反比例函数全章教案人教版

合集下载

反比例函数人教版教案

反比例函数人教版教案

反比例函数人教版教案授课主题:反比例函数授课对象:初中二年级学生授课内容:1. 反比例函数的定义:若两个量的乘积为常数,则这两个量成反比,它们的关系用函数y=k/x(k≠0)表示。

2. 反比例函数的图像特征:反比例函数的图像是一条经过原点的右上方递减的曲线,它在x轴上无渐近线,y轴上有渐近线。

3. 反比例函数的应用:反比例函数在实际生活中的应用非常广泛,如比例尺、电阻与电流的关系、物体距离和像距离的关系等等。

授课流程:1. 引入:通过讲述生活中各种实际应用,启发学生对反比例函数的认识和理解。

如:显微镜用的眼镜和物镜的距离、自行车行驶的速度和时间的关系、光线通过透镜成像的原理等。

2. 讲解:让学生理解反比例函数的定义和图像特征。

通过示例、图像和实际应用,让学生明白y=k/x的特殊性和一些重要概念,如渐近线、单调性、定义域和值域等等。

3. 练习:通过练习,让学生运用所学的知识来解决实际问题。

教师可以通过选择适当的练习题,参考教材中的例题和习题,让学生掌握基础的计算技巧和解题方法。

4. 总结:通过总结来巩固所学的知识。

学生可以归纳出反比例函数的特点和应用,用自己的语言来表述,加深对反比例函数的理解和认识。

授课方法:1. 讲解和示范:通过教师的演示和讲解,让学生明白反比例函数的定义和特征。

2. 练习和巩固:通过大量的练习和巩固来巩固所学的知识,帮助学生掌握反比例函数的计算方法和应用技巧。

3. 交流和讨论:通过学生之间的交流和讨论,让学生相互学习和借鉴,提高学生的思维能力和创新能力。

授课评价:1. 能够认识反比例函数的定义和图像特征,掌握反比例函数的计算方法和应用技巧。

2. 能够运用反比例函数来解决实际问题,提高学生的问题解决能力。

3. 能够加深对反比例函数的理解和认识,激发其对数学学科的兴趣和热情。

人教版九年级数学下册第二十六章26.1.1反比例函数k的几何意义教学设计

人教版九年级数学下册第二十六章26.1.1反比例函数k的几何意义教学设计
2.教师点评:对学生的总结进行点评,强调重点知识。
教师讲解:“大家总结得很好。反比例函数是我们学习函数的重要部分,希望大家能够掌握其定义、性质和几何意义,并在实际问题中灵活运用。”
五、作业布置
为了巩固学生对反比例函数知识的掌握,提高学生的应用能力和思维能力,特布置以下作业:
1.基础知识巩固:
(1)根据反比例函数的定义,求出以下函数的表达式,并说明k的几何意义:y=3/x、y=-2/x、y=5/|x|。
作业要求:
1.学生在完成作业时,要认真思考,规范解答,注意细节。
2.对于实践应用题,要求学生结合反比例函数的性质和几何意义,分析问题,列出方程,并求解。
3.拓展提高题要求学生独立思考,尝试不同的解题方法,锻炼数学思维能力。
4.思考题要求学生在理解反比例函数的基础上,深入思考,形成自己的见解。
2.教学策略:
(1)情境创设:以生活实例或有趣的故事引入反比例函数的学习,激发学生的学习兴趣;
(2)任务驱动:设置具有挑战性的任务,引导学生主动探究反比例函数的性质和应用;
(3)分层教学:针对不同学生的学习需求,设计难易适度的练习题,使每个学生都能在原有基础上得到提高;
(4)反馈与评价:及时关注学生的学习进度,给予有效的反馈和激励,提高学生的学习积极性。
教师提问:“同学们,我们之前学习了正比例函数和一次函数,谁能来说说它们的特点和性质?”
2.创设情境:通过生活中的实例,如物体在反比例力作用下的运动轨迹,引出反比例函数的概念。
教师讲解:“在生活中,我们经常会遇到一些与反比例关系相关的问题。比如,当物体受到一个与速度成反比的阻力时,它的运动轨迹是怎样的呢?这就涉及到我们今天要学习的反比例函数。”
人教版九年级数学下册第二十六章26.1.1反比例函数k的几何意义教学设计

