高考数学中档大题规范练(4)——立体几何

合集下载

2018版考前三个月高考数学理科总复习中档大题规范练3:立体几何(含解析)

2018版考前三个月高考数学理科总复习中档大题规范练3:立体几何(含解析)

3.立体几何1.(2017·全国Ⅲ)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD=∠CBD ,AB =BD. (1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D -AE -C 的余弦值.(1)证明由题设可得△ABD ≌△CBD.从而AD =CD ,又△ACD 为直角三角形,所以∠ADC =90°,取AC 的中点O ,连接DO ,BO ,则DO ⊥AC ,DO =AO ,又因为△ABC 是正三角形,故BO ⊥AC ,所以∠DOB 为二面角D -AC -B 的平面角,在Rt △AOB 中,BO 2+OA 2=AB 2,又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2,故∠DOB =90°,所以平面ADC ⊥平面ABC.(2)解由题设及(1)知,OA ,OB ,OD 两两垂直,以O 为坐标原点,OA →为x 轴正方向,OB →为y 轴正方向,OD →为z 轴正方向,|OA →|为单位长度,建立如图所示的空间直角坐标系Oxyz ,则O(0,0,0),A ()1,0,0,D ()0,0,1,B ()0,3,0,C(-1,0,0),由题意知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB 的中点,得E 0,32,12,故AE →=-1,32,12,AD →=()-1,0,1,OA →=()1,0,0.设平面AED 的法向量为n 1=(x 1,y 1,z 1),平面AEC 的法向量为n 2=(x 2,y 2,z 2),则AE →·n 1=0,AD →·n 1=0,解得n 1=1,33,1,AE →·n 2=0,OA →·n 2=0,解得n 2=(0,-1,3),设二面角D -AE -C 为θ,易知θ为锐角,则cos θ=|n 1·n 2||n 1||n 2|=77.2.(2017·河南百校联盟模拟)在如图所示的直三棱柱ABC -A 1B 1C 1中,D ,E 分别是BC ,A 1B 1的中点.(1)求证:DE ∥平面ACC 1A 1;(2)若AB ⊥BC ,AB =BC ,∠ACB 1=60°,求直线BC 与平面AB 1C 所成角的正切值.(1)证明取AB 中点F ,连接DF ,EF.在△ABC 中,因为D ,F 分别为BC ,AB 的中点,所以DF ∥AC ,又DF ?平面ACC 1A 1,AC?平面ACC 1A 1,所以DF ∥平面ACC 1A 1.在矩形ABB 1A 1中,因为E ,F 分别为A 1B 1,AB 的中点,所以EF ∥AA 1,又EF ?平面ACC 1A 1,AA 1?平面ACC 1A 1,所以EF ∥平面ACC 1A 1.因为DF ∩EF =F ,所以平面DEF ∥平面ACC 1A 1.因为DE?平面DEF ,故DE ∥平面ACC 1A 1.(2)解因为三棱柱ABC -A 1B 1C 1为直三棱柱,所以BC ⊥BB 1,又AB ⊥BC ,AB ∩BB 1=B ,所以BC ⊥平面ABB 1A 1.因为AB =BC ,BB 1=BB 1,所以△ABB 1≌△CBB 1,AB 1=CB 1,又∠ACB 1=60°,所以△AB 1C 为正三角形,所以AB 1=AB 2+BB 21=AC =2AB ,所以BB 1=AB.取AB 1的中点O ,连接BO ,CO ,所以AB 1⊥BO ,AB 1⊥CO ,所以AB 1⊥平面BCO ,所以平面AB 1C ⊥平面BCO ,点B 在平面AB 1C 上的射影在CO 上,所以∠BCO 即为直线BC 与平面AB 1C 所成的角.在Rt △BCO 中,BO =22AB =22BC ,所以tan ∠BCO =BO BC =22. 3.(2017·中原名校豫南九校模拟)如图,在矩形ABCD 中,AB =1,AD =a ,PA ⊥平面ABCD ,且P A =1,E ,F 分别为AD ,P A 的中点,在BC 上有且只有一个点Q ,使得PQ ⊥QD. (1)求证:平面BEF ∥平面PDQ ;(2)求二面角E -BF -Q 的余弦值.(1)证明方法一(向量法)以A 点为原点,分别以AB →,AD →,AP →的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系Axyz ,则A(0,0,0),B(1,0,0),D(0,a ,0),P(0,0,1),设Q(1,x ,0),则PQ →=(1,x ,-1),QD →=(-1,a -x ,0),若PQ ⊥QD ,则PQ →·QD →=-1+x(a -x)=0,即x 2-ax +1=0,Δ=a 2-4=0,∴a =2,x =1.∴Q ()1,1,0,QD →=()-1,1,0,又E 是AD 的中点,∴E ()0,1,0,BE →=()-1,1,0,∴QD →=BE →,∴BE ∥DQ ,又BE?平面PDQ ,DQ?平面PDQ ,∴BE ∥平面PDQ ,又F 是P A 的中点,∴EF ∥PD ,∵EF ?平面PDQ ,PD ?平面PDQ ,∴EF ∥平面PDQ ,∵BE ∩EF =E ,BE ,EF?平面BEF ,∴平面BEF ∥平面PDQ.方法二(几何法)题意转化为矩形ABCD 中AQ 垂直于QD 的点Q 只有一个,则以AD 为直径的圆与线段BC 相切,易得BC =2,Q 是线段BC 的中点,由BE ∥QD ,EF ∥DP ,易得两平面平行.(2)解设平面BFQ 的一个法向量m =()x ,y ,z ,则m ·BF →=m ·BQ →=0,由(1)知,BF →=-1,0,12,BQ →=()0,1,0,∴-x +12z =y =0,取z =2,得m =()1,0,2,同样求得平面BEF 的一个法向量n =()1,1,2,cos 〈m ,n 〉=m ·n ||m ||n =306,∵二面角E -BF -Q 为锐角,∴二面角E -BF -Q 的余弦值为306. 4.(2017·云南大理统测)在四棱锥P -ABCD 中,底面ABCD 是正方形,侧面P AD ⊥底面ABCD ,且P A =PD =22AD ,E ,F 分别为PC ,BD 的中点. (1)求证:EF ∥平面PAD ;(2)在线段AB 上是否存在点G ,使得二面角C -PD -G 的余弦值为33,若存在,请求出点G 的位置;若不存在,请说明理由.(1)证明连接AC ,由正方形性质可知,AC 与BD 相交于点F ,所以在△P AC 中,EF ∥P A ,又P A?平面PAD ,EF ?平面PAD ,所以EF ∥平面P AD.(2)解取AD 的中点O ,连接OP ,OF ,因为P A =PD ,所以PO ⊥AD ,又因为侧面P AD ⊥底面ABCD ,交线为AD ,所以PO ⊥平面ABCD ,以O 为原点,分别以射线OA ,OF 和OP 为x 轴,y 轴和z 轴建立空间直角坐标系Oxyz ,不妨设AD =2,则P ()0,0,1,D ()-1,0,0,C ()-1,2,0,假设在AB 上存在点G ()1,a ,0,0<a <2,则PC →=()-1,2,-1,PD →=()-1,0,-1,DG →=()2,a ,0.因为侧面P AD ⊥底面ABCD ,交线为AD ,且底面是正方形,所以CD ⊥平面P AD ,则CD ⊥PA ,由P A 2+PD 2=AD 2,得PD ⊥PA ,又PD ∩CD =D ,PD ,CD?平面PDC ,所以P A ⊥平面PDC ,即平面PDC 的一个法向量为PA →=(1,0,-1).设平面PDG 的法向量为n =(x ,y ,z),由PD →·n =0,DG →·n =0,即-x -z =0,2x +ay =0,亦即z =-x ,y =-2xa ,可取n =(a ,-2,-a).所以|cos 〈PA →,n 〉|=|PA →·n ||PA →||n |=2a 2×4+2a 2=33,解得a =1或a =-1(舍去).所以线段AB 上存在点G ,且G 为AB 的中点,使得二面角C -PD -G 的余弦值为33. 5.(2017·吉林长春检测)已知三棱锥A -BCD 中,△ABC 是等腰直角三角形,且AC ⊥BC ,BC =2,AD ⊥平面BCD ,AD =1.(1)求证:平面ABC ⊥平面ACD ;(2)若E 为AB 的中点,求二面角A -CE -D 的余弦值.(1)证明因为AD ⊥平面BCD ,BC?平面BCD ,所以AD ⊥BC ,又因为AC ⊥BC ,AC ∩AD =A ,AD ,AC?平面ACD ,所以BC ⊥平面ACD ,又BC?平面ABC ,所以平面ABC ⊥平面ACD.(2)解由已知可得CD =3,如图所示建立空间直角坐标系,由已知C(0,0,0),B(0,2,0),A(3,0,1),D(3,0,0),E 32,1,12,则CE →=32,1,12,CA →=(3,0,1),CD →=(3,0,0),设平面ACE 的法向量n =(x 1,y 1,z 1),则n ·CA →=0,n ·CE →=0,3x 1+z 1=0,32x 1+y 1+12z 1=0,令x 1=1,得n =(1,0,-3),设平面CED 的法向量m =(x 2,y 2,z 2),则m ·CD →=0,m ·CE →=0,3x 2=0,32x 2+y 2+12z 2=0,令y 2=1,得m =(0,1,-2),二面角A -CE -D 的余弦值cos 〈m ,n 〉=|n ·m ||n ||m |=2325=155.6.(2017·福建厦门模拟)如图,在梯形ABCD 中,AB ∥CD ,AD =DC =CB =1,∠ABC =60°,四边形ACFE 为矩形,平面ACFE ⊥平面ABCD ,CF =1.(1)求证:BC ⊥平面ACFE ;(2)点M 在线段EF 上运动,设平面MAB 与平面FCB 所成二面角为θ()θ≤90°,试求cos θ的取值范围.(1)证明在梯形ABCD 中,因为AB ∥CD ,AD =DC =CB =1,∠ABC =60°,所以AB =2,所以AC 2=AB 2+BC 2-2AB ·BC ·cos 60°=3,所以AB 2=AC 2+BC 2,所以BC ⊥AC.因为平面ACFE ⊥平面ABCD ,平面ACFE ∩平面ABCD =AC ,BC?平面ABCD ,所以BC ⊥平面ACFE.(2)解建立以直线CA ,CB ,CF 为x 轴,y 轴,z 轴的空间直角坐标系如图所示,令FM =λ(0≤λ≤3),则C(0,0,0),A(3,0,0),B(0,1,0),M(λ,0,1),所以AB →=(-3,1,0),BM →=(λ,-1,1),设n 1=(x ,y ,z)为平面MAB 的一个法向量,由n 1·AB →=0,n 1·BM →=0,得-3x +y =0,λx-y +z =0,取x =1,所以n 1=(1,3,3-λ),因为n 2=(1,0,0)是平面FCB 的一个法向量.所以cos θ=|n 1·n 2||n 1||n 2|=11+3+3-λ2×1=1λ-32+4.因为0≤λ≤3,所以当λ=0时,cos θ有最小值77,当λ=3时,cos θ有最大值12.所以cos θ∈77,12.。

全国卷新课标高考中档大题专项训练立体几何与空间向量

全国卷新课标高考中档大题专项训练立体几何与空间向量

高考中档大题专项训练-立体几何与空间向量1.如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF =错误!,EF交BD于点H.将△DEF沿EF折到△D′EF的位置,OD′=错误!.1证明:D′H⊥平面ABCD;2求二面角B-D′A-C的正弦值.1证明由已知得AC⊥BD,AD=CD.又由AE=CF得错误!=错误!,故AC∥EF.因此EF⊥HD,从而EF⊥D′H.由AB=5,AC=6得DO=BO=错误!=4.由EF∥AC得错误!=错误!=错误!.所以OH=1,D′H=DH=3.于是D′H2+OH2=32+12=10=D′O2,故D′H⊥OH.又D′H⊥EF,而OH∩EF=H,所以D′H⊥平面ABCD.2解如图,以H为坐标原点,错误!的方向为x轴正方向,错误!的方向为y轴正方向,错误!的方向为z轴正方向,建立空间直角坐标系,则H0,0,0,A-3,-1,0,B0,-5,0,C3,-1,0,D′0,0,3,错误!=3,-4,0,错误!=6,0,0,错误!=3,1,3.设m=x1,y1,z1是平面ABD′的法向量,则错误!即错误!所以可取m=4,3,-5.设n=x2,y2,z2是平面ACD′的法向量,则错误!即错误!所以可取n=0,-3,1.于是cos〈m,n〉=错误!=错误!=-错误!. sin〈m,n〉=错误!.因此二面角B-D′A-C的正弦值是错误!.2.在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O′的直径,FB是圆台的一条母线.1已知G,H分别为EC,FB的中点,求证:GH∥平面ABC;2已知EF=FB=错误!AC=2错误!,AB=BC,求二面角F-BC-A的余弦值.1证明设FC中点为I,连接GI,HI.在△CEF中,因为点G,I分别是CE,CF的中点,所以GI∥EF.又EF∥OB,所以GI∥OB.在△CFB中,因为H是FB的中点,所以HI∥BC.又HI∩GI=I,BC∩OB=B,所以平面GHI∥平面ABC.因为GH平面GHI,所以GH∥平面ABC.2解连接OO′,则OO′⊥平面ABC.又AB=BC,且AC是圆O的直径,所以BO⊥AC.以O为坐标原点,建立如图所示的空间直角坐标系.由题意得B0,2错误!,0,C-2错误!,0,0.过点F作FM⊥OB于点M,所以FM=错误!=3,可得F0,错误!,3.故错误!=-2错误!,-2错误!,0,错误!=0,-错误!,3.设m=x,y,z是平面BCF的法向量.由错误!可得错误!可得平面BCF的一个法向量m=错误!,因为平面ABC的一个法向量n=0,0,1,所以cos〈m,n〉=错误!=错误!.所以二面角F-BC-A的余弦值为错误!.3.将边长为1的正方形AA1O1O 及其内部绕OO1旋转一周形成圆柱,如图,AC 长为错误!π,11A B 长为错误!,其中B1与C 在平面AA1O1O 的同侧.1求三棱锥C —O1A1B1的体积;2求异面直线B1C 与AA1所成的角的大小.解 1连接O 1B 1,则11A B =∠A 1O 1B 1=错误!,∴△O 1A 1B 1为正三角形,∴111O A B S =错误!,∴111—C O A B V=错误!OO 1·111O A B S =错误!.2设点B 1在下底面圆周的射影为B ,连接BB 1,则BB 1∥AA 1,∴∠BB 1C 为直线B 1C 与AA 1所成角或补角,BB 1=AA 1=1.连接BC ,BO ,OC ,AB =11A B =错误!,AC =错误!,∴BC =错误!,∴∠BOC =错误!,∴△BOC 为正三角形,∴BC =BO =1,∴tan∠BB 1C =错误!=1,∴∠BB 1C =45°,∴直线B 1C 与AA 1所成的角的大小为45°.4.如图,在四棱锥P-ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=错误!为棱AD的中点,异面直线PA与CD所成的角为90°.1在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;2若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.解1在梯形ABCD中,AB与CD不平行.延长AB,DC,相交于点MM∈平面PAB,点M即为所求的一个点.理由如下:由已知,BC∥ED,且BC=ED.所以四边形BCDE是平行四边形.从而CM∥EB.又EB平面PBE,CM平面PBE.所以CM∥平面PBE.说明:延长AP至点N,使得AP=PN,则所找的点可以是直线MN上任意一点2方法一由已知,CD⊥PA,CD⊥AD,PA∩AD=A,所以CD⊥平面PAD.从而CD⊥PD.所以∠PDA是二面角P-CD-A的平面角.所以∠PDA=45°.设BC=1,则在Rt△PAD中,PA=AD=2.过点A作AH⊥CE,交CE的延长线于点H,连接PH.易知PA⊥平面ABCD,从而PA⊥CE.且PA∩AH=A,于是CE⊥平面PAH.又CE平面PCE,所以平面PCE⊥平面PAH.过A作AQ⊥PH于Q,则AQ⊥平面PCE.所以∠APH是PA与平面PCE所成的角.在Rt△AEH中,∠AEH=45°,AE=1,所以AH=错误!.在Rt△PAH中,PH=错误!=错误!.所以sin∠APH=错误!=错误!.方法二由已知,CD⊥PA,CD⊥AD,PA∩AD=A,所以CD⊥平面PAD.于是CD⊥PD.从而∠PDA是二面角P-CD-A的平面角.所以∠PDA=45°.由∠PAB=90°,且PA与CD所成的角为90°,可得PA⊥平面ABCD.设BC=1,则在Rt△PAD中,PA=AD=2.作Ay⊥AD,以A为原点,以错误!,错误!的方向分别为x轴,z轴的正方向,建立如图所示的空间直角坐标系,则A0,0,0,P0,0,2,C2,1,0,E1,0,0.所以错误!=1,0,-2,错误!=1,1,0,错误!=0,0,2.设平面PCE的法向量为n=x,y,z.由错误!得错误!设x=2,解得n=2,-2,1.设直线PA与平面PCE所成的角为α,则sin α=错误!=错误!=错误!.所以直线PA与平面PCE所成角的正弦值为错误!.5.如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC =CD=错误!.1求证:PD⊥平面PAB;2求直线PB与平面PCD所成角的正弦值;3在棱PA上是否存在点M,使得BM∥平面PCD若存在,求错误!的值;若不存在,说明理由.1证明∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,又AB⊥AD,AB平面ABCD,∴AB⊥平面PAD.∵PD平面PAD,∴AB⊥PD,又PA⊥PD,PA∩AB=A,∴PD⊥平面PAB.2解取AD中点O,连接CO,PO.∵PA=PD,∴PO⊥AD.又∵PO平面PAD,平面PAD⊥平面ABCD,∴PO⊥平面ABCD,∵CO平面ABCD,∴PO⊥CO,∵AC=CD,∴CO⊥AD.以O为原点建立如图所示空间直角坐标系.易知P0,0,1,B1,1,0,D0,-1,0,C2,0,0.则错误!=1,1,-1,错误!=0,-1,-1,错误!=2,0,-1.设n=x0,y0,1为平面PDC的一个法向量.由错误!得错误!解得错误!即n=错误!.设PB与平面PCD的夹角为θ.则sin θ=|cos〈n,错误!〉|=错误!=错误!=错误!.3解设在棱PA上存在点M,使得BM∥平面PCD,则存在λ∈0,1使得错误!=λ错误!,因此点M0,1-λ,λ,错误!=-1,-λ,λ.∵BM平面PCD,∴BM∥平面PCD,当且仅当错误!·n=0,即-1,-λ,λ·错误!=0,解得λ=错误!,∴在棱PA上存在点M使得BM∥平面PCD,此时错误!=错误!.。

高考数学中档大题规范练中档大题3.docx

高考数学中档大题规范练中档大题3.docx

扩大我国中等收入阶层比重的对策研究作者:牟粼琳王刚来源:《群文天地》2011年第02期扩大中等收入阶层比重是我国现代化发展的必然趋势,其研究对加快我国现代化进程具有深刻意义。

本文对我国收入分配的现状进行分析,找出现阶段贫富差距扩大的根本原因,针对多元原因,提出培养和扩大中等收入阶层比重的对策,以期为我国解决贫富差距的问题,实现共同富裕做出贡献。

一、我国中等收入阶层现状分析目前中国经济社会发展的总体水平不是很高,导致中等收入者的比重相对过低。

根据中科院的测算标准,家庭财产在15万元至30万元之间可以算作是“中产”。

目前中国城市居民中有49%的家庭符合这一标准,但考虑到中国农村大多数家庭收入偏低的现实,最终可以推测出,目前我国的中等收入阶层人数只占全国人口的19%左右,这个比例很低。

而我国2002年全年城镇居民人均可支配收入为7500元,农民人均纯收入仅为2470元,我们的中收系数较高是建立在总体收入水平不高和高收入人群过于集中的基础之上的,这导致拥有有效需求能力和稳定心态的中等收入者的比重在这一经济发展阶段相对较低。

从纵向比较来看,中等收入者比重的增幅小于高收入者,1986至1999年,10%的最高收入户的收入就增长了8倍,远远高于中低收入层的增长,而且这种趋势还没有明显缓和的迹象,这使中等收入者比重趋于降低。

二、扩大中等收入阶层比重的积极作用1、扩大中等收入者比重有助于刺激消费,拉动经济增长。

我国现阶段消费差距很大:低收入人群收入太低,消费不足;而高收入阶层虽然拥有巨额财富,应有尽有,但他们要么不消费,导致资金闲置,要么过度消费,导致浪费资源,这种消费很不持续。

而我国中等收入阶层,他们消费意识和消费能力很强,为了过上更好的生活,他们积极工作,努力拼搏。

如果我国中等阶层人数占绝大多数,这意味将有一个庞大的消费市场,这有利于缓解和消除“需求不足”的市场经济问题;同时,中等收入阶层可以理性消费,可持续消费,对其它阶层有很好的示范作用,可以促进整个国家的经济持续、有序的发展。

高考数学 中档大题分类练4-立体几何

高考数学 中档大题分类练4-立体几何

精品基础教育教学资料,仅供参考,需要可下载使用!中档大题分类练(四) 立体几何(建议用时:60分钟)1.如图57,已知多面体PE ­ABCD 的底面ABCD 是边长为2的菱形,且PA ⊥平面ABCD ,ED ∥PA ,且PA =2ED =2.图57(1)证明:平面PAC ⊥平面PCE ;(2)若∠ABC =60°,求点P 到平面ACE 的距离.[解] (1)证明:连接BD ,交AC 于点O ,设PC 中点为F , 连接OF ,EF .因为O ,F 分别为AC ,PC 的中点,所以OF ∥PA ,且OF =12PA ,因为DE ∥PA ,且DE =12PA ,所以OF ∥DE ,且OF =DE .所以四边形OFED 为平行四边形,所以OD ∥EF ,即BD ∥EF . 因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以PA ⊥BD . 因为ABCD 是菱形,所以BD ⊥AC .因为PA ∩AC =A ,所以BD ⊥平面PAC, 因为BD ∥EF ,所以EF ⊥平面PAC ,因为EF ⊂平面PCE ,所以平面PAC ⊥平面PCE .(2)因为∠ABC =60°,所以△ABC 是等边三角形,所以AC =2. 又因为PA ⊥平面ABCD ,AC ⊂平面ABCD , ∴PA ⊥AC ,∴S △PAC =12×PA ×AC =2,因为EF ⊥面PAC ,所以EF 是三棱锥E ­PAC 的高,EF =DO =BO =3,∴V P ­ACE =V E ­PAC =13S △PAC ×EF =13×2×3=233,∵DE ∥PA ,PA ⊥平面ABCD ,∴DE ⊥平面ABCD ,∴DE ⊥AD ,DE ⊥CD , ∵DE =1,∴AE =CE =5,∴S △ACE =2×2×12=2,所以点P 到平面ACE 的距离h =V P ­ACE13S △ACE=23323=3.2.如图58,在四棱锥P ­ABCD 中,四边形ABCD 是菱形,△PAD ≌△BAD ,平面PAD ⊥平面ABCD ,AB =4,PA =PD ,M 在棱PD 上运动.图58(1)当M 在何处时,PB ∥平面MAC ;(2)已知O 为AD 的中点,AC 与OB 交于点E ,当PB ∥平面MAC 时,求三棱锥E ­BCM的体积.[解] (1)如图,设AC 与BD 相交于点N ,当M 为PD 的中点时,PB ∥平面MAC ,证明:∵四边形ABCD 是菱形,可得:DN =NB ,又∵M 为PD 的中点,可得:DM =MP ,∴NM 为△BDP 的中位线,可得NM ∥PB ,又∵NM ⊂平面MAC ,PB ⊄平面MAC ,∴PB ∥平面MAC .(2)∵O 为AD 的中点,PA =PD ,则OP ⊥AD ,又△PAD ≌△BAD , ∴OB ⊥AD ,且OB =23,又∵△AEO ∽△CEB ,∴OE BE=OA BC=12. ∴BE =23OB =433.∴S △EBC =12×4×433=833.又∵OP =4×32=23,点M 为PD 的中点,∴M 到平面EBC 的距离为3. ∴V E ­BCM =V M ­EBC =13×833×3=83.3.在三棱柱ABC ­A 1B 1C 1中,AB =BC =CA =AA 1=2,侧棱AA 1⊥平面ABC ,且D ,E 分别是棱A 1B 1,AA 1的中点,点F 在棱AB 上,且AF =14AB .图59(1)求证:EF ∥平面BDC 1; (2)求三棱锥D ­BEC 1的体积. [解] (1)取AB 的中点O ,连接A 1O ,∵AF =14AB ,∴F 为AO 的中点,又E 为AA 1的中点,∴EF ∥A 1O ,∵A 1D =12A 1B 1,BO =12AB ,AB 綊A 1B 1,∴A 1D 綊BO ,∴四边形A 1DBO 为平行四边形,∴A 1O ∥BD , ∴EF ∥BD ,又EF ⊄平面BDC 1,BD ⊂平面BDC 1, ∴EF ∥平面BDC 1.(2)∵AA 1⊥平面A 1B 1C 1,C 1D ⊂平面A 1B 1C 1, ∴AA 1⊥C 1D ,∵A 1C 1=B 1C 1=A 1B 1=2,D 为A 1B 1的中点, ∴C 1D ⊥A 1B 1,C 1D =3,又AA 1⊂平面AA 1B 1B ,A 1B 1⊂平面AA 1B 1B ,AA 1∩A 1B 1=A 1, ∴C 1D ⊥平面AA 1B 1B ,∵AB =AA 1=2,D ,E 分别为A 1B 1,AA 1的中点, ∴S △BDE =22-12×1×2-12×1×2-12×1×1=32.∴VD ­BEC 1=VC 1­BDE =13S △BDE ·C 1D =13×32×3=32. 4.如图60所示,在四棱锥P ­ABCD 中,△BCD ,△PAD 都是等边三角形,平面PAD ⊥平面ABCD ,且AD =2AB =4,CD =23.图60(1)求证:平面PCD ⊥平面PAD ;(2)E 是AP 上一点,当BE ∥平面PCD 时,求三棱锥C ­PDE 的体积. [解] (1)因为AD =4,AB =2,BD =23,所以AD 2=AB 2+BD 2,所以AB ⊥BD ,∠ADB =30°,又因为△BCD 是等边三角形,所以∠ADC =90°,所以DC ⊥AD ,因为平面PAD ⊥平面ABCD , 平面PAD ∩平面ABCD =AD ,所以CD ⊥平面PAD ,因为CD ⊂平面PCD ,所以平面PCD ⊥平面PAD . (2)过点B 作BG ∥CD 交AD 于G ,过点G 作EG ∥PD 交于AP 于点E , 因为BG ∥CD ,BG ⊄平面PCD ,CD ⊂平面PCD ,所以BG ∥平面PCD , 同理可得EG ∥平面PCD ,所以平面BEG ∥平面PCD , 因为BE ⊂平面BEG ,所以BE ∥平面PCD . 因为EG ∥PD ,所以PE PA =DGDA,在直角三角形BGD 中,BD =23,∠BDG =30°,所以DG=23cos 30°=3,所以PEPA=DGDA=34,在平面PAD内过E作EH⊥PD于H,因为CD⊥平面PAD,EH⊂平面PAD,所以CD⊥EH,因为PD∩CD=D,所以EH⊥平面PCD,所以EH是点E到平面PCD的距离,过点A作AM⊥PD于M,则AM=32×4=23,由AM∥EH,得EHAM=PEPA=34,所以EH=323.因为S△PCD=12×4×23=43,所以V C­PDE=13×43×323=6.(教师备选)1.如图,已知三棱柱ABC­A1B1C1的侧棱长和底面边长均为2,A1在底面ABC内的射影O为底面△ABC的中心,如图所示.(1)求异面直线AA1与BC1所成角的大小;(2)求三棱锥C1­BCA1的体积.[解] (1)连接AO ,并延长与BC 交于点D , 则D 是BC 边上的中点.因为点O 是正△ABC 的中心,且A 1O ⊥平面ABC , 所以BC ⊥AD ,BC ⊥A 1O . 因为AD ∩A 1O =O , 所以BC ⊥平面ADA 1. 所以BC ⊥AA 1.又AA 1∥CC 1,所以BC ⊥CC 1,所以异面直线AA 1与BC 1所成的角为∠BC 1C . 因为BC =CC 1=2,所以异面直线AA 1与BC 1所成角的大小为π4.(2)因为三棱柱的所有棱长都为2, 所以可求得AD =3,AO =23AD =233 ,A 1O =AA 21-AO 2=263.因为S △ABC =12×2×3=3,所以VABC ­A 1B 1C 1=S △ABC ·A 1O =22,VA 1­BCC 1B 1=VABC ­A 1B 1C 1-VA 1­ABC =423.所以VC 1­BCA 1=VA 1­BCC 1=12VA 1­BCC 1B 1=223.2.如图①,在直角梯形ABCD 中,AD ∥BC ,∠BAD =90°,AB =BC =12AD =a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到图②中△A 1BE 的位置,得到四棱锥A 1­BCDE .图① 图②(1)证明:CD ⊥平面A 1OC ;(2)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1­BCDE 的体积为362,求a 的值.[解] (1)证明:在图题①中,连接EC (图略), 因为AB =BC =12AD =a ,∠BAD =90°,AD ∥BC ,E 是AD 的中点,所以四边形ABCE 为正方形,所以BE ⊥AC ,即在图题②中,BE ⊥A 1O ,BE ⊥OC . 又A 1O ∩OC =O ,从而BE ⊥平面A 1OC , 又CD ∥BE ,所以CD ⊥平面A 1OC . (2)由已知,平面A 1BE ⊥平面BCDE , 且平面A 1BE ∩平面BCDE =BE ,又由(1)可知A 1O ⊥BE ,所以A 1O ⊥平面BCDE , 即A 1O 是四棱锥A 1­BCDE 的高, 由图1知,A 1O =22AB =22a ,平行四边形BCDE 的面积S =BC ·AB =a 2, 从而四棱锥A 1­BCDE 的体积V =13×S ×A 1O =13×a 2×22a =26a 3,由26a 3=362,解得a =6.。

