八年级数学 分式的加减法
八年级数学人教版上册第15章分式15.2.2分式的加减(图文详解)第1课时
= 5a2b 3 3a2b 5 8 a2b ab2
= a2b ab2
=
a b
把分子看作一 个整体,先用 括号括起来!
注意:结果要化 为最简分式!
八年级上册第15章分式
1.直接说出运算结果
(1) m x
y x
c x
m y x
c
(2)
m 2abc
n 2bca
d 2cab
八年级上册第15章分式
3.猜一猜, 同分母的分式应该如何加减? 【同分母的分数加减法的法则】 同分母的分数相加减,
分母不变,把分子相加 减. 【同分母的分式加减法的法则】 同分母的分式相加减, 分母不变,把分子相加减. 即: a b a b cc c
八年级上册第15章分式
例1 计算:
xy
八年级上册第15章分式
( 2)
1 2 a 1 1 a2
解:原式
1 2 a 1 a2 1
1
2
a 1 (a 1)(a 1)
a 1
2
(a 1)(a 1) (a 1)(a 1)
a 1 (a 1)(a 1)
1 a1
八年级上册第15章分式
例2 计算 (1) 解:原式
八年级上册第15章分式
(2)a22a
4
a
1
2
a2 -4 能分解 :
解:原式
(a
2a 2)(a
2)
(a
a2 2)(a
2)
2a (a 2) (a 2)(a 2)
2a a 2 (a 2)(a 2)
八年级数学下册 第17章分式 17.2分式的运算 2分式的加减法习题课件
(1)①分式加减的两种运算是:同分母的分式加减和异分母的分
式加减.
②同分母的分式加减方法是:分母不变,分子(fēnzǐ)相加减;异分母的 分式加减方法是:先通分,转化为同分母的分式运算,再按同分母
的分式加减方法运算.
第六页,共二十五页。
(2)按照(1)的探究(tànjiū)计算:
m 1 m1 1 ; m1 m1 m1
第十六页,共二十五页。
【跟踪训练】
4.(2012·临沂中考)化简 (1 4 ) 的a 结果(jiē guǒ)是( )
(A) a2
(B) a a2 a2
a
a2
(C) a2
(D) a
a
a2
【解析】选A. (1 4)a (1 4)a 2
a 2a 2 a 2 a
1a24 a2a2. a a2 a a
第十七页,共二十五页。
bb
b
提示:不成立.
理由是当分式的分子是多项式时,进行减法运算时要加括号.即
acdacdacd.
bb b
b
第五页,共二十五页。
分式的加减运算
【例1】计算:(1)(2012·泉州中考)
m 1 ________; m1 m1
(2 )2 a b 2b b 4 a 2 2 a ; (3 )x 1 3 6 1 2 x x x 2 6 9 .
【解析(jiě xī)m 】 62m 6 m 3
m 3m 2 9m 3m 3m 3 ( m 3 ) 2
m 3 m 31.
答案m :13 m 3 m 3
第二十三页,共二十五页。
5.先化简,再求值:(1)(2012·珠海(zhū hǎi)中考(x)x1x21x)x1,
分式的加减法课件数学北师大版八年级下册
x -y
4 x-y
4
.
x+y x-y x+y
a+2b
b
2a
+
-
b-a a-b b-a
a+2b
b
2b
(3)
+
-
. a+2b
b
2a
b-a
b-a a-b b-a
-
-
1.
b-a b-a b-a b-a
感悟新知
1-1.计算: (1)
-
-
-
知1-练
;
2-x
x-2
的积作公分母,这样的公分母叫做最简公分母 .
感悟新知
知2-讲
3. 通分的一般步骤
(1)确定最简公分母;
(2)用最简公分母分别除以各分母求商;
(3)用所得的商分别乘各分式的分子、分母得出同分母分式 .
感悟新知
特别解读
约分与通分的联系与区分:
1.约分与通分都是对分式进行恒等变形,即变
形之后每个分式的值都不变 .
解:原式=
=-
=-1;
x-2
x-2
(2)
- 1;
+
a2-1 (a+1)(a-1)
原式=
=
=a-1;
a+1
a+1
感悟新知
知1-练
(3)
( -)
-
;
(-)
2x-2y
2(x-y)
2
解:原式=
=
=
;
(x-y)2 (x-y)2 x-y
+ - -
(4) + - .