人教版九年级数学下册教案 第1课时 反比例函数的图象和性质

人教版九年级数学下册教案 第1课时 反比例函数的图象和性质

第二十六章 反比例函数 26.1.2 反比例函数的图象和性质第1课时 反比例函数的图象和性质学习目标:1. 经历画反比例函数的图象、归纳得到反比例函数的图象特征和性质的过程; (重点、难点)2. 会画反比例函数图象,了解和掌握反比例函数的图象和性质. (重点)3. 能够初步应用反比例函数的图象和性质解题. (重点、难点)一、知识链接回顾我们上一课的学习内容,你能写出200 m 自由泳比赛中,游泳所用的时间 t (s ) 和游泳速度 v (m /s ) 之间的数量关系吗?试一试,你能在坐标轴中画出这个函数的图象吗?一、要点探究探究点1:反比例函数的图象和性质 画出反比例函数x y 6=与xy 12=的图象. 【提示】画函数的图象步骤一般分为:列表→描点→连线. 需要注意的是在反比例函数中自变量 x 不能为 0. 解:列表:描点:以表中各组对应值作为点的坐标,在直角坐标系内描绘出相应的点.连线:用光滑的曲线顺次连接各点,即可得x y 6=与xy 12=的图象.思考 观察这两个函数图象,回答问题: (1)每个函数图象分别位于哪些象限?(2)在每一个象限内, 随着x 的增大,y 如何变化?你能由它们的解析式说明理由吗? (3)对于反比例函数xky =(k >0),考虑问题(1)(2),你能得出同样的结论吗?【要点归纳】反比例函数xky =(k >0) 的图象和性质: 由两条曲线组成,且分别位于第一、三象限,它们与 x 轴、y 轴都不相交; 在每个象限内,y 随 x 的增大而减小. 【针对训练】 反比例函数xy 3=的图象大致是 ( )A .B .C .D .反比例函数xy 8=的图象上有两点 A (x 1,y 1),B (x 2,y 2),且A ,B 均在该函数图象的第一象限部分,若 x 1>x 2,则 y 1与y 2的大小关系为 ( ) A . y 1 > y 2 B . y 1 = y 2 C . y 1 < y 2 D . 无法确定【提示】因为8>0,且 A ,B 两点均在该函数图象的第一象限部分,根据 x 1>x 2,可知y 1,y 2的大小关系观察 当 k =-2,-4,-6时,反比例函数xky =的图象,有哪些共同特征?思考 回顾上面我们利用函数图象,从特殊到一般研究反比例函数xky =(k >0) 的性质的过程,你能用类似的方法研究反比例函数xky =(k <0)的图象和性质吗?【要点归纳】反比例函数xky =(k <0) 的图象和性质: (1) 当 k > 0 时,双曲线的两支分别位于第一、三象限,在每一象限内,y 随 x 的增大而减小;(2) 当 k < 0 时,双曲线的两支分别位于第二、四象限,在每一象限内,y 随 x 的增大而增大.k 的正负决定了反比例函数的图象所在的象限和增减性【针对训练】点(2,y 1)和(3,y 2)在函数xy 2-=的图象上,则y 1 y 2(填“>”“<”或“=”).已知反比例函数()721-+-=a a x a y ,在每一个象限内,y 随 x 的增大而增大,求a 的值.【针对训练】 已知反比例函数()|4||83--=m x m y 在每一个象限内,y 随着 x 的增大而减小,求 m 的值.二、课堂小结1. 反比例函数xy5.1=的图象在 ( )A. 第一、二象限B. 第一、三象限C. 第二、三象限D. 第二、四象限2. 在同一直角坐标系中,函数y = 2x与xy1-=的图象大致是( )3. 已知反比例函数xmy2-=的图象在第一、三象限内,则m的取值范围是________.4. 下列关于反比例函数xy12-=的图象的三个结论:(1)经过点(-1,12) 和点(10,-1.2);(2)在每一个象限内,y随x的增大而减小;(3)双曲线位于第二、四象限.其中正确的是________(填序号).5. 已知反比例函数xky=的图象过点(-2,-3),图象上有两点A (x1,y1),B (x2,y2),且x1 > x2 > 0,则y1-y2________0.6. 已知反比例函数52-=mmxy,它的两个分支分别在第一、第三象限,求m的值.能力提升:7. 已知点(a-1,y1),(a+1,y2)在反比例函数xky=(k>0)的图象上,若y1<y2,求a的取值范围.参考答案合作探究一、要点探究探究点1:反比例函数的图象和性质解:列表:-1 -1.2 -1.5 -2 -3 -6 6 3 2 1.5 1.2 1 -2 -2.4 -3 -4 -6 -12 12 6 4 3 2.4 2 描点、连线如图所示.【针对训练】 CC 【针对训练】<解:由题意得a 2 + a -7=-1,且a -1<0.解得a =-3.【针对训练】 解:由题意得 | m |-4=-1,且 3m -8>0.解得m =3.当堂检测1.B2. D3. m >24. (1)(3)5. <6. 解:因为反比例函数52-=m mxy 的两个分支分别在第一、第三象限,所以有m 2-5=-1,且m >0,解得m =2. 能力提升:7. 解:由 k >0知在每个象限内,y 随 x 的增大而减小.① 当这两点在图象的同一支上时,∵y 1<y 2,∴a -1>a +1, 无解; ②当这两点分别位于图象的两支上时, ∵y 1<y 2,∴ y 1<0<y 2.∴a -1<0,a +1>0, 解得-1<a <1.故 a 的取值范围为-1<a <1.。