新高考2023版高考数学一轮总复习练案45高考大题规范解答系列四__立体几何

新高考2023版高考数学一轮总复习练案45高考大题规范解答系列四__立体几何

高考大题规范解答系列(四)——立体几何1.(2022·安徽黄山质检)如图,直三棱柱ABC-A1B1C1中,D是BC的中点,且AD⊥BC,四边形ABB1A1为正方形.(1)求证:A1C∥平面AB1D;(2)若∠BAC=60°,BC=4,求点A1到平面AB1D的距离.[解析] (1)连接BA1,交AB1于点E,再连接DE,由已知得,四边形ABB1A1为正方形,E为A1B的中点,∵D是BC的中点,∴DE∥A1C,又DE⊂平面AB1D,A1C⊄平面AB1D,∴A1C∥平面AB1D.(2)∵在直三棱柱ABC-A1B1C1中,平面BCC1B1⊥平面ABC,且BC为它们的交线,又AD⊥BC,∴AD⊥平面BCC1B1,又∵B1D⊂平面BCC1B1,∴AD⊥B1D,且AD=2,B1D=2.同理可得,过D作DG⊥AB,则DG⊥面ABB1A1,且DG=.设A1到平面AB1D的距离为h,由等体积法可得:VA1-AB1D=VD-AA1B1,即··AD·DB1·h=··AA1·A1B1·DG,即2×2·h=4×4×,∴h=.即点A1到平面AB1D的距离为.(注:本题也可建立空间直角坐标系用向量法求解.)2.(2022·陕西汉中质检)如图所示,四棱锥P-ABCD的底面为直角梯形,∠ADC=∠DCB=90°,AD=1,BC=3,PC=CD=2,PC⊥底面ABCD,E为AB的中点.(1)求证:平面PDE⊥平面APC;(2)求直线PC与平面PDE所成的角的正弦值.[解析] 如图所示,以点C为坐标原点,直线CD,CB,CP分别为x,y,z轴,建立空间直角坐标系C-xyz,则相关点的坐标为C(0,0,0),A(2,1,0),B(0,3,0),P(0,0,2),D(2,0,0),E(1,2,0).(1)由于DE=(-1,2,0),CA=(2,1,0),CP=(0,0,2),所以DE·CA=(-1,2,0)·(2,1,0)=0,DE·CP=(-1,2,0)·(0,0,2)=0,所以DE⊥CA,DE⊥CP,而CP∩CA=C,所以DE⊥平面PAC,∵DE⊂平面PDE,∴平面PDE⊥平面PAC.(2)设n=(x,y,z)是平面PDE的一个法向量,则n·DE=n·PE=0,由于DE=(-1,2,0),PE=(1,2,-2),所以有,令x=2,则y=1,z=2,即n=(2,1,2),再设直线PC与平面PDE所成的角为α,而PC=(0,0,-2),所以sin α=|cos〈n,PC〉|===,∴直线PC与平面PDE所成角的正弦值为.3.(2022·湖北百师联盟质检)斜三棱柱ABC-HDE中,平面ABC⊥平面BCD,△ABC为边长为1的等边三角形,DC⊥BC,且DC长为,设DC中点为M,F、G分别为CE、AD的中点.(1)证明:FG∥平面ABC;(2)求二面角B-AC-E的余弦值.[解析] (1)解法一:取BD中点N,连结GN,NF,易知N、M、F三点共线,由GN∥AB,且GN⊄平面ABC,AB⊂平面ABC,故GN∥平面ABC,同理可得NF∥平面ABC,因为GN∩NF=N,故平面GNF∥平面ABC.由FG⊂平面FGN,故FG∥平面ABC.解法二:取AB中点N,连结GN,NC,易知GN是△ABD的中位线,故GN∥BD,GN=BD,因为CE綊BD,F为CE的中点.所以CF綊GN.四边形FGNC是平行四边形,故FG∥CN,因为CN⊂平面ABC,FG⊄平面ABC,故FG∥平面ABC.(2)以BC中点O为坐标原点,以OC、ON、OA分别为x、y、z轴,建立空间直角坐标系O-xyz,由已知可得A,C,E,故CE=(1,,0),AC=,设m=(x,y,z)为平面ACE的法向量,则,解得m=(,-1,1),由于ON⊥平面ABC,不妨取平面ABC的法向量为n=(0,1,0).所以cos〈m,n〉==-.由图可知所求二面角为钝角,故二面角B-AC-E的余弦值为-.4.(2021·全国新高考)在四棱锥Q-ABCD中,底面ABCD是正方形,若AD=2,QD=QA=,QC=3.(1)证明:平面QAD⊥平面ABCD;(2)求二面角B-QD-A的平面角的余弦值.[解析] (1)取AD的中点为O,连接QO,CO.因为QA=QD,OA=OD,则QO⊥AD,而AD=2,QA=,故QO==2.在正方形ABCD中,因为AD=2,故DO=1,故CO=,因为QC=3,故QC2=QO2+OC2,故△QOC为直角三角形且QO⊥OC,因为OC∩AD=O,故QO⊥平面ABCD,因为QO⊂平面QAD,故平面QAD⊥平面ABCD.(2)在平面ABCD内,过O作OT∥CD,交BC于T,则OT⊥AD,结合(1)中的QO⊥平面ABCD,故可建如图所示的空间坐标系.则D(0,1,0),Q(0,0,2),B(2,-1,0),故BQ=(-2,1,2),BD=(-2,2,0).设平面QBD的法向量n=(x,y,z),则即,取x=1,则y=1,z=,故n=.而平面QAD的法向量为m=(1,0,0),故cos〈m,n〉==.二面角B-QD-A的平面角为锐角,故其余弦值为.5.(2021·安徽省淮北市一模)在直角梯形ABCD(如图1)中,∠ABC=90°,BC∥AD,AD=8,AB=BC=4,M为线段AD中点.将△ABC沿AC折起,使平面ABC⊥平面ACD,得到几何体B-ACD(如图2).(1)求证:CD⊥平面ABC;(2)求AB与平面BCM所成角θ的正弦值.[解析] (1)由题设可知AC=4,CD=4,AD=8,∴AD2=CD2+AC2,∴CD⊥AC,又∵平面ABC⊥平面ACD,平面ABC∩平面ACD=AC,∴CD⊥平面ABC.(2)解法一:等体积法取AC的中点O连接OB,由题设可知△ABC为等腰直角三角形,所以OB⊥面ACM,∵V B-ACM=V A-BCM且V B-ACM=S △ACM·BO=,而SΔBCM=4,∴A到面BCM的距离h=,所以sin θ==.解法二:向量法,取AC的中点O,连接OB,由题设可知△ABC为等腰直角三角形,所以OB⊥面ACM,连接OM,因为M、O分别为AD和AC的中点,所以OM∥CD,由(1)可知OM⊥AC,故以OM、OC、OB所在直线为x轴、y轴、z轴建立空间直角坐标系,如图所示.则A(0,-2,0),B(0,0,2),C(0,2,0),M(2,0,0),∴CB=(0,-2,2),CM=(2,-2,0),BA=(0,-2,-2),设平面BCM法向量n=(x,y,z)由得令y=1得n=(1,1,1)∴平面BCM的一个法向量n=(1,1,1),∴sin θ==.6.(2021·山东聊城三模)如图,在平面四边形ABCD中,BC=CD,BC⊥CD,AD⊥BD,以BD为折痕把△ABD折起,使点A到达点P的位置,且PC⊥BC.(1)证明:PD⊥CD;(2)若M为PB的中点,二面角P-BC-D的大小为60°,求直线PC与平面MCD所成角的正弦值.[解析] (1)证明:因为BC⊥CD,BC⊥PC,PC∩CD=C,所以BC⊥平面PCD,又因为PD⊂平面PCD,所以BC⊥PD,又因为PD⊥BD,BD∩BC=B,所以PD⊥平面BCD,又因为CD⊂平面BCD,所以PD⊥CD.(2)因为PC⊥BC,CD⊥BC,所以∠PCD是二面角P-BC-D的平面角,即∠PCD=60°,在Rt△PCD中,PD=CD tan 60°=CD,取BD的中点O,连接OM,OC,因为BC=CD,BC⊥CD,所以OC⊥BD,由(1)知,PD⊥平面BCD,OM为△PBD的中位线,所以OM⊥BD,OM⊥OC,即OM,OC,BD两两垂直,以O为原点,建立如图所示的空间直角坐标系O-xyz,设OB=1,则P(0,1,),C(1,0,0),D(0,1,0),M,CP=(-1,1,),CD=(-1,1,0),CM=,设平面MCD的一个法向量为n=(x,y,z),则由得令z=,得n=(,,),所以cos〈n,CP〉===,所以直线PC与平面MCD所成角的正弦值为.7.(开放题)(2022·云南昆明模拟)如图,在三棱锥A-BCD中,△BCD是边长为2的等边三角形,AB=AC,O是BC的中点,OA⊥CD.(1)证明:平面ABC⊥平面BCD;(2)若E是棱AC上的一点,从①CE=2EA;②二面角E-BD-C大小为60°;③A-BCD的体积为这三个论断中选取两个作为条件,证明另外一个成立.[证明] (1)因为AB=AC,O是BC的中点,所以OA⊥BC,又因为OA⊥CD,所以OA⊥平面BCD,因为OA⊂平面ABC,所以平面ABC⊥平面BCD.(2)连接OD,又因为△BCD是边长为2的等边三角形,所以DO⊥BC,由(1)知OA⊥平面BCD,所以AO,BC,DO两两互相垂直.以O为坐标原点,OA,OB,OD所在直线分别为x轴,y轴,z轴建立如图所示空间直角坐标系.设|OA|=m,则O(0,0,0),A(0,0,m),B(1,0,0),C(-1,0,0),D(0,,0),若选①②作为条件,证明③成立.因为CE=2EA,所以E,易知平面BCD的法向量为n=(0,0,1),BE=,BD=(-1,,0),设m=(x,y,z)是平面BDE的法向量,则,所以,可取m=,由二面角E-BD-C大小为60°可得cos θ===,解得m=3,所以A-BCD的体积为×2×××3=.若选①③作为条件,证明②成立.因为A-BCD的体积为,所以×2×××|OA|=,解得|OA|=3,又因为CE=2EA,所以E,易知平面BCD的法向量为n=(0,0,1),BE=,BD=,设m=(x,y,z)是平面BDE的法向量,则所以,可取m=,所以cos θ===,即二面角E-BD-C大小为60°.若选②③作为条件,证明①成立.因为A-BCD的体积为,所以×2×××|OA|=,解得|OA|=3,即A(0,0,3),AC=(-1,0,-3),不妨设AE=λAC(0≤λ≤1),所以E(-λ,0,-3λ+3),易知平面BCD的法向量为n=(0,0,1),BE=(-λ-1,0,-3λ+3),BD=(-1,,0),设m=(x,y,z)是平面BDE的法向量,取m=(3(1-λ),(1-λ),λ+1)cos θ===,解得λ=3(舍),λ=,所以CE=2EA.8.(2022·河北石家庄质检)如图,四棱锥P-ABCD中,底面ABCD为正方形,△PAB 为等边三角形,平面PAB⊥底面ABCD,E为AD的中点.(1)求证:CE⊥PD;(2)在线段BD(不包括端点)上是否存在点F,使直线AP与平面PEF所成角的正弦值为,若存在,确定点F的位置;若不存在,请说明理由.[解析] (1)证明:取AB的中点O,连结PO,OD,因为PA=PB,所以PO⊥AB,又因为平面PAB⊥平面ABCD,所以PO⊥底面ABCD,取CD的中点G,连结OG,则OB,OP,OG两两垂直,分别以OB,OG,OP所在直线为x轴,y轴,z轴建立空间直角坐标系(如图所示),设AB=2,则C(1,2,0),P(0,0,),E(-1,1,0),D(-1,2,0),所以CE=(-2,-1,0),PD=(-1,2,-),则CE·PD=2-2=0,故CE⊥PD,所以CE⊥PD.(2)由(1)可知,A(-1,0,0),B(1,0,0),所以PE=(-1,1,-),AP=(1,0,),BD=(-2,2,0),BE=(-2,1,0),设BF=λBD(0<λ<1),则BF=(-2λ,2λ,0),所以EF=BF-BE=(-2λ+2,2λ-1,0),设平面PEF的法向量为n=(x,y,z),令y=1,则x=,z=,故n=,所以|cos〈AP,n〉|===,整理可得9λ2-6λ+1=0,解得λ=,所以在BD上存在点F,使得直线AP与平面PEF所成角的正弦值为,此时点F为靠近点B的三等分点,即BF=BD.。

高考数学 考前三个月 中档大题规范练 立体几何与空间

高考数学 考前三个月 中档大题规范练 立体几何与空间

中档大题规范练——立体几何与空间向量1. 有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r 的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度. 解 由题意知,圆锥的轴截面为正三角形,如图所示为圆锥的轴截面. 根据切线性质知,当球在容器内时,水深为3r ,水面的半径为3r ,则容器内水的体积为V =V 圆锥-V 球=13π·(3r )2·3r -43πr 3=53πr 3,而将球取出后,设容器内水的深度为h ,则水面圆的半径为33h , 从而容器内水的体积是V ′=13π·(33h )2·h =19πh 3,由V =V ′,得h =315r .即容器中水的深度为315r .2. 如图1所示,正三角形ABC 的边长为2a ,CD 是AB 边上的高,E ,F 分别是AC ,BC 的中点.现将△ABC 沿CD 翻折,翻折后平面ACD ⊥平面BCD (如图2).求三棱锥C —DEF 的体积.图1 图2解 过点E 作EM ⊥DC 于点M ,因为平面ACD ⊥平面BCD ,平面ACD ∩平面BCD =CD , 而EM ⊂平面ACD , 所以EM ⊥平面BCD .即EM 是三棱锥E —CDF 的高. 又CD ⊥BD ,AD ⊥CD ,F 为BC 的中点,所以S △CDF =12S △BCD =12×12CD ×BD=14×2a2-a 2×a =34a 2, 因为E 为AC 的中点,EM ⊥CD ,所以EM =12AD =12a .所以三棱锥C —DEF 的体积为V C —DEF =V E —CDF =13S △CDF ×EM =13×34a 2×12a =324a 3.3. 如图,在多面体ABCDEF 中,四边形ABCD 是正方形,EF ∥AB ,EF ⊥FB ,AB =2EF ,∠BFC=90°,BF =FC ,H 为BC 的中点.(1)求证:FH ∥平面EDB ; (2)求证:AC ⊥平面EDB .证明 (1)设AC 与BD 交于点G ,则G 为AC 的中点.如图,连接EG 、GH ,又H 为BC 的中点,∴GH 綊12AB .又EF 綊12AB ,∴EF 綊GH .∴四边形EFHG 为平行四边形.∴EG ∥FH . 又∵EG ⊂平面EDB ,FH ⊄平面EDB , ∴FH ∥平面EDB .(2)由四边形ABCD 为正方形,得AB ⊥BC . 又EF ∥AB ,∴EF ⊥BC . 又∵EF ⊥FB ,BC ∩FB =B ,∴EF ⊥平面BFC .∴EF ⊥FH .∴AB ⊥FH . 又BF =FC ,H 为BC 的中点,∴FH ⊥BC . ∴FH ⊥平面ABCD .∴FH ⊥AC .又FH ∥EG ,∴AC ⊥EG .又AC ⊥BD ,EG ∩BD =G , ∴AC ⊥平面EDB .4. 如图所示,已知三棱锥A -BPC 中,AP ⊥PC ,AC ⊥BC ,M 为AB 的中点,D 为PB 的中点,且△PMB 为正三角形.(1)求证:DM ∥平面APC ; (2)求证:平面ABC ⊥平面APC ;(3)若BC =4,AB =20,求三棱锥D -BCM 的体积. (1)证明 由已知,得MD 是△ABP 的中位线,所以MD ∥AP . 又MD ⊄平面APC ,AP ⊂平面APC , 故MD ∥平面APC .(2)证明 因为△PMB 为正三角形,D 为PB 的中点, 所以MD ⊥PB .所以AP ⊥PB .又AP ⊥PC ,PB ∩PC =P ,所以AP ⊥平面PBC .因为BC ⊂平面PBC ,所以AP ⊥BC .又BC ⊥AC ,AC ∩AP =A ,所以BC ⊥平面APC . 因为BC ⊂平面ABC ,所以平面ABC ⊥平面APC . (3)解 由题意,可知MD ⊥平面PBC , 所以MD 是三棱锥D -BCM 的一条高,所以V D -BCM =V M -DBC =13×S △BCD ×MD=13×221×53=107. 5. 如图,在底面是矩形的四棱锥P —ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ; (2)求证:平面PAD ⊥平面PDC .证明 (1)以A 为原点,AB 所在直线为x 轴,AD 所在直 线为y 轴,AP 所在直线为z 轴,建立如图所示的空间直 角坐标系,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),∵E ,F 分别是PC ,PD 的中点,∴E ⎝ ⎛⎭⎪⎫12,1,12,F ⎝ ⎛⎭⎪⎫0,1,12,EF →=⎝ ⎛⎭⎪⎫-12,0,0,PB →=(1,0,-1),PD →=(0,2,-1),AP →=(0,0,1),AD →=(0,2,0),DC→=(1,0,0),AB →=(1,0,0).∵EF →=-12AB →,∴EF →∥AB →,即EF ∥AB ,又AB ⊂平面PAB ,EF ⊄平面PAB , ∴EF ∥平面PAB .(2)∵AP →·DC →=(0,0,1)·(1,0,0)=0, AD →·DC →=(0,2,0)·(1,0,0)=0, ∴AP →⊥DC →,AD →⊥DC →,即AP ⊥DC ,AD ⊥DC . 又AP ∩AD =A ,∴DC ⊥平面PAD . ∵DC ⊂平面PDC ,∴平面PAD ⊥平面PDC .6. 如图,在四棱锥P -ABCD 中,PC ⊥底面ABCD ,ABCD 是直角梯形,AB ⊥AD ,AB ∥CD ,AB=2AD =2CD =2.E 是PB 的中点.(1)求证:平面EAC ⊥平面PBC ; (2)若二面角P -AC -E 的余弦值为63,求直线PA 与平面EAC 所成角的正弦值. (1)证明 ∵PC ⊥平面ABCD ,AC ⊂平面ABCD , ∴AC ⊥PC ,∵AB =2,AD =CD =1,∴AC =BC =2, ∴AC 2+BC 2=AB 2,∴AC ⊥BC , 又BC ∩PC =C , ∴AC ⊥平面PBC , ∵AC ⊂平面EAC , ∴平面EAC ⊥平面PBC .(2)解 如图,以C 为原点,DA →、CD →、CP →分别为x 轴、y 轴、z 轴正向,建立空间直角坐标系,则C (0,0,0), A (1,1,0),B (1,-1,0).设P (0,0,a )(a >0),则E 12,-12,a 2,CA →=(1,1,0),CP →=(0,0,a ),CE →=12,-12,a 2,设m =(b ,p ,m )为面PAC 的法向量,则m ·CA →=m ·CP →=0, 即⎩⎪⎨⎪⎧b +p =0am =0,取m =(1,-1,0), 设n =(x ,y ,z )为面EAC 的法向量,则n ·CA →=n ·CE →=0, 即⎩⎪⎨⎪⎧x +y =0,x -y +az =0,取x =a ,y =-a ,z =-2, 则n =(a ,-a ,-2),依题意,|cos 〈m ,n 〉|=|m ·n ||m ||n |=a a 2+2=63,则a =2.于是n =(2,-2,-2),PA →=(1,1,-2). 设直线PA 与平面EAC 所成角为θ,则sin θ=|cos 〈PA →,n 〉|=|PA →·n ||PA →||n |=23,即直线PA 与平面EAC 所成角的正弦值为23.。