京改版八年级数学上册10.4分式的加减法课件
2m 1 m2
.
2m 2m
1 m2 m2 1
解:最简公分母是 m 1m 1 .
1 2m m 1 1 m2
1 2m m 1 m2 1
Байду номын сангаас
1
m 1
m
2m
1 m
1
巩固练习
1
m 1
m
2m
1 m
1
1m 1 m 1 m 1
m
2m
1 m
1
m 1 2 m m 1m 1
m
m
1 2 m
1m 1
巩固练习
计算:
(1)1abb
1 a a2
;
(2)m1
1
2m 1 m2
.
巩固练习
(1)
1b 1 a
ab a2
;
解:最简公分母是 a2b .
1 b ab
1 a a2
1 b a 1 ab
ab a
a2 b
a 1 b b 1 a
a2b
a
ab b a2b
ab
ab a2b
.
巩固练习
(2)
1 m
1
,
9 x2 3 x3 x ,
复习回顾
(2)2x5x 6
与
1 x 9 x2
分析: 因为 2x 6 2 x 3
,
9 x2 3 x3 x ,
复习回顾
(2)2x5x 6
与
1 x 9 x2
分析: 因为 2x 6 2 x 3 23 x , 9 x2 3 x3 x ,
所以,最简公分母的系数部分是 2 ,
.
祝同学们学习进步!
y
xy
2024北师大版数学八年级下册5.3.1《同分母分式的加减法》教案
2024北师大版数学八年级下册5.3.1《同分母分式的加减法》教案一. 教材分析《同分母分式的加减法》是北师大版数学八年级下册第五章第三节的一部分。
本节内容是在学生已经掌握了分式的基本概念、分式的乘除法运算的基础上进行的,是分式运算的一个重要组成部分。
通过本节的学习,使学生掌握同分母分式的加减法运算法则,进一步提高学生解决实际问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了分式的基本概念,分式的乘除法运算,因此对于同分母分式的加减法有一定的认知基础。
但学生在解决实际问题时,对于如何运用同分母分式的加减法法则还是会存在一定的困难。
因此,在教学过程中,要注重引导学生理解和掌握同分母分式的加减法法则,并能够运用到实际问题中。
三. 教学目标1.理解同分母分式的加减法法则,并能够熟练运用。
2.能够解决实际问题,提高解决实际问题的能力。
3.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.同分母分式的加减法法则的掌握和运用。
2.解决实际问题,将理论知识运用到实际中。
五. 教学方法采用问题驱动法、案例教学法、分组讨论法等,引导学生主动探究,合作学习,提高学生的动手操作能力和解决实际问题的能力。
六. 教学准备1.PPT课件2.教学案例3.分组讨论的准备七. 教学过程1.导入(5分钟)利用PPT课件,展示一些实际问题,引导学生思考如何解决这些问题。
例如,计算下列分式的和:(1)34+14;(2)25+35。
2.呈现(10分钟)通过PPT课件,展示同分母分式的加减法法则,引导学生理解并掌握。
同分母分式的加减法法则是:同分母分式相加减,分母不变,分子相加减。
3.操练(10分钟)让学生分组进行讨论,每组给出几个同分母分式的加减法问题,并求解。
例如,计算下列分式的和:(1)34+14;(2)25+35;(3)47+27;(4)5 9−19。
4.巩固(5分钟)让每个小组选出一个问题,向全班展示他们的解题过程和结果,教师进行点评,巩固学生对同分母分式的加减法法则的掌握。
人教版数学八年级上册15.2.2分式的加减(第2课时)教学设计
在学生掌握了分式加减法的基本知识后,我会设计一些课堂练习题,让学生独立完成。这些练习题将涵盖不同难度层次,以便满足不同学生的学习需求。
在学生完成练习题后,我会挑选部分学生的答案进行展示和讲解,针对共性问题进行解答,帮助学生巩固所学知识。
(五)总结归纳
课堂最后,我会组织学生进行总结归纳。首先,让学生回顾本节课所学的分式加减法的运算规则,总结通分、简化分式等关键步骤。然后,我会提问学生:“通过本节课的学习,你们觉得自己在哪些方面有了提高?还有哪些疑问和困惑?”