新人教版九年级数学下册全册教案

新人教版九年级数学下册全册教案

义务教育课程标准人教版数学教案九年级下册第二十六章 反比例函数26.1.1反比例函数的意义(1课时)一、教学目标1.使学生理解并掌握反比例函数的概念2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求解析式 3.能根据实际问题中的条件确定反比例函数解析式,体会函数的模型思想 二、重点难点重点:理解反比例函数的概念,能根据已知条件写出函数解析式 难点:理解反比例函数的概念 三、教学过程(一)、创设情境、导入新课问题:电流I 、电阻R 、电压U 之间满足关系式U=IR ,当U =220V 时,(1)你能用含有R 的代数式表示I 吗? (2)利用写出的关系式完成下表:当R 越来越大时,I 怎样变化?当R 越来越小呢? (3)变量I 是R 的函数吗?为什么?概念:如果两个变量x,y 之间的关系可以表示成)0(≠=k k xky 为常数,的形式,那么y 是x 的反比例函数,反比例函数的自变量x 不能为零。

(二)、联系生活、丰富联想1.一个矩形的面积为202cm ,相邻的两条边长分别为x cm 和y cm 。

那么变量y 是变量x 的函数吗?为什么?2.某村有耕地346.2公顷,人数数量n 逐年发生变化,那么该村人均占有耕地面积m (公顷/人)是全村人口数n 的函数吗?为什么? (三)、举例应用、创新提高:例1.(补充)下列等式中,哪些是反比例函数? (1)3xy = (2)x y 2-= (3)xy =21 (4)25+=x y (5)31+=xy 例2.(补充)当m 取什么值时,函数23)2(m x m y --=是反比例函数? (四)、随堂练习1.苹果每千克x 元,花10元钱可买y 千克的苹果,则y 与x 之间的函数关 系式为2.若函数28)3(m x m y -+=是反比例函数,则m 的取值是 (五)、小结:谈谈你的收获 (六)、布置作业 (七)、板书设计四、教学反思:26.1.2反比例函数的图象和性质(1)教学目标1、体会并了解反比例函数的图象的意义2、能描点画出反比例函数的图象3、通过反比例函数的图象分析,探索并掌握反比例函数的图象的性质。

人教版数学九年级下册:(反比例函数)反比例函数(教案)

人教版数学九年级下册:(反比例函数)反比例函数(教案)

第二十六章反比例函数26.1 反比例函数26.1.1 反比例函数【知识与技能】1.理解反比例函数的意义.2.能够根据已知条件确定反比例函数的解析式.【过程与方法】经历从实际问题中抽象出反比例函数模型的过程中,体会反比例函数来源于生活实际,并确定其解析式.【情感态度】经历反比例函数的形成过程,体验函数是描述变量关系的重要数学模型,培养学生合作交流意识和探索能力.【教学重点】理解反比例函数的意义,确定反比例函数的解析式【教学难点】反比例函数解析式的确定.一、情境导入,初步认识问题京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该次列车平均速度v(单位:km/h)的变化而变化,速度v和时间t的对应关系可用怎样的函数式表示?【教学说明】教师提出问题,学生思考、交流,予以回答.教师应关注学生能否正确理解路程一定时,运行时间与运行速度两个变量之间的对应关系,能否正确列出函数关系式,对有困难的同学教师应及时予以指导.二、思考探究,获取新知问题1某住宅小区要种植一个面积为1000 m2的长方形草坪,草坪的长为y (单位:m)随宽x(单位:m)的变化而变化,你能确定y与x之间的函数关系式吗?问题2已知北京市的总面积为1. 68 ×104平方千米,人均占有的土地面积S(单位平方千米/人)随全市人口 n(单位:人)的变化而变化,则S与n的关系式如何?说说你的理由.思考观察你列出的三个函数关系式,它们有何特征,不妨说说看看.【教学说明】学生相互交流,探寻三个问题中的三个函数关系式,教师再引导学生分析三个函数的特征,找出其共性,引入新知.反比例函数:形如y =kx(k≠0)的函数称为反比例函数,其中x是自变量,y是x的函数,自变量x的取值范围是不等于0的一切实数.试一试下列问题中,变量间的对应关系,可用怎样的函数解析式表示?(1)一个游泳池的容积为2000m 3,注满游泳池所用的时间t(单位:h)随注水速度v(单位: m 3/h)的变化而变化;(2)某长方体的体积为1000cm 3,长方体的高h(单位:cm)随底面积S (单位:cm 2 )的变化而变化.(3)—个物体重100牛,物体对地面的压强 P 随物体与地面的接触面积S 的变化而变化.【教学说明】学生独立完成(1)、(2)、(3)题,教师巡视,关注学生完成情况,肯定他们的成绩,提出个别同学问题,帮助学生加深对构建反比例函数模型的理解.三、典例精析,掌握新知例1 已知y 是x 的反比例函数,当x =2 时,y = 6.(1) 写出y 与x 之间的函数解析式;(2) 当x =4时,求y 的值.【分析】由于y 是x 的反比例函数,故可说其表达式为y =k x,只须把x =2,y=6代入,求出k 值,即可得y =12x,再把x =4代入可求出 y=3. 【教学说明】本例展示了确定反比例函数表达式的方程,教师在评讲时应予以强调.在评讲前,仍应让学生自主探究,完成解答,锻炼学生分析问题,解决问题的能力.例2 如果y 是z 的反比例函数,z 是x 的 正比例函数,且x ≠0,那么y 与x 是怎样的函数关系?【分析】 因为y 是z 的反比例函数,故可设y =1k z(K 1≠0),又z 是x 的正比例函数,则可设 z = 2k x (2k ≠0) x ≠0,∴ y =12k k x . 11220,k 0,0,k k k ≠≠∴≠ 故y =12k k x是y 关于x 的反比例函数. 【教学说明】本例仍可让学生先独立思考,然后相互交流探索结论.最后教师予以评讲,针对学生可能出现的问题(如设:y =k x,z=kx 时没有区分比例系数)予以强调,并对题中x ≠0的条件的重要性加以解释,帮助学生加深对反比例函数意义的理解.四、运用新知,深化理解1.下列哪个等式中y 是x 的反比例函数? y = 4x, y x= 3, y=6x+1,xy=123. 2.已知y 与x 2成反比例,并且当x= 3时,y=4.(1)写出y 和x 之间的函数关系式,y 是x 的反比例函数吗?(2)求出当x =1.5时y 的值.【教学说明】让学生通过对上述两道题的探究,加深对反比例函数意义的理解,增强确定反比例函数表达式的解题技能,教师巡视,再给出答案并解决易错点.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.【答案】1.只有等式xy=123中,y 是x 的反比例函数.2.解:(1)由题知可设y =2,3k y x x==时y=4,∴ k= 4×9 = 36,即 y = 236x,y 不是 x 的反比例函数. (2)y=236x ,x=1.5 时,y=361.5 1.5⨯ =16. 五、师生互动,课堂小结1.知识回顾.2.谈谈这节课你有哪些收获?【教学说明】教师应与学生一起进行交流,共同回顾本节知识,理清解题思路与方法,对普遍存在的疑虑,可共同探讨解决,对少数同学还面临的问题,可让学生与同伴交流获得结果,也可课后个别辅导,帮助他分析,找出问题原因,及时查漏补缺.1.布置作业:从教材“习题26. 1”中选取.2.完成创优作业中本课时的“课时作业”部分.反比例函数是初中学习阶段的第二种函数类型.因此本课时教学仍然是从实际问题入手,充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相互关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理性认识一旦建立,即已摆脱其原型成为数学对象.反比例函数具有丰富的数学含义,可以利用它通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象.此外,教师在例题的处理上,应要求学生将解题步骤写完整.。