2024届新高考数学大题精选30题--立体几何含答案

2024届新高考数学大题精选30题--立体几何含答案

大题立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC-A1B1C1的侧棱长和底面边长均为2,M是BC的中点,N是AB1的中点,P是B1C1的中点.(1)证明:MN⎳平面A1CP;(2)求点P到直线MN 的距离.2(2024·安徽合肥·二模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,M是侧棱PC的中点,侧面PAD为正三角形,侧面PAD⊥底面ABCD.(1)求三棱锥M-ABC的体积;(2)求AM与平面PBC所成角的正弦值.2024届新高考数学大题精选30题--立体几何3(2023·福建福州·模拟预测)如图,在三棱柱ABC-A1B1C1中,平面AA1C1C⊥平面ABC,AB= AC=BC=AA1=2,A1B=6.(1)设D为AC中点,证明:AC⊥平面A1DB;(2)求平面A1AB1与平面ACC1A1夹角的余弦值.4(2024·山西晋中·三模)如图,在六面体ABCDE中,BC=BD=6,EC⊥ED,且EC=ED= 2,AB平行于平面CDE,AE平行于平面BCD,AE⊥CD.(1)证明:平面ABE⊥平面CDE;(2)若点A到直线CD的距离为22,F为棱AE的中点,求平面BDF与平面BCD夹角的余弦值.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC-A1B1C1中,A1在平面ABC内的射影O在棱AC的中点处,P为棱A1B1(包含端点)上的动点.(1)求点P到平面ABC1的距离;(2)若AP⊥平面α,求直线BC1与平面α所成角的正弦值的取值范围.6(2024·重庆·模拟预测)在如图所示的四棱锥P-ABCD中,已知AB∥CD,∠BAD=90°,CD= 2AB,△PAB是正三角形,点M在侧棱PB上且使得PD⎳平面AMC.(1)证明:PM=2BM;(2)若侧面PAB⊥底面ABCD,CM与底面ABCD所成角的正切值为311,求二面角P-AC-B的余弦值.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.8(2024·重庆·模拟预测)如图,ACDE为菱形,AC=BC=2,∠ACB=120°,平面ACDE⊥平面ABC,点F在AB上,且AF=2FB,M,N分别在直线CD,AB上.(1)求证:CF⊥平面ACDE;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC=60°,MN为直线CD,AB的公垂线,求ANAF的值;(3)记直线BE与平面ABC所成角为α,若tanα>217,求平面BCD与平面CFD所成角余弦值的范围.9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF 上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1 ,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.13(2024·广东广州·一模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,△DCP是等边三角形,∠DCB=∠PCB=π4,点M,N分别为DP和AB的中点.(1)求证:MN⎳平面PBC;(2)求证:平面PBC⊥平面ABCD;(3)求CM与平面PAD所成角的正弦值.14(2024·广东梅州·二模)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,底面ABCD 为直角梯形,△PAD为等边三角形,AD⎳BC,AD⊥AB,AD=AB=2BC=2.(1)求证:AD⊥PC;(2)点N在棱PC上运动,求△ADN面积的最小值;(3)点M为PB的中点,在棱PC上找一点Q,使得AM⎳平面BDQ,求PQQC的值.15(2024·广东广州·模拟预测)如图所示,圆台O1O2的轴截面A1ACC1为等腰梯形,AC=2AA1= 2A1C1=4,B为底面圆周上异于A,C的点,且AB=BC,P是线段BC的中点.(1)求证:C1P⎳平面A1AB.(2)求平面A1AB与平面C1CB夹角的余弦值.16(2024·广东深圳·二模)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C⊥底面ABC,且AB= AC,A1B=A1C.(1)证明:AA1⊥平面ABC;(2)若AA1=BC=2,∠BAC=90°,求平面A1BC与平面A1BC1夹角的余弦值.17(2024·河北保定·二模)如图,在四棱锥P -ABCD 中,平面PCD 内存在一条直线EF 与AB 平行,PA ⊥平面ABCD ,直线PC 与平面ABCD 所成的角的正切值为32,PA =BC =23,CD =2AB =4.(1)证明:四边形ABCD 是直角梯形.(2)若点E 满足PE =2ED ,求二面角P -EF -B 的正弦值.18(2024·湖南衡阳·模拟预测)如图,在圆锥PO 中,P 是圆锥的顶点,O 是圆锥底面圆的圆心,AC 是圆锥底面圆的直径,等边三角形ABD 是圆锥底面圆O 的内接三角形,E 是圆锥母线PC 的中点,PO =6,AC =4.(1)求证:平面BED ⊥平面ABD ;(2)设点M 在线段PO 上,且OM =2,求直线DM 与平面ABE 所成角的正弦值.19(2024·湖南岳阳·三模)已知四棱锥P -ABCD 的底面ABCD 是边长为4的菱形,∠DAB =60°,PA =PC ,PB =PD =210,M 是线段PC 上的点,且PC =4MC .(1)证明:PC ⊥平面BDM ;(2)点E 在直线DM 上,求BE 与平面ABCD 所成角的最大值.20(2024·湖南·二模)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是边长为2的菱形,∠ABC =60°,BD 1⊥平面A 1C 1D .(1)求四棱柱ABCD -A 1B 1C 1D 1的体积;(2)设点D 1关于平面A 1C 1D 的对称点为E ,点E 和点C 1关于平面α对称(E 和α未在图中标出),求平面A 1C 1D 与平面α所成锐二面角的大小.21(2024·山东济南·二模)如图,在四棱锥P-ABCD中,四边形ABCD为直角梯形,AB∥CD,∠DAB=∠PCB=60°,CD=1,AB=3,PC=23,平面PCB⊥平面ABCD,F为线段BC的中点,E为线段PF上一点.(1)证明:PF⊥AD;(2)当EF为何值时,直线BE与平面PAD夹角的正弦值为74.22(2024·山东潍坊·二模)如图1,在平行四边形ABCD中,AB=2BC=4,∠ABC=60°,E为CD 的中点,将△ADE沿AE折起,连结BD,CD,且BD=4,如图2.(1)求证:图2中的平面ADE⊥平面ABCE;(2)在图2中,若点F在棱BD上,直线AF与平面ABCE所成的角的正弦值为3010,求点F到平面DEC 的距离.23(2024·福建·模拟预测)如图,在三棱锥P-ABC中,PA⊥PB,AB⊥BC,AB=3,BC=6,已知二面角P-AB-C的大小为θ,∠PAB=θ.(1)求点P到平面ABC的距离;(2)当三棱锥P-ABC的体积取得最大值时,求:(Ⅰ)二面角P-AB-C的余弦值;(Ⅱ)直线PC与平面PAB所成角.24(2024·浙江杭州·二模)如图,在多面体ABCDPQ中,底面ABCD是平行四边形,∠DAB=60°, BC=2PQ=4AB=4,M为BC的中点,PQ∥BC,PD⊥DC,QB⊥MD.(1)证明:∠ABQ=90°;(2)若多面体ABCDPQ的体积为152,求平面PCD与平面QAB夹角的余弦值.25(2024·浙江嘉兴·二模)在如图所示的几何体中,四边形ABCD为平行四边形,PA⊥平面ABCD,PA∥QD,BC=2AB=2PA=2,∠ABC=60°.(1)证明:平面PCD⊥平面PAC;(2)若PQ=22,求平面PCQ与平面DCQ夹角的余弦值.26(2024·浙江绍兴·二模)如图,在三棱锥P-ABC中,AB=4,AC=2,∠CAB=60°,BC⊥AP.(1)证明:平面ACP⊥平面ABC;(2)若PA=2,PB=4,求二面角P-AB-C的平面角的正切值.27(2024·河北沧州·一模)如图,在正三棱锥A -BCD 中,BC =CD =BD =4,点P 满足AP=λAC ,λ∈(0,1),过点P 作平面α分别与棱AB ,BD ,CD 交于Q ,S ,T 三点,且AD ⎳α,BC ⎳α.(1)证明:∀λ∈(0,1),四边形PQST 总是矩形;(2)若AC =4,求四棱锥C -PQST 体积的最大值.28(2024·湖北·二模)如图1.在菱形ABCD 中,∠ABC =120°,AB =4,AE =λAD ,AF =λAB(0<λ<1),沿EF 将△AEF 向上折起得到棱锥P -BCDEP .如图2所示,设二面角P -EF -B 的平面角为θ.(1)当λ为何值时,三棱锥P -BCD 和四棱锥P -BDEF 的体积之比为95(2)当θ为何值时,∀λ∈0,1 ,平面PEF 与平面PFB 的夹角φ的余弦值为5529(2024·湖北·模拟预测)空间中有一个平面α和两条直线m ,n ,其中m ,n 与α的交点分别为A ,B ,AB =1,设直线m 与n 之间的夹角为π3,(1)如图1,若直线m ,n 交于点C ,求点C 到平面α距离的最大值;(2)如图2,若直线m ,n 互为异面直线,直线m 上一点P 和直线n 上一点Q 满足PQ ⎳α,PQ ⊥n 且PQ ⊥m ,(i )求直线m ,n 与平面α的夹角之和;(ii )设PQ =d 0<d <1 ,求点P 到平面α距离的最大值关于d 的函数f d .30(2024·浙江绍兴·模拟预测)如图所示,四棱台ABCD -A 1B 1C 1D 1,底面ABCD 为一个菱形,且∠BAD =120°. 底面与顶面的对角线交点分别为O ,O 1. AB =2A 1B 1=2,BB 1=DD 1=392,AA 1与底面夹角余弦值为3737.(1)证明:OO 1⊥平面ABCD ;(2)现将顶面绕OO 1旋转θ角,旋转方向为自上而下看的逆时针方向. 此时使得底面与DC 1的夹角正弦值为64343,此时求θ的值(θ<90°);(3)求旋转后AA 1与BB 1的夹角余弦值.大题 立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC -A 1B 1C 1的侧棱长和底面边长均为2,M 是BC 的中点,N 是AB 1的中点,P 是B 1C 1的中点.(1)证明:MN ⎳平面A 1CP ;(2)求点P 到直线MN 的距离.【答案】(1)证明见解析(2)3【分析】(1)建立如图空间直角坐标系A -xyz ,设平面A 1CP 的一个法向量为n=(x ,y ,z ),利用空间向量法证明MN ⋅n=0即可;(2)利用空间向量法即可求解点线距.【详解】(1)由题意知,AA 1⊥平面ABC ,∠BAC =60°,而AB ⊂平面ABC ,所以AA 1⊥AB ,在平面ABC 内过点A 作y 轴,使得AB ⊥y 轴,建立如图空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (1,3,0),A 1(0,0,2),B 1(2,0,2),得M 32,32,0,N (1,0,1),P 32,32,2,所以A 1C =(1,3,-2),A 1P =32,32,0 ,MN =-12,-32,1 ,设平面A1CP 的一个法向量为n=(x ,y ,z ),则n ⋅A 1C=x +3y -2z =0n ⋅A 1P =32x +32y =0,令x =1,得y =-3,z =-1,所以n=(1,-3,-1),所以MN ⋅n =-12×1+-32×(-3)+1×(-1)=0,又MN 不在平面A 1CP 内即MN ⎳平面A 1CP ;(2)如图,连接PM ,由(1)得PM =(0,0,-2),则MN ⋅PM =-2,MN =2,PM =2,所以点P 到直线MN 的距离为d =PM 2-MN ⋅PMPM2= 3.2(2024·安徽合肥·二模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,∠BAD =60°,M 是侧棱PC 的中点,侧面PAD 为正三角形,侧面PAD ⊥底面ABCD .(1)求三棱锥M -ABC 的体积;(2)求AM 与平面PBC 所成角的正弦值.【答案】(1)12(2)3311.【分析】(1)作出辅助线,得到线线垂直,进而得到线面垂直,由中位线得到M 到平面ABCD 的距离为32,进而由锥体体积公式求出答案;(2)证明出BO ⊥AD ,建立空间直角坐标系,求出平面的法向量,进而由法向量的夹角余弦值的绝对值求出线面角的正弦值.【详解】(1)如图所示,取AD 的中点O ,连接PO .因为△PAD 是正三角形,所以PO ⊥AD .又因为平面PAD ⊥底面ABCD ,PO ⊂平面PAD ,平面PAD ∩平面ABCD =AD ,所以PO ⊥平面ABCD ,且PO =3.又因为M 是PC 的中点,M 到平面ABCD 的距离为32,S △ABC =12×2×2×sin 2π3=3,所以三棱锥M -ABC 的体积为13×3×32=12.(2)连接BO ,BD ,因为∠BAD =π3,所以△ABD 为等边三角形,所以BO ⊥AD ,以O 为原点,OA ,OB ,OP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则P 0,0,3 ,A 1,0,0 ,B 0,3,0 ,C -2,3,0 ,所以M -1,32,32 ,AM =-2,32,32,PB =0,3,-3 ,BC =-2,0,0 .设平面PBC 的法向量为n=x ,y ,z ,则PB ⋅n =0BC ⋅n =0,即3y -3z =0-2x =0 ,解得x =0,取z =1,则y =1,所以n=0,1,1 .设AM 与平面PBC 所成角为θ,则sin θ=cos AM ,n =AM ⋅nAM ⋅n=-2,32,32 ⋅0,1,14+34+34×1+1=3311.即AM 与平面PBC 所成角的正弦值为3311.3(2023·福建福州·模拟预测)如图,在三棱柱ABC -A 1B 1C 1中,平面AA 1C 1C ⊥平面ABC ,AB =AC =BC =AA 1=2,A 1B =6.(1)设D 为AC 中点,证明:AC ⊥平面A 1DB ;(2)求平面A 1AB 1与平面ACC 1A 1夹角的余弦值.【答案】(1)证明见解析;(2)55【分析】(1)根据等边三角形的性质得出BD ⊥AC ,根据平面ACC 1A 1⊥平面ABC 得出BD ⊥平面ACC 1A 1,BD ⊥A 1D ,利用勾股定理得出AC ⊥A 1D ,从而证明AC ⊥平面A 1DB ;(2)建立空间直角坐标系,利用坐标表示向量,求出平面A 1AB 1的法向量和平面ACC 1A 1的一个法向量,利用向量求平面A 1AB 1与平面ACC 1A 1的夹角余弦值.【详解】(1)证明:因为D 为AC 中点,且AB =AC =BC =2,所以在△ABC 中,有BD ⊥AC ,且BD =3,又平面ACC 1A 1⊥平面ABC ,且平面ACC 1A 1∩平面ABC =AC ,BD ⊂平面ABC ,所以BD ⊥平面ACC 1A 1,又A 1D ⊂平面ACC 1A 1,则BD ⊥A 1D ,由A 1B =6,BD =3,得A 1D =3,因为AD =1,AA 1=2,A 1D =3,所以由勾股定理,得AC ⊥A 1D ,又AC ⊥BD ,A 1D ∩BD =D ,A 1D ,BD ⊂平面A 1DB ,所以AC ⊥平面A 1DB ;(2)如图所示,以D 为原点,建立空间直角坐标系D -xyz ,可得A (1,0,0),A 1(0,0,3),B (0,3,0),则AA 1 =-1,0,3 ,AB=-1,3,0 ,设平面A 1AB 1的法向量为n=(x ,y ,z ),由n ⋅AA 1=-x +3z =0n ⋅AB=-x +3y =0,令x =3,得y =1,z =1,所以n=3,1,1 ,由(1)知,BD ⊥平面ACC 1A 1,所以平面ACC 1A 1的一个法向量为BD=(0,-3,0),记平面A 1AB 1与平面ACC 1A 1的夹角为α,则cos α=|n ⋅BD ||n ||BD |=35×3=55,所以平面A 1AB 1与平面ACC 1A 1夹角的余弦值为55.4(2024·山西晋中·三模)如图,在六面体ABCDE 中,BC =BD =6,EC ⊥ED ,且EC =ED =2,AB 平行于平面CDE ,AE 平行于平面BCD ,AE ⊥CD .(1)证明:平面ABE ⊥平面CDE ;(2)若点A 到直线CD 的距离为22,F 为棱AE 的中点,求平面BDF 与平面BCD 夹角的余弦值.【答案】(1)证明见解析(2)10535【分析】(1)设平面ABE 与直线CD 交于点M ,使用线面平行的性质,然后用面面垂直的判定定理即可;(2)证明BE ⊥平面CDE ,然后构造空间直角坐标系,直接用空间向量方法即可得出结果.【详解】(1)设平面ABE 与直线CD 交于点M ,连接ME ,MB ,则平面ABE 与平面CDE 的交线为ME ,平面ABE 与平面BCD 的交线为MB ,因为AB 平行于平面CDE ,AB ⊂平面ABE ,平面ABE 和平面CDE 的交线为ME ,所以AB ∥ME .同理AE ∥MB ,所以四边形ABME 是平行四边形,故AE ∥MB ,AB ∥ME .因为CD ⊥AE ,AE ∥MB ,所以CD ⊥MB ,又BC =BD =6,所以M 为棱CD 的中点在△CDE 中,EC =ED ,MC =MD ,所以CD ⊥ME ,由于AB ∥ME ,故CD ⊥AB .而CD ⊥AE ,AB ∩AE =A ,AB ,AE ⊂平面ABE ,所以CD ⊥平面ABE ,又CD ⊂平面CDE ,所以平面ABE ⊥平面CDE .(2)由(1)可知,CD ⊥平面ABME ,又AM ⊂平面ABME ,所以CD ⊥AM .而点A 到直线CD 的距离为22,故AM =2 2.在等腰直角三角形CDE 中,由EC =ED =2,得CD =2,MC =MD =ME =1.在等腰三角形BCD 中,由MC =MD =1,BC =BD =6,得BM = 5.在平行四边形ABME 中,AE =BM =5,AB =EM =1,AM =22,由余弦定理得cos ∠MEA =EM 2+AE 2-AM 22EM ·AE=-55,所以cos ∠BME =55,所以BE =BM 2+EM 2-2BM ·EM cos ∠BME =2.因为BE 2+ME 2=22+12=5 2=BM 2,所以BE ⊥ME .因为平面ABME ⊥平面CDE ,平面ABME 和平面CDE 的交线为ME ,BE 在平面ABME 内.所以BE ⊥平面CDE .如图,以E 为坐标原点,EC ,ED ,EB 分别为x ,y ,z 轴正方向,建立空间直角坐标系.则E 0,0,0 ,C 2,0,0 ,D 0,2,0 ,B 0,0,2 ,A -22,-22,2 ,F -24,-24,1.所以CD =-2,2,0 ,DB =0,-2,2 ,FB =24,24,1 .设平面BCD 的法向量为m=x 1,y 1,z 1 ,则m ⋅CD=0m ⋅DB =0,即-2x 1+2y 1=0-2y 1+2z 1=0 .则可取x 1=2,得m=2,2,2 .设平面BDF 的法向量为n =x 2,y 2,z 2 ,则n ⋅FB =0n ⋅DB=0,即24x 2+24y 2+z 2=0-2y 2+2z 2=0.取z 2=1,则n=-32,2,1 .设平面BDF 与平面BCD 的夹角为θ,则cos θ=m ⋅n m ⋅n =-3210×21=10535.所以平面BDF 与平面BCD 夹角的余弦值为10535.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC -A 1B 1C 1中,A 1在平面ABC 内的射影O 在棱AC 的中点处,P 为棱A 1B 1(包含端点)上的动点.(1)求点P 到平面ABC 1的距离;(2)若AP ⊥平面α,求直线BC 1与平面α所成角的正弦值的取值范围.【答案】(1)23913;(2)25,104.【分析】(1)以O 为原点建立空间直角坐标系,求出平面ABC 1的法向量,再利用点到平面距离的向量求法求解即得.(2)由向量共线求出向量AP的坐标,再利用线面角的向量求法列出函数关系,并求出函数的值域即可.【详解】(1)依题意,A 1O ⊥平面ABC ,OB ⊥AC (底面为正三角形),且A 1O =OB =3,以O 为原点,OB ,OC ,OA 1的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系,如图,则O (0,0,0),A (0,-1,0),B (3,0,0),C (0,1,0),A 1(0,0,3),C 1(0,2,3),AC 1 =(0,3,3),BC 1 =(-3,2,3),AA 1 =(0,1,3),由A 1B 1⎳AB ,A 1B 1⊄平面ABC 1,AB ⊂平面ABC 1,则A 1B 1⎳平面ABC 1,即点P 到平面ABC 1的距离等于点A 1到平面ABC 1的距离,设n =(x ,y ,z )为平面ABC 1的一个法向量,由n ⋅AC 1=3y +3z =0n ⋅BC 1=-3x +2y +3z =0,取z =3,得n=(1,-3,3),因此点A 1到平面ABC 1的距离d =|AA 1 ⋅n||n |=2313=23913,所以点P 到平面ABC 1的距离为23913.(2)设A 1P =λA 1B 1 ,λ∈[0,1],则AP =AA 1 +A 1P =AA 1 +λAB=(0,1,3)+λ(3,1,0)=(3λ,1+λ,3),由AP ⊥α,得AP为平面α的一个法向量,设直线BC 1与平面α所成角为θ,则sin θ=|cos ‹BC 1 ,AP ›|=|BC 1 ⋅AP||BC 1 ||AP |=|5-λ|10⋅3λ2+(1+λ)2+3=5-λ25⋅2λ2+λ+2,令t =5-λ,则λ=5-t ,t ∈[4,5],则sin θ=t 25⋅2(5-t )2+(5-t )+2=t25⋅2t 2-21t +57=125⋅2-21t+57t 2=125571t-7382+576,由t ∈[4,5],得1t ∈15,14 ,于是571t -738 2+576∈225,516,25⋅571t -738 2+576∈2105,52 ,则sin θ∈25,104,所以直线BC 1与平面α所成角的正弦值的取值范围是25,104.6(2024·重庆·模拟预测)在如图所示的四棱锥P -ABCD 中,已知AB ∥CD ,∠BAD =90°,CD =2AB ,△PAB 是正三角形,点M 在侧棱PB 上且使得PD ⎳平面AMC .(1)证明:PM =2BM ;(2)若侧面PAB ⊥底面ABCD ,CM 与底面ABCD 所成角的正切值为311,求二面角P -AC -B 的余弦值.【答案】(1)证明见解析;(2)1010.【分析】(1)连接BD 与AC 交于点E ,连接EM ,由已知得AB CD=EBED ,由线面平行的性质得PD ∥EM ,根据三角形相似可得EB ED =BM PM=12,即PM =2BM(2)设AB 的中点O ,首先由已知得PO ⊥底面ABCD ,在△PAB 中过点M 作MF ∥PO 交AB 于点F ,得MF ⊥底面ABCD ,则∠MCF 为CM 与底面ABCD 所成角,在底面ABCD 上过点O 作OG ⊥AC 于点G ,则∠PGO 是二面角P -AC -B 的平面角,根据条件求解即可【详解】(1)证明:连接BD 与AC 交于点E ,连接EM ,在△EAB 与△ECD 中,∵AB ∥CD ,∴AB CD=EBED ,由CD =2AB ,得ED =2EB ,又∵PD ⎳平面AMC ,而平面PBD ∩平面AMC =ME ,PD ⊂平面PBD ,∴PD ∥EM ,∴在△PBD 中,EB ED =BM PM=12,∴PM =2BM ;(2)设AB 的中点O ,在正△PAB 中,PO ⊥AB ,而侧面PAB ⊥底面ABCD ,侧面PAB ∩底面ABCD =AB ,且PO ⊂平面PAB ,∴PO ⊥底面ABCD ,在△PAB 中过点M 作MF ⎳PO 交AB 于点F ,∴MF ⊥底面ABCD ,∴∠MCF 为CM 与底面ABCD 所成角,∴MF CF=311,设AB =6a ,则MF=3a,∴CF=11a,BF=MF3=a,则在直角梯形ABCD中,AF=5a,而CD=12a,则AD=11a2-12a-5a2=62a,在底面ABCD上过点O作OG⊥AC于点G,则∠PGO是二面角P-AC-B的平面角,易得OA=3a,AC=66a,在梯形ABCD中,由OAOG=ACAD⇒3aOG=66a62a,得OG=3a,在Rt△POG中,PG=30a,∴cos∠PGO=OGPG=1010.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.【答案】(1)4(2)413【分析】(1)取AB,CD的中点M,N,证得平面ADE⎳平面MNHG,得到AE⎳GH,再由平面ABG⎳平面CDEHG,证得AG⎳EH,得到平行四边形AGHE,得到GH=AE,求得HN=4,结合HN⊥平面ABCD,即可求解;(2)以点N为原点,建立空间直角坐标系,分别求得平面BFHG和平面AGHE的法向量n =(1,3,4)和m =(1,-3,4),结合向量的夹角公式,即可求解.【详解】(1)如图所示,取AB,CD的中点M,N,连接GM,MN,HN,因为GA=GB,可得GM⊥AB,又因为平面ABG⊥平面ABCD,且平面ABG∩平面ABCD=AB,GM⊂平面ABG,所以GM⊥平面ABCD,同理可得:HN⊥平面ABCD,因为ED⊥平面ABCD,所以ED⎳HN,又因为ED⊄平面MNHG,HN⊂平面MNHG,所以ED⎳平面MNHG,因为MN⎳AD,且AD⊄平面MNHG,MN⊂平面MNHG,所以AD⎳平面MNHG,又因为AD∩DE=D,且AD,DE⊂平面ADE,所以平面ADE⎳平面MNHG,因为平面AEHG与平面ADE和平面MNHG于AE,GH,可得AE⎳GH,又由GM⎳HN,AB⎳CD,且AB∩GM=M和CD∩HN=N,所以平面ABG⎳平面CDEHG,因为平面AEHG与平面ABG和平面CDEHF于AG,EH,所以AG⎳EH,可得四边形AGHE 为平行四边形,所以GH =AE ,因为AE =AD 2+DE 2=42+12=17,所以GH =17,在直角△AMG ,可得GM =GB 2-AB 22=52-42=3,在直角梯形GMNH 中,可得HN =3+17-42=4,因为HN ⊥平面ABCD ,所以点H 到平面ABCD 的距离为4.(2)解:以点N 为原点,以NM ,NC ,NH 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,则E (0,-4,1),F (0,4,1),G (4,0,3),H (0,0,4),可得HE =(0,-4,-3),HF =(0,4,-3),HG=(4,0,-1),设平面BFHG 的法向量为n=(x ,y ,z ),则n ⋅HG=4x -z =0n ⋅HF=4y -3z =0,取z =4,可得x =1,y =3,所以n=(1,3,4),设平面AGHE 的法向量为m=(a ,b ,c ),则m ⋅HG=4a -c =0m ⋅HE=-4b -3c =0,取c =4,可得a =1,b =-3,所以m=(1,-3,4),则cos m ,n =m ⋅n m n=1-9+161+9+16⋅1+9+16=413,即平面BFHG 与平面AGHE 所成锐二面角的余弦值413.8(2024·重庆·模拟预测)如图,ACDE 为菱形,AC =BC =2,∠ACB =120°,平面ACDE ⊥平面ABC ,点F 在AB 上,且AF =2FB ,M ,N 分别在直线CD ,AB 上.(1)求证:CF ⊥平面ACDE ;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC =60°,MN 为直线CD ,AB 的公垂线,求ANAF的值;(3)记直线BE 与平面ABC 所成角为α,若tan α>217,求平面BCD 与平面CFD 所成角余弦值的范围.【答案】(1)证明见解析(2)AN AF=913(3)528,255 【分析】(1)先通过余弦定理及勾股定理得到CF ⊥AC ,再根据面面垂直的性质证明;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,利用向量的坐标运算根据MN ⋅CD =0MN ⋅AF =0,列方程求解即可;(3)利用向量法求面面角,然后根据tan α>217列不等式求解.【详解】(1)AB 2=AC 2+BC 2-2AC ⋅BC ⋅cos ∠ACB =12,AB =23,AF =2FB ,所以AF =433,CF=13CA +23CB ,CF 2=19CA 2+49CB 2+49CA ⋅CB =43,AC 2+CF 2=4+43=163=AF 2,则CF ⊥AC ,又因为平面ACDE ⊥平面ABC ,平面ACDE ∩平面ABC =AC ,CF ⊂面ABC ,故CF ⊥平面ACDE ;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,由∠EAC =60°,可得∠DCA =120°,DC =2,所以C 0,0,0 ,D -1,0,3 ,A 2,0,0 ,F 0,233,0 所以AF =-2,233,0 ,CD =-1,0,3 ,设AN =λAF =-2λ,233λ,0 ,则N 2-2λ,233λ,0 ,设CM =μCD ,则M -μ,0,3μ ,MN =2-2λ+μ,233λ,-3μ ,由题知,MN ⋅CD=0MN ⋅AF =0 ⇒2λ-2-μ-3μ=04λ-4-2μ+43λ=0 ,解得λ=913,μ=-213,故AN AF=913;(3)B -1,3,0 ,设∠EAC =θ,则E 2-2cos θ,0,2sin θ ,BE=3-2cos θ,-3,2sin θ ,可取平面ABC 的法向量n=0,0,1 ,则sin α=cos n ,BE=n ⋅BEn ⋅BE =2sin θ 3-2cos θ 2+3+4sin 2θ=sin θ4-3cos θ,cos α=4-3cos θ-sin 2θ4-3cos θ,则tan α=sin θ4-3cos θ-sin 2θ>217,整理得10cos 2θ-9cos θ+2<0,故cos θ∈25,12,CF =0,23,0,CD =-2cos θ,0,2sin θ ,CB =-1,3,0 ,记平面CDF 的法向量为n 1 =x ,y ,z ,则有n 1 ⋅CD =0n 1 ⋅CF =0 ⇒-2x cos θ+2z sin θ=023y =0,可得n 1=sin θ,0,cos θ ,记平面CBD 的法向量为n 2 =a ,b ,c ,则有n 2 ⋅CD=0n 2 ⋅CB =0 ⇒-2a cos θ+2c sin θ=0-a +3b =0,可得n 2=3sin θ,sin θ,3cos θ ,记平面BCD 与平面CFD 所成角为γ,则cos γ=cos n 1 ,n 2 =33+sin 2θ,cos θ∈25,12 ,所以sin 2θ∈34,2125 ,3+sin 2θ∈152,465 ,故cos γ=33+sin 2θ∈528,255 .9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .【答案】(1)证明见解析(2)∠MAD =45°【分析】(1)根据面面与线面垂直的性质可得BD ⊥AF ,结合线面、面面垂直的判定定理即可证明;(2)建立如图空间直角坐标系,设∠MAD =α,AB =1,利用空间向量法求出二面角C -AM -E 的余弦值,建立方程1-sin αcos α1+sin 2α1+cos 2α=13,结合三角恒等变换求出α即可.【详解】(1)由已知得平面ABCD ⊥平面ABEF ,AF ⊥AB ,平面ABCD ∩平面ABEF =AB ,AF ⊂平面ABEF ,所以AF ⊥平面ABCD ,又BD ⊂平面ABCD ,故BD ⊥AF ,因为ABCD 是正方形,所以BD ⊥AC ,AC ,AF ⊂平面ACF ,AC ∩AF =A ,所以BD ⊥平面ACF ,又BD ⊂平面BDE ,所以平面ACF ⊥平面BDE .(2)由(1)知AD ,AF ,AB 两两垂直,以AD ,AF ,AB 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如图.设∠MAD =α,AB =1,则A 0,0,0 ,M cos α,sin α,0 ,C 1,0,1 ,E 0,1,1 ,故AM =cos α,sin α,0 ,AC =1,0,1 ,AE =0,1,1设平面AMC 的法向量为m =x 1,y 1,z 1 ,则m ⋅AC =0,m ⋅AM=0故x 1+z 1=0x 1cos α+y 1sin α=0,取x 1=sin α,则y 1=-cos α,z 1=-sin α所以m=sin α,-cos α,-sin α设平面AME 的法向量为n =x 2,y 2,z 2 ,n ⋅AE =0,n ⋅AM=0故y 2+z 2=0x 2cos α+y 2sin α=0,取x 2=sin α,则y 2=-cos α,z 2=cos α所以n=sin α,-cos α,cos α ,所以cos m ,n =1-sin αcos α1+sin 2α1+cos 2α,由已知得1-sin αcos α1+sin 2α1+cos 2α=13,化简得:2sin 22α-9sin2α+7=0,解得sin2α=1或sin2α=72(舍去)故α=45°,即∠MAD =45°.10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.【答案】(1)证明见解析(2)68585【分析】(1)取AC 的中点O ,根据面面垂直的性质定理,可得DO ⊥平面ABC ,即可求证DO 2⎳OO 1,进而可证矩形,即可根据线线平行以及平行的传递性求解.(2)建系,利用向量法,求解法向量n =1,-12,3 与方向向量DB =(-1,4,-3)的夹角,即可求解.【详解】(1)证明:取AC 的中点为O ,连接DO ,OO 1,O 1O 2,∵DA =DC ,O 为AC 中点,∴DO ⊥AC ,又平面DAC ⊥平面ABC ,且平面DAC ∩平面ABC =AC ,DO ⊂平面DAC ,∴DO ⊥平面ABC ,∴DO ⎳O 1O 2,DO =O 1O 2,故四边形DOO 1O 2为矩形,∴DO 2⎳OO 1,又O ,O 1分别是AC ,AB 的中点,∴OO 1⎳BC ,∴DO 2⎳BC ;(2)∵C 是圆O 1上异于A ,B 的点,且AB 为圆O 1的直径,∴BC ⊥AC ,∴OO 1⊥AC ,∴如图以O 为原点建立空间直角坐标系,由条件知DO =3,∴A (1,0,0),B (-1,4,0),C (-1,0,0),D (0,0,3),∴E -12,0,32 ,设F (x ,y ,z ),∴BF =(x +1,y -4,z ),FD=(-x ,-y ,3-z ),由BF =2FD ,得F -13,43,233 ,∴AF =-43,43,233 ,∴DB =(-1,4,-3),AE =-32,0,32 ,设平面AEF 法向量为n=(x 1,y 1,z 1),则n ⋅AE=-32x 1+32z 1=0n ⋅AF =-43x 1+43y 1+233z 1=0,取n =1,-12,3 ,设直线BD 与平面AEF 所成角为θ,则sin θ=|cos <n ,DB>|=625⋅172=68585∴直线BD 与平面AEF 所成角的正弦值为68585.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.【答案】(1)证明见解析(2)241391【分析】(1)方法一运用空间向量的线性运算,进行空间位置关系的向量证明即可.方法二:建立空间直角坐标系,进行空间位置关系的向量证明即可.(2)建立空间直角坐标系,利用线面角的向量求法求解即可.【详解】(1)方法一:∵A 1B 1=12AB ,∴AA 1 ⋅AB =AA 1 ⋅AD =22×22=2.∵D 1A =-12AD-AA 1∴D 1P =D 1A +AP =1-λ AB +12λ-12AD+λ-1 AA 1∴D 1P ⋅AC =1-λ AB +12λ-12AD +λ-1 AA 1 ⋅AB +AD =1-λ AB 2+12λ-12 AD2+λ-1 AB ⋅AA 1 +λ-1 AD ⋅AA 1=81-λ +812λ-12+4λ-1 =0.∴D 1P ⊥AC ,即D 1P ⊥AC .方法二:以底面ABCD 的中心O 为原点,以OM 方向为y 轴,过O 点平行于AD 向前方向为x 轴,以过点O 垂直平面ABCD 向上方向为z 轴,建立如图所示空间直角坐标系,设正四棱台的高度为h ,则有 A 2,-2,0 ,B 2,2,0 ,C -2,2,0 ,D -2,-2,0 ,A 122,-22,h ,C 1-22,22,h ,D 1-22,-22,h ,M 0,2,0 ,AC =-22,22,0AP =1-λ 0,22,0 +12λ-22,0,0 +λ-22,22,0 =-322λ,22-322λ,λhD 1A =322,-22,-h ,D 1P =D 1A +AP =-322λ+322,-322λ+322,λh -h .故AC ⋅D 1P=0,所以D 1P ⊥AC .(2)设平面ABCD 的法向量为n=0,0,1 ,设平面AMC 1的法向量为m =x ,y ,z ,AM =-2,22,0 ,AC 1 =-322,322,h ,则有AM ⋅m=0AC 1 ⋅m=0 ,即-2x +22y =0-322x +322y +hz =0,令x =22h ,则m=22h ,2h ,3 .又题意可得cos m ,n =38h 2+2h 2+9=37,可得h =2.因为λ=23,经过计算可得P 0,0,43 ,D 1-22,-22,2 ,D 1P =2,2,43.将h =2代入,可得平面AMC 1的法向量m=42,22,3 .设直线DP 与平面AMC 1所成角的为θsin θ=cos DP ,m =8+4+42+2+16932+8+9=241391.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.【答案】(1)证明见详解(2)-22【分析】(1)连接BC 1,交B 1C 于点N ,连接NE ,利用线面平行的判定定理证明;(2)由已知可知,△AA 1C 为等边三角形,故A 1E ⊥AC ,利用面面垂直的性质定理可证得A 1E ⊥底面ABC ,进而建立空间直角坐标系,利用向量法即可求二面角余弦值.【详解】(1)连接BC 1,交B 1C 于点N ,连接NE ,因为侧面BCC 1B 1是平行四边形,所以N 为B 1C 的中点,又因为点E 为线段AC 的中点,所以NE ⎳AB 1,因为AB 1⊄面BEC 1,NE ⊂面BEC 1,所以AB 1⎳面BEC 1.(2)连接A 1C ,A 1E ,因为∠A 1AC =π3,AC =AA 1=2,所以△AA 1C 为等边三角形,A 1C =2,因为点E 为线段AC 的中点,所以A 1E ⊥AC ,因为侧面ACC 1A 1⊥底面ABC ,平面ACC 1A 1∩平面ABC =AC ,A 1E ⊂平面ACC 1A 1,所以A 1E ⊥底面ABC ,过点E 在底面ABC 内作EF ⊥AC ,如图以E 为坐标原点,分布以EF ,EC ,EA 1 的方向为x ,y ,z 轴正方向建立空间直角坐标系,则E 0,0,0 ,B 32,-12,0 ,C 10,2,3 ,所以EB =32,-12,0 ,EC 1 =0,2,3 ,设平面BEC 1的法向量为m=x ,y ,z ,则m ⋅EB =32x -12y =0m ⋅EC 1=2y +3z =0,令x =1,则y =3,z =-2,所以平面BEC 1的法向量为m=1,3,-2 ,又因为平面ABE 的法向量为n=0,0,1 ,则cos m ,n =-21+3+4=-22,经观察,二面角A -BE -C 1的平面角为钝角,所以二面角A -BE -C 1的余弦值为-22.13(2024·广东广州·一模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,△DCP 是等边三角形,∠DCB =∠PCB =π4,点M ,N 分别为DP 和AB 的中点.(1)求证:MN ⎳平面PBC ;(2)求证:平面PBC ⊥平面ABCD ;(3)求CM 与平面PAD 所成角的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3)33.【分析】(1)取PC 中点E ,由已知条件,结合线面平行的判断推理即得.(2)过P 作PQ ⊥BC 于点Q ,借助三角形全等,及线面垂直的判定、面面垂直的判定推理即得.(3)建立空间直角坐标系,利用线面角的向量求法求解即得.【详解】(1)取PC 中点E ,连接ME ,BE ,由M 为DP 中点,N 为AB 中点,得ME ⎳DC ,ME =12DC ,又BN ⎳CD ,BN =12CD ,则ME ⎳BN ,ME =BN ,因此四边形BEMN 为平行四边形,于是MN ⎳BE ,而MN ⊄平面PBC ,BE ⊂平面PBC ,所以MN ⎳平面PBC .(2)过P 作PQ ⊥BC 于点Q ,连接DQ ,由∠DCB =∠PCB =π4,CD =PC ,QC =QC ,得△QCD ≌△QCP ,则∠DQC =∠PQC =π2,即DQ ⊥BC ,而PQ =DQ =2,PQ 2+DQ 2=4=PD 2,因此PQ ⊥DQ ,又DQ ∩BC =Q ,DQ ,BC ⊂平面ABCD ,则PQ ⊥平面ABCD ,PQ ⊂平面PBC ,所以平面PBC ⊥平面ABCD .(3)由(2)知,直线QC ,QD ,QP 两两垂直,以点Q 为原点,直线QC ,QD ,QP 分别为x ,y ,z 轴建立空间直角坐标系,则C (2,0,0),P (0,0,2),D (0,2,0),M 0,22,22,A (-2,2,0),CM =-2,22,22,AD =(2,0,0),DP =(0,-2,2),设平面PAD 的一个法向量n =(x ,y ,z ),则n ⋅AD=2x =0n ⋅DP=-2y +2z =0,令y =1,得n=(0,1,1),设CM 与平面PAD 所成角为θ,sin θ=|cos ‹CM ,n ›|=|CM ⋅n||CM ||n |=23⋅2=33,所以CM 与平面PAD 所成角的正弦值是33.14(2024·广东梅州·二模)如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,底面ABCD 为直角梯形,△PAD 为等边三角形,AD ⎳BC ,AD ⊥AB ,AD =AB =2BC =2.(1)求证:AD ⊥PC ;(2)点N 在棱PC 上运动,求△ADN 面积的最小值;(3)点M 为PB 的中点,在棱PC 上找一点Q ,使得AM ⎳平面BDQ ,求PQQC的值.【答案】(1)证明见解析(2)2217(3)4【分析】(1)取AD 的中点H ,连接PH ,CH ,依题意可得四边形ABCH 为矩形,即可证明CH ⊥AD ,再由PH ⊥AD ,即可证明AD ⊥平面PHC ,从而得证;(2)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,即可得到CG AG=12,再根据线面平行的性质得到CF FM =12,在△PBC 中,过点M 作MK ⎳PC ,即可得到MKCQ=2,最后由PQ =2MK 即可得解.【详解】(1)取AD 的中点H ,连接PH ,CH ,则AH ⎳BC 且AH =BC ,又AD ⊥AB ,所以四边形ABCH 为矩形,所以CH ⊥AD ,又△PAD 为等边三角形,所以PH ⊥AD ,PH ∩CH =H ,PH ,CH ⊂平面PHC ,所以AD ⊥平面PHC ,又PC ⊂平面PHC ,所以AD ⊥PC .(2)连接HN ,由AD ⊥平面PHC ,又HN ⊂平面PHC ,所以AD ⊥HN ,所以S △ADH =12AD ⋅HN =HN ,要使△ADN 的面积最小,即要使HN 最小,当且仅当HN ⊥PC 时HN 取最小值,因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PH ⊂平面PAD ,所以PH ⊥平面ABCD ,又HC ⊂平面ABCD ,所以PH ⊥HC ,在Rt △HPC 中,CH =2,PH =3,所以PC =CH 2+PH 2=7,当HN ⊥PC 时HN =PH ⋅CH PC =237=2217,所以△ADN 面积的最小值为2217.(3)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,因为AD ⎳BC 且AD =2BC =2,所以△CGB ∽△AGD ,所以CG AG =BC AD=12,因为AM ⎳平面BDQ ,又AM ⊂平面ACM ,平面BDQ ∩平面ACM =GF ,所以GF ⎳AM ,所以CF FM =CG AG=12,在△PBC 中,过点M 作MK ⎳PC ,则有MK CQ =MF CF=2,所以PQ =2MK ,所以PQ =2MK =4CQ ,即PQQC=415(2024·广东广州·模拟预测)如图所示,圆台O 1O 2的轴截面A 1ACC 1为等腰梯形,AC =2AA 1=2A 1C 1=4,B 为底面圆周上异于A ,C 的点,且AB =BC ,P 是线段BC 的中点.(1)求证:C 1P ⎳平面A 1AB .(2)求平面A 1AB 与平面C 1CB 夹角的余弦值.【答案】(1)证明见解析(2)17【分析】(1)取AB 的中点H ,连接A 1H ,PH ,证明四边形A 1C 1PH 为平行四边形,进而得C 1P ⎳A 1H ,即可证明;(2)建立空间直角坐标系,求两平面的法向量,利用平面夹角公式求解.【详解】(1)取AB 的中点H ,连接A1H ,PH ,如图所示,因为P 为BC 的中点,所以PH ⎳AC ,PH =12AC .在等腰梯形A 1ACC 1中,A 1C 1⎳AC ,A 1C 1=12AC ,所以HP ⎳A 1C 1,HP =A 1C 1,所以四边形A 1C 1PH 为平行四边形,所以C 1P ⎳A 1H ,又A 1H ⊂平面A 1AB ,C 1P ⊄平面A 1AB ,所以C 1P ⎳平面A 1AB .(2)因为AB =BC ,故O 2B ⊥AC ,以直线O 2A ,O 2B ,O 2O 1分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,在等腰梯形A 1ACC 1中,AC =2AA 1=2A 1C 1=4,此梯形的高为h =AA 21-AC -A 1C 122= 3.因为A 1C 1=12AC ,A 1C 1⎳AC ,。