三、教学重难点和教学设想
(一)教学重难点
1.教学重点:
-理解并掌握分式加减法的运算规则。
-能够将复杂分式简化为最简形式,并进行加减运算。
-学会根据实际问题构建分式加减模型,解决具体问题。
这些重点内容是学生形成分式加减知识体系的基础,也是提高学生数学能力的关键。
2.教学难点:
-异分母分式的加减运算,特别是通分过程中的技巧和方法。
-分式的简化,尤其是含有复杂多项式的分式的化简。
-将实际问题转化为分式加减运算的过程,需要学生具备较强的抽象思维和数学建模力。
针对难点内容,教学中需要设计梯度性、层次性的教学活动,帮助学生逐步突破。
(二)教学设想
1.创设情境,激发兴趣:
-通过生活中的实例,如购物时计算折扣、比较不同物品的价格等,引出分式加减运算的实际意义,激发学生的学习兴趣。
5.总结反思,形成策略:
-在课堂结束前,组织学生进行自我反思,总结分式加减运算的技巧和方法,形成自己的解题策略。
6.创新评价,鼓励进步:
-采用多元化的评价方式,如口头提问、书面作业、小组展示等,全面评估学生的学习效果,鼓励学生的进步。
初二数学分式的加减法
分式的加减法【1 】进修目的1.能应用分式的基赋性质通分.2.会进行同分母分式的加减法.3.会进行异分母分式的加减法.要点梳理要点一.同分母分式的加减同分母分式相加减,分母不变,把分子相加减;上述轨则可用式子表为:.要点诠释:(1)“把分子相加减”是把各分式的分子的整体相加减,即各个分子都应用括号,当分子是单项式时,括号可以省略;当分子是多项式时,特殊是分子相减时,括号不克不及省,不然,轻易导致符号上的错误.(2)分式的加减法运算的成果必须化成最简分式或整式.要点二.分式的通分与分数的通分相似,应用分式的基赋性质,使分式的分子和分母同乘恰当的整式,不转变分式的值,把分母不合的分式化成雷同分母的分式,如许的分式变形叫做分式的通分.要点诠释:(1)通分的症结是肯定各分式的最简公分母:一般取各分母所有因式的最高次幂的积作为公分母.(2)假如各分母都是单项式,那么最简公分母就是各系数的最小公倍数与雷同字母的最高次幂的乘积;假如各分母都是多项式,就要先把它们分化因式,然后再找最简公分母.(3)约分和通分正好是相反的两种变形,约分是对一个分式而言,而通分则是针对多个分式而言.要点三.异分母分式的加减异分母分式相加减,先通分,变成同分母的分式,再加减.上述轨则可用式子表为:.要点诠释:(1)异分母的分式相加减,先通分是症结.通分后,异分母的分式加减法变成同分母分式的加减法.(2)异分母分式加减法的一般步调:①通分,②进行同分母分式的加减运算,③把成果化成最简分式.要点四.分式的混杂运算与分数的加.减.乘.除混杂运算一样,分式的加.减.乘.除混杂运算,也是先算乘.除,后算加.减;碰到括号,先算括号内的,按先小括号,再中括号,最后大括号的次序盘算. 分式运算成果必须达到最简,能约分的要约分,包管成果是最简分式或整式.要点诠释:(1)准确应用运算轨则:分式的乘除(包含乘方).加减.符号变更轨则是准确进行分式运算的基本,要紧紧控制.(2)运算次序:先算乘方,再算乘.除,最后算加.减,遇有括号,先算括号内的.(3)运算律:运算律包含加法和乘法的交流律.联合律,乘法对加法的分派律.能灵巧应用运算律,将大大进步运算速度.典范例题类型一.同分母分式的加减1.盘算:(1); (2);【变式】盘算:(1);(2).类型二.异分母分式的加减2.盘算:(1);(2);(3)【变式】盘算:(1);(2)类型三.分式的加减运算的应用3.请先化简,再拔取一个使原式有意义而你又爱好的数代入求值.类型四.分式的混杂运算4.盘算:(1);(2)巩固演习一.选择题1.已知()A.B.C.D.2.等于()A.B.C.D.3.的盘算成果是()A.B.C.D.4. 化简,其成果是()A. B. C. D. 5.等于()A.B.C.D.6.等于()A.B.C.D.1二.填空题7. 分式的最简公分母是______.8.分式的最简公分母是______.9.盘算的成果是____________.10. ____________.11. _________.12.若=2,=3,则=______.三.解答题13. 盘算下列各题:(1)(2)(3)(4)14.已知,用“+”或“-”贯穿连接M.N,有三种不合的情势:M+N.M-N.N-M,请你任选个中一种进行盘算,并化简求值,个中∶=5∶2.15.已知,求代数式的值.【答案与解析】解:(1);(2)【总结升华】本例为同分母分式加减法的运算,盘算时留意运算符号,成果必定要化简.【变式】盘算:(1);(2). 答案与解析【答案】解:(1).(2)。