九年级数学上册《反比例函数》教案新人教版

九年级数学上册《反比例函数》教案新人教版

九年级数学上册《反比例函数》教案新人教版反比例函数一、教材分析(一)教材的地位和作用:本节课是在已经学习了一次函数的基础上,再一次进入函数范畴,让学生进一步理解函数的内涵,并感受现实世界存在各种函数以及如何应用函数解决实际问题。

反比例函数是最基本的函数之一,是学习后续各类函数的基础。

它位居初中阶段三大函数中的第二,区别于一次函数,但又建立在一次函数之上,而又为以后更高层次函数的学习,函数、方程、不等式间的关系的处理奠定了基础。

(二)结合中考函数本身是数学学习中的重要内容,而反比例函数则是基础函数,是中考的考点之一。

因此,本节内容有着举足轻重的地位。

(三)学习重点:理解和领悟反比例函数的概念。

确定反比例函数解析式学习难点:反比例函数的理解及应用二、学情分析:1.对初三年级学生来说,虽然他们已经对函数,正比例函数,一次函数的概念,图象,性质以及应用有所掌握,但他们面对新的函数时,还可能存在一些思维障碍,如学生不能准确地找出变量之间的自变量和因变量,以及如何从事例中领悟和总结出反比例函数的概念。

2.根据学生上课易注意力分散这一特点,应在教学中充分发挥学生的主体作用,让他们多思考,多合作交流,来吸引学生的注意力,引起他们的兴趣。

3.在教学过程中我创造条件让学生发表见解,特别是BC层次的学生发现他们的闪光点及时给予表扬鼓励,激发这二层次学生的学习兴趣。

三、学习目标:根据新课程标准对学生知识能力的要求,结合初三年级学生实际水平,认知特点制定以下教学目标知识与技能1.理解反比例函数的意义2.能判断一函数是否为反比例函数过程与方法:让学生经历从实际问题中抽象出反比例函数模型的过程,理解反比例函数的意义,体会数学在解决实际问题中的作用情感态度与价值观:经历反比例函数概念的形成过程,体会数学学习的重要性。

通过学习反比例函数,培养学生合作交流意识和探索精神。

四、学法指导:本节课在预习案的指引下,我采用小组合作探究分层展示的方法,增强学生参与意识,在教师设计的预习案的引导下学生自己获取知识和思考问题的方法。

新人教版数学九年级下册第二十六章 反比例函数教案

新人教版数学九年级下册第二十六章 反比例函数教案

新人教版数学九年级下册第二十六章反比例函数教案第26章反比例函数26.1.1反比例函数的意义【学习目标】1、经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。

2、理解反比例函数的意义,根据题目条件会求对应量的值,能用待定系数法求反比例函数关系式3、让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会数学在解决实际问题中的作用学情分析:虽然学生在八(上)已学过一次函数及特例“正比例函数”的内容,对函数有了初步的认识。