近年年高考数学一轮复习高考大题专项练4高考中的立体几何(2021学年)

近年年高考数学一轮复习高考大题专项练4高考中的立体几何(2021学年)

2019年高考数学一轮复习高考大题专项练4高考中的立体几何编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年高考数学一轮复习高考大题专项练4高考中的立体几何)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年高考数学一轮复习高考大题专项练4 高考中的立体几何的全部内容。

高考大题专项练四高考中的立体几何1。

如图,四棱锥P—ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点。

(1)证明:PB∥平面AEC;(2)设AP=1,AD=,三棱锥P—ABD的体积V=,求点A到平面PBC的距离.2.如图,四棱锥P—ABCD,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是∠ABC=60°的菱形,M为PC的中点.(1)求证:PC⊥AD;(2)证明在PB上存在一点Q,使得A,Q,M,D四点共面;(3)求点D到平面PAM的距离。

3.如图所示,△ABC为正三角形,CE⊥平面ABC,BD∥CE,CE=CA=2BD,M是EA的中点。

求证:(1)DE=DA。

(2)平面BDM⊥平面ECA.4。

如图,在底面是菱形的四棱柱ABCD—A1B1C1D1中,∠ABC=60°,AA1=AC=2,A1B=A1D=2,点E在A1D上.(1)证明:AA1⊥平面ABCD;(2)当为何值时,A1B∥平面EAC,并求出此时三棱锥D-AEC的体积.5。

(2017山东,文18)由四棱柱ABCD—A1B1C1D1截去三棱锥C1—B1CD1后得到的几何体如图所示.四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD。

高考数学大题每日一题规范练(第四周)

高考数学大题每日一题规范练(第四周)

高考数学大题每日一题规范练【题目1】 (本小题满分12分)已知向量a =(sin x ,m cos x ),b =(3,-1). (1)若a ∥b ,且m =1,求2sin 2x -3cos 2x 的值;(2)若函数f (x )=a ·b 的图象关于直线x =2π3对称,求函数f (2x )在⎣⎢⎡⎦⎥⎤π8,2π3上的值域.解 (1)当m =1时,a =(sin x ,cos x ),又b =(3,-1), 且a ∥b .∴-sin x -3cos x =0,即tan x =-3,∵2sin 2x -3cos 2x =2sin 2x -3cos 2x sin 2x +cos 2x =2tan 2x -3tan 2x +1=2×(-3)2-3(-3)2+1=32,∴2sin 2x -3cos 2x =32.(2)∵f (x )=a ·b =3sin x -m cos x 的图象关于直线x =2π3对称, ∴f ⎝ ⎛⎭⎪⎫2π3-x =f ⎝ ⎛⎭⎪⎫2π3+x,即f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫5π6, 即3=32+32m ,得m =3,则f (x )=23⎝ ⎛⎭⎪⎫32sin x -12cos x =23sin ⎝ ⎛⎭⎪⎫x -π6,∴f (2x )=23sin ⎝⎛⎭⎪⎫2x -π6,∵x ∈⎣⎢⎡⎦⎥⎤π8,2π3,∴2x -π6∈⎣⎢⎡⎦⎥⎤π12,7π6,∴当x =π3时,f (2x )取最大值为23;当x =2π3时,f (2x )取最小值为- 3. 即函数f (2x )在⎣⎢⎡⎦⎥⎤π8,2π3上的值域为[-3,23].星期二 (概率统计) 2018年____月____日【题目2】 (本小题满分12分)某项科研活动共进行了5次试验,其数据如下表所示:(1)从5600的概率;(2)求特征量y 关于x 的线性回归方程y ^=b ^x +a ^:并预测当特征量x 为570时特征量y 的值.(附:回归直线的斜率和截距的最小二乘法估计公式分别为解 (1)从5次特征量y 的试验数据中随机地抽取两个数据,共有C 25=10种方法,都小于600,有C 23=3种方法,∴至少有一个大于600的概率P =1-C 23C 25=1-310=710.-1×1+3×5+(-5)×(-3)+7×(-1)+(-4)×(-2)(-1)2+32+(-5)2+72+(-4)2=0.3,a ^=y-b ^x =600-0.3×556=433.2, 线性回归方程为y ^=0.3x +433.2,当x =570时,y ^=0.3×570+433.2=604.2. 即当特征量x 为570时特征量y 的估计值为604.2.星期三 (数列) 2018年____月____日【题目3】 (本小题满分12分)在数列{a n }中,a 1=1,2+a n +11+a n +1=11+a n +32(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =1+a 2n (n ∈N *),求数列{2nb n }的前n 项和S n .解 (1)∵2+a n +11+a n +1=11+a n +32,∴11+a n +1=11+a n+12,即11+a n +1-11+a n =12,设c n =1a n +1,由a 1=1得c 1=12,则数列{c n }是一个首项和公差均为12的等差数列, ∴c n =12+12(n -1)=n 2,则a n =2n -1.(2)由(1)得b n =1+a 2n =22n =12n -1,所以2nb n =2n2n -1,则S n =2×1+4×12+6×122+…+2n ×12n -1①,∴12S n =2×12+4×122+6×123+…+2n ×12n ②, ①-②得12S n =2⎝ ⎛⎭⎪⎫1+12+122+123+…+12n -1-2n ×12n ,即12S n =4-2n +42n .得S n =8-n +22n -2⎝⎛⎭⎪⎫或8-4n +82n .星期四 (立体几何) 2018年____月____日【题目4】 (本小题满分12分)如图,三棱柱ABC -A 1B 1C 1中,A 1A ⊥平面ABC ,∠ACB =90°,AC =CB =2,M ,N 分别是AB ,A 1C 的中点.(1)求证:MN ∥平面BB 1C 1C ;(2)若平面CMN ⊥平面B 1MN ,求直线AB 与平面B 1MN 所成角的正弦值. (1)证明 连接AC 1,BC 1,则N ∈AC 1且N 为AC 1的中点,又∵M 为AB 的中点,∴MN ∥BC 1,又BC 1⊂平面BB 1C 1C ,MN ⊄平面BB 1C 1C , 故MN ∥平面BB 1C 1C .(2)解 由A 1A ⊥平面ABC 且CC 1∥A 1A ,得AC ⊥CC 1,BC ⊥CC 1.又∠ACB =90°,则AC ⊥BC ,以C 为原点,分别以CB ,CC 1,CA 所在直线为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,设CC 1=2λ(λ>0).则M (1,0,1),N (0,λ,1),B 1(2,2λ,0),∴CM →=(1,0,1),MN →=(-1,λ,0),NB 1→=(2,λ,-1). 取平面CMN 的一个法向量为m =(x ,y ,z ), 由CM→·m =0,MN →·m =0. 得⎩⎨⎧x +z =0,-x +λy =0,令y =1,得m =(λ,1,-λ).同理可得平面B 1MN 的一个法向量为n =(λ,1,3λ), ∵平面CMN ⊥平面B 1MN ,∴m ·n =λ2+1-3λ2=0,解得λ=22,得n =⎝ ⎛⎭⎪⎫22,1,322,又AB →=(2,0,-2),设直线AB 与平面B 1MN所成角为θ,则sin θ=|cos 〈n ,AB →〉|=|n ·AB →||n ||AB →|=66.所以,直线AB 与平面B 1MN 所成角的正弦值是66.星期五 (解析几何) 2018年____月____日【题目5】 (本小题满分12分)在平面直角坐标系xOy 中,已知椭圆E :x 2a 2+y 2b 2=1(a >b >0),圆O :x 2+y 2=r 2(0<r <b ),若圆O 的一条切线l :y =kx +m 与椭圆E 相交于A ,B 两点.(1)当k =-12,r =1时,若点A ,B 都在坐标轴的正半轴上,求椭圆E 的方程; (2)若以AB 为直径的圆经过坐标原点O ,探究a ,b ,r 是否满足1a 2+1b 2=1r 2,并说明理由.解 (1)依题意原点O 到切线l :y =-12x +m 的距离为半径1,∴|m |1+14=1,解之得m =±52,又点A ,B 都在坐标轴的正半轴上,则m >0, ∴切线l :y =-12x +52,∴A ⎝⎛⎭⎪⎫0,52,B (5,0),∴B 为椭圆的右顶点,A 为椭圆的上顶点,则a =5,b =52, ∴椭圆E 的方程为:x 25+y 254=1.(2)a ,b ,r 满足1a 2+1b 2=1r 2成立,理由如下:设A (x 1,y 1),B (x 2,y 2),直线l 与圆x 2+y 2=r 2相切,则|m |1+k 2=r ,即m 2=r 2(1+k 2),① 联立⎩⎪⎨⎪⎧y =kx +m ,x 2a 2+y 2b2=1,得(b 2+a 2k 2)x 2+2a 2kmx +a 2m 2-a 2b 2=0. 则x 1+x 2=-2a 2km b 2+a 2k 2,x 1x 2=a 2m 2-a 2b 2b 2+a 2k 2,所以y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=b 2m 2-a 2b 2k 2b 2+a 2k 2,AB 为直径的圆经过坐标原点O ,则∠AOB =90°, 则OA→·OB →=0, ∴x 1x 2+y 1y 2=a 2m 2-a 2b 2b 2+a 2k 2+b 2m 2-a 2b 2k 2b 2+a 2k 2=(a 2+b 2)m 2-a 2b 2(1+k 2)b 2+a 2k 2=0.则(a 2+b 2)m 2=a 2b 2(1+k 2),②将①代入②,得a 2+b 2a 2b 2=1r 2, ∴1a 2+1b 2=1r 2.星期六 (函数与导数) 2018年____月____日【题目6】 (本小题满分12分)已知函数f (x )=x 2-a ln x (a >0)的最小值是1. (1)求a ;(2)若关于x 的方程f 2(x )e x -6mf (x )+9m e -x =0在区间[1,+∞)有唯一的实根,求m 的取值范围. 解 (1)f ′(x )=2x -ax =2⎝⎛⎭⎪⎫x +a 2⎝ ⎛⎭⎪⎫x -a 2x(x >0).所以,当0<x <a2时,f ′(x )<0,函数f (x )单调递减;当x >a2时,f ′(x )>0,函数f (x )单调递增. 故f (x )min =f ⎝⎛⎭⎪⎫a 2=a 2-a 2ln a 2, 由题意可得:a 2-a 2ln a 2=1,即a 2-a 2ln a2-1=0, 记g (a )=a 2-a 2ln a2-1(a >0),则函数g (a )的零点即为方程a 2-a 2ln a2=1的根; 由于g ′(a )=-12ln a2,故a =2时,g ′(2)=0, 且0<a <2时,g ′(a )>0;a >2时,g ′(a )<0, 所以a =2是函数g (a )的唯一极大值点, 所以g (a )≤g (2),又g (2)=0, 所以a =2.(2)由条件可得f 2(x )e 2x -6mf (x )e x +9m =0, 令g (x )=f (x )e x =(x 2-2ln x )e x , 则g ′(x )=⎝ ⎛⎭⎪⎫x 2+2x -2x -2ln x e x ,令r (x )=x 2+2x -2x -2ln x (x ≥1),则r ′(x )=2x +2+2x 2-2x >2x -2x =2(x 2-1)x≥0,r (x )在区间[1,+∞)内单调递增, ∴g (x )≥g (1)=e ;所以原问题等价于方程t 2-6mt +9m =0在区间[e ,+∞)内有唯一解, 当Δ=0时可得m =0或m =1,经检验m =1满足条件. 当Δ>0时可得m <0或m >1, 所以e 2-6m e +9m ≤0, 解之得m ≥e 26e -9,综上,m的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪m =1或m ≥e 26e -9.星期日 (选考内容) 2018年____月____日【题目7】 在下面两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分.1.(本小题满分10分)选修4-4:坐标系与参数方程.在直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =4t 2,y =4t(t 为参数),以O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρ(4cos θ+3sin θ)-m =0(其中m 为常数).(1)若直线l 与曲线C 恰好有一个公共点,求实数m 的值; (2)若m =4,求直线l 被曲线C 截得的弦长.解 (1)直线l 的极坐标方程可化为直角坐标方程:4x +3y -m =0,曲线C 的参数方程可化为普通方程:y 2=4x , 由⎩⎨⎧4x +3y -m =0,y 2=4x可得y 2+3y -m =0, ∵直线l 和曲线C 恰好有一个公共点, ∴Δ=9+4m =0,∴m =-94.(2)当m =4时,直线l :4x +3y -4=0恰好过抛物线的焦点F (1,0),由⎩⎨⎧4x +3y -4=0,y 2=4x可得4x 2-17x +4=0,设直线l 与抛物线C 的两个交点分别为A (x 1,y 1),B (x 2,y 2),则x 1+x 2=174, 故直线l 被抛物线C 所截得的弦长为|AB |=x 1+x 2+2=174+2=254. 2.(本小题满分10分)选修4-5:不等式选讲. 设函数f (x )=⎪⎪⎪⎪⎪⎪12x +1+|x |(x ∈R )的最小值为a .(1)求a ;(2)已知两个正数m ,n 满足m 2+n 2=a ,求1m +1n 的最小值.解 (1)f (x )=⎩⎪⎨⎪⎧-32x -1,x <-2,-12x +1,-2≤x ≤0,32x +1,x >0.当x ∈(-∞,0)时,f (x )单调递减; 当x ∈[0,+∞)时,f (x )单调递增; ∴当x =0时,f (x )的最小值a =1.(2)由(1)知m 2+n 2=1,则m 2+n 2≥2mn ,得1mn ≥2, 由于m >0,n >0, 则1m +1n ≥21mn ≥22,当且仅当m =n =22时取等号.∴1m +1n 的最小值为2 2.。

【四川】2019高考数学(理)二轮复习:中档大题规范练——立体几何与空间向量及答案

【四川】2019高考数学(理)二轮复习:中档大题规范练——立体几何与空间向量及答案

中档大题规范练——立体几何与空间向量1. 有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r 的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.解 由题意知,圆锥的轴截面为正三角形,如图所示为圆锥的轴截面.根据切线性质知,当球在容器内时,水深为3r ,水面的半径为3r ,则容器内水的体积为V =V 圆锥-V 球=13π·(3r)2·3r -43πr 3=53πr 3, 而将球取出后,设容器内水的深度为h ,则水面圆的半径为33h , 从而容器内水的体积是V′=13π·(33h)2·h=19πh 3, 由V =V′,得h =315r.即容器中水的深度为315r.2. 如图1所示,正三角形ABC 的边长为2a ,CD 是AB 边上的高,E ,F 分别是AC ,BC 的中点.现将△ABC 沿CD 翻折,翻折后平面ACD⊥平面BCD(如图2).求三棱锥C —DEF 的体积.图1 图2解 过点E 作EM⊥DC 于点M ,因为平面ACD⊥平面BCD ,平面ACD∩平面BCD =CD ,而EM ⊂平面ACD ,所以EM⊥平面BCD.即EM 是三棱锥E —CDF 的高.又CD⊥BD,AD⊥CD,F 为BC 的中点,所以S △CDF =12S △BCD =12×12CD×BD =14×2-a 2×a=34a 2, 因为E 为AC 的中点,EM⊥CD,所以EM =12AD =12a. 所以三棱锥C —DEF 的体积为V C —DEF =V E —CDF =13S △CDF ×EM=13×34a 2×12a =324a 3. 3. 如图,在多面体ABCDEF 中,四边形ABCD 是正方形,EF∥AB,EF⊥FB,AB =2EF ,∠BFC=90°,BF =FC ,H 为BC 的中点.(1)求证:FH∥平面EDB ;(2)求证:AC⊥平面EDB.证明 (1)设AC 与BD 交于点G ,则G 为AC 的中点.如图,连接EG 、GH ,又H 为BC 的中点,∴GH 綊12AB. 又EF 綊12AB ,∴EF 綊GH. ∴四边形EFHG 为平行四边形.∴EG∥FH.又∵EG ⊂平面EDB ,FH ⊄平面EDB ,∴FH∥平面EDB.(2)由四边形ABCD 为正方形,得AB⊥BC.又EF∥AB,∴EF⊥BC.又∵EF⊥FB,BC∩FB=B ,∴EF⊥平面BFC.∴EF⊥FH.∴AB⊥FH.又BF =FC ,H 为BC 的中点,∴FH⊥BC.∴FH⊥平面ABCD.∴FH⊥AC.又FH∥EG,∴AC⊥EG.又AC⊥BD,EG∩BD=G ,∴AC⊥平面EDB.4. 如图所示,已知三棱锥A -BPC 中,AP⊥PC,AC⊥BC,M 为AB 的中点,D 为PB 的中点,且△PMB 为正三角形.(1)求证:DM∥平面APC ;(2)求证:平面ABC⊥平面APC ;(3)若BC =4,AB =20,求三棱锥D -BCM 的体积.(1)证明 由已知,得MD 是△ABP 的中位线,所以MD∥AP.又MD ⊄平面APC ,AP ⊂平面APC ,故MD∥平面APC.(2)证明 因为△PMB 为正三角形,D 为PB 的中点,所以MD⊥PB.所以AP⊥PB.又AP⊥PC,PB∩PC=P ,所以AP⊥平面PBC.因为BC ⊂平面PBC ,所以AP⊥BC.又BC⊥AC,AC∩AP=A ,所以BC⊥平面APC.因为BC ⊂平面ABC ,所以平面ABC⊥平面APC.(3)解 由题意,可知MD⊥平面PBC ,所以MD 是三棱锥D -BCM 的一条高,所以V D -BCM =V M -DBC =13×S △BCD ×MD =13×221×53=107.5. 如图,在底面是矩形的四棱锥P —ABCD 中,PA⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF∥平面PAB ;(2)求证:平面PAD⊥平面PDC.证明 (1)以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴,建立如图所示的空间直角坐标系,则A(0,0,0),B(1,0,0),C(1,2,0),D(0,2,0),P(0,0,1),∵E,F 分别是PC ,PD 的中点, ∴E ⎝ ⎛⎭⎪⎫12,1,12,F ⎝⎛⎭⎪⎫0,1,12, EF →=⎝ ⎛⎭⎪⎫-12,0,0,PB →=(1,0,-1),PD →=(0,2,-1),AP →=(0,0,1),AD →=(0,2,0),DC →=(1,0,0),AB →=(1,0,0).∵EF →=-12AB →,∴EF →∥AB →,即EF∥AB, 又AB ⊂平面PAB ,EF ⊄平面PAB ,∴EF∥平面PAB.(2)∵AP →·DC →=(0,0,1)·(1,0,0)=0,AD →·DC →=(0,2,0)·(1,0,0)=0,∴AP →⊥DC →,AD →⊥DC →,即AP⊥DC,AD⊥DC.又AP∩AD=A ,∴DC⊥平面PAD.∵DC ⊂平面PDC ,∴平面PAD⊥平面PDC.6. 如图,在四棱锥P -ABCD 中,PC⊥底面ABCD ,ABCD 是直角梯形,AB⊥AD,AB∥CD,AB =2AD =2CD =2.E 是PB 的中点.(1)求证:平面EAC⊥平面PBC ;(2)若二面角P -AC -E 的余弦值为63,求直线PA 与平面EAC 所成角的正弦值. (1)证明 ∵PC⊥平面ABCD ,AC ⊂平面ABCD ,∴AC⊥PC,∵AB=2,AD =CD =1,∴AC=BC =2,∴AC 2+BC 2=AB 2,∴AC⊥BC,又BC∩PC=C ,∴AC⊥平面PBC ,∵AC ⊂平面EAC ,∴平面EAC⊥平面PBC.(2)解 如图,以C 为原点,DA →、CD →、CP →分别为x 轴、y 轴、z 轴正向,建立空间直角坐标系,则C(0,0,0), A(1,1,0),B(1,-1,0).设P(0,0,a)(a >0),则E 12,-12,a 2, CA →=(1,1,0),CP →=(0,0,a),CE →=12,-12,a 2, 设m =(b ,p ,m)为面PAC 的法向量,则m·CA →=m·CP →=0,即⎩⎪⎨⎪⎧b +p =0am =0,取m =(1,-1,0), 设n =(x ,y ,z)为面EAC 的法向量,则n·CA →=n·CE →=0,即⎩⎪⎨⎪⎧x +y =0,x -y +az =0,取x =a ,y =-a ,z =-2, 则n =(a ,-a ,-2),依题意,|cos 〈m ,n 〉|=|m·n||m||n|=a a 2+2=63,则a =2. 于是n =(2,-2,-2),PA →=(1,1,-2).设直线PA 与平面EAC 所成角为θ,则sin θ=|cos 〈PA →,n 〉|=|PA →·n||PA →||n|=23, 即直线PA 与平面EAC 所成角的正弦值为23.。