八年级数学分式的加减法
解析
观察分子和分母,可以发 现它们的公因式为 x(x + 2)。将分子和分母分别除 以公因式,得到最简分式 为 2。
例题2
求分式 (x^2 - 4) / (x - 2) 在 x = 3 时的值。
解析
首先观察分式,发现分子 可以因式分解为 (x + 2)(x - 2),分母为 x - 2。将分 子和分母约去公因式 x - 2, 得到最简分式为 x + 2。然 后将 x = 3 代入最简分式 中,得到结果为 5。
对于包含多个项的分式加减法,可以 先将能凑成整数的项分组进行运算, 简化计算过程。
注意
在运算过程中,要时刻保持表达式的 简洁性,及时化简中间结果。
03 分式化简与求值方法
分式化简步骤和技巧
找出分子和分母的公因式
检查结果
在化简分式前,首先需要找出分子和分母 中的公因式。这可以通过观察分子和分母 中的各项,找出它们的公共因子来实现。
计算结果未化简到最简形式
在得出计算结果后,学生容易忽视将结果化简到最简形式的要求, 导致答案不标准或不完整。
练习题及参考答案
1. 计算:(1/x) + (1/y) = ?
【分析】本题考查异分母分式的加法运算。首先观察两个分式的分母不同,因此 需要先通分。通分时可以选择两个分母的最小公倍数xy作为通分后的分母,然后 将分子进行相应的变化,最后进行加法运算。
分式的加减法法则
同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母 的分式,再加减。
易错难点剖析
忽视分式有意义的条件
在解决分式问题时,学生容易忽视分母不能为零的条件,导致计 算错误或得出无意义的结论。
通分时忽视符号变化
分式的加减法与乘除法
分式的加减法与乘除法分式(Fraction)是数学中的一个重要概念,用来表示有理数的形式。
分式由分子和分母组成,分子表示被分割的单位数量,而分母表示整体被分成的份数。
在数学中,我们经常会遇到需要对分式进行加减法和乘除法的运算。
本文将详细介绍分式的加减法和乘除法的运算规则,并提供一些例子来帮助读者更好地理解。
一、分式的加减法1. 加法两个分式的加法规则:分子相乘加分母相乘。
例如:$\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$这个规则同样适用于多个分式相加。
例如:$\frac{a}{b} + \frac{c}{d} + \frac{e}{f} = \frac{adf + bcf + bde}{bdf}$2. 减法两个分式的减法规则:分子相乘减分母相乘。
例如:$\frac{a}{b} - \frac{c}{d} = \frac{ad-bc}{bd}$同样地,这个规则也适用于多个分式相减。
例如:$\frac{a}{b} - \frac{c}{d} - \frac{e}{f} = \frac{adf - bcf -bde}{bdf}$二、分式的乘除法1. 乘法两个分式的乘法规则:分子相乘,分母相乘。
例如:$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$这个规则同样适用于多个分式相乘。
例如:$\frac{a}{b} \times \frac{c}{d} \times \frac{e}{f} =\frac{ace}{bdf}$2. 除法两个分式的除法规则:将第一个分式的分子乘以第二个分式的倒数。
例如:$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times\frac{d}{c} = \frac{ad}{bc}$同样地,这个规则也适用于多个分式相除。
例如:$\frac{\frac{a}{b}}{\frac{c}{d}} \div\frac{\frac{e}{f}}{\frac{g}{h}} = \frac{a}{b} \times \frac{d}{c} \div\frac{f}{e} \times \frac{h}{g} = \frac{adh}{bcfge}$三、实例演算让我们通过几个实际运算的例子来更好地理解分式的加减法和乘除法。
数学分式的计算方法
数学分式的计算方法数学分式是数学中常见的一种表达形式,它由分子和分母组成,分子和分母都可以是数或者变量的组合。
在计算数学分式时,我们需要掌握一些基本的计算方法和技巧。