从学生接触函数所蕴含的“变化与对应”思想至今已经半年有余,学生对与函数相关的概念不可避免会有所遗忘或生疏。

因此,学习本节课的关键是处理好新旧知识的联系,尽可能地减少学生接受新知识的困难。

【学习重点】理解反比例函数的意义,确定反比例函数的解析式【学习难点】反比例函数的解析式的确定26.1.2 反比例函数的图象和性质知能准备【学习目标】1、画反比例函数的图象,并知道该图象与正比例函数、一次函数图象的区别,能从反比例函数的图象上分析出简单的性质.2、能用反比例函数的定义和性质解决实际问题.【学情分析】前面已经学习了一次函数和二次函数,对研究函数有了一定的方法;即画出图像并根据图像研究其性质【学思指导】教法:讲授法、对比法学法:类比法、数形结合法学科素养:通过画图象,进一步培养“描点法”画图的能力和方法,并提高对函数图象的分析能力.同时尝试用类比和特殊到一般的思路方法,归纳反比例函数一些性质特征.【【课前预习】1.若y=(21)(1)n nx-+是反比例函数,则n必须满足条件 n≠12或n≠-1 .2.用描点法画图象的步骤简单地说是列表、描点、连线. 3.试用描点法画出下列函数的图象:(1)y=2x;(2)y=1-2x.设计意图:通过回忆,学会用描点法画函数的图象课堂引讨——【展示互动】问题:我们已知道,一次函数y=kx+b(k≠0)的图象是一条直线,•那么反比例函数y=k x(k为常数且k≠0)的图象是什么样呢?[尝试]用描点法来画出反比例函数的图象.画出反比例函数y=6x和y=-6x的图象.解:列表思考:取什么值更易描出来x …-6 -5 -4 -3 -2 -1 1 2 3 4 5 6 …y=6x-1 -1.5 -2 -6 3 1y=-6x1 1.23 6 -1.5(请把表中空白处填好)描点,以表中各对应值为坐标,在直角坐标系中描出各点.连线,用平滑的曲线把所描的点依次(从大到小或从小到大的顺序)连接起来探究反比例函数y=6x和y=-6x的图象有什么共同特征?它们之间有什么关系?做一做把y=6x和y=-6x的图象放到同一坐标系中,观察一下,看它们是否对称.归纳:反比例函数y=6x和y=-6x的图象的共同特征:(1)它们都由两条曲线组成.(2)随着x的不断增大(或减小),曲线越来越接近坐标轴(x轴、y轴).(3)反比例函数的图象属于双曲线.此外,y=6x的图象和y=-6x的图象关于x轴对称,也关于y轴对称.做一做在平面直角坐标系中画出反比例函数y=3x和y=-3x的图象.交流两个函数图象都用描点法画出?【分析】由y=6x和y=-6x的图象及y=3x和y=-3x的图象知道,(1)它们有什么共同特征和不同点?(2)每个函数的图象分别位于哪几个象限?(3)在每一个象限内,y随x的变化而如何变化?猜想反比例函数y=kx(k≠0)的图象在哪些象限由什么因素决定?•在每一个象限内,y随x的变化情况如何?它可能与坐标轴相交吗?【归纳】(1)反比例函数y=kx(k为常数,k≠0)的图象是双曲线.(2)当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内,y•值随x值的增大而减小.(3)当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内,y•值随x值的增大而增大.设计意图:通过画图并研究:得到反比例函数图像的形状及其增减性精编精练例题指出当k>0时,下列图象中哪些可能是y=kx与y=kx(k≠0)在同一坐标系中的图象()【分析】对于y=kx来说,当k>0时,图象经过一、三象限,当k<0时,图象经过二、四象限;对于y=kx来说,当k>0时,图象在一、三象限,当k<0时,图象在二、四象限,所以应选B.备选例题1.请你写出一个反比例函数的解析式,使它的图象在第一、三象限.2.如图所示的函数图象的关系式可能是(• )A.y=x B.y=1xC.y=x2 D.y=1||x设计意图:通过具体的习题使学生加深对本部分知识的理解能解决具体问题。

人教版数学九年级下册:(反比例函数)实际问题与反比例函数(教案)

人教版数学九年级下册:(反比例函数)实际问题与反比例函数(教案)