北京高三数学(理)立体几何汇编(适合北京高三中档题,有答案和解析

北京高三数学(理)立体几何汇编(适合北京高三中档题,有答案和解析

专题:立体几何(适合北京高三数学理,中档题)一、选择题1 .一四面体的三视图如图所示,则该四面体四个面中最大的面积是( )A .2B .22C .3D .322 .已知一个几何体的三视图如图所示(单位:cm), 那么这个几何体的侧.面积是 ( )A.2B.2C.2(4 D.2(第2题图) (第3题图)3 .某四面体三视图如图所示,则该四面体的四个面中,直角三角形的面积和是( )A .2B .4C.2D.4+4 .如图所示,为一几何体的三视图,则该几何体的体积是( )A .1B .21 C .13 D .65(第4题图) (第6题图)5 .已知平面βα,,直线n m ,,下列命题中不.正确的是 ( )(第1题图)左视图A .若α⊥m ,β⊥m ,则α∥βB .若m ∥n ,α⊥m ,则α⊥nC .若m ∥α,n =βα ,则m ∥nD .若α⊥m ,β⊂m ,则βα⊥.6 .某正三棱柱的三视图如图所示,其中正(主)视图是边长为2的正方形,该正三棱柱的表面积是 ( )A .6B .12C .12+D .24+7 .如图,正方体1111ABCD A B C D -中,E 是棱11B C 的中点,动点P 在底面ABCD 内,且11PA A E =,则点P 运动形成的图形是( )A .线段B .圆弧C .椭圆的一部分D .抛物线的一部分(第7题图)8 .某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的是 ( )A .B .8C .D .9 .若一个直六棱柱的三视图如图所示,则这个直六棱柱的体积为( )A .4B .29C .5D .21110.设,m n 是不同的直线,,αβ是不同的平面,下列命题中正确的是( )A .若//,,m n m n αβ⊥⊥,则αβ⊥B .若//,,m n m n αβ⊥⊥,则//αβC .若//,,//m n m n αβ⊥,则α⊥βD .若//,,//m n m n αβ⊥,则//αβ11.某三棱锥的三视图如图所示,该三棱锥的体积是( )A .38B .4 C .2 D .3412.已知一个空间几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的体积为( )A .4B .8C .12D .2413.已知三棱锥的底面是边长为1的正三角形,其正视图与俯视图如图所示,则其侧视图的面积为( )AB.C .34D .114.在棱长为1的正方体1111ABCD A BC D 中,1P,2P 分别为线段AB ,1BD (不包括端俯视图点)上的动点,且线段12P P 平行于平面11A ADD ,则四面体121PP AB 的体积的最大值是 ( )A .124B .112 C .16D .1215.如图,某三棱锥的三视图都是直角边为2的等腰直角三角形,则该三棱锥的体积是( )A .43B .83C .4D .816.如图,在棱长为1的正方体1111ABCD A B C D -中,点, E F 分别是棱1,BC CC 的中点,P 是侧面11BCC B 内一点,若1//A P 平面,AEF 则线段1A P 长度的取值范围是 ( )A. B. C. D.B 1C 1D 1A 1FE BCD A17.一个几何体的三视图如图所示,该几何体的体积是 ( )(第18题图)A.16+B.12+C .8D .418.某四棱锥的三视图如图所示,该四棱锥的体积是( ) ( )A.B.CD19.若正三棱柱的三视图如图所示,该三棱柱的表面积是( )ABC.6+ D.6+二、填空题20.某几何体的三视图如图所示,则它的体积为______.(第20题) (第21题) (第22题)21.一个几何体的三视图如图所示,则该几何体的体积为 .22.三棱锥D ABC -及其三视图中的主视图和左视图如图所示,则棱BD 的长为______. 三、解答题23.如图,四棱锥ABCD P -的底面ABCD 为菱形, 60=∠ABC ,PA ⊥底面ABCD ,2==AB PA ,E 为PA 的中点.(Ⅰ)求证://PC 平面EBD ;(Ⅱ)求三棱锥PAD C -的体积PAD C V -;(Ⅲ)在侧棱PC 上是否存在一点M ,满足⊥PC 平面MBD ,若存在,求PM 的长;若不存在,说明理由.D A BC左视图侧视图D专题:立体几何参考答案一、选择题 1. D 2. C 3. C 4. D 5. C 6. C; 7. B. 8. C 9. A 10. 【答案】C解:C 中,当//,//m m n α,所以,//,n α或,n α⊂当n β⊥,所以α⊥β,所以正确。

(全国通用版)高考数学二轮复习 中档大题规范练(四)立体几何 文-人教版高三全册数学试题

(全国通用版)高考数学二轮复习 中档大题规范练(四)立体几何 文-人教版高三全册数学试题

(四)立体几何1.(2018·峨眉山市第七教育发展联盟模拟)如图,在四棱锥P -ABCD 中,平面PAB ⊥平面ABCD ,PB ⊥PA ,PB =PA ,∠DAB =∠ABC =90°,AD ∥BC ,AB =8,BC =6,CD =10,M 是PA 的中点.(1)求证:BM ∥平面PCD ; (2)求三棱锥B -CDM 的体积. (1)证明 取PD 中点N ,连接MN ,NC , ∵MN 为△PAD 的中位线, ∴MN ∥AD ,且MN =12AD .又∵BC ∥AD ,且BC =12AD ,∴MN ∥BC ,且MN =BC ,则BMNC 为平行四边形, ∴BM ∥NC ,又∵NC ⊂平面PCD ,MB ⊄平面PCD , ∴BM ∥平面PCD .(2)解 过M 作AB 的垂线,垂足为M ′,又∵平面PAB ⊥平面ABCD ,平面PAB ∩平面ABCD =AB ,MM ′⊂平面PAB , ∴MM ′⊥平面ABCD .∴MM ′为三棱锥M -BCD 的高, ∵AB =8,PA =PB ,∠BPA =90°, ∴△PAB 边AB 上的高为4,∴MM ′=2,过C 作CH ⊥AD 交AD 于点H , 则CH =AB =8,S △BCD =12×BC ×CH =12×6×8=24,∴V B -CDM =V M -BCD =13S △BCD ×MM ′=13×24×2=16.2.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,点E 在棱PC 上(异于点P ,C ),平面ABE 与棱PD 交于点F .(1)求证:AB ∥EF ;(2)若AF ⊥EF ,求证:平面PAD ⊥平面ABCD . 证明 (1)因为四边形ABCD 是矩形, 所以AB ∥CD .又AB ⊄平面PDC ,CD ⊂平面PDC , 所以AB ∥平面PDC ,又因为AB ⊂平面ABE ,平面ABE ∩平面PDC =EF , 所以AB ∥EF .(2)因为四边形ABCD 是矩形, 所以AB ⊥AD .因为AF ⊥EF ,(1)中已证AB ∥EF , 所以AB ⊥AF .由点E 在棱PC 上(异于点C ),所以点F 异于点D , 所以AF ∩AD =A ,AF ,AD ⊂平面PAD ,所以AB ⊥平面PAD , 又AB ⊂平面ABCD , 所以平面PAD ⊥平面ABCD .3.(2018·某某省某某市第一中学模拟)在如图所示的几何体ACBFE 中,AB =BC ,AE =EC ,D 为AC 的中点,EF ∥DB .(1)求证:AC ⊥FB ;(2)若AB ⊥BC ,AB =4,AE =3,BF =3,BD =2EF ,求该几何体的体积. (1)证明 ∵EF ∥BD ,∴EF 与BD 确定平面EFBD ,连接DE , ∵AE =EC ,D 为AC 的中点, ∴DE ⊥AC .同理可得BD ⊥AC , 又∵BD ∩DE =D ,BD ,DE ⊂平面EFBD , ∴AC ⊥平面EFBD ,∵FB ⊂平面EFBD ,∴AC ⊥FB .(2)解 由(1)可知AC ⊥平面BDEF , ∴V ACBFE =V A -BDEF +V C -BDEF =13·S BDEF ·AC ,∵AB =BC ,AB ⊥BC ,AB =4, ∴AC =42,BD =22, 又AE =3,∴DE =AE 2-AD 2=1.在梯形BDEF 中,取BD 的中点M ,连接MF , 则EF ∥DM 且EF =DM , ∴四边形FMDE 为平行四边形,∴FM ∥DE 且FM =DE .又BF =3, ∴BF 2=FM 2+BM 2,∴FM ⊥BM ,S 梯形BDEF =12×()2+22×1=322,∴V ACBFE =13×322×42=4.4.在如图所示的几何体中,EA ⊥平面ABCD ,四边形ABCD 为等腰梯形,AD ∥BC ,AD =12BC ,AD=1,∠ABC =60°,EF ∥AC ,EF =12AC .(1)证明:AB ⊥CF ;(2)若多面体ABCDFE 的体积为338,求线段CF 的长.(1)证明 ∵EA ⊥平面ABCD ,AB ⊂平面ABCD , ∴EA ⊥AB , 作AH ⊥BC 于点H ,在Rt△ABH 中,∠ABH =60°,BH =12,得AB =1,在△ABC 中,AC 2=AB 2+BC 2-2AB ·BC cos 60°=3, ∴AB 2+AC 2=BC 2, ∴AB ⊥AC .又AC ∩EA =A ,AC ,EA ⊂平面ACFE , ∴AB ⊥平面ACFE ,又∵CF ⊂平面ACFE ,∴AB ⊥CF .(2)解 设AE =a ,作DG ⊥AC 于点G , 由题意可知平面ACFE ⊥平面ABCD ,又平面ACFE ∩平面ABCD =AC ,DG ⊂平面ABCD , ∴DG ⊥平面ACFE ,且DG =12,又V B -ACFE =13S 梯形ACFE ×AB=13×12×⎝ ⎛⎭⎪⎫32+3×a ×1=34a , V D -ACFE =13S 梯形ACFE ×DG=13×12×⎝ ⎛⎭⎪⎫32+3×a ×12=38a , ∴V 多面体ABCDFE =V B -ACFE +V D -ACFE =338a =338, 得a =1.连接FG ,则FG ⊥AC , ∴CF =FG 2+CG 2=1+⎝⎛⎭⎪⎫322=72. 5.(2018·某某省某某市第七中学诊断)在多面体ABCDEF 中,底面ABCD 是梯形,四边形ADEF 是正方形,AB ∥DC ,CD ⊥AD ,平面ABCD ⊥平面ADEF ,AB =AD =1,CD =2.(1)求证:平面EBC ⊥平面EBD ;(2)设M 为线段EC 上一点,3EM →=EC →,试问在线段BC 上是否存在一点T ,使得MT ∥平面BDE ?若存在,试指出点T 的位置;若不存在,说明理由; (3)在(2)的条件下,求点A 到平面MBC 的距离. (1)证明 因为平面ABCD ⊥平面ADEF , 平面ABCD ∩平面ADEF =AD ,ED ⊥AD ,ED ⊂平面ADEF ,∴ED ⊥平面ABCD , 又BC ⊂平面ABCD , ∴ED ⊥BC .过B 作BH ⊥CD 交CD 于点H .故四边形ABHD 是正方形, 所以∠ADB =45°. 在△BCH 中,BH =CH =1, ∴∠BCH =45°,BC =2,又∠BDC =45°,∴∠DBC =90°,∴BC ⊥BD . ∵BD ∩ED =D ,BD ,ED ⊂平面EBD , ∴BC ⊥平面EBD ,BC ⊂平面EBC , ∴平面EBC ⊥平面EBD .(2)解 在线段BC 上存在点T ,使得MT ∥平面BDE . 在线段BC 上取点T ,使得3BT →=BC →,连接MT .在△EBC 中,∵BT BC =EM EC =13,∴△CMT ∽△CEB ,所以MT ∥EB , 又MT ⊄平面BDE ,EB ⊂平面BDE , ∴MT ∥平面BDE .(3)解点A到平面MBC的距离就是点A到平面EBC的距离,设点A到平面EBC的距离为h,由(1)得BC⊥EB,BE=3,BC=2,利用等积法,可得V A-EBC=V E-ABC,即13×h×12×3×2=13×1×12×1×2×sin 135°,解得h=66.。

立体几何的探索性问题-高考数学大题精做之解答题题型全覆盖高端精品

立体几何的探索性问题-高考数学大题精做之解答题题型全覆盖高端精品

高考数学大题精做之解答题题型全覆盖高端精品第三篇立体几何专题04立体几何的探索性问题类型对应典例探索位置问题典例1“线定,面动”探索线面平行问题典例2“线动,面定”探索线面平行问题典例3探索线线垂直问题典例4探索线面垂直问题典例5探索面面垂直问题典例6探索二面角问题典例7【典例1】如图,在四棱锥PABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M为PC的中点.(1)求异面直线AP,BM所成角的余弦值;(2)点N在线段AD上,且AN=λ,若直线MN与平面PBC所成角的正弦值为45,求λ的值.【典例2】如图,在平行四边形ABCD 中,2,4,60AB AD BAD ︒==∠=,平面EBD ⊥平面ABD ,且,EB CB ED CD ==.(1)在线段EA 上是否存在一点F ,使//EC 平面FBD ,证明你的结论;(2)求二面角A EC D --的余弦值.【典例3】如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,CD ⊥AD ,BC ∥AD ,12BC CD AD ==.(Ⅰ)求证:CD ⊥PD ;(Ⅱ)求证:BD ⊥平面PAB ;(Ⅲ)在棱PD 上是否存在点M ,使CM ∥平面PAB ,若存在,确定点M 的位置,若不存在,请说明理由.【典例4】在三棱锥P—ABC 中,PB ⊥平面ABC ,AB ⊥BC ,AB=PB =2,BC =2E 、G 分别为PC 、PA 的中点.(1)求证:平面BCG ⊥平面PAC ;(2)假设在线段AC 上存在一点N ,使PN ⊥BE ,求ANNC的值;(3)在(2)的条件下,求直线BE 与平面PBN 所成角的正弦值【典例5】如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AD BC ∥,90ABC ∠=︒,1AB BC ==,2PA AD ==.(1)求证:CD ⊥平面PAC ;(2)在棱PC 上是否存在点H ,使得AH ⊥平面PCD ?若存在,确定点H 的位置;若不存在,说明理由.【典例6】直四棱柱1111ABCD A B C D -中,2AB BC ==,90ABC ∠=︒,E 、F 分别为棱AB 、11B C 上的点,2AE EB =,112C F FB =.求证:(1)//EF 平面11AA C C ;(2)线段AC 上是否存在一点G ,使面EFG ⊥面11AA C C .若存在,求出AG 的长;若不存在,请说明理由.【典例7】如图,底面ABCD 是边长为3的正方形,平面ADEF ⊥平面ABCD ,AF ∥DE ,AD ⊥DE ,AF =,DE =.(1)求直线CA 与平面BEF 所成角的正弦值;(2)在线段AF 上是否存在点M ,使得二面角M ­BE ­D 的大小为60°?若存在,求出AMAF的值;若不存在,说明理由.1.如图,在直四棱柱ABCD -A 1B 1C 1D 1中,底面四边形ABCD 为菱形,A 1A =AB =2,∠ABC =3π,E ,F 分别是BC ,A 1C的中点.(1)求异面直线EF ,AD 所成角的余弦值;(2)点M 在线段A 1D 上,11A MA Dλ=.若CM ∥平面AEF ,求实数λ的值.2.如图,在四棱锥P­ABCD 中,AD ∥BC ,∠ADC=∠PAB=90°,BC=CD=12AD .E 为棱AD 的中点,异面直线PA 与CD 所成的角为90°.(I )在平面PAB 内找一点M ,使得直线CM ∥平面PBE ,并说明理由;(II)若二面角P­CD­A 的大小为45°,求直线PA 与平面PCE 所成角的正弦值.3.已知四棱锥中P ABCD -,底面ABCD 为菱形,60ABC ∠=︒,PA ⊥平面ABCD ,E 、M 分别是BC 、PD 上的中点,直线EM 与平面PAD 所成角的正弦值为155,点F 在PC 上移动.(Ⅰ)证明:无论点F 在PC 上如何移动,都有平面AEF ⊥平面PAD ;(Ⅱ)求点F 恰为PC 的中点时,二面角C AF E --的余弦值.4.如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA PD =,PA AB ⊥,N 是棱AD 的中点.(1)求证:PN ^平面ABCD ;(2)在棱BC 上是否存在点E ,使得//BN 平面DEP ?并说明理由.5.如图所示,在四棱锥P ABCD -中,AB PC ⊥,AD BC ∕∕,AD CD ⊥,且2PC BC AD ==2CD ==2PA =.(1)PA ⊥平面ABCD ;(2)在线段PD 上,是否存在一点M ,使得二面角M AC D --的大小为60︒?如果存在,求PMPD的值;如果不存在,请说明理由.6.如图,在四棱锥S ABCD -中,已知四边形ABCD的正方形,点S 在底面ABCD 上的射影为底面ABCD 的中心点O ,点P 在棱SD 上,且SAC 的面积为1.(1)若点P 是SD 的中点,求证:平面SCD ⊥平面PAC ;(2)在棱SD 上是否存在一点P 使得二面角P AC D --?若存在,求出点P 的位置;若不存在,说明理由.7.如图,在三棱锥A BCD -中,顶点A 在底面BCD 上的投影O 在棱BD 上,AB AD ==,2BC BD ==,90CBD ∠=︒,E 为CD 的中点.(1)求证:AD ⊥平面ABC ;(2)求二面角B AE C --的余弦值;(3)已知点Q 为AE 的中点,在棱BD 上是否存在点P ,使得PQ ⊥平面ABE ,若存在,求BPBD的值;若不存在,说明理由.8.如图,AC 是O 的直径,点B 是O 上与A ,C 不重合的动点,PO ⊥平面ABC .(1)当点B 在什么位置时,平面OBP ⊥平面PAC ,并证明之;(2)请判断,当点B 在O 上运动时,会不会使得BC AP ⊥,若存在这样的点B ,请确定点B 的位置,若不存在,请说明理由.参考答案【典例1】【详解】(1)因为PA ⊥平面ABCD ,且AB ,AD ⊂平面ABCD ,所以PA ⊥AB ,PA ⊥AD .又因为∠BAD =90°,所以PA ,AB ,AD 两两互相垂直.分别以AB ,AD ,AP 为x ,y ,z 轴建立空间直角坐标系,则由AD =2AB =2BC =4,PA =4可得A (0,0,0),B (2,0,0),C (2,2,0),D (0,4,0),P (0,0,4).又因为M 为PC 的中点,所以M (1,1,2).所以BM=(-1,1,2),AP =(0,0,4),所以cos 〈AP ,BM 〉=||||⋅AP BMAP BM63,所以异面直线AP ,BM所成角的余弦值为3.(2)因为AN =λ,所以N (0,λ,0)(0≤λ≤4),则MN =(-1,λ-1,-2),BC =(0,2,0),PB=(2,0,-4).设平面PBC 的法向量为m=(x,y,z ),则00m BC m PB ⎧⋅=⎨⋅=⎩即20240y x z =⎧⎨-=⎩令x =2,解得y =0,z =1,所以m=(2,0,1)是平面PBC 的一个法向量.因为直线MN 与平面PBC 所成角的正弦值为45,所以|cos 〈MN ,m 〉|=||||||⋅MN MN m m =2|22|5(1)5λ--+-⋅=45,解得λ=1∈[0,4],所以λ的值为1.【典例2】【详解】(1)存在点F ,点F 为EA 的中点证明:当点F 为EA 的中点时,连结AC 交BD 于O ,∵平行四边形ABCD ,∴O 为AC 的中点,连结OF ,则//OF EC ,∵FO ⊂平面BDF ,EC ⊂/平面BDF ,∴//EC 平面FBD .(2)∵4,2EB CB AD ED CD AB ======,60BAD ∠=︒∴23BD =,∴222BE BD ED =+,222BC BD DC =+,∴BD ED ⊥,BD DC ⊥又∵平面EBD ⊥平面ABD ,∴ED ⊥平面ABCD ,BD ⊥平面ECD ,以DB 为x 轴,DC 为y 轴,DE 为z 轴,如图建系:D xyz-则(0,0,0)D ,(23,2,0)A -,(0,2,0)C ,(0,0,2)E ,(23,0,0)B ∴(23,4,0)AC =- ,(23,2,2)AE =-∴(23,0,0)DB =为平面ECD 的一个法向量,令平面ACD 的一个法向量为(,,)n x y z =,∴40220n AC y n AE y z ⎧⋅=-+=⎪⎨⋅=-++=⎪⎩ 取2x =,y =,z =∴平面ACD的一个法向量为(n =,令二面角A EC D --为θ,由题意可知θ为锐角,则||10cos |cos ,|5||||n DB n DB n DB θ⋅=<>===⋅.【典例3】【详解】(Ⅰ)证明:因为PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以CD ⊥PA .因为CD ⊥AD ,PA AD A ⋂=,所以CD ⊥平面PAD .因为PD ⊂平面PAD ,所以CD ⊥PD .(II )因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以BD ⊥PA .在直角梯形ABCD 中,12BC CD AD ==,由题意可得AB BD ==,所以222AD AB BD =+,所以BD AB ⊥.因为PA AB A = ,所以BD ⊥平面PAB .(Ⅲ)解:在棱PD 上存在点M ,使CM ∥平面PAB ,且M 是PD 的中点.证明:取PA 的中点N ,连接MN ,BN ,因为M 是PD 的中点,所以12MN AD .因为12BC AD,所以MN BC .所以MNBC 是平行四边形,所以CM ∥BN .因为CM ⊄平面PAB ,BN ⊂平面PAB .所以//CM 平面PAB .【典例4】【详解】(1)因为PB ⊥平面ABC ,BC ⊂平面ABC ,所以PB BC ⊥,又AB BC ⊥,AB BP B = ,所以BC ⊥平面PAB ,则BC PA ⊥①,又2AB PB ==,PAB ∆为等腰直角三角形,G 为斜边PA 的中点,所以BG PA ⊥②,又BG BC B ⋂=,所以PA ⊥平面BCG ,因PA ⊂平面PAC ,则有平面BCG ⊥平面PAC ;(2)分别以,,BA BC BP为,,x y z 轴,建立空间直角坐标系,那么(2,0,0),(0,(0,0,2),A C P BE =,因此(2,AC =- ,(2,0,2)PA =-,设(2,,0)AN AC λλ==-,那么(22,,2)PN λ=--,由PN BE ⊥,得0PN BE ⋅=,解得13λ=.因此13AN AC = ,因此12AN NC =;(3)由(2)知423(,,2)33PN =-,设平面PBN 的法向量为(,,)n x y z = ,则0,0n PN n BP ⋅=⋅=,即2042033z x y z =⎧⎪⎨+-=⎪⎩,令x =2y =-,0,z =因此2,0)n =-,设直线BE 与平面PBN 所成角为θ,那么sin 7BE n BE n θ⋅===⋅ .【典例5】解(1)由题意,可得DC AC ==,∴222A C D C A D +=,即AC DC ⊥,又PA ⊥底面ABCD ,∴PA CD ⊥,且PA AC A = ,∴DC ⊥平面PAC ;(2)过点A 作AH PC ⊥,垂足为H ,由(1)可得CD AH ⊥,又PC CD C = ,∴AH ⊥平面PCD .在Rt PAC △中,∵2PA =,AC =PH PAPA PC=∴23PH PC =.即在棱PC 上存在点H ,且23PH PC =,使得AH ⊥平面PCD.【典例6】【详解】(1)如图所示:以1A 为原点,11A D ,11A B ,1A A 分别为,,x y z 轴建立空间直角坐标系:则1(0,0,0)A ,1(0,2,0)B ,1(2,2,0)C ,设(0,0,)A a ,则4(0,,)3E a ,2(,2,0)3F ,所以22(,,)33EF a =- ,1(0,0,)A A a = ,11(2,2,0)AC = ,因为11113EF A A A C =-+ ,所以EF ,1A A ,11AC共面,又EF 不在平面11AA C C 内,所以//EF 平面11AA C C(2)线段AC 上存在一点G ,使面EFG ⊥面11AA C C ,且3AG =,证明如下:在三角形AGE 中,由余弦定理得EG ==3==,所以222AG EG AE +=,即EG AG ⊥,又1A A ⊥平面ABCD ,EG ⊂平面ABCD ,、所以1A A EG ⊥,而1AG A A A ⋂=,所以EG ⊥平面11AA C C ,因为EG ⊂平面EFG ,所以EFG ⊥面11AA C C ,【典例7】【详解】(1)因为DA ,DC ,DE 两两垂直,所以以D 为坐标原点,射线DA ,DC ,DE 分别为x 轴,y 轴,z 轴的正半轴,建立空间直角坐标系D ­xyz ,如图所示.则A (3,0,0),F (3,0,,E (0,0,),B (3,3,0),C (0,3,0),CA =(3,-3,0),BE=(-3,-3,),EF=(3,0,.设平面BEF 的法向量为n=(x 1,y 1,z 1),1111133030n BE x y n EF x ⎧⋅=--+=⎪⎨⋅=-=⎪⎩ 取x 1,得n,,3).所以||13|cos ,|13||||CA n CA n CA n ⋅<>===所以直线CA 与平面BEF 所成角的正弦值为1313.(2)假设存在点M 在线段AF 上满足条件,设M (3,0,t ),0≤t≤则BM=(0,-3,t ),BE =(-3,-3,).设平面MBE 的法向量为m=(x 2,y 2,z 2),2222230330m BM y tz m BE x y ⎧⋅=-+=⎪⎨⋅=--+=⎪⎩令y 2=t ,得m=(t ,t ,3).易知CA=(3,-3,0)是平面BED 的一个法向量,所以|cos ,|m CA <>|12=,整理得2t 2-t +15=0,解得t=2或t =562(舍去),故在线段AF 上存在点M ,使得二面角M ­BE ­D 的大小为60°,此时14AM AF =.1.【思路引导】(1)由四棱柱1111ABCD A B C D -,证得11,A A AE A A AD ⊥⊥,进而得到AE AD ⊥,以{}1,,AE AD A A为正交基底建立空间直角坐标系,利用向量坐标运算,即可求解,EF AD 所成角的余弦值;(2)设(,,)M x y z ,由点M 在线段1A D 上,得到11A M A Dλ=,得出向量CM则坐标表示,再求得平面AEF 的一个法向量,利用向量的数量积的运算,即可得到λ的值。

专题04 立体几何-【李金柱梳理】冲刺2023年高考数学大题突破+限时集训(新高考专用)(原卷版)

专题04 立体几何-【李金柱梳理】冲刺2023年高考数学大题突破+限时集训(新高考专用)(原卷版)

专题04立体几何题型简介立体几何一般作为全国卷第20题21题.重点题型主要是1体积问题及表面积问题2线面距离及线面角问题3二面角问题4空间几何综合问题典例在线题型一:体积及表面积问题1.在如图所示的多面体ABCDE 中,⊥AE 平面ABC ,AE CD ∥,22AE CD ==,3CA CB ==,25AB =(1)证明:平面ABE ⊥平面BDE ;(2)求多面体ABCDE 的体积.变式训练1.如图①,在平面四边形ABCD 中,2AB AD ==,2BC CD ==60BAD ∠= .将BCD △沿着BD 折叠,使得点C 到达点C '的位置,且二面角A BD C '--为直二面角,如图②.已知,,P G F 分别是,,AC AD AB '的中点,E 是棱AB 上的点,且C E '与平面ABD 所成角的正233(1)证明:平面//PGF 平面C DB ';(2)求四棱锥P GFED -的体积.题型二:线面距离及线面角问题1如图,在多面体ABCDE 中,已知ABC ,ACD ,BCE 均为等边三角形,平面ACD ⊥平面ABC ,平面BCE ⊥平面ABC ,H 为AB的中点.(1)判断DE 与平面ABC 的位置关系,并加以证明;(2)求直线DH 与平面ACE 所成角的正弦值.变式训练1如图,PD 垂直于梯形ABCD 所在平面,90ADC BAD ∠=∠=,F 为PA 的中点,2PD =112AB AD CD ===,四边形PDCE 为矩形.(1)求证://AC 平面DEF ;(2)求平面ABCD 与平面BCP 的夹角的大小;(3)求点F 到平面BCP 的距离.题型三:二面角问题1如图,四棱锥P -ABCD 中,已知AD BC ∥,BC =2AD ,AD =DC ,∠BCD =60°,CD ⊥PD ,PB ⊥BD.(1)证明:PB ⊥AB ;(2)设E 是PC 的中点,直线AE 与平面ABCD 所成角等于45°,求二面角B -PC -D 的余弦值.变式训练1如图,在四棱锥S ABCD -中,底面ABCD 为梯形,AB CD ∥,2AB CD =,AD SD =,SAB △为正三角形,SC BC ⊥,CB CS =.(1)求证:平面SAB ⊥平面SBC ;(2)求二面角C SA D --的余弦值.题型四:空间几何综合问题1.如图所示,正方形ABCD 所在平面与梯形ABMN 所在平面垂直,AN BM ∥,2AN AB BC ===,4BM =,23CN =(1)证明:BM ⊥平面ABCD ;(2)在线段CM (不含端点)上是否存在一点E ,使得二面角E BN M --33若存在,求出的CEEM值;若不存在,请说明理由.变式训练1如图,在四棱锥E -ABCD 中,平面ADE ⊥平面ABCD ,O 、M 分别为线段AD 、DE 的中点,四边形BCDO 是边长为1的正方形,AE =DE ,AE ⊥DE.(1)求证:CM //平面ABE ;(2)求直线CM 与BD 所成角的余弦值;(3)点N 在直线AD 上,若平面BMN ⊥平面ABE ,求线段AN 的长.模拟尝试1.(2023·山东·潍坊一中校联考模拟预测)如图,在四棱锥P ABCD -中,PAD 为等边三角形,M 为PA 的中点,PD AB ⊥,平面PAD ⊥平面ABCD .(1)证明:平面MCD ⊥平面PAB ;(2)若//AD BC ,2AD BC =,2CD AB =,求平面MCD 与平面PBC 夹角的余弦值.2.(2023·山东·日照一中校考模拟预测)如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为22(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AAAB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C--的正弦值.3.(2023·吉林·长春十一高校联考模拟预测)如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,D 为线段AB 的中点,4CB =,43AB =118AC =,三棱锥1A A DC -的体积为8.(1)证明:1A D ⊥平面11B C D ;(2)求平面1ACD 与平面1A BC 夹角的余弦值.4.(2022·江苏南京·南京师大附中校考模拟预测)如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60ADC ∠=︒,PAD 为等边三角形,O 为线段AD 的中点,且平面PAD ⊥平面ABCD ,M 是线段PC 上的点.(1)求证:OM BC ⊥;(2)若直线AM 与平面PAB 的夹角的正弦值为1010,求四棱锥M ABCD -的体积.5.(2023·河北衡水·衡水市第二中学校考模拟预测)如图,直四棱柱1111ABCD A B C D -中,16AA =E 是1AA 的中点,底面ABCD 是平行四边形,若1A C ⊥平面1BDC.(1)若1AB AA =,证明:底面ABCD 是正方形(2)若60BAD ∠=︒,求二面角1B BE D --的余弦值6.(2022·河北衡水·河北衡水中学校考模拟预测)直四棱柱1111ABCD A B C D -被平面α所截,所得的一部分如图所示,EF DC =.(1)证明://ED 平面ACF ;(2)若1242DC AD A E ===,3ADC π∠=,平面EFCD 与平面ABCD 所成角的正切值433,求点E 到平面ACF 的距离.真题再练1.(2021·全国·统考高考真题)如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值.2.(2021·全国·统考高考真题)已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?3.(2021·全国·统考高考真题)如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.4.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.5.(2022·全国·统考高考真题)小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD 是边长为8(单位:cm )的正方形,,,,EAB FBC GCD HDA 均为正三角形,且它们所在的平面都与平面ABCD 垂直.(1)证明://EF 平面ABCD ;(2)求该包装盒的容积(不计包装盒材料的厚度).6.(2022·全国·统考高考真题)如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为22(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C--的正弦值.7.(2022·全国·统考高考真题)如图,PO 是三棱锥-P ABC 的高,PA PB =,AB AC ⊥,E 是PB的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --的正弦值.8.(2022·北京·统考高考真题)如图,在三棱柱111ABC A B C -中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,2AB BC ==,M ,N 分别为11A B ,AC的中点.(1)求证:MN ∥平面11BCC B ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB 与平面BMN 所成角的正弦值.条件①:AB MN ⊥;条件②:BM MN =.注:如果选择条件①和条件②分别解答,按第一个解答计分.9.(2022·天津·统考高考真题)直三棱柱111ABC A B C -中,112,,AA AB AC AA AB AC AB ===⊥⊥,D为11A B 的中点,E 为1AA 的中点,F 为CD 的中点.(1)求证://EF 平面ABC ;(2)求直线BE 与平面1CC D 所成角的正弦值;(3)求平面1ACD 与平面1CC D 所成二面角的余弦值.。