一. 分式的加减法1. 分式的加法:当两个分式的分母相同时,可以直接将分子相加,并保持分母不变。
例如,计算1/3 + 2/3,由于分母相同,所以直接将分子相加得到3/3,即1。
2. 分式的减法:当两个分式的分母相同时,可以直接将分子相减,并保持分母不变。
例如,计算4/5 - 2/5,由于分母相同,所以直接将分子相减得到2/5。
3. 分式的加减法:当两个分式的分母不同时,我们需要先找到它们的最小公倍数作为通分的分母,并将分子进行相应的乘法运算后再进行加减。
例如,计算1/2 + 1/3,首先找到2和3的最小公倍数为6,然后将分子进行相应的乘法运算得到3/6 + 2/6,最后得到5/6。
二. 分式的乘除法1. 分式的乘法:将两个分式的分子相乘作为新的分子,分母相乘作为新的分母。
例如,计算2/3 * 4/5,将分子相乘得到8,分母相乘得到15,所以结果为8/15。
2. 分式的除法:将第一个分式的分子乘以第二个分式的倒数,作为新的分子,第一个分式的分母乘以第二个分式的分子,作为新的分母。
例如,计算2/3 ÷ 4/5,将2/3乘以5/4得到10/12,最后可以化简为5/6。
三. 分式的化简与约分1. 分式的化简:将一个分式的分子和分母同时除以它们的最大公约数,可以得到一个化简后的分式。
例如,将12/16化简为3/4,因为12和16的最大公约数为4,所以同时除以4得到3/4。
2. 分式的约分:将一个分式的分子和分母同时除以它们的公因子,可以得到一个约分后的分式。
例如,将15/25约分为3/5,因为15和25的公因子为5,所以同时除以5得到3/5。
四. 分式的整数部分和真分数部分1. 分式的整数部分:当一个分式的分子大于或等于分母时,可以将其化简为一个整数和一个真分数相加。
人教版八年级数学上册教案《分式的加减》
《分式的加减》◆教材分析教学对象是八年级学生,从知识的角度看,在学习本章前,学生已经掌握了用字母表示数、列简单代数式,会把一些简单的实际问题中的数量关系用代数式表示出来,并会进行分式的乘除运算,基本掌握通分,能够确定几个分式的最简公分母;从数学活动经验、思维特征、学习习惯看,通过对分式的前期研究,运用类比分数的有关概念及性质、运算联想引申出分式的有关概念及性质、运算得习惯已基本形成。
通过第三学段三个学期的学习,思维水平也有了进一步地提升,理性思考能力明显提高,具备类比分数的加减运算法则探究出分式加减运算法则的能力。
但经验性思维依然占主导地位,部分学生的学习积极性、主动性不强,加之经历分数运算、因式分解的两次分流,分式加减运算既是前面代数运算的综合,又是分式概念及运算的难点内容之一,因此,对异分母分式加减和运用分式加减法则运算法则之后所涉及的诸如正确进行整式运算、分式化简等易出现差错,教学中应通过训练加以强化。
◆教学目标【知识与能力目标】1.熟练掌握同分母分式的加减运算2.掌握异分母分式的加减法则及通分的过程与方法.3. 会进行简单的分式的四则混合运算.【过程与方法目标】1、体验知识的化归,提高思维的灵活性,培养学生整体思考和分析问题的能力.2、经历分式混合运算法则的探究过程,进一步领会类比的数学思想.【情感态度价值观目标】让学生充分参与到数学学习的过程中来,使学生在整体思考中开阔视野,养成良好品格,渗透化归对立统一的辩证观点. 【教学重点】1.分式的加减法.2.熟练地进行分式的混合运算.【教学难点】1.异分母分式的加减法及简单的分式混合运算.2.熟练地进行分式的混合运算.一、引入新课(课件展示)问题1:甲工程队完成一项工程需n 天,乙工程队要比甲工程队多用3天才能完成这项工程,两队共同工作一天完成这项工程的几分之几?一个工程问题,题意比较简单,只是用字母n 天来表示甲工程队完成一项工程的时间,乙工程队完成这一项工程的时间可表示为n+3天,两队共同工作一天完成这项工程的311++n n .这样引出分式的加减法的实际背景 问题2:2010年,2011年,2012年某地的森林面积(单位:公顷)分别是S1,S2,S3,2012年与2011年相比,森林面积增长率提高了多少?问题2的目的与问题1一样,从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.让学生回忆分数的加减法法则,类比分数的加减法,分式的加减法的实质与分数的加减法相同,请学生自己说出分式的加减法法则.分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则?请同学们说出2243291,31,21xy y x y x 的最简公分母是什么?你能说出最简公分母的确定方法吗?二、讲授新课分式的加减法法则:同分母分式相加减,分母不变,把分子相加减。
