运算规则:1. 加减法规则:|a±b|≤|a|+|b|。

绝对值的加减可以化简为绝对值都为正号的情况,然后再进行运算。

2. 乘法规则:|ab|=|a|·|b|。

绝对值的乘法运算简化为各自数的绝对值相乘。

3. 整除规则:如果a能整除b,则|a|能整除|b|。

4. 互为倒数规则:如果a和b是互为倒数的两个数,则|a|=|b|。

根据以上的运算规则,我们可以更加方便地处理绝对值的运算。

三、绝对值的应用在数学课程中,我们经常会看到绝对值的应用,特别是在方程与不等式的求解过程中。

下面我们以一些例题来说明如何应用绝对值进行解答。

例1:求解方程|2x+3|=5。

解:根据绝对值的定义,我们可以列出等式:2x+3=5 或 2x+3=-5然后分别解得:2x=2 或 2x=-8x=1 或 x=-4所以方程的解为x=1或x=-4。

例2:求解不等式|3x-4|≥7。

解:根据绝对值的定义,我们可以列出不等式:3x-4≥7 或 -(3x-4)≥7然后分别解得:3x≥11 或 -3x≥11x≥11/3 或x≤-11/3所以不等式的解为x≥11/3或x≤-11/3。

1.2.4 绝对值【新课标版】七年级上册数学

1.2.4  绝对值【新课标版】七年级上册数学

到达B处,记做 -10 km.


B
O
A
-10
0
10
探究新知
?思 考
以O为原点,取适当的单位长度画数轴,并在数轴
上标出A、B的位置,则A、B两点与原点距离分别是多
少?它们的实际意义是什么?
B
O
A
-10
0
10
探究新知
绝对值定义:一般地,数轴上表示数a的点与原点的距离 叫做数a的绝对值,记作“|a|”.
所以|x-6| = 0,|y-3| = 0,
x=6, y=3,
x 2. y
当堂训练
基础巩固题
1. 判断并改错:
(1)一个数的绝对值等于本身,则这个数一定是正数. (×)
(2)一个数的绝对值等于它的相反数,这个数一定是负数.(×)
(3)如果两个数的绝对值相等,那么这两个数一定相等. (×)
(4)如果两个数不相等,那么这两个数的绝对值一定不等.(×)
(7)若|a|=-a,则a必为负数.
a,b也可能互为相反数,
×即aa=也-b可能是0
(8)互为相反数的两个数的绝对值相等. √
巩固练习
求下列各数的绝对值:
-18,
0, - 1 , 7.2,
4 +.
2
9
解: -18 18, 0 =0, - 1 = 1,
22
7.2 7.2, 4 = 4 .
99
探究新知
巩固练习
若|x|=5,则x的值是( C )
A. 5
B. -5
C. ±5
1
D.
5
解析:|x|=5,即数x到原点的距离是5,而到原点 的距离是5的数有5和-5,所以x的值是5和-5.