2021届高考数学第专题四 高考中的立体几何问题文档强练 文

2021届高考数学第专题四 高考中的立体几何问题文档强练 文

专题四 高考中的立体几何问题1.(2021·广东)某四棱台的三视图如下图,那么该四棱台的体积是( ) A.4 B.143C.163D.6 答案 B 解析 由三视图知四棱台的直观图为由棱台的体积公式得:V =13(2×2+ 1×1+2×2×1×1)×2=143. 2.(2021·课标全国Ⅱ)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l满 足l ⊥m ,l ⊥n ,l ⊄α,l ⊄β,那么( )A.α∥β且l ∥αB.α⊥β且l ⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l答案 D 解析 假设α∥β,由m ⊥平面α,n ⊥平面β,那么m ∥n ,这与已知m ,n 为异面直线矛盾,那么α与β相交,设交线为l 1,那么l 1⊥m ,l 1⊥n ,在直线m 上任取一点作n 1平行于n ,那么l 1和l 都垂直于直线m 与n 1所确信的平面,因此l 1∥l .3.如图,点O 为正方体ABCD —A ′B ′C ′D ′的中心,点E 为面B ′BCC ′的中心,点F 为B ′C ′的中点,那么空间四边形D ′OEF在该正方体的各个面上的投影不可能是( ) 答案 D解析 空间四边形D ′OEF 在正方体的面DCC ′D ′上的投影是A ;在面BCC ′B ′上的投影是B ;在面ABCD 上的投影是C ,应选D.4.在如下图的四个正方体中,能得出AB ⊥CD 的是( ) 答案 A解析 A 中,∵CD ⊥平面AMB ,∴CD ⊥AB ;B 中,AB 与CD 成60°角,C 中,AB 与CD 成45°角;D 中,AB 与CD 夹角的正切值为 2.5.如图,四棱锥P -ABCD 的底面是一直角梯形,AB ∥CD ,BA ⊥AD ,CD =2AB ,PA ⊥底面ABCD ,E 为PC 的中点,那么BE 与平面PAD的 位置关系为________.答案 平行解析 取PD 的中点F ,连接EF ,在△PCD 中,EF 綊12CD . 又∵AB ∥CD 且CD =2AB ,∴EF 綊AB ,∴四边形ABEF 是平行四边形,∴EB ∥AF .又∵EB ⊄平面PAD ,AF ⊂平面PAD ,∴BE ∥平面PAD .题型一 空间点、线、面的位置关系例1 (2021·山东)如图,四棱锥P -ABCD 中,AB ⊥AC ,AB ⊥PA ,AB ∥CD ,AB =2CD ,E , F ,G ,M ,N 别离为PB ,AB ,BC ,PD ,PC 的中点.(2)求证:平面EFG ⊥平面EMN .思维启发 (1)在平面PAD 内作直线CE 的平行线或利用平面CEF ∥平面PAD 证明;(2)MN 是平面EFG 的垂线.证明 (1)方式一 取PA 的中点H ,连接EH ,DH .又E 为PB 的中点,因此EH 綊12AB .又CD 綊12AB ,因此EH 綊CD .因此四边形DCEH 是平行四边形,因此CE ∥DH .又DH ⊂平面PAD ,CE ⊄平面PAD .因此CE ∥平面PAD .方式二 连接CF .因为F 为AB 的中点,因此AF =12AB .又CD =12AB ,因此AF =CD .又AF ∥CD ,因此四边形AFCD 为平行四边形.因此CF ∥AD ,又CF ⊄平面PAD ,因此CF ∥平面PAD .因为E ,F 别离为PB ,AB 的中点,因此EF ∥PA .又EF ⊄平面PAD ,因此EF ∥平面PAD .因为CF ∩EF =F ,故平面CEF ∥平面PAD .又CE ⊂平面CEF ,因此CE ∥平面PAD .(2)因为E 、F 别离为PB 、AB 的中点,因此EF ∥PA .又因为AB ⊥PA ,因此EF ⊥AB ,同理可证AB ⊥FG .因此AB⊥平面EFG.又因为M,N别离为PD,PC的中点,因此MN∥CD,又AB∥CD,因此MN∥AB,因此MN⊥平面EFG.又因为MN⊂平面EMN,因此平面EFG⊥平面EMN.思维升华高考对该部份的考查重点是空间的平行关系和垂直关系的证明,一样以解答题的形式显现,试题难度中等,但对空间想象能力和逻辑推理能力有必然的要求,在试卷中也可能以选择题或填空题的方式考查空间位置关系的大体定理在判定线面位置关系中的应用.如下图,直三棱柱ABC-A1B1C1中,∠ACB=90°,M,N别离为A1B,B1C1的中点.求证:(1)BC∥平面MNB1;(2)平面A1CB⊥平面ACC1A.证明(1)因为BC∥B1C1,且B1C1⊂平面MNB1,BC⊄平面MNB1,故BC∥平面MNB1.(2)因为BC⊥AC,且ABC-A1B1C1为直三棱柱,故BC⊥平面ACC1A1.因为BC⊂平面A1CB,故平面A1CB⊥平面ACC1A1.题型二平面图形的翻折问题例2如图1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC 上,CE=4.如图2所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连接AB,BE,设点F是AB的中点.(1)求证:DE⊥平面BCD;(2)假设EF∥平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥B-DEG的体积.思维启发(1)翻折前后,△ACD内各元素的位置关系没有转变,易知DE⊥DC,再依照平面BCD⊥平面ACD(2)注意从条件EF ∥平面BDG 得线线平行,为求高作基础.(1)证明 ∵AC =6,BC =3,∠ABC =90°,∴∠ACB =60°.∵CD 为∠ACB 的平分线,∴∠BCD =∠ACD =30°.∴CD =2 3. ∵CE =4,∠DCE =30°, ∴DE 2=CE 2+CD 2-2CE ·CD ·cos 30°=4,∴DE =2,那么CD 2+DE 2=EC 2.∴∠CDE =90°,DE ⊥DC .又∵平面BCD ⊥平面ACD ,平面BCD ∩平面ACD =CD ,DE ⊂平面ACD ,∴DE ⊥平面BCD .(2)解 ∵EF ∥平面BDG ,EF ⊂平面ABC ,平面ABC ∩平面BDG =BG ,∴EF ∥BG .∵点E 在线段AC 上,CE =4,点F 是AB 的中点,∴AE =EG =CG =2.如图,作BH ⊥CD 于H .∵平面BCD ⊥平面ACD ,∴BH ⊥平面ACD .由条件得BH =32, S △DEG =13S △ACD =13×12AC ·CD ·sin 30°=3, ∴三棱锥B -DEG 的体积V =13S △DEG ·BH =13×3×32=32. 思维升华 平面图形的翻折问题,关键是弄清翻折前后图形中线面位置关系和气宇关系的转变情形.一样地翻折后还在同一个平面上的性质不发生转变,不在同一个平面上的性质发生转变.(2021·北京)如图(1),在Rt△ABC 中,∠C =90°,D ,E 别离为AC ,AB 的中点,点F 为线段CD 上的一点,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1F ⊥CD ,如图(2).(2)求证:A1F⊥BE.(3)线段A1B上是不是存在点Q,使A1C⊥平面DEQ?说明理由.(1)证明因为D,E别离为AC,AB的中点,因此DE∥BC.又因为DE⊄平面A1CB,因此DE∥平面A1CB.(2)证明由已知得AC⊥BC且DE∥BC,因此DE⊥AC.因此DE⊥A1D,DE⊥CD.又A1D∩CD=D,因此DE⊥平面A1DC.而A1F⊂平面A1DC,因此DE⊥A1F.又因为A1F⊥CD,因此A1F⊥平面BCDE,又因为BE⊂平面BCDE,因此A1F⊥BE.(3)解线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,别离取A1C,A1B的中点P,Q,那么PQ∥BC.又因为DE∥BC,因此DE∥PQ.因此平面DEQ即为平面DEP.由(2)知,DE⊥平面A1DC,因此DE⊥A1C.又因为P是等腰三角形DA1C底边A1C的中点,因此A1C⊥DP.因此A1C⊥平面DEP.从而A1C⊥平面DEQ.题型三 线面位置关系中的存在性问题例3 如图,在矩形ABCD 中,AB =2BC ,P 、Q 别离是线段AB 、CD的 中点,EP ⊥平面ABCD .(1)求证:DP ⊥平面EPC ;(2)问在EP 上是不是存在点F ,使平面AFD ⊥平面BFC ?假设存在,求出FP AP的值;假设不存在,说明理由.思维启发 先假设EP 上存在点F 使平面AFD ⊥平面BFC ,然后推证点F 的位置.(1)证明 ∵EP ⊥平面ABCD ,∴EP ⊥DP .又ABCD 为矩形,AB =2BC ,P 、Q 别离为AB 、CD 的中点,连接PQ ,则PQ ⊥DC 且PQ =12DC . ∴DP ⊥PC .∵EP ∩PC =P ,∴DP ⊥平面EPC .(2)解 假设存在F 使平面AFD ⊥平面BFC ,∵AD ∥BC ,BC ⊂平面BFC ,AD ⊄平面BFC ,∴AD ∥平面BFC .∴AD 平行于平面AFD 与平面BFC 的交线l .∵EP ⊥平面ABCD ,∴EP ⊥AD ,而AD ⊥AB , AB ∩EP =P ,∴AD ⊥平面EAB ,∴l ⊥平面FAB .∴∠AFB 为平面AFD 与平面BFC 所成二面角的平面角.∵P 是AB 的中点,且FP ⊥AB ,∴当∠AFB =90°时,FP =AP .∴当FP =AP ,即FP AP =1时,平面AFD ⊥平面BFC .思维升华 关于线面关系中的存在性问题,第一假设存在,然后在那个假设下利用线面关系的性质进行推理论证,寻求假设知足的条件.假设条件知足那么确信假设,假设取得矛盾那么否定假设.如图,在直四棱柱ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.(1)求证:D1C⊥AC1;(2)问在棱CD上是不是存在点E,使D1E∥平面A1BD.假设存在,确信点E位置;假设不存在,说明理由.(1)证明在直四棱柱ABCD-A1B1C1D1中,连接C1D,∵DC=DD1,∴四边形DCC1D1是正方形,∴DC1⊥D1C.又AD⊥DC,AD⊥DD1,DC∩DD1=D,∴AD⊥平面DCC1D1,又D1C⊂平面DCC1D1,∴AD⊥D1C.∵AD⊂平面ADC1,DC1⊂平面ADC1,且AD∩DC1=D,∴D1C⊥平面ADC1,又AC1⊂平面ADC1,∴D1C⊥AC1.(2)解假设存在点E,使D1E∥平面A1BD.连接AD1,AE,D1E,设AD1∩A1D=M,BD∩AE=N,连接MN,∵平面AD1E∩平面A1BD=MN,要使D1E∥平面A1BD,可使MN∥D1E,又M是AD1的中点,则N是AE的中点.又易知△ABN≌△EDN,∴AB=DE.综上所述,当E 是DC 的中点时,可使D 1E ∥平面A 1BD .(时刻:80分钟)1.如下图,在边长为5+2的正方形ABCD 中,以A 为圆心画一个扇形,以O 为圆心画一个圆,M ,N ,K 为切点,以扇形为圆锥的侧面,以圆O 为圆锥底面,围成一个圆锥,求圆锥的全面积与体积.解 设圆锥的母线长为l ,底面半径为r ,高为h ,由已知条件得⎩⎪⎨⎪⎧ l +r +2r =5+2×22πrl =π2,解得r =2,l =42,S =πrl +πr 2=10π,h =l 2-r 2=30,V =13πr 2h =230π3.2.如图,在四棱台ABCD -A 1B 1C 1D 1中,D 1D ⊥平面ABCD ,底面ABCD是平行四边形,AB =2AD ,AD =A 1B 1,∠BAD =60°.(1)证明:AA 1⊥BD ;(2)证明:CC 1∥平面A 1BD .证明 (1)方式一 因为D 1D ⊥平面ABCD ,且BD ⊂平面ABCD ,因此D 1D ⊥BD .又因为AB =2AD ,∠BAD =60°,在△ABD 中,由余弦定理得BD 2=AD 2+AB 2-2AD ·AB cos 60°=3AD 2,因此AD 2+BD 2=AB 2,因此AD ⊥BD .又AD ∩D 1D =D ,因此BD ⊥平面ADD 1A 1.故AA 1⊥BD .方式二 因为D 1D ⊥平面ABCD ,且BD ⊂平面ABCD ,因此BD ⊥D 1D .如图,取AB 的中点G ,连接DG ,在△ABD 中,由AB =2AD 得AG =AD .又∠BAD =60°,因此△ADG 为等边三角形,因此GD =GB ,故∠DBG =∠GDB .又∠AGD =60°,因此∠GDB =30°,故∠ADB =∠ADG +∠GDB =60°+30°=90°,因此BD ⊥AD .又AD ∩D 1D =D ,因此BD ⊥平面ADD 1A .又AA 1⊂平面ADD 1A ,故AA 1⊥BD .(2)如图,连接AC ,A 1C 1,设AC ∩BD =E ,连接EA 1,因为四边形ABCD 为平行四边形,因此EC =12AC . 由棱台概念及AB =2AD =2A 1B 1知A 1C 1∥EC 且A 1C 1=EC ,因此四边形A 1ECC 1为平行四边形,因此CC 1∥EA .又EA 1⊂平面A 1BD ,CC 1⊄平面A 1BD ,因此CC 1∥平面A 1BD .3.如图,四棱锥P —ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,点E 在线段 AD 上,且CE ∥AB .(1)求证:CE ⊥平面PAD ;(2)假设PA =AB =1,AD =3,CD =2,∠CDA =45°,求四棱锥P —ABCD 的体积.因此PA ⊥CE .因为AB ⊥AD ,CE ∥AB ,因此CE ⊥AD .又PA ∩AD =A ,因此CE ⊥平面PAD .(2)解 由(1)可知CE ⊥AD .在Rt△ECD 中,DE =CD ·cos 45°=1,CE =CD ·sin 45°=1.又因为AB =CE =1,AB ∥CE ,因此四边形ABCE 为矩形.因此S 四边形ABCD =S 矩形ABCE +S △ECD =AB ·AE +12CE ·DE=1×2+12×1×1=52.又PA ⊥平面ABCD ,PA =1,因此V 四棱锥P —ABCD =13S 四边形ABCD ·PA =13×52×1=56.4.如图,在正方体ABCD —A 1B 1C 1D 1中,E 、F 别离是CD 、A 1D 1的中点.(1)求证:AB 1⊥BF ;(2)求证:AE ⊥BF ;(3)棱CC 1上是不是存在点P ,使BF ⊥平面AEP ?假设存在,确信点P 的位置,假设不存在,说明理由.(1)证明 连接A 1B ,那么AB 1⊥A 1B ,又∵AB 1⊥A 1F ,且A 1B ∩A 1F =A 1,∴AB 1⊥平面A 1BF .又BF ⊂平面A 1BF ,∴AB 1⊥BF .(2)证明 取AD 中点G ,连接FG ,BG ,那么FG ⊥AE ,又∵△BAG ≌△ADE ,∴∠ABG =∠DAE .∴AE ⊥BG .又∵BG ∩FG =G ,∴AE ⊥平面BFG .又BF ⊂平面BFG ,∴AE ⊥BF .(3)解 存在.取CC 1中点P ,即为所求.连接EP ,AP ,C 1D ,∵EP∥C1D,C1D∥AB1,∴EP∥AB1.由(1)知AB1⊥BF,∴BF⊥EP.又由(2)知AE⊥BF,且AE∩EP=E,∴BF⊥平面AEP.5.(2021·安徽)如图,在长方体ABCD-A1B1C1D1中,底面A1B1C1D1是正方形,O是BD的中点,E是棱AA1上任意一点.(1)证明:BD⊥EC1;(2)若是AB=2,AE=2,OE⊥EC1,求AA1的长.(1)证明连接AC,A1C1.由底面是正方形知,BD⊥AC.因为AA1⊥平面ABCD,BD⊂平面ABCD,因此AA1⊥BD.又AA1∩AC=A,因此BD⊥平面AA1C1C.因为EC1⊂平面AA1C1C知,BD⊥EC1.(2)解方式一设AA1的长为h,连接OC1.在Rt△OAE中,AE=2,AO=2,故OE2=(2)2+(2)2=4.在Rt△EA1C1中,A1E=h-2,A1C1=22,故EC21=(h-2)2+(22)2.在Rt△OCC1中,OC=2,CC1=h,OC21=h2+(2)2.因为OE⊥EC1,因此OE2+EC21=OC21,即4+(h-2)2+(22)2=h2+(2)2,解得h=32,因此AA1的长为3 2.方式二∵OE⊥EC1,∴∠AEO+∠A1EC1=90°.又∵∠A1C1E+∠A1EC1=90°,∴∠AEO=∠A1C1E.又∵∠OAE=∠C1A1E=90°,∴△OAE∽EA1C1,∴AEA1C1=AOA1E,即222=2A1E,∴A1E=22,∴AA1=AE+A1E=3 2.6.(2021·辽宁)如图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面PAC;(2)设Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.证明(1)由AB是圆O的直径,得AC⊥BC,由PA⊥平面ABC,BC⊂平面ABC,得PA⊥BC.又PA∩AC=A,PA⊂平面PAC,AC⊂平面PAC,因此BC⊥平面PAC.(2)连接OG并延长交AC于M,连接QM,QO,由G为△AOC的重心,得M为AC中点.由Q为PA中点,得QM∥PC,又O为AB中点,得OM∥BC.因为QM∩MO=M,QM⊂平面QMO,MO⊂平面QMO,BC∩PC=C,BC⊂平面PBC,PC⊂平面PBC.因此平面QMO∥平面PBC.因为QG⊂平面QMO,因此QG∥平面PBC.。

高考中档题2--立体几何部分.

高考中档题2--立体几何部分.

1.四棱锥S ABCD中,底面ABCD为平行四边形,侧面SBC 底面ABCD .已知B 3.如图,在三棱锥S中占I 八、、•(I)证明:SO(n)求二面角AABC中,侧面SAB与侧面SAC均为等边三角形,BAC 90° ,0为BC平面ABC ; SCB的余弦值.CD的中点,G是EF上的一点,将△ GAB ,2.如图,正三棱柱ABC AB i C i的所有棱长都为2 , D为CC i中点.(I)求证:AB1丄平面ABD ;(n)求二面角A A1D B的大小;(rn)求点C到平面A1BD的距离. Ci 3.如图2, E, F分别是矩形ABCD的边AB,△ GCD分别沿AB, CD翻折成△ G i AB , △ G2CD,并连结GG,使得平面G i AB丄平面ABCD , G1G2// AD,且G1G2 AD . 连结BG2,如图3.图3图2(I)证明:平面G i AB丄平面G1ADG2;(II )当AB 12 , BC 25, EG 8时,求直线BG2和平面G1ADG2所成的角.□ 1.解法一:(I)作so丄BC ,垂足为0 ,连结AO ,由侧面SBC丄底面ABCD ,得SO丄底面ABCD .因为SA SB ,所以AO BO ,又 / ABC 45o , 由三垂线定理,得(n)由(I)知故 SA 丄 AD ,由 AD BC 2 J 2 , SA , AO J 2 ,得 SO 1 , SD711 故△ AOB 为等腰直角三角形, AO 丄BO , SA 丄 BC . SA 丄BC ,依题设AD // BC ,cosOGgDS 722 △ SAB 的面积0 1 AB 寸SA 2连结DB ,得△ DAB 的面积S 2 2-AB2 1BA:O— . —C ----■-匚■■0G|gDS,sin 也11 11所以,直线SD 与平面SAB 所成的角为arcsin ^2211-ABgAD sin135o 2 2设D 到平面SAB 的距离为h ,由于V D 1 1 一 hg — SOgS 2 , 33 解得h .SAB V S ABD ,得设SD 与平面SAB 所成角为 ,则sin 所以,直线SD 与平面SBC 所成的我为 h 72 辰SD 而arcsin------ . 11 解法二: (I)作SO 丄BC ,垂足为O ,连结AO ,由侧面SBC 丄底面ABCD ,得SO 丄平面ABCD . 因为SA SB ,所以AO BO . 又/ ABC 45o , △ AOB 为等腰直角三角形, AO 丄OB . 如图,以O 为坐标原点,OA 为x 轴正向,建立直角坐标系 O xyz , A (运,0,0), B(0,2,0) , C(0, 72,0) , S(0,0,) , S A E,O ,1) uuu — ULT uuu CB (0,272,0), SAgCB o ,所以 SA XBC .72 42 一,一,0 , 2 2 (n)取AB 中点E , EG C y□ 2.解法一:(I)取BC 中点O ,连结AO .Q A ABC 为正三角形, AO 丄BC .AQ 正三棱柱 ABC A 1B 1C 1中,平面 ABC 丄平面BCC 1B 1 ,AO 丄平面BCC 1 Bl .连结BQ ,在正方形BB 1C 1C 中,O , D 分别为BC , CC 1的中点, B 1O 丄 BD , AB 1 丄 BD .在正方形 ABB 1A 1中,AB 1丄AB ,AB 1丄平面A 1BD .(n)设AB 1与AB 交于点G ,在平面ABD 中,AB 1丄平面A BD . AF 丄 A 1D ,/ AFG 为二面角A ADB 的平面角.4^5 ,5在^ AA i D 中,由等面积法可求得 AF 又 QAG 2A B1 血,sin / AFGAG AF连结SE ,取SE 中点G , 连结OG , G 所以二面角AAD,SE (rn) △ A i BD 中,,AB ( 72,72,0).SEgOG 0 , ABgOG 0, 所以OG 平面SAB , OG 与DS 的夹角记为 互余. D (V 2,2V 2O ), DS ( 72,272,1).OG 与平面SAB 内两条相交直线 SE , AB 垂直.,SD 与平面SAB 所成的角记为,则A i七F:' CGDB i作GF 丄AD 于F ,连结AF ,由(I)得710B 的大小为 arcsin ----- .4 BD AD V5 , A ^B 2/2 , S ^ A BD J6 ,S A BCD 1 .在正三棱柱中, A 到平面BCC 1B 1的距离为. 设点C 到平面ABD 的距离为d . 由 V A BCD V C A 1BD 得 1 S A BCD ^3 TA,BD gd ,3 31 V 3S A BCD 血d -------------- -------- .S A A BD 2A i BD72点C 到平面ABD 的距离为—.2 解法二:(I)取BC 中点O ,连结AO . Q AABC 为正三角形, AO 丄BC . Q 在正三棱柱 ABC A B 1C 1中,平面 ABC 丄平面BCC 1B , AD 丄平面BCG B 1 .UUU JJJJ JJJ 取B 1C 1中点O 1,以O 为原点,OB , OQ , OA 的方向为x , 标系,则 B(1,0,0) , D( 1,1,0),几(0,2^[3), A(0,0j 3), BA ( 1,2,73).y, z 轴的正方向建立空间直角坐JJLT AB 1 (1,2, jLur JUJ Q AB 1gBD JUUT JJJ AB 1 丄 BD , AB 1 丄 BA •AB 1丄平面A 1BD . (n)设平面 AD ( 11, JJLr Q n 丄 AD , 11111 ngAD ngAA 1 令z 1得n — uuLr 返),BD ( 2,0), Jur 2 2 0 0 , AB 1gBA 山11 UUU SO —SA ,从而 OA 22所以△ SOA 为直角三角形, 又 AOI BO O . 所以SO 平面ABC . (n)解法一: 取SC 中点M ,连结AM ,OMA 为二面角A 由AO BC , AO AO 平面SBC .SO 2SO AO .OM , SC B 的平面角. SO, SOI BC 由(I)知SO 所以 AO OM , 又 AM OC , SA AC ,得 OM SC, AM SC.AAD 的法向量为n (X ,妁,AA (0,2,0). 11111n 丄 AA ,x y T sz 0, 2y 0, BJ 3,0,1)为平面AAD 的一个法向量由(I)知AB 1丄平面ABD , JLJrAB 1为平面ABD 的法向量. uuur 瞬- n g AB 1 y , z).0, 0, jjur cos n , AB 1 2g2血 面角A A 1D y 0,x T sz .A iA' CDO“ B i故 sin AMO所以二面角A arccos —4B 的大小为 LJJr (川)由(n) , AB,为平面ABD 法向量,JUU JLILr QBC ( 2,0,0" (1,2, 点C 到平面A BD 的距离d 73).UUUBCgAB 1■~~JUtU —AB□ 3. (I OA 证明: )由题设 AB=AC=SB=SC 込 OB OC ——SA ,且 AO 2 SA ,连结OA ,△ ABC 为等腰直角三角形,所以BC ,又△ SBC 为等腰三角形,故SO BC ,且AO 42 AM 7343—SA ,2卫3 . 73SC B 的余弦值为血 3解法二:以O 为坐标原点,射线OB, OA 分别为 正半轴,建立如图的空间直角坐标系 O 设 B(1,0,0),则 C( 1,0,0)1 1SC 的中点M —,0,—,2 2 UUUL UUL UUL^ 二 MO-SC 0,MA ・SC Cx 轴、y xyz .A(0,1,0) S(0,0,1).UUUUMO0 . JUJ 2 ,0,Luur 故 MO SC, MA SC, <MO,MAA SCB 的平面角UUUU 口山 cos MO ,MA 所以二面角AUJL T ,MA 丄,1,2JUJ,SC (1,0,1).等于二面 zfUuuuuuur MO- LUJUUMO - MAMA-uutr J 3SC B 的余弦值为兰空3MI fCA y S□ 4.解:解法一:(I)因为平面 GAB 丄平面ABCD ,■ Cx B 平面 G 1AB I 平面 ABCD AB, AD 丄 AB , AD 平面ABCD ,所以AD 丄平面GAB ,又AD 平面G 1ADG 2,所以平面G 1AB 丄平面G 1ADG 2 . (II )过点B 作BH 丄AG 1于点H ,连结G 2H .由(I )的结论可知, BH 丄平面G 1ADG 2 , 所以 BG 2H 是BG 2和平面G 1ADG 2所成的角.因为平面GAB 丄平面ABCD ,平面GAB I 平面ABCDDGE 平面GAB ,所以GE 丄平面ABCD ,故G 1E 丄EF .因为G 1G 2 AD , AD EF ,所以可在EF 上取一点O ,使G 1G 2 // AD // EO ,所以四边形 G 1EOG 2是矩形. 由题设AB 12, BC 25, EG 8,贝y GF 17 .所以 G 2O G 1E EO GG 2 ,又因为8 , G 2F 17 , 故直线BG 2与平面G 1 ADG 2所成的角是arcsin 12宀25OF J 172 82 15, 因为AD 丄平面G 1AB , 故BG ;BE 2 L G 1G 2 EO 10 . G 1G 2 // AD , EG 12 G 1G 22 6 2 8 2 又AG J 62 82 10,由 BH gAG 1 所以G 1G 2丄平面G 1AB ,从而 102 200, BG 2 10“ . 8 12 48 10 5 GEgAB 得 BHG 1G 2 丄 G 1B .1242BH 48 BG 2 5 10/2 25 •即直线BG 2与平面G 1ADG 2所成的角是arcsin 12吃. 25 解法二:(I )因为平面G 1AB 丄平面ABCD ,平面GABI 平面ABCD AB , G 1E 丄AB , GE 平面GAB ,所以GE 丄平面ABCD ,从而G 1E 丄AD .又AB 丄AD ,所以AD 丄平 面G 1AB .因为AD 平面G 1ADG 2,所以平面G 1AB 丄平面G 1ADG 2. (II )由(I )可知,GE 丄平面ABCD .故可以E 为原点,分别以直线EB , EF , EG 1为x 轴、 y 轴、z 轴建立空间直角坐标系(如图), 由题设 AB 12, BC 25, EG 8,则 EB 6,EF 25 , EG 8,相关各点的坐标分别是 A( 6,0,0), D( 6,25,0) , G (0,0,8) , B(6,0,0). UULT ULUU 所以 AD (0,25,0) , AG 1 (6,0,8). T 设n (X , y , z)是平面G 1ADG 2的一个法向量, T ULur ngAD 0, 25y 0, 「 r 由T^ULT得 y 故可取n (4,0, 3). ngAG 1 0. 6x 8z 0 过点G 2作G 2O 丄平面ABCD 于点O ,因为 上. 因为 G 1G 2 // AD ,所以 G 1G 2 // EF , G 2O 2 2设 G 2(0, m, 8) ( 0 m 25),由 178 UUUU 所以 BG 2 (010,8) (6,0,0) (610,8).设BG 2和平面G 1ADG 2所成的角是 ,贝U 故sin BG 2H G 2CG 1E (25 UUUU T1 BG26 ULLBG2 gnsin | 24 24| J 62 1 02 82 g/42 32G1OD■ ■ ■ ■ ■ ■・CG 2D ,所以OC OD ,于是点O 在y 轴8 .2m),解得 m 10,12^225。