实际问题与反比例函数第1课时实际问题与反比例函数(1)【知识与技能】进一步运用反比例函数的知识解决实际问题.【过程与方法】经历“实际问题一建立模型一问题解决”的过程,发展学生分析问题,解决问题的能力.【情感态度】运用反比例函数知识解决实际应用问题的过程中,感受数学的应用价值,提高学习兴趣.【教学重点】运用反比例函数的意义和性质解决实际问题.【教学难点】用反比例函数的思想方法分析、解决实际应用问题.一、情境导入,初步认识问题我们知道,确定一个一次函数y = kx+b的表达式需要两个独立的条件,而确定一个反比例函数表达式,则只需一个独立条件即可,如点A(2,3)是一个反比例函数图象上的点,则此反比例函数的表达式是,当x=4时,y的值为,而当y=13时,相应的x的值为,用反比例函数可以反映很多实际问题中两个变量之间的关系,你能举出一个反比例函数的实例吗?二、典例精析,掌握新知例1 市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2 )与其深度 d(单位:m)有怎样的函数关系?(2 )公司决定把储存室的底面积定为 500m2,施工队施工时应该向地下掘进多深?(3)当施工队按(2)中的计划掘进到地下15m时,碰到坚硬的岩石,为了节约建设资金,公司临时改变计划,把储存室的深改为15m,相应地,储存室的底面积应改为多少才能满足需要(精确到0.01m2)?【分析】已知圆柱体体积公式V=S • d,通过变形可得S=Vd,当V—定时,圆柱体的底面积S是圆柱体的高(深)d的反比例函数,而当S= 500m2时,就可得到d的值,从而解决问题(2),同样地,当d= 15m —定时,代入S = Vd可求得S,这样问题(3)获解.例2 码头工人以每天30吨的速度往一艘轮船上装载货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,卸货速度V(单位:吨/天)与卸货时间t 单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5天内卸载完毕,那么平均每天至少要卸多货?【分析】由装货速度×装货时间=装货总量,可知轮船装载的货物总量为240吨;再根据卸货速度=卸货总量÷卸货时间,可得V与t的函数关系式为V=240t,获得问题(1)的解;在(2)中,若把t=5代入关系式,可得V=48,即每天至少要卸载48吨,则可保证在5天内卸货完毕.此处,若由V=240t得到t=240V,由t≤5,得240V≤5,从而V≥48,即每天至少要卸货48吨,才能在不超过5天内卸货完毕.【教学说明】例2仍可由学生自主探究,得到结论.鼓励学生多角度出发,对问题(2)发表自己的见解,在学生交流过程中,教师可参与他们的讨论,帮助学生寻求解决问题的方法,对有困难的学生及时给予点拨,使不同层次的学生在学习中都有所收获.例3如图所示是某一蓄水池每1h的排水量V(m3/h)与排完水池中的水所用时间t(h)之间的函数图象.(1) 请你根据图象提供的信息求出此蓄水的蓄水量.(2) 写出此函数的函数关系式.(3) 若要6h排完水池的水,那么每1h的排水量应该是多少?(4) 如果每1h排水量是5m3,那么水池中的水将用多长时间排完?【分析】解此题关键是从图象中获取有关信息,会根据图象回答.解:(1)由图象知:当每1h排水4m3时,需12h排完水池中的水,∴蓄水量为4×12 = 48(m3 )(2)由图象V与t成反比例,设V=kt(k≠0).把V=4,t=12代入得k=48,∴V =48t(t>0).(3)当t=6时,486V== 8,即每1h排水量是8m3⑷当V=5时,5 = 48t,485t∴== 9.6(h),即水池中的水需要用9.6h排完.【教学说明】例3相比前面两例,难度增加,教师在讲解本题时,要辅导学生从图象中获取信息,会根据图象回答问题.三、运用新知,深化理解1.某玻璃器皿公司要挑选一种容积为1升 (1升=1立方分米)的圆锥形漏斗.(1)漏斗口的面积S与漏斗的深d有怎样的函数关系?(2)如果漏斗口的面积为100厘米2,则漏斗的深为多少?2.市政府计划建设一项水利工程,工程需要运送的土石方总量为106m3,某运输公司承办了这项工程运送土石方的任务.(1)运输公司平均每天的工作量V(单位:m3/天)与完成运送任务所需的时间t (单位:天)之间具有怎样的函数关系?(2)这个运输公司共有100辆卡车,每天一共可运送土石方104m3.则公司完成全部运输任务需要多长时间?【教学说明】以上两题让学生相互交流,共同探讨,获得结果,使学生通过对上述问题的思考,巩固所学知识,增强运用反比例函数解决问题的能力.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.【答案】1.解:(1)13Sd=1,S =3d(d>0)(2)100cm2 = 1dm2,当S = 1dm2时,3d=1,d=3dm.2.解:(1)661010,(Vt V tt==>0) .(2)t=662410101010V== .即完成任务需要100天.四、师生互动,课堂小结谈谈这节课的收获和体会,与同伴交流.1.布置作业:从教材“习题26. 2”中选取.2.完成创优作业中本课时的“课时作业”部分.本节课是用函数的观点处理实际问题,其中蕴含着体积、面积这样的实际问题.而解决这些问题的关键在于分析实际情境,建立函数模型,并进一步明确数学问题,将实际问题置于已有的知识背景之中,用数学知识重新解释这是什么,可以是什么,从而逐步形成考察实际问题的能力.在解决问题时,应充分利用函数的图象,渗透数形结合的思想.学生已经有了反比例函数的概念及其图象与性质这些知识作为基础,另外在小学也学过反比例,并且上学期已经学习了正比例函数、一次函数,学生已经有了一定的知识准备.因此,本节课教师可从身边事物入手,使学生真正体会到数学知识来源于生活,有一种亲切感.在学习中要让学生经历实践、思考、表达与交流的过程,给学生留下充足的时间来进行交流活动,不断引导学生利用数学知识来解决实际问题.