北师大版八年级数学(下)课件:5.3.3 分式的加减法
答案:(1) 4 a ;
a2
a 1 (2) ;
a2 1
(3) c a . ab
例5 计算:
(1) y 1 ; xy x xy x
(2) x2 x 1; x 1
解:原式 y( y 1) y 1 x(y 1)(y 1)
解:原式 x2 (x 1) x 1
(2 y)2 (2y)2 y2
4. 3
还有其它 方法吗?
1.先化简,再求值:
已知
x y
=3,求 4xy
x2 y2
x y 的值.
x y
解: 4xy x2 y2
x x
y y
4xy(- x2 2xy x2 y2
y2)
(x y)2 (x y)(x y)
3
(2)已知
x
3 y ,求
4xy x2 y2
x y x y
的值. 答案: 1 .
2
3.某蓄水池装有 A,B 两个进水管,每小时可分别 进水 at,bt.若单独开放 A 进水管,ph 可将该水池 注满.如果 A,B 两根水管同时开放,那么能提前多 长时间将该蓄水池注满?
答案: bp h . ab
(a 1)2 a 1 . a(a 1)(a 1) a2 a
例6
已知
x y
2,求
x x y
y x y
y2 x2 y2
的值.
解:原式
x(x
y) y(x x2 y2
y)
y2
x2 x2 y2
因为 x 2, 即 x 2y. y
八年级数学知识点:分式的加减
八年级数学知识点整理:分式的加减分式的四则运算1.同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减。
用字母表示为:a/c±b/c=(a±b)/c2.异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进展计算。
用字母表示为:a/b ±c/d=(ad±cb)/bd3.分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
用字母表示为:a/b * c/d=ac/bd4.分式的除法法则:(1).两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。
a/b÷c/d=ad/bc(2).除以一个分式,等于乘以这个分式的倒数:a/b÷c/d=a/b*d/c不管什么样的计算,其过程都是需要大家急躁和细心的。
一、约分与通分:1.约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分;分式约分:将分子、分母中的公因式约去,叫做分式的约分。
分式约分的依据是分式的根本性质,即分式的分子、分母都除以同一个不等于零的整式,分式的值不变。
约分的方法和步骤包括:(1)当分子、分母是单项式时,公因式是一样因式的最低次幂与系数的最大公约数的积;(2)当分子、分母是多项式时,应先将多项式分解因式,约去公因式。
2.通分:依据分式的根本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通。
分式通分:将几个异分母的分式化成同分母的分式,这种变形叫分式的通分。
(1)当几个分式的分母是单项式时,各分式的最简公分母是系数的`最小公倍数、一样字母的最高次幂的全部不同字母的积;(2)假如各分母都是多项式,应先把各个分母按某一字母降幂或升幂排列,再分解因式,找出最简公分母;(3)通分后的各分式的分母一样,通分后的各分式分别与原来的分式相等;(4)通分和约分是两种截然不同的变形.约分是针对一个分式而言,通分是针对多个分式而言;约分是将一个分式化简,而通分是将一个分式化繁。
北师大版八年级下册数学:同分母分式的加减法
典例精析
例2 计算: ac bc . ab ba
解:
ac bc ab ba
ac ab
bc (a
b)
ac bc ac bc ab ab ab
c(a b) c. ab
巩固新知一
1、判断下列计算是否正确,并改正
(1)a b a b m m 2m
(2) a - a 0 x-y y-x
拓展提升
3.先化简,再求值: x2 1 x2 2x
x 1 2x x2
,
选择你喜欢的数值 代入求值
解:原式= x2 1 x 1 x2 2x x2 2x
x2 1 x 1
x2 2x
x2 x x2 2x
x x 1 xx 2
x 1. x2
总结评价
课堂总小结结评价
同分母的分式相加减,分母不变,把分子相加减.