2024届高考数学专项立体几何大题含答案

2024届高考数学专项立体几何大题含答案

立体几何大题1.空间中的平行关系(1)线线平行(2)线面平行的判定定理:平面外一直线与平面内一直线平行,则线面平行(3)线面平行的性质定理若线面平行,经过直线的平面与该平面相交,则直线与交线平行(4)面面平行的判定定理判定定理1:一个平面内有两条相交直线分别平行于另一个平面,则面面平行判定定理2:一个平面内有两条相交直线分别于另一个平面内两条相交直线平行,则面面平行(5)面面平行的性质定理性质定理1:两平面互相平行,一个平面内任意一条直线平行于另一个平面性质定理2:两平面互相平行,一平面与两平面相交,则交线互相平行6.空间中的垂直关系(1)线线垂直(2)线面垂直的判定定理一直线与平面内两条相交直线垂直,则线面垂直(3)线面垂直的性质定理性质定理1:一直线与平面垂直,则这条直线垂直于平面内的任意一条直线性质定理2:垂直于同一个平面的两条直线平行(4)面面垂直的判定定理一个平面内有一条直线垂直于另一个平面,则两个平面垂直(或:一个平面经过另一个平面的垂线,则面面垂直)(5)面面垂直的性质定理两平面垂直,其中一个平面内有一条直线与交线垂直,则这条直线垂直于另一个平面6.异面直线所成角cos θ=cos a ,b =|a ⋅b ||a |⋅|b |=|x 1x 2+y 1y 2+z 1z 2|x 12+y 12+z 12⋅x 22+y 22+z 22(其中θ(0°<θ≤90°)为异面直线a ,b 所成角,a ,b 分别表示异面直线a ,b 的方向向量)7.直线AB 与平面所成角,sin β=AB ⋅m |AB ||m |(m 为平面α的法向量).8.二面角α-l -β的平面角cos θ=m ⋅n |m ||n |(m ,n 为平面α,β的法向量).9.点B 到平面α的距离d =|AB ⋅n | (n 为平面α的法向量,AB 是经过面α的一条斜线,A ∈α).2024届高考数学专项立体几何大题含答案模拟训练一、解答题1(22·23下·湖南·二模)如图,在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,AC =BB ,点D 为棱BB 的中点,AE =13AC .(1)求DE 的长度;(2)求平面CDE 与平面BDE 夹角的余弦值.2(22·23下·绍兴·二模)如图,在多面体ABCDE 中,DE ⊥平面BCD ,△ABC 为正三角形,△BCD 为等腰Rt △,∠BDC =90°,AB =2,DE =2.(1)求证:AE ⊥BC ;(2)若AE ⎳平面BCD ,求直线BE 与平面ABC 所成的线面角的正弦值.3(22·23·张家口·三模)如图,在三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,∠CBB1=60°,AB= BC=2,AC=AB1=2.(1)证明:平面ACB1⊥平面BB1C1C;(2)求平面ACC1A1与平面A1B1C1夹角的余弦值.4(22·23·湛江·二模)如图1,在五边形ABCDE中,四边形ABCE为正方形,CD⊥DE,CD=DE,如图2,将△ABE沿BE折起,使得A至A1处,且A1B⊥A1D.(1)证明:DE⊥平面A1BE;(2)求二面角C-A1E-D的余弦值.5(22·23下·长沙·三模)如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,△ABC 和△ACD 均为正三角形,AC =4,BE =3,点F 在AC 上.(1)若BF ⎳平面CDE ,求CF ;(2)若F 是AC 的中点,求二面角F -DE -C 的正弦值.6(22·23下·湖北·二模)如图,S 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 内接于⊙O ,AC ⊥BC ,AC =BC =322,AM =2MS ,AS =3,PQ 为⊙O 的一条弦,且SB ⎳平面PMQ .(1)求PQ 的最小值;(2)若SA ⊥PQ ,求直线PQ 与平面BCM 所成角的正弦值.7(22·23·深圳·二模)如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA= AD=2AB,点M是PD的中点.(1)证明:AM⊥PC;(2)设AC的中点为O,点N在棱PC上(异于点P,C),且ON=OA,求直线AN与平面ACM所成角的正弦值.8(22·23下·温州·二模)已知三棱锥D-ABC中,△BCD是边长为3的正三角形,AB=AC=AD, AD与平面BCD所成角的余弦值为33.(1)求证:AD⊥BC;(2)求二面角D-AC-B的平面角的正弦值.9(22·23下·浙江·二模)如图,四面体ABCD,AD⊥CD,AD=CD,AC=2,AB=3,∠CAB=60°,E为AB上的点,且AC⊥DE,DE与平面ABC所成角为30°,(1)求三棱锥D-BCE的体积;(2)求二面角B-CD-E的余弦值.10(22·23下·襄阳·三模)如图,在三棱柱ABC-A1B1C1中,侧面BB1C1C为矩形,∠BAC=90°,AB= AC=2,AA1=4,A1在底面ABC的射影为BC的中点N,M为B1C1的中点.(1)求证:平面A1MNA⊥平面A1BC;(2)求平面A1B1BA与平面BB1C1C夹角的余弦值.11(22·23·唐山·二模)如图,在三棱柱ABC-A1B1C1中,△ABC是等边三角形,侧面ACC1A1⊥底面ABC,且AA1=AC,∠AA1C1=120°,M是CC1的中点.(1)证明:A1C⊥BM.(2)求二面角A1-BC-M的正弦值.12(22·23下·盐城·三模)如图,该几何体是由等高的半个圆柱和14个圆柱拼接而成,点G为弧CD的中点,且C,E,D,G四点共面.(1)证明:平面BDF⊥平面BCG;(2)若平面BDF与平面ABG所成二面角的余弦值为155,且线段AB长度为2,求点G到直线DF的距离.13(22·23下·江苏·三模)如图,圆锥DO中,AE为底面圆O的直径,AE=AD,△ABC为底面圆O的内接正三角形,圆锥的高DO=18,点P为线段DO上一个动点.(1)当PO=36时,证明:PA⊥平面PBC;(2)当P点在什么位置时,直线PE和平面PBC所成角的正弦值最大.14(22·23下·镇江·三模)如图,四边形ABCD是边长为2的菱形,∠ABC=60°,四边形PACQ为矩形,PA=1,从下列三个条件中任选一个作为已知条件,并解答问题(如果选择多个条件分别解答,按第一个解答计分).①BP,DP与平面ABCD所成角相等;②三棱锥P-ABD体积为33;③cos∠BPA=55(1)平面PACQ⊥平面ABCD;(2)求二面角B-PQ-D的大小;(3)求点C到平面BPQ的距离.15(22·23下·江苏·一模)在三棱柱ABC -A 1B 1C 1中,平面A 1B 1BA ⊥平面ABC ,侧面A 1B 1BA 为菱形,∠ABB 1=π3,AB 1⊥AC ,AB =AC =2,E 是AC 的中点.(1)求证:A 1B ⊥平面AB 1C ;(2)点P 在线段A 1E 上(异于点A 1,E ),AP 与平面A 1BE 所成角为π4,求EP EA 1的值.16(22·23下·河北·三模)如图,四棱锥P -ABCD 的底面ABCD 是菱形,其对角线AC ,BD 交于点O ,且PO ⊥平面ABCD ,OC =1,OD =OP =2,M 是PD 的中点,N 是线段CD 上一动点.(1)当平面OMN ⎳平面PBC 时,试确定点N 的位置,并说明理由;(2)在(1)的前提下,点Q 在直线MN 上,以PQ 为直径的球的表面积为214π.以O 为原点,OC ,OD ,OP 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O -xyz ,求点Q 的坐标.17(22·23·汕头·三模)如图,圆台O1O2的轴截面为等腰梯形A1ACC1,AC=2AA1=2A1C1=4,B为底面圆周上异于A,C的点.(1)在平面BCC1内,过C1作一条直线与平面A1AB平行,并说明理由;(2)若四棱锥B-A1ACC1的体积为23,设平面A1AB∩平面C1CB=l,Q∈l,求CQ的最小值.18(19·20下·临沂·二模)如图①,在Rt△ABC中,B为直角,AB=BC=6,EF∥BC,AE=2,沿EF将△AEF折起,使∠AEB=π3,得到如图②的几何体,点D在线段AC上.(1)求证:平面AEF⊥平面ABC;(2)若AE⎳平面BDF,求直线AF与平面BDF所成角的正弦值.19(22·23下·广州·三模)如图,四棱锥P-ABCD的底面为正方形,AB=AP=2,PA⊥平面ABCD,E,F分别是线段PB,PD的中点,G是线段PC上的一点.(1)求证:平面EFG⊥平面PAC;(2)若直线AG与平面AEF所成角的正弦值为13,且G点不是线段PC的中点,求三棱锥E-ABG体积.20(22·23下·长沙·一模)斜三棱柱ABC-A1B1C1的各棱长都为2,∠A1AB=60°,点A1在下底面ABC 的投影为AB的中点O.(1)在棱BB1(含端点)上是否存在一点D使A1D⊥AC1若存在,求出BD的长;若不存在,请说明理由;(2)求点A1到平面BCC1B1的距离.21(22·23下·长沙·三模)如图,三棱台ABC -A 1B 1C 1,AB ⊥BC ,AC ⊥BB 1,平面ABB 1A 1⊥平面ABC ,AB =6,BC =4,BB 1=2,AC 1与A 1C 相交于点D ,AE =2EB,且DE ∥平面BCC 1B 1.(1)求三棱锥C -A 1B 1C 1的体积;(2)平面A 1B 1C 与平面ABC 所成角为α,CC 1与平面A 1B 1C 所成角为β,求证:α+β=π4.22(22·23·衡水·一模)如图所示,A ,B ,C ,D 四点共面,其中∠BAD =∠ADC =90°,AB =12AD ,点P ,Q 在平面ABCD 的同侧,且PA ⊥平面ABCD ,CQ ⊥平面ABCD .(1)若直线l ⊂平面PAB ,求证:l ⎳平面CDQ ;(2)若PQ ⎳AC ,∠ABP =∠DAC =45°,平面BPQ ∩平面CDQ =m ,求锐二面角B -m -C 的余弦值.23(22·23下·湖北·三模)已知平行六面体(底面是平行四边形的四棱柱)ABCD-A1B1C1D1的各条棱长均为2,且有∠AA1D1=∠AA1B1=∠D1A1B1=60°.(1)求证:平面AA1C1C⊥平面A1B1C1D1;(2)求直线B1D与平面AA1C1C所成角的正弦值.24(22·23下·武汉·三模)如图,在四棱锥P-ABCD中,底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,E为线段PB的中点,F为线段BC上的动点.(1)求证:平面AEF⊥平面PBC;(2)求平面AEF与平面PDC夹角的最小值.25(22·23下·黄冈·三模)如图1,在四边形ABCD中,BC⊥CD,AE∥CD,AE=BE=2CD=2,CE =3.将四边形AECD沿AE折起,使得BC=3,得到如图2所示的几何体.(1)若G为AB的中点,证明:DG⊥平面ABE;(2)若F为BE上一动点,且二面角B-AD-F的余弦值为63,求EFEB的值.26(22·23·德州·三模)图1是直角梯形ABCD,AB⎳CD,∠D=90°,AD=3,AB=2,CD=3,四边形ABCE为平行四边形,以BE为折痕将△BCE折起,使点C到达C1的位置,且AC1=6,如图2.(1)求证:平面BC1E⊥平面ABED;(2)在线段BE上存在点P使得PA与平面ABC1的正弦值为365,求平面BAC1与PAC1所成角的余弦值.27(22·23·山东·二模)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB⎳CD,AB⊥BC,PA =AB=BC=2,CD=4.(1)证明:AD⊥PC;(2)若M为线段PB的靠近B点的四等分点,判断直线AM与平面PDC是否相交?如果相交,求出P到交点H的距离,如果不相交,说明理由.28(22·23·黄山·三模)如图,在直角梯形ABCD中,AD⎳BC,AD⊥CD,四边形CDEF为平行四边形,对角线CE和DF相交于点H,平面CDEF⊥平面ABCD,BC=2AD,∠DCF=60°,G是线段BE上一动点(不含端点).(1)当点G为线段BE的中点时,证明:AG⎳平面CDEF;(2)若AD=1,CD=DE=2,且直线DG与平面CDEF成45°角,求二面角E-DG-F的正弦值.29(22·23·菏泽·三模)已知在直三棱柱ABC-A1B1C1中,其中AA1=2AC=4,AB=BC,F为BB1的中点,点E是CC1上靠近C1的四等分点,A1F与底面ABC所成角的余弦值为2 2.(1)求证:平面AFC⊥平面A1EF;(2)在线段A1F上是否存在一点N,使得平面AFC与平面NB1C1所成的锐二面角的余弦值为277,若存在,确定点N的位置,若不存在,请说明理由.30(22·23·福州·三模)如图,在三棱锥P-ABC中,PA⊥底面ABC,PA=2,AB=AC=1,将△PAB绕着PA逆时针旋转π3到△PAD的位置,得到如图所示的组合体,M为PD的中点.(1)当∠BAC为何值时,该组合体的体积最大,并求出最大值;(2)当PC⎳平面MAB时,求直线PC与平面PBD所成角的正弦值.31(22·23·福州·二模)如图1,在△ABC 中,AB =AC =2,∠BAC =2π3,E 为BC 的中点,F 为AB 上一点,且EF ⊥AB .将△BEF 沿EF 翻折到△B EF 的位置,如图2.(1)当AB =2时,证明:平面B AE ⊥平面ABC ;(2)已知二面角B -EF -A 的大小为π4,棱AC 上是否存在点M ,使得直线B E 与平面B MF 所成角的正弦值为1010?若存在,确定M 的位置;若不存在,请说明理由.32(22·23·三明·三模)如图,平面五边形ABCDE 由等边三角形ADE 与直角梯形ABCD 组成,其中AD ∥BC ,AD ⊥DC ,AD =2BC =2,CD =3,将△ADE 沿AD 折起,使点E 到达点M 的位置,且BM =a .(1)当a =6时,证明AD ⊥BM 并求四棱锥M -ABCD 的体积;(2)已知点P 为棱CM 上靠近点C 的三等分点,当a =3时,求平面PBD 与平面ABCD 夹角的余弦值.33(22·23·宁德·一模)如图①在平行四边形ABCD 中,AE ⊥DC ,AD =4,AB =3,∠ADE =60°,将△ADE 沿AE 折起,使平面ADE ⊥平面ABCE ,得到图②所示几何体.(1)若M 为BD 的中点,求四棱锥M -ABCE 的体积V M -ABCE ;(2)在线段DB 上,是否存在一点M ,使得平面MAC 与平面ABCE 所成锐二面角的余弦值为235,如果存在,求出DMDB的值,如果不存在,说明理由.34(22·23·龙岩·二模)三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,AB =AC =2,侧面A 1ACC 1为矩形,∠A 1AB =2π3,三棱锥C 1-ABC 的体积为233.(1)求侧棱AA 1的长;(2)侧棱CC 1上是否存在点E ,使得直线AE 与平面A 1BC 所成角的正弦值为55?若存在,求出线段C 1E 的长;若不存在,请说明理由.35(22·23下·浙江·二模)如图,在多面体ABC-A1B1C1中,AA1⎳BB1⎳CC1,AA1⊥平面A1B1C1,△A1B1C1为等边三角形,A1B1=BB1=2,AA1=3,CC1=1,点M是AC的中点.(1)若点G是△A1B1C1的重心,证明;点G在平面BB1M内;(2)求二面角B1-BM-C1的正弦值.36(22·23下·浙江·三模)如图,三棱台ABC-A1B1C1中,A1C1=4,AC=6,D为线段AC上靠近C的三等分点.(1)线段BC上是否存在点E,使得A1B⎳平面C1DE,若不存在,请说明理由;若存在,请求出BEBC的值;(2)若A1A=AB=4,∠A1AC=∠BAC=π3,点A1到平面ABC的距离为3,且点A1在底面ABC的射影落在△ABC内部,求直线B1D与平面ACC1A1所成角的正弦值.37(22·23下·苏州·三模)如图,在三棱锥P-ABC中,△ABC是边长为62的等边三角形,且PA= PB=PC=6,PD⊥平面ABC,垂足为D,DE⊥平面PAB,垂足为E,连接PE并延长交AB于点G.(1)求二面角P-AB-C的余弦值;(2)在平面PAC内找一点F,使得EF⊥平面PAC,说明作法及理由,并求四面体PDEF的体积.38(22·23·沧州·三模)如图,该几何体是由等高的半个圆柱和14个圆柱拼接而成.C,E,D,G在同一平面内,且CG=DG.(1)证明:平面BFD⊥平面BCG;(2)若直线GC与平面ABG所成角的正弦值为105,求平面BFD与平面ABG所成角的余弦值.39(23·24上·永州·一模)如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,侧面PAD为正三角形,且AD=2AB=4,M、N分别为PD、BC的中点,H在线段PC上,且PC=3PH.(1)求证:MN⎳平面PAB;(2)当AM⊥PC时,求平面AMN与平面HMN的夹角的余弦值.40(22·23·潍坊·三模)如图,P为圆锥的顶点,O是圆锥底面的圆心,AC为底面直径,△ABD为底面圆O的内接正三角形,且边长为3,点E在母线PC上,且AE=3,CE=1.(1)求证:PO∥平面BDE;(2)求证:平面BED⊥平面ABD(3)若点M为线段PO上的动点.当直线DM与平面ABE所成角的正弦值最大时,求此时点M到平面ABE的距离.立体几何大题1.空间中的平行关系(1)线线平行(2)线面平行的判定定理:平面外一直线与平面内一直线平行,则线面平行(3)线面平行的性质定理若线面平行,经过直线的平面与该平面相交,则直线与交线平行(4)面面平行的判定定理判定定理1:一个平面内有两条相交直线分别平行于另一个平面,则面面平行判定定理2:一个平面内有两条相交直线分别于另一个平面内两条相交直线平行,则面面平行(5)面面平行的性质定理性质定理1:两平面互相平行,一个平面内任意一条直线平行于另一个平面性质定理2:两平面互相平行,一平面与两平面相交,则交线互相平行6.空间中的垂直关系(1)线线垂直(2)线面垂直的判定定理一直线与平面内两条相交直线垂直,则线面垂直(3)线面垂直的性质定理性质定理1:一直线与平面垂直,则这条直线垂直于平面内的任意一条直线性质定理2:垂直于同一个平面的两条直线平行(4)面面垂直的判定定理一个平面内有一条直线垂直于另一个平面,则两个平面垂直(或:一个平面经过另一个平面的垂线,则面面垂直)(5)面面垂直的性质定理两平面垂直,其中一个平面内有一条直线与交线垂直,则这条直线垂直于另一个平面6.异面直线所成角cos θ=cos a ,b =|a ⋅b ||a |⋅|b |=|x 1x 2+y 1y 2+z 1z 2|x 12+y 12+z 12⋅x 22+y 22+z 22(其中θ(0°<θ≤90°)为异面直线a ,b 所成角,a ,b 分别表示异面直线a ,b 的方向向量)7.直线AB 与平面所成角,sin β=AB ⋅m |AB ||m |(m 为平面α的法向量).8.二面角α-l -β的平面角cos θ=m ⋅n |m ||n |(m ,n 为平面α,β的法向量).9.点B 到平面α的距离d =|AB ⋅n | (n 为平面α的法向量,AB 是经过面α的一条斜线,A ∈α).模拟训练一、解答题1(22·23下·湖南·二模)如图,在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,AC =BB ,点D 为棱BB 的中点,AE =13AC .(1)求DE 的长度;(2)求平面CDE 与平面BDE 夹角的余弦值.【答案】(1)393(2)34【分析】(1)在△ABC 中,用余弦定理可得到AC =23,在△ABE 中,用余弦定理可得BE =233,即可求得DE =DB 2+BE 2=393;(2)以B 为原点,分别以BE ,BC ,BB 所在的直线为x ,y ,z 轴建立空间直角坐标系,求出平面CDE 与平面BDE 的法向量,即可求解【详解】(1)因为在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,在△ABC 中,由余弦定理得cos ∠ABC =AB 2+BC 2-AC 22AB ⋅BC=22+22-AC 22×2×2=-12,解得AC =23,则AE =13AC =233,在△ABE 中,由余弦定理得cos ∠BAE =AB 2+AE 2-BE 22AB ⋅AE =22+233 2-BE 22×2×233=32,解得BE =233,又AC =BB =23,所以BD =12BB =3,因为BB ⊥平面ABC ,BE ⊂平面ABC ,所以BB ⊥BE ,在直角三角形DBE 中,DE =DB 2+BE 2=(3)2+233 2=393;(2)因为AE =BE =233,所以∠ABE =∠BAE =30°,则∠CBE =∠ABC -∠ABE =120°-30°=90°,则BE ,BC ,BB 两两互相垂直,以B 为原点,分别以BE ,BC ,BB 所在的直线为x ,y ,z 轴建立如下图所示的空间直角坐标系:设平面CDE 的法向量为n =x ,y ,z ,由n ⋅CD =x ,y ,z ⋅0,-2,3 =-2y +3z =0n ⋅CE =x ,y ,z ⋅233,-2,0 =233x -2y =0 ,得z =233y x =3y,令y =3,得平面CDE 的一个法向量为n =3,3,2 ;平面BDE 的一个法向量为m =0,1,0 .设平面CDE 与平面BDE 夹角的大小为θ,则cos θ=m ⋅n m n =0,1,0 ⋅3,3,2 1×4=34,故平面CDE 与平面BDE 夹角的余弦值为34.2(22·23下·绍兴·二模)如图,在多面体ABCDE 中,DE ⊥平面BCD ,△ABC 为正三角形,△BCD 为等腰Rt △,∠BDC =90°,AB =2,DE =2.(1)求证:AE ⊥BC ;(2)若AE ⎳平面BCD ,求直线BE 与平面ABC 所成的线面角的正弦值.【答案】(1)证明见解析(2)63【分析】(1)由线面垂直的性质定理和判定定理即可证明;(2)法一:由分析可知,∠EBH 就是直线BE 与平面ABC 所成的线面角,设∠AFD =α,当α<90°时,O 与D 重合,可得A ,E 两点重合,不符合题意,当α>90°时,求出EH ,BE ,即可得出答案;法二:建立空间直角坐标系,求出直线BE 的方向向量与平面ABC 的法向量,由线面角的向量公式代入即可得出答案.【详解】(1)设F 为BC 中点,连接AF ,EF ,则由△ABC 为正三角形,得AF ⊥BC ;DE ⊥平面BCD ,且△BCD 为等腰直角三角形,计算可得:BE =CE =2,∴EF ⊥BC .EF ∩AF =F ,EF ,AF ⊂面AEF ,于是BC ⊥面AEF ,AE ⊂面AEF ,从而BC ⊥AE .(2)法一:由(1)可知,过点E 作EH ⊥AF ,垂足为H ,则∠EBH 就是直线BE 与平面ABC 所成的线面角.当AE ⎳平面BCD 时,可得A 到平面BCD 的距离为 2.设∠AFD =α,所以AF ⋅sin α=2,可得sin α=63,当α<90°时,cos α=33,不妨设A 在底面BCD 射影为O ,则FO =1,此时O 与D 重合,可得A ,E 两点重合,不符合题意,舍去;当α>90°时,FO =1,此时O 在DF 的延长线上,作EH ⊥AF ,由于AODE 为矩形,可得AE =DO =2,AE ∥OD ,可得sin ∠EAH =63,可得EH =263.于是sin ∠EBH =EH BE=63.法二:建立如图坐标系,可得F 0,0,0 ,B 1,0,0 ,C -1,0,0 ,D 0,1,0 ,E 0,1,2 ,A 0,a ,b由AF =3,解得a 2+b 2=3,又∵AE ⎳平面BCD ,令n =0,0,1 ,可得AB ⋅n =0,解得b =2,a =±1.当a =1时A ,E 重合,所以a =-1,此时A 0,-1,2 .不妨设平面ABC 的法向量为m =x ,y ,z ,则CB ⋅m =0CA ⋅m =0代入得x -y +2z =02x =0 ,令z =1,则y =2,所以m =0,2,1 .由于BE =-1,1,2 ,不妨设所成角为θ,则sin θ=∣cos BE ,m |=63.3(22·23·张家口·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,∠CBB 1=60°,AB =BC =2,AC =AB 1=2.(1)证明:平面ACB 1⊥平面BB 1C 1C ;(2)求平面ACC 1A 1与平面A 1B 1C 1夹角的余弦值.【答案】(1)证明见解析;(2)57.【分析】(1)利用面面垂直的判定定理进行证明;(2)利用垂直关系建立空间直角坐标系,用向量法进行求解.【详解】(1)如图,连接BC 1,交B 1C 于O ,连接AO .因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1,且O 为BC 1的中点.又AC =AB 1=2,故AO ⊥B 1C .又AB =BC =2,且∠CBB 1=60°,所以CO =1,BO =3,所以AO =AC 2-CO 2=1.又AB =2,所以AB 2=BO 2+AO 2,所以AO ⊥BO .因为BO ,CB 1⊂平面BB 1C 1C ,BO ∩CB 1=O ,所以AO ⊥平面BB 1C 1C .又AO ⊂平面ACB 1,所以平面ACB 1⊥平面BB 1C 1C .(2)由(1)知,OA ,OB ,OB 1两两互相垂直,因此以O 为坐标原点,OB ,OB 1,OA 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系O -xyz ,则A (0,0,1),B (3,0,0),C (0,-1,0),C 1(-3,0,0).故CC 1 =(-3,1,0),CA =(0,1,1),CB =(3,1,0).设n =(x 1,y 1,z 1)为平面ACC 1A 1的一个法向量,则有n ⋅CC 1 =0n ⋅CA =0 ,即-3x 1+y 1=0y 1+z 1=0 ,令x 1=1,则n =(1,3,-3).设m =(x 2,y 2,z 2)为平面ABC 的一个法向量,则有m ⋅CA =0m ⋅CB =0,即y 2+z 2=03x 2+y 2=0 ,令x 2=1,则m =(1,-3,3).因为平面A 1B 1C 1∥平面ABC ,所以m =(1,-3,3)也是平面A 1B 1C 1的一个法向量.所以cos <n ,m > =n ⋅m n m=1-3-3 7×7=57.所以平面ACC 1A 1与平面A 1B 1C 1夹角的余弦值57. 4(22·23·湛江·二模)如图1,在五边形ABCDE 中,四边形ABCE 为正方形,CD ⊥DE ,CD =DE ,如图2,将△ABE 沿BE 折起,使得A 至A 1处,且A 1B ⊥A 1D .(1)证明:DE ⊥平面A 1BE ;(2)求二面角C -A 1E -D 的余弦值.【答案】(1)证明见解析(2)63【分析】(1)由已知易得DE ⊥BE ,即可证明线面垂直;(2)建立空间直角坐标系,用坐标公式法求解即可.【详解】(1)由题意得∠BEC =∠CED =π4,∠BED =π2,DE ⊥BE ,又A 1B ⊥A 1D ,A 1E ∩A 1D =A 1,A 1E ,A 1D ⊂面A 1ED ,所以A 1B ⊥面A 1ED ,又DE ⊂面A 1ED ,则DE ⊥A 1B ,又DE ⊥BE ,A 1B ∩BE =B ,A 1B ⊂平面A 1BE ,BE ⊂平面A 1BE ,所以DE ⊥平面A 1BE .(2)取BE 的中点O ,可知BE =2CD ,OE =CD ,由DE ⊥BE ,且CD ⊥DE 可得OE ⎳CD ,所以四边形OCDE 是平行四边形,所以CO ∥DE ,则CO ⊥平面A 1BE ,设BE =2,以点O 为坐标原点,OB ,OC ,OA 1所在直线为坐标轴建立空间直角坐标系,如图,则A 1(0,0,1),E (-1,0,0),B (1,0,0),C (0,1,0),D (-1,1,0),EA 1 =(1,0,1),EC =(1,1,0),ED =(0,1,0),设平面A 1EC 的一个法向量为n 1 =(x 1,y 1,z 1),则n 1 ⋅EA 1 =0n 1 ⋅EC =0 ,即x 1+z 1=0x 1+y 1=0 ,取x 1=1,则n 1 =(1,-1,-1),设平面A 1ED 的一个法向量为n 2 =(x 2,y 2,z 2),则n 2 ⋅E 1A =0n 2 ⋅ED =0 ,即x 2+z 2=0y 2=0 ,取x 2=1,则n 2 =(1,0,-1),所以cos n 1 ,n 2 =n 1 ⋅n 2 n 1 n 2=63,由图可知,二面角C -A 1E -D 为锐角,所以面角C -A 1E -D 的余弦值为63.5(22·23下·长沙·三模)如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,△ABC 和△ACD 均为正三角形,AC =4,BE =3,点F 在AC 上.