第2课时实际问题与反比例函数(2)【知识与技能】运用反比例函数解决实际应用问题,增强数学建模思想.【过程与方法】经历“实际问题一数学建模一拓展应用”的过程,发展学生分析问题,解决问题的能力.【情感态度】进一步锻炼学生的数学应用能力,增强数学应用意识,提高学习数学的兴趣. 【教学重点】用反比例函数的有关知识解决实际应用问题.【教学难点】构建反比例函数模型解决实际应用问题,巩固反比例函数性质.一、情境导入,初步认识“给我一个支点,我可以撬动地球”,古希腊科学家阿基米德曾如是说,他的“杠杆定律”通俗地讲是:阻力×阻力臂=动力×动力臂.由上述等式,我们发现,当阻力、阻力臂一定时,动力和动力臂成反比例函数关系.二、典例精析,掌握新知例1 小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂不变,分别为1200 N和0.5 m.(1 )动力F和动力臂l有怎样的函数关系?当动力臂为1.5 m时,撬动石头至少需要多大的力?(2)若想使动力F不超过题(1)中所用力的一半,则动力臂l至少要加长多少?【分析】显然本题应用杠杆定律相关知识来解决问题,首先由阻力和阻力臂的数据得到动力F与动力臂l的函数关系式为F=600l(l>0),再把l=1 . 5代入,求出动力的大小.注意“橇动石头至少需要多大的力”表面上看是不等关系,但用相等关系来解决更方便些.而(2)中的问题即可用F=400×12= 200代入求动力臂的长度的最小值,也可利用不等关系,600l≤400×12,得l的范围是l≥3,而动力臂至少应加长1.5米才行.【教学说明】在本例教学时,应仍由学生自主探究,构建适合题意的反比例函数关系式,让学生加深对反比例函数意义的理解,进一步增强分析问题和解决问题的能力.教师在学生练习过程中,巡视指导,帮助有困难同学形成正确认知,在大部分学生自主完成后,可提出以下问题让学生思考,巩固提高:(1 )用反比例函数知识解释:在我们使用撬棍时,为什么动力臂越长就越省力?(2)你能再举一些应用杠杆原理做实际例子吗?例2—个用电器的电阻是可调节的,其范围是110〜220Ω,已知电压为220 V,这个用电器的电路图如图所示.(1 )输出功率犘与电阻只有怎样的函数关系?(2)这个用电器功率的范围是多少?【分析】要想顺利解决本题,应了解电学中关于电功率P、电阻R和电压U的关系,即有PR= U2,可以发现2UPR=或2URP=.这样由于用电器电压U = 220V是确定的,从而可得(1)的解应为P =2220R,再把R = 110和R = 220代入可得电功率P值分别为440 W和220 W,故电功率P的范围为220≤P≤440.事实上,这里还可以由2220RP=及 110≤R≤220,得110≤2220P≤220,得220≤P≤440.【教学说明】教学时,教师应先让学生熟悉与本例相关的电学知识,即PR= U2,然后让学生独立完成,由于题目难度不大,学生应该能予以解决,对个别有困难的同学,可予以指导,也可让他们与同伴交流,从而能解决问题,在大多数同学完成以后,教师仍可设置以下两个问题,让学生进一步加深对知识的理解:(1 )想一想,为什么收音机的音量,某些台灯的亮度以及电风扇的转速都可以调节?(2)你还能列举一些生活中用电器应用反比例函数性质的例子吗?培养学生学以致用的能力,即能用所学知识解决现实世界中实际问题的能力,也可增强学生的学习兴趣.三、运用新知,深化理解1.一司机驾驶汽车从甲地去乙地,他以80 km/h的平均速度用6小时到达目的地.(1)当他按原路返回来,汽车的平均速度v与时间t有怎样的函数关系?(2)如果该司机必须在4 h之内回到甲地,则返程时的平均速度不能低于多少?2.新建成的住宅楼主体工程已经竣工,只剩下楼体外表面需贴瓷砖,已知楼体的外表面面积为5×103 m2 .(1)所需的瓷砖块数n与每块瓷砖的面积 S有怎样的函数关系?(2)为了使住宅楼的外观更漂亮,开发商决定采用灰、白、蓝三种颜色的瓷砖,每块瓷砖的面积都是80 cm2,灰、白、蓝瓷砖使用比例为2:2: 1,则需要三种瓷砖各多少块?3.如图是放置在桌面上的一个圆台,已知圆台的上底面积是下底面积的1/4,此时圆台对桌面的压强为100 Pa.若把圆台翻过来放,则它对桌面的压强是多大呢?【教学说明】由学生独立完成,然后相互交流,发现问题,及时纠正,从而巩固对反比例函数的性质的理解.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.【答案】1. ( 1 )V=806t ⨯ ,V =480t (t >0). (2)V =4804= 120 (km/h). 2.(1)n • S = 5× 103 , n =3510S⨯ (S >0). (2)80cm 2=8×10-3m 2.353510 6.2510810n -⨯==⨯⨯(块), 则有n 灰=6.25×105×25= 2.5×105(块),n 白=6.25×105×25 =2.5×105(块) ,n 蓝=6.25×105×51=1.25×105(块).3. 解:设下底面积为S 0,则上底面积为04S . 由F p S= ,且当S = S 0时,p = 100,∴0100F pS S ==⨯ . 同一物体质量不变,∴ F=100S 0是定值.000100400(Pa)44S S F S p S S ∴====当时,. 因此,当把圆台翻过来放置时,它对桌面的压强是400Pa.四、师生互动,课堂小结1.请举出一些应用反比例函数的实例,同伴之间相互交流.2.说说这节课你又有哪些收获?1. 布置作业:从教材“习题26.2”中选取.2. 完成创优作业中本课时的“课时作业”部分.本节课讨论了反比例函数的其他一些应用(主要是在物理学科中的应用).在这些实际应用中,备课时应注意到与学生的实际生活相联系,并且注意用函数观点来对这些问题做出某种解释,从而加深对函数的认识,并突出知识之间的内在联系,特别是与物理知识之间的联系.。