1 2 1 2 3 55 5 5
1 2 12 1 55 5 5
1 2 1? 2 aa a
a
2
a2
?
x 1 x 1 x 1
请类比同分母分数的加减法, 说一说同分母的分式应该如何加减?
同分母分式的加减法则
同分母分式相加减,分母不变,把分子相加减
上述法则可用式子表示为
b a
c a
b
a
c
课前展示三
(1)
x
2
x2 4 4x
4
•
2x 4 x2
(2)
x2
2x 1 x2 1
x x2
1 x
展示目标
1.理解同分母分式的加减法的法则,会进行 同分母分式的加减法运算;(重点) 2.会把分母互为相反数的分式化为同分母分 式进行加减运算.(难点)
北师大版数学八年级下册5.3《分式的加减法》教案
(4)实际问题的应用:将实际问题转化为分式模型时,学生可能会对问题情境的理解和分析出现偏差。
举例:在速度问题中,学生可能不理解速度与时间、路程之间的关系,从而错误地建立分式模型。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式加减法的基本概念。分式加减法是指对分母相同的分式进行加减运算,或者通过通分将分母不同的分式转化为分母相同的分式后再进行加减运算。它在解决实际问题中有着广泛的应用,如计算合并速度、比较不同单位下的量等。
2.案例分析:接下来,我们来看一个具体的案例。假设有两辆汽车,一辆以速度\( \frac{60}{2} \)公里/小时行驶,另一辆以\( \frac{50}{3} \)公里/小时行驶,如何计算它们的总速度?通过这个案例,我们将学习如何运用分式加减法解决实际问题。
北师大版数学八年级下册5.3《分式的加减法》教案
一、教学内容
本节课选自北师大版数学八年级下册第五章第三节《分式的加减法》。教学内容主要包括以下方面:
1.掌握分式加减法的运算规则。
2.能够正确计算分式加减法,并进行化简。
3.了解分式加减法在实际问题中的应用。
具体内容包括:
(1)同分母分式的加减运算。
(2)异分母分式的加减运算,需要先通分,再进行加减。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,通过模拟两辆车的行驶,演示如何通过分式加减法计算总速度。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“分式加减法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
先通分,把异分母分式化为同分母的分式,然后再按同分母分式的加减法法则进行计算。
议一议
(我这儿就有两位同学将异分母的分式加减化成同分母的分式加减.)
小明认为,只要把异分母的分式化成同分母的分式,异分母
分式的加减问题就变成了同分母分式的加减问题。小亮同意小明的这
种看法,但他俩的具体做法不同。
小明: 3 1 3 4a a 12a a 13a 13 a 4a a 4a 4a a 4a2 4a2 4a2 4a
____________________________________________________________________________
(2)汽车走哪条路花费时间少? 少用多长时间? 课堂小结
本节课你的收获是什么?
(1)分式加减运算的方法思路:
异分母分式 转化 同分母分式 分母不变
的加减
通分 的加减
转化为
分子相 加减
(2)注意:分子相加减时,如果被减式分子是一个多项式,先用括号括起来,再运算,可减
少出现符号错误:分式加减运算的结果要约分,化为最简分式(或整式)。
教师提问:1、计算的结果是什么?
2、你是怎样做的?怎样想的?
引导学生概括:【同分母分式加减法的法则】同分母的分式相加减,分母不变,分子相加减.
别人说我行,努力才能行
尝试计算 (1)
3 1 ? a 4a
(2) 1 1 ? uv
(3)
2 a2
3 ab
?
引导学生概括:【异分母分式加减的法则】
每分钟应多骑多少千米?才能使到达学校的时间和往常一样?