(1)若BF ⎳平面CDE ,求CF ;(2)若F 是AC 的中点,求二面角F -DE -C 的正弦值.【答案】(1)CF =1(2)8517【分析】(1)记AC 中点为M ,连接DM 、BM ,依题意可得DM ⊥AC ,根据面面垂直的性质得到DM ⊥平面ABC ,如图建立空间直角坐标系,求出平面CDE 的法向量,设F a ,0,0 ,a ∈2,-2 ,依题意可得BF ⋅n =0求出a 的值,即可得解;(2)依题意点F 与点M 重合,利用空间向量法计算可得.【详解】(1)记AC 中点为M ,连接DM 、BM ,△ACD 为正三角形,AC =4,则DM ⊥AC ,且DM =2 3.所以DM ⊥平面ABC ,又△ABC 为正三角形,所以BM ⊥AC ,所以BM =23,如图建立空间直角坐标系,则B 0,23,0 ,C -2,0,0 ,D 0,0,23 ,E 0,23,3 ,所以CD =2,0,23 ,CE =2,23,3 ,设平面CDE 的法向量为n =x ,y ,z ,则n ⋅CD =2x +23z =0n ⋅CE =2x +23y +3z =0,令x =3,则z =-3,y =-32,则n =3,-32,-3 ,设F a ,0,0 ,a ∈-2,2 ,则BF =a ,-23,0 ,因为BF ⎳平面CDE ,所以BF ⋅n =3a +-23 ×-32+0×-3 =0,解得a =-1,所以F 为CM 的中点,此时CF =1.(2)若F 是AC 的中点,则点F 与点M 重合,则平面FDE 的一个法向量可以为m =1,0,0 ,设二面角F -DE -C 为θ,显然二面角为锐角,则cos θ=m ⋅n m ⋅n=332+-32 2+-3 2=651,所以sin θ=1-cos 2θ=1-651 2=8517,所以二面角F -DE -C 的正弦值为8517.6(22·23下·湖北·二模)如图,S 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 内接于⊙O ,AC ⊥BC ,AC =BC =322,AM =2MS ,AS =3,PQ 为⊙O 的一条弦,且SB ⎳平面PMQ .(1)求PQ 的最小值;(2)若SA ⊥PQ ,求直线PQ 与平面BCM 所成角的正弦值.【答案】(1)22(2)3010【分析】(1)作出辅助线,找到符合要求的PQ ,并利用垂径定理得到最小值;(2)在第一问基础上,得到当PQ 取得最小值时,SA ⊥PQ ,并建立空间直角坐标系,利用空间向量求解线面角.【详解】(1)过点M 作MH ⎳SB 交AB 于点H ,过点H 作PQ ⊥AB ,此时满足SB ⎳平面PMQ ,由平面几何知识易知,PQ =2r 2-d 2,当弦心距d 最大时,d =OH ,弦长最短,即PQ 取得最小值,因为AM =2MS ,AS =3,所以AH =2HB ,因为AC ⊥BC ,AC =BC =322,由勾股定理得AB =322⋅2=3,故AH =2,HB =1,连接OQ ,则OQ =32,由勾股定理得HQ =OQ 2-OH 2=94-14=2,所以PQ =2HQ =22;(2)连接OS ,则OS ⊥平面ACB ,因为PQ ⊂平面ACB ,故OS ⊥PQ ,而SA ⊥PQ ,OS ∩SA =S ,所以PQ ⊥平面AOS ,即有PQ ⊥AB .以O 为坐标原点,过点O 且平行PQ 的直线为x 轴,OB 所在直线为y 轴,OS 所在直线为z 轴,建立空间直角坐标系,则P -2,12,0 ,Q 2,12,0 ,B 0,32,0 ,C 32,0,0 ,M 0,-12,3 ,设平面BCM 的法向量为m =x ,y ,z ,则m ⋅CB =x ,y ,z ⋅-32,32,0 =-32x +32y =0m ⋅MB =x ,y ,z ⋅0,2,-3 =2y -3z =0,令x =1,则y =1,z =233,故m =1,1,233,设直线PQ 与平面BCM 所成角的大小为θ,则sin θ=cos PQ ,m =PQ ⋅m PQ ⋅m =22,0,0 ⋅1,1,233 22×1+1+43=3010.故直线PQ与平面BCM所成角的正弦值为30 10.7(22·23·深圳·二模)如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA= AD=2AB,点M是PD的中点.(1)证明:AM⊥PC;(2)设AC的中点为O,点N在棱PC上(异于点P,C),且ON=OA,求直线AN与平面ACM所成角的正弦值.【答案】(1)证明见解析(2)1510【分析】(1)由等腰三角形的性质可得AM⊥PD,由面面垂直的性质可得CD⊥平面PAD,则CD⊥AM,所以由线面垂直的判定可得AM⊥平面PCD,从而可得结论;(2)以AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系,利用空间向量求解即可.【详解】(1)证明:因为PA=AD,点M是PD的中点,所以AM⊥PD.因为PA⊥平面ABCD,PA⊂平面PAD,所以平面PAD⊥平面ABCD,因为四边形ABCD为矩形,所以CD⊥AD,因为平面PAD∩平面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面PAD,所以CD⊥AM,因为PD∩CD=D,PD,CD⊂平面PCD,所以AM⊥平面PCD,因为PC⊂平面PCD,所以AM⊥PC.(2)解:由题意可得AB,AD,AP两两垂直,设AB=1,如图,以AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系,则A(0,0,0),B(1,0,0),C(1,2,0),D(0,2,0),P(0,0,2),22所以AM =0,22,22 ,AC =1,2,0 ,设平面ACM 的法向量为n =x ,y ,z ,则AM ⋅n =22y +22z =0AC ⋅n =x +2y =0,令y =-1可得x =2,z =1,所以平面ACM 的一个法向量n =2,-1,1 .PC =1,2,-2 ,设N x N ,y N ,z N ,PN =λPC =λ,2λ,-2λ (0<λ<1),即x N ,y N ,z N -2 =λ,2λ,-2λ ,所以N λ,2λ,2-2λ .又O 12,22,0 ,ON =OA =32,所以λ-12 2+2λ-22 2+(2-2λ)2=34,化简得5λ2-7λ+2=0,解得λ=25或λ=1(舍去).所以AN =25,225,325,设直线AN 与平面ACM 所成的角为θ,则sin θ=n ⋅AN n ⋅AN=3252+1+1×425+825+1825=1510,所以直线AN 与平面ACM 所成角的正弦值为1510.8(22·23下·温州·二模)已知三棱锥D -ABC 中,△BCD 是边长为3的正三角形,AB =AC =AD ,AD 与平面BCD 所成角的余弦值为33.(1)求证:AD ⊥BC ;(2)求二面角D -AC -B 的平面角的正弦值.【答案】(1)证明见解析(2)223【分析】(1)取BC 的中点E ,连接AE ,DE ,证明BC ⊥平面ADE ,即可得证;(2)取正三角形BCD 的中心O ,连接OA ,从而可得OA ⊥平面BCD ,则∠ODA 即为AD 与平面BCD 所成角的平面角,进而可得AB =AC =AD =3,取AC 中点为H ,连接DH ,BH ,则DH ⊥AC ,BH ⊥AC ,故∠BHD 即为二面角D -AC -B 的平面角,解△BDH 即可得解.【详解】(1)取BC 的中点E ,连接AE ,DE ,因为△BCD 是边长为3的正三角形,所以DE ⊥BC ,又AE ∩DE =E ,AE ,DE ⊂平面ADE ,所以BC ⊥平面ADE ,因为AD ⊂平面ADE ,所以AD ⊥BC ;(2)取正三角形BCD 的中心O ,连接OA ,则点O 在DE 上,且OD =23DE ,由AB =AC =AD ,△BCD 是正三角形,得三棱锥A -BCD 为正三棱锥,则OA ⊥平面BCD ,故∠ODA 即为AD 与平面BCD 所成角的平面角,又AD 与平面BCD 所成角的余弦值为33,所以OD AD =3×32×23AD=33,即AB =AC =AD =3,即三棱锥A -BCD 是正四面体,取AC 中点为H ,连接DH ,BH ,则DH ⊥AC ,BH ⊥AC ,故∠BHD 即为二面角D -AC -B 的平面角,在△BDH 中,BH =DH =332,BD =3,则cos ∠BHD =BH 2+DH 2-BD 22⋅BH ⋅DH =274+274-92×332×332=13,所以sin ∠BHD =1-cos 2∠BHD =223,所以二面角D -AC -B 的平面角的正弦值223.9(22·23下·浙江·二模)如图,四面体ABCD ,AD ⊥CD ,AD =CD ,AC =2,AB =3,∠CAB =60°,E 为AB 上的点,且AC ⊥DE ,DE 与平面ABC 所成角为30°,(1)求三棱锥D -BCE 的体积;(2)求二面角B -CD -E 的余弦值.【答案】(1)答案见解析;(2)答案见解析.【分析】(1)取AC 中点F ,可证明AC ⊥平面DEF ,得平面ABC ⊥平面DEF ,DE 在平面ABC 内的射影就是直线EF ,∠DEF 是DE 与平面ABC 所成的角,即∠DEF =30°,由正弦定理求得∠FDE ,有两个解,在∠FDE =60°时可证DF ⊥平面ABC ,在∠FDE =120°时,取FE 中点H 证明DH ⊥平面ABC ,然后由棱锥体积公式计算体积;(2)建立如图所示的空间直角坐标系,用空间向量法求二面角.【详解】(1)取AC 中点F ,连接FE ,FD ,因为AD =CD ,所以DF ⊥AC ,又AC ⊥DE ,DE ∩DF =D ,DE ,DF ⊂平面DEF ,所以AC ⊥平面DEF ,而FE ⊂平面DEF ,所以AC ⊥FE ,由AC ⊥平面DEF ,AC ⊂平面ABC 得平面ABC ⊥平面DEF ,因此DE 在平面ABC 内的射影就是直线EF ,所以∠DEF 是DE 与平面ABC 所成的角,即∠DEF =30°,AD =CD ,AC =2,因此DF =12AC =1,在△DEF 中,由正弦定理EF sin ∠FDE =DF sin ∠DEF 得1sin30°=3sin ∠FDE ,sin ∠FDE =32,∠FDE 为△DEF 内角,所以∠FDE =60°或120°,S △ABC =12AB ×AC ×sin ∠BAC =12×3×2×sin60°=333,S △CBE =BE BAS △ABC =3-23×332=32,若∠FDE =60°,则∠DFE =90°,即DF ⊥FE ,AC ∩FE =F ,AC ,FE ⊂平面ABC ,所以DF ⊥平面ABC ,V D -BCE =13S △BCE ⋅DF =13×32×1=36;若∠FDE =120°,则∠DFE =30°,DF =DE =1,取EF 中点H ,连接DH ,则DH ⊥EF ,因为平面ABC ⊥平面DEF ,平面ABC ∩平面DEF =EF ,而DH ⊂平面DEF ,所以DH ⊥平面ABC ,DH =DF sin ∠DFE =1×sin30°=12,所以V D -BCE =13S △BCE ⋅DF =13×32×12=312;(2)若∠FDE =60°,以FA ,FE ,FD 为x ,y ,z 轴建立如图所示的空间直角坐标系F -xyz ,则D (0,0,1),C (-1,0,0),A (1,0,0),E (0,3,0),AE =(-1,3,0),EB =12AE =-12,32,0 ,所以B 点坐标为-12,332,0 ,CD =(1,0,1),CB =12,332,0 ,CE =(1,3,0),设平面DBC 的一个法向量是m =(x 1,y 1,z 1),则m ⋅CD =x 1+z 1=0m ⋅CB =12x 1+332y 1=0,取y 1=-1,则x 1=33,z 1=-33,即m =(33,-1,-33),设平面DEC 的一个法向量是n =(x 2,y 2,z 2),则n ⋅CD =x 2+z 2=0n ⋅CE =x 2+3y 2=0,取y 2=-1,则x 2=3,z 2=-3,即m =(3,-1,-3),cos m ,n =m ⋅n m n =9+1+955×7=19385385,所以二面角B -CD -E 的余弦值是19385;若∠FDE =120°,以FA 为x 轴,FE 为y 轴,过F 且平行于HD 的直线为z 轴建立如图所示的空间直角坐标系F -xyz ,FH =12FE =32,则D 0,32,12 ,C (-1,0,0),A (1,0,0),E (0,3,0),AE =(-1,3,0),EB =12AE =-12,32,0 ,所以B 点坐标为-12,332,0 ,CD =1,32,12 ,CB =12,332,0 ,CE =(1,3,0),设平面DBC 的一个法向量是m =(x 1,y 1,z 1),则m ⋅CD =x 1+32y 1+12z 1=0m ⋅CB =12x 1+332y 1=0,取y 1=-1,则x 1=33,z 1=-53,即m =(33,-1,-53),设平面DEC 的一个法向量是n =(x 2,y 2,z 2),则n ⋅CD =x 2+32y 2+12z 2=0n ⋅CE =x 2+3y 2=0,取y 2=-1,则x 2=3,z 2=-3,即m =(3,-1,-3),cos m ,n =m ⋅n m n =9+1+15103×7=25721721,所以二面角B -CD -E 的余弦值是25721721.10(22·23下·襄阳·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为矩形,∠BAC =90°,AB =AC =2,AA 1=4,A 1在底面ABC 的射影为BC 的中点N ,M 为B 1C 1的中点.(1)求证:平面A 1MNA ⊥平面A 1BC ;(2)求平面A 1B 1BA 与平面BB 1C 1C 夹角的余弦值.【答案】(1)证明见解析(2)23015【分析】(1)利用线面垂直和面面垂直的判定定理证明;(2)利用空间向量的坐标运算求面面夹角的余弦值.【详解】(1)如图,∵A 1N ⊥面ABC ,连AN ,则AN ⊥A 1N ,又AB =AC =2,∴AN ⊥BC ,又AN ∩BC =N ,A 1N ⊂面A 1BC ,BC ⊂面A 1BC ,于是AN ⊥面A 1BC ,又AN ⊂面A 1MN ,,所以面A 1BC ⊥面A 1MNA .(2)由(1)可得,以NA ,NB ,NA 1 为x ,y ,z 轴,建系如图,∠BAC =90°,AB =AC =2,BC =22则A (2,0,0),B (0,2,0),C (0,-2,0),因为AA 1=4,AN =2,所以A 1N =14,则A 1(0,0,14),因为NB 1 =NB +BB 1 =NB +AA 1 =0,2,0 +-2,0,14 =-2,2,14 ,所以B 1-2,2,14 ,设平面A 1BB 1的一个法向量为m =(x ,y ,z ),因为A 1B =(0,2,-14),B 1B =(2,0,-14),所以A 1B ⋅m =2y -14z =0B 1B ⋅m =2x -14z =0 ,令y =7,则x =7,z =1,所以m =(7,7,1),设平面BCC 1B 1的一个法向量为n =(a ,b ,c ),因为BC =(0,-22,0),BB 1 =(-2,0,14),所以BC ⋅n =-22b =0BB 1 ⋅n =-2a +14c =0,令a =7,则b =0,c =1,所以n =(7,0,1),设平面A 1BB 1与平面BCC 1B 1夹角为θ,则cos θ=cos <m ,n >=m ⋅n m n=7+0+17+7+1×7+0+1=23015,所以平面A 1BB 1与平面BCC 1B 1夹角的余弦值为23015.11(22·23·唐山·二模)如图,在三棱柱ABC -A 1B 1C 1中,△ABC 是等边三角形,侧面ACC 1A 1⊥底面ABC ,且AA 1=AC ,∠AA 1C 1=120°,M 是CC 1的中点.(1)证明:A 1C ⊥BM .(2)求二面角A 1-BC -M 的正弦值.【答案】(1)证明见解析(2)45【分析】(1)根据菱形的性质、结合面面垂直的性质,线面垂直的判定定理进行证明即可;(2)建立空间直角坐标系,运用空间向量夹角公式进行求解即sk .【详解】(1)取AC 的中点O ,连接OM ,OB ,AC 1.在三棱柱ABC -A 1B 1C 1中,由AA 1=AC ,得四边形ACC 1A 1为菱形,所以A 1C ⊥AC 1,易知OM ∥AC 1,则A 1C ⊥OM .由△ABC 是等边三角形,知OB ⊥AC ,又平面ACC 1A 1⊥平面ABC ,平面ACC 1A 1∩平面ABC =AC ,OB ⊂平面ABC ,知OB ⊥平面ACC 1A 1,则OB ⊥A 1C ,又OB ∩OM =O ,OB ,OM ⊂平面OBM ,得A 1C ⊥平面OBM ,又BM ⊂平面OBM ,故A 1C ⊥BM ..(2)连接OA 1,因为侧面ACC 1A 1为菱形,∠AA 1C 1=120°,则∠A 1AC =60°,则△A 1AC 为等边三角形,所以A 1O ⊥AC ,又由(1)易知OA 1,OB ,AC 两两垂直,故以O 为坐标原点,分别以OB ,OC ,OA 1 的方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系.不妨设AB =2,则O 0,0,0 ,B 3,0,0 ,C 0,1,0 ,A 10,0,3 ,C 10,2,3 ,BA 1 =-3,0,3 ,BC =-3,1,0 ,CC 1 =0,1,3 ,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题分层训练(三十一) 中档大题规范练(4)——立体几何1.如图,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF;(2)求二面角D-AF-E的余弦值.解(1)证明:由题意可知DA⊥DC,DA⊥DP,DC⊥DP,故可以D为原点,DP所在直线为x轴,DC所在直线为y轴,DA所在直线为z轴建立空间直角坐标系.设正方形ABCD 的边长为a , 则C (0,a,0),A (0,0,a ),由平面几何知识可求得F ⎝⎛⎭⎪⎪⎫34a ,34a ,0, 所以CF →=⎝⎛⎭⎪⎪⎫34a ,-14a ,0, DF →=⎝⎛⎭⎪⎪⎫34a ,34a ,0, DA →=(0,0,a ),CF →·DF →=34a ×34a +⎝ ⎛⎭⎪⎫-14a ×34a +0=0,CF →·DA →=⎝⎛⎭⎪⎪⎫34a ,-14a ,0·(0,0,a )=0, 故CF ⊥DF ,CF ⊥DA .又DF ∩DA =D ,所以CF ⊥平面ADF .(2)可求得E ⎝ ⎛⎭⎪⎪⎫34a ,0,0,则AE →=⎝⎛⎭⎪⎪⎫34a ,0,-a , 又AF →=⎝⎛⎭⎪⎪⎫34a ,34a ,-a , 设平面AEF 的法向量为n =(x ,y ,z ),则n ·AE →=(x ,y ,z )·⎝ ⎛⎭⎪⎪⎫34a ,0,-a =34ax -az =0,n ·AF →=(x ,y ,z )·⎝ ⎛⎭⎪⎪⎫34a ,34a ,-a =34ax +34ay -az =0,取x =1,得平面AEF 的一个法向量n =⎝⎛⎭⎪⎪⎫1,0,34.又由(1)知平面ADF 的一个法向量为CF →=⎝⎛⎭⎪⎪⎫34a ,-14a ,0, 故cos 〈n ,CF →〉=⎝ ⎛⎭⎪⎪⎫1,0,34·⎝ ⎛⎭⎪⎪⎫34a ,-14a ,0194×12a =25719,由图可知二面角D -AF -E 为锐二面角,所以其余弦值为25719.2.如图,四棱锥P -ABCD 中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,AB =2,∠BAD =π3,M 为BC 上一点,且BM =12,MP ⊥AP .(1)求PO 的长;(2)求二面角A -PM -C 的正弦值. 解 (1)如图,连接AC ,BD ,OM ,因ABCD 为菱形,则AC ∩BD =O ,且AC ⊥BD .以O 为坐标原点,OA →,OB →,OP →的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系O -xyz .因∠BAD =π3,故OA =AB ·cos π6=3,OB =AB ·sin π6=1,所以O (0,0,0),A (3,0,0),B (0,1,0),C (-3,0,0), OB →=(0,1,0),BC →=(-3,-1,0). 由BM =12,BC =2知,BM →=14BC →=⎝⎛⎭⎪⎪⎫-34,-14,0, 从而OM →=OB →+BM →=⎝⎛⎭⎪⎪⎫-34,34,0, 即M ⎝⎛⎭⎪⎪⎫-34,34,0. 设P (0,0,a ),a >0,则AP →=(-3,0,a ),MP →=⎝⎛⎭⎪⎪⎫34,-34,a . 因为MP ⊥AP ,故MP →·AP →=0,即-34+a 2=0,所以a =32,a =-32(舍去),即PO =32.(2)由(1)知,AP →=⎝⎛⎭⎪⎪⎫-3,0,32, MP →=⎝ ⎛⎭⎪⎪⎫34,-34,32,CP →=⎝⎛⎭⎪⎪⎫3,0,32. 设平面APM 的法向量为n 1=(x 1,y 1,z 1),平面PMC 的法向量为n 2=(x 2,y 2,z 2).由n 1·AP →=0,n 1·MP →=0,得⎩⎪⎨⎪⎧ -3x 1+32z 1=0,34x 1-34y 1+32z 1=0,故可取n 1=⎝ ⎛⎭⎪⎪⎫1,533,2. 由n 2·MP →=0,n 2·CP →=0,得⎩⎪⎨⎪⎧34x 2-34y 2+32z 2=0,3x 2+32z 2=0,故可取n 2=(1,-3,-2). 从而法向量n 1,n 2的夹角的余弦值为cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=-155,故所求二面角A -PM -C 的正弦值为105. 3.如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形.平面ABC ⊥平面AA 1C 1C ,AB =3,BC =5.(1)求证:AA 1⊥平面ABC ;(2)求二面角A 1-BC 1-B 1的余弦值;(3)证明:在线段BC 1上存在点D ,使得AD ⊥A 1B ,并求BDBC 1的值.解(1)证明:在正方形AA 1C 1C 中,A 1A ⊥AC .又平面ABC ⊥平面AA 1C 1C ,且平面ABC ∩平面AA 1C 1C =AC ,∴AA 1⊥平面ABC .(2)在△ABC 中,AC =4,AB =3,BC =5, ∴BC 2=AC 2+AB 2,AB ⊥AC ,∴以A 为坐标原点,建立如图所示空间直角坐标系A -xyz .A 1(0,0,4),B (0,3,0),C 1(4,0,4),B 1(0,3,4),A 1C 1→=(4,0,0),A 1B →=(0,3,-4),B 1C 1→=(4,-3,0),BB 1→=(0,0,4).设平面A 1BC 1的法向量n 1=(x 1,y 1,z 1), 平面B 1BC 1的法向量n 2=(x 2,y 2,z 2).∴⎩⎨⎧A 1C 1→·n 1=0,A 1B →·n 1=0⇒⎩⎪⎨⎪⎧4x 1=0,3y 1-4z 1=0.∴取向量n 1=(0,4,3).由⎩⎨⎧B 1C 1→·n 2=0,BB 1→·n 2=0⇒⎩⎪⎨⎪⎧4x 2-3y 2=0,4z 2=0.取向量n 2=(3,4,0).∴cos 〈n 1·n 2〉=n 1·n 2|n 1|·|n 2|=165×5=1625.∴所求二面角A 1-BC -B 1的余弦值为1625.(3)证明:设D (x ,y ,z )是直线BC 1上一点,且BD →=λBC 1→.∴(x ,y -3,z )=λ(4,-3,4),解得x =4λ,y =3-3λ,z =4λ, ∴AD →=(4λ,3-3λ,4λ).又AD ⊥A 1B ,∴0+3(3-3λ)-16λ=0, 则λ=925,因此BD BC 1=925.4.如图,在四棱锥P -ABCD 中,平面PAC ⊥平面ABCD ,且PA ⊥AC ,PA =AD =2.四边形ABCD 满足BC ∥AD ,AB ⊥AD ,AB =BC =1.点E ,F 分别为侧棱PB ,PC 上的点,且PE PB =PFPC=λ.(1)求证:EF ∥平面PAD ;(2)当λ=12时,求异面直线BF 与CD 所成角的余弦值;(3)是否存在实数λ,使得平面AFD ⊥平面PCD ?若存在,试求出λ的值;若不存在,请说明理由.解 (1)证明:由已知PE PB =PFPC=λ,∴EF ∥BC , 又BC ∥AD ,∴EF ∥AD , 而EF ⊄平面PAD ,AD ⊂平面PAD , ∴EF ∥平面PAD .(2)∵平面ABCD ⊥平面PAC ,平面ABCD ∩平面PAC =AC ,且PA ⊥AC , ∴PA ⊥平面ABCD . ∴PA ⊥AB ,PA ⊥AD . 又∵AB ⊥AD ,∴PA ,AB ,AD 两两垂直.如图所示,建立空间直角坐标系. ∵AB =BC =1,PA =AD =2,∴A (0,0,0),B (1,0,0,),C (1,1,0),D (0,2,0),P (0,0,2), 当λ=12时,F 为PC 中点,∴F ⎝ ⎛⎭⎪⎫12,12,1, ∴BF →=⎝ ⎛⎭⎪⎫-12,12,1,CD →=(-1,1,0),设异面直线BF 与CD 所成的角为θ, ∴cos θ=|cos 〈BF →,CD →〉|=12+1262×2=33. 故异面直线BF 与CD 所成角的余弦值为33.(3)设F (x 0,y 0,z 0),则PF →=(x 0,y 0,z 0-2),PC →=(1,1,-2),又PF →=λPC →,∴⎩⎪⎨⎪⎧x 0=λ,y 0=λ,z 0=2-2λ,∴AF →=(λ,λ,2-2λ),设平面AFD 的一个法向量为m =(x 1,y 1,z 1),则⎩⎨⎧m ·AF →=0,m ·AD →=0,即⎩⎪⎨⎪⎧λx 1+λy 1+(2-2λ)z 1=0,2y 1=0,令z 1=λ,得m =(2λ-2,0,λ).设平面PCD 的一个法向量为n =(x 2,y 2,z 2).则⎩⎨⎧n ·PD →=0,n ·CD →=0,即⎩⎪⎨⎪⎧2y 2-2z 2=0,-x 2+y 2=0,取y 2=1,则x 2=1,z 2=1, ∴n =(1,1,1),由m ⊥n ,得m ·n =(2λ-2,0,λ)·(1,1,1)=2λ-2+λ=0, 解得λ=23.∴当λ=23时,使得平面AFD ⊥平面PCD .5.如图,在四棱锥S -ABCD 中,底面ABCD 是直角梯形,侧棱SA ⊥底面ABCD ,AB 垂直于AD 和BC ,SA =AB =BC =2,AD =1.M 是棱SB 的中点.(1)求证:AM ∥平面SCD ;(2)求平面SCD 与平面SAB 所成二面角的余弦值;(3)设点N 是直线CD 上的动点,MN 与平面SAB 所成的角为θ,求sinθ的最大值.解(1)证明:以点A 为原点建立如图所示的空间直角坐标系,则A (0,0,0),B (0,2,0),C (2,2,0),D (1,0,0),S (0,0,2),M (0,1,1).则AM →=(0,1,1),SD →=(1,0,-2),CD →=(-1,-2,0).设平面SCD 的法向量为n =(x ,y ,z ),则⎩⎨⎧ SD →·n =0,CD →·n =0,即⎩⎪⎨⎪⎧ x -2z =0,-x -2y =0. 令z =1,得n =(2,-1,1).∵AM →·n =0,∴AM →⊥n . ∴AM ∥平面SCD .(2)易知平面SAB 的一个法向量为n 1=(1,0,0).设平面SCD 与平面SAB 所成的二面角为φ,易知0<φ<π2, 则|cos φ|=⎪⎪⎪⎪⎪⎪n 1·n |n 1|·|n |=21·6=63,即cos φ=63.∴平面SCD 与平面SAB 所成二面角的余弦值为63. (3)设N (x,2x -2,0),则MN →=(x,2x -3,-1).∵平面SAB 的一个法向量为n 1=(1,0,0),∴sin θ=⎪⎪⎪⎪⎪⎪⎪⎪x 5x 2-12x +10 =110×⎝ ⎛⎭⎪⎫1x 2-12×1x +5=110×⎝ ⎛⎭⎪⎫1x -352+75,当1x =35,即x =53时,(sin θ)max =357.。

相关文档
最新文档