七年级上册数学绝对值必考八大经典题型pdf

七年级上册数学绝对值必考八大经典题型pdf

七年级上册数学绝对值必考八大经典题型题型一:定义考查例1:|-2|的相反数是分析:负数的绝对值等于它的相反数。

答案:-2例2:绝对值大于等于1,小于4的所有正整数和为分析:符合题意的正整数有1、2、3。

答案:6例3:已知|x|=5,则x=,已知|-x|=3,则x=分析:绝对值等于5的数有±5,同理-x=±3,则x=±3。

答案:±5;±3例4:已知|x-2|=3,则x=;已知|2-x|=1,则x=分析:|x-2|=3表示x与2的距离是3,故x=-1或5。

|2-x|=1表示x与2的距离是1,故x=1或3。

答案:-1或5;1或3题型二:非负性例1:已知|a+3|+|b-1|=0,则a+b的值是分析:多个非负数的和为0,则每一个都是0,故a=-3,b=1。

答案:-2例2:已知|a-1|+|b-2|+2|c-3|=0,则a+b+c的值是分析:多个非负数的和为0,则每一个都是0,故a=1,b=2,C=3。

答案:6例3:已知|x|=x,则x0;已知|x|=-x,则x0分析:绝对值具有非负性,所以等式右边一定≥0。

答案:≥;≤例4:已知|x-2|=x-2,则x2;已知|x-2|=2-x,则x2分析:绝对值具有非负性,所以等式右边一定≥0。

答案:≥;≤题型三:去绝对值例1:|3-π|+|π-4|=分析:去绝对值,必须先判断绝对值内的正负,3-π和π-4均为负数,绝对值应取相反数,故原式=π-3+4-π=1答案:1例2:已知|≤x≤5,则||-x|+|x-5|=分析:因为|≤x≤5,所以1-x≤0,x-5≤0,故原式=x-1+5-x=4。

答案:4例3:如图所示,则|a-b|-|2c+b|+|a+c|=分析:由图可知:C,1a-b>0,2c+b<0,a+c<0,故原式=a-b-(-2c-b)+(-a-c)=C答案:C题型四:分类讨论例1:若|a|=5,|b|=7,且|a+b|=a+b,则a-b=分析:a=±5,b=±7,且a+b≥0(非负性);故a=5、b=7,或a=-5,b=7答案:-2或-12例2:若|a|=1,|b|=2,|c|=3,且a>b>c。

七年级上数学绝对值的题型总结

七年级上数学绝对值的题型总结

七年级上数学绝对值的题型总结绝对值是七年级数学中的一个重要概念,它涉及到了数的绝对值、几何距离、表示数轴上的点等多个方面。

以下是对绝对值题型的总结,主要包括绝对值的基本概念、应用、基本性质、代数意义、几何意义、生活中的应用以及与其他数学知识的结合等方面。

一、绝对值的基本概念绝对值是一个数在数轴上的距离,用符号“|x|”表示。

如果x是正数,则|x|等于x;如果x是负数,则|x|等于它的相反数;如果x是零,则|x|等于零。

二、绝对值的应用绝对值的应用非常广泛,包括以下几个方面:1.计算两个数的绝对值差:|a-b|等于a和b之间的距离。

2.比较两个数的大小:通过比较它们的绝对值来判断大小关系。

3.解决实际问题:例如,在计算最短路径、找零钱等方面都可以用到绝对值的概念。

三、绝对值的基本性质绝对值具有以下基本性质:1.非负性:|x|总是非负的,即|x|≥0。

2.反身性:任何数的绝对值等于它本身。

3.对称性:如果|a|=b,那么a和b互为相反数。

4.传递性:如果|a|=b,|b|=c,那么|a|=c。

四、绝对值的代数意义绝对值的代数意义主要体现在以下几个方面:1.任何数的绝对值都是非负数。

2.互为相反数的两个数的绝对值相等。

3.正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数。

4.绝对值的运算遵循代数运算的法则。

五、绝对值的几何意义绝对值的几何意义主要体现在以下几个方面:1.用数轴上某个点到原点的距离来表示该数的绝对值。

2.如果点A和点B分别表示两个数的点在数轴上互为相反,那么它们的绝对值相等。

3.如果点A到原点的距离为|x|,那么点A在数轴上对应的数的绝对值为|x|。

六、绝对值在生活中的应用绝对值在生活中的应用非常广泛,主要包括以下几个方面:1.计算距离:在地图上,我们可以使用绝对值来计算两个地点之间的距离。

2.计算时间:在赛跑中,我们可以使用绝对值来计算选手完成比赛的时间。

3.计算费用:在银行中,我们可以使用绝对值来计算存款和取款的金额。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3 绝对值
学习目标:
1.会借助数轴,理解绝对值和相反数的概念。