我们不妨观察
a
1 2
1 a
?
中的每一项都是分式,这是什么样的运算呢?
二、创设问题情景,探索归纳
相信自己行,才会我能行
计算
(1) 1 + 2 =____________;(2) 6 — 2 =____________
aa
xy xy
(3) 7 - 2 ____________ x 1 x 1
2、提高学生“用数学”意识. 重 点 分式加减运算
难 点 化异分母分式为同分母分式的过程;
关 键 点 找最简公分母
教具准备 幻灯片
教学方法
启发、探究相结合
教学过程: 一、创设现实情境,引入新课 帮帮小林算一算
林林家距离学校 1 千米,骑自行车需要 a 分钟,若某一天林林从家里出发迟了 2 分钟,则他
课 题 八年级数学 分式的加减法 知识与技能目标
课型
新授课
1、理解和掌握分式加减运算法则,会进行简单分式的加减运算,
2、引导学生小结运算方法和技巧,提高运算能力.
过程与方法目标
教 学 1、经历探索分式加减运算法则的过程,理解其算理
目标 2、体会转化、类比的数学思想方法
情感与价值目标
1、在学生已有数学经验的基础上,探求新知,让学生获得成功的快乐,从而提高 其学习的自信心。;
x 1 1 x ab
(3)
a
4 2 1
a
2
2
a
讨论:在进行分式加减的过程中的注意事项? 不但自己行,还帮别人行 阅读下面题目的运算过程
x 3 x2 1
2 1
x
(x
x3 1)(x 1)
2(x 1) (x 1)(x 1)
①
x 3 2(x 1)
②
x 3 2x 2
③
x 1
④
上述计算过程,从哪一步出现错误,写出该步代号___________. (1) 错误的 原因_________. (2) 本题正确的结论_____________. 六、实际运用 拓展提高 抗震救灾众志成城 数学来源于生活,更重要的是为生活服务。四川汶川发生大地震后,举国上下,抗震救灾,众 志成城中国红十字会运送一批药品到达都江堰 A 区后,接到指令从 A 区运到 B 区,从 A 区到 B 区有两条路,每一个条路都是 3km. 其中第一条是平路,第二条有 1km 的上坡路, 2km 的下坡路. 汽车在上坡路上的速度为 v km/h,在平路上的行车速度为 2 vkm/h,在下坡路上的行车速度为 3vkm/h, 那么: (1)当走第二条路时, 汽车从甲地到乙地需要多长时间?
2、计算
2m 2m
n
mn n 2m
的结果是(
)
mn
mn
3m n
3m n
A n 2m B n 2m C n 2m D n 2m
3、不计算说出下列分式的最简公分母:
(1)
b2 4a 2
c a
(2)
1 2x2
y
x 4y2
(3) 2000 2000 (4) 2 1
x
3
4
24 x2 16
3.
注意:1“减式”是多项式时要添括号! 2 结果不是最简分式的应通过约分化为最简分式或者整式。
四、巩固练习,强化知识 大显身手 1、填空
(1) 3 5 _____ (2) x y _______
xy xy
xy yx
(3)式子 3 1 5 的 最简公分母 4x 2y 6x2
x x3
a2 a a 1
4、做游戏
八张卡片上分别写着
4 a2
1 a
1 1 a 3a
1 1 a a 1
ba ab
4
b2 a2
3a
ab
4 a a2
2a 1 a2 a
你能找出与自己运算结果相同的好朋友吗? 五、巩固练习,提升能力 (口说千遍,不如动手一练)
计算:
1
24
2 a2 a b
(3)体会类比转化的思想方法。
(4)德育教育:树立信心,踏实努力,奋发向上一定会有收获。
作业 第 9 面 2、3、4 题。
§3.3.2 分式的加减法(二)
同分母加减法法则
例
板
教 ____________________________________________________________________________ 学 反 ____________________________________________________________________________ 思
小亮: 3 1 3 4 1 12 1 13 a 4a a 4 4a 4a 4a
你对这两种做法有何评判?与同伴交流。
发现:
异分母的分式
转化
同分母的分式
的加减
通分
的加减
通分的关键是找最简公分母
三、举例示范,运用法则
计算
1.
x 2 x 1 x 1 x1
2.
x2 4 x2 x2