2.知道| a|的含义以及互为相反数的两个数在数轴上的位置关系。

3.会求一个数的绝对值和相反数,能用绝对值比较两个负数的大小。

学习重难点:
1.绝对值的概念和求一个数的绝对值,理解绝对值的两种意义。

2.能用绝对值比较负数的大小。

3.
一、学前准备:
1.知识链接:
(1)具有 、 、 的 叫做数轴。

(2)3到原点的距离是 ,-5到原点的距离是 ,到原点的距离是6的数
有 ,到原点距离是1的数有 。

2.预学教材:阅读课本P30页(边阅读边思考)回答上面的问题。

你有什么疑难问题: 预学检测:
(1)如果两个数只有_________,那么称其中一个数为另一个数的相反数;一般地,
_____________________________________叫做这个数的绝对值。

有理数a 的绝
对值记作:
(2)一个正数的绝对值是 ;一个负数的绝对值是 ;0的绝对
值是 .
(3)—3的绝对值是_____,0的绝对值是_______,_________的绝对值是1
│-8│= , -│8│= ,│x │=8,则x=
二、课堂导学:
探究活动(一):相反数,绝对值的概念
1.检查预习情况
①P30 :3与-3有什么异同点?你还能列举这样的数吗?小组交流。

②对教材“想一想”,小组同学交流,小组代表班上交流,得出结论:
| a|两层含义:一、是表示数a 的绝对值;二、是表示数轴上数a 对应点到原点的距离。

③同组同学交流P30例1,完成P31“议一议”
2.变式训练:
1.①-4的绝对值记作( ),它表示在 上 与 的距离,所以|4|= 。

②-6和6它们分别在数轴上表示 到 的距离,所以|-6| |6|。

2.请在小组内说出|7|、∣-2.25∣、∣2
5-
∣、∣0∣的意义及相反数。

探究活动(二):绝对值的意义,利用绝对值比较大小 1.试一试:你能从中发现什么规律?
(1)|+2|= ,51= ,|+8.2|= ; (2)|0|= ;
(3)|-3|= ,|-0.2|= ,|-8.2|= .
归纳:把你所发现的规律写在下面,并在小组内验证是否正确。

小结:正数的绝对值是它 ,负数的绝对值是它的 ,0的绝对值
是 。

即:(1)当a>0时,|a|= (2)当a=0时,|a|= (3)当a<0时,|a|=
对任意有理数a,总有|a| 。

2.检查预学
P31“做一做”情况,将自己的所得与同学交流,小组代表班上交流:
变式训练:
(1)在数轴上表示出下列各数,并比较它们的大小:
-2,-1.6,-3, 0
(2)求出(1)中各数的绝对值,并比较它们的大小。

(3)同组同学交流P31例2,完成教材P32随堂练习
三、学习评价:
当堂检测:
1.数轴上表示数a的点与原点的距离叫做数a的______,记作|a|。

-2到原点的距离是______,因此2-______。

互为相反数的两个数的绝对值_____,即|a|=|-a| 2.绝对值等于它本身的数是_______________或_____________。

绝对值等于它的相反数的是_____________。

3.任何数的绝对值一定__________________0。

绝对值最小的数是______________。

4.比较:-1
2
和-
2
3
的大小
自我评价:
1.学习感受:你完成本课时学习的情况为:()
A.很好
B.较好
C.一般
D.较差
2.学习小结:
3.疑难问题:
四、能力拓展:
1.绝对值小于4的所有负整数有_________;绝对值不大于10.2的整数有个。

2.如果a表示一个数,那么a-表示_____,|a|表示_____________。

3.在数轴上,离开表示数2的点距离是3的点表示的数是_______.
4.若│x-3│+│y+4│+│z-5│=0,分别求x,y,z的值.
5.在数轴上表示下列各数:0,-3, 2,-1
2
,-5.并将上述各数的绝对值用“<”号
连接起来。

五、学后反思:。

相关文档
最新文档