26.1.2 反比例函数的图象和性质人教版教案设计

26.1.2 反比例函数的图象和性质人教版教案设计

《反比例函数的图象与性质》教学设计教学环节(二)师生活动类比探究1.例2 画出反比例函数6yx与12yx的图象。

(我们用什么方法画反比例函数的图象呢?有哪些步骤?)分析:所要画的图象是反比例函数的图象,自变量的取值范围是x≠0,怎样取值比较恰当呢?x…-12-6-4-3-2-11236yx…-1.5-26212yx…-1-2-4-6124观察反比例函数6yx与的图象,回答下列问题:(1)每个函数的图象分别位于哪些象限?(2)在每一个象限内,随着x的增大,y如何变化?你能由他们的解析式说明理由吗?(3)对于反比例函数(0)ky kx,考虑问题(1)(2),你能得出同样的结论吗?2.画一画:回顾我们利用函数图象,从特殊到一般研究反比例函数(0)ky kx的性质的过程,你能用类似的方法研究反比例函数(0)ky kx的图象和性质吗?请你借鉴画反比例函数6yx的图象的经验,在同一平面直角坐标系中画出反比例函数的图象,并说一说该函数图象的特征。

3.想一想:反比例函数6yx与6yx的图象有什么共同特点?有什么不同点?不同点由什么决定?他们有什么联系?12yx6yx教学环节(四)师生活动基础闯关1.反比例函数5yx的图象大致是()2.已知反比例函数4kyx若函数的图象位于第一三象限,则k_____________;若在每一象限内,y随x增大而增大,请写出一个符合条件的k的值:4.画出函数4yx的图象:(1)列表(填空):(2)描点连线:(3)由图象可知,函数4yx也由条曲线组成,分别位于第象限,试猜想:3yx的图象位于第象限.x…-8 -5 -4 -2 -1 1 2 4 5 8 …y……设计意图检验学生对本课知识的掌握及应用情况。

通过练习,既培养学生思维的敏捷性,又激发学生的参与和竞争意识.在回答过程中,教师给予适当评讲,并积极调动学生的参与热情,让整个课堂充满活跃的气氛.教学环节(五)师生活动中考链接1.已知k<0,则函数12,ky kx yx在同一坐标系中的图象大致是( )思考:把条件“k<0”改为“k≠0”结果还是一样吗?2.已知反比例函数)0≠(kxky-=的图象在第二、四象限,那么一次函数y=kx-k的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限3.函数kyx与)0≠(2kkkxy-=在同一平面直角坐标系中的图象可能是()4.(2017江西)如图,直线)0≠(11kxky=与双曲线2(0)ky xx相交于点P(2,4).已知点A(4,0),B(0,3),连接AB,将AOBRt△沿OP 方向平移,使点O移动到点P,得到''PBA△ .过点A'作'A C y轴交双曲线于点C。

人教版反比例函数教案

人教版反比例函数教案

人教版反比例函数教案【篇一:人教版第二十六章-反比例函数教案全章】第二十六章反比例函数26.1.1反比例函数的意义一、教学目标1.使学生理解并掌握反比例函数的概念2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想二、重、难点1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式 2.难点:理解反比例函数的概念3.难点的突破方法:(1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解(2)注意引导学生对反比例函数概念的理解,看形式y=k,等号左边是函数y,等x号右边是一个分式,自变量x在分母上,且x的指数是1,分子是不为0的常数k;看自变量x的取值范围,由于x在分母上,故取x≠0的一切实数;看函数y的取值范围,因为k≠0,且x≠0,所以函数值y也不可能为0。

讲解时可对照正比例函数y=kx(k≠0),比较二者解析式的相同点和不同点。

(3)y=k-1(k≠0)还可以写成y=kx(k≠0)或xy=k(k≠0)的形式 x三、课堂引入1、回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?2、体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?3、阅读书p2思考题四、例习题分析例1.p3分析:因为y是x的反比例函数,所以先设y=常数k,即利用了待定系数法确定函数解析式。

例1.(补充)下列等式中,哪些是反比例函数(1)y=(6)y=k,再把x=2和y=6代入上式求出xx532(2)y=- (3)xy=21(4)y= (5)y=- 3x+22xx1+3(7)y=x-4 xk(k为常数,k≠0)x1+3x的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x,(6)改写后是y=,x分析:根据反比例函数的定义,关键看上面各式能否改写成y=分子不是常数,只有(2)、(3)、(5)能写成定义的形式例2.(补充)当m取什么值时,函数y=(m-2)x3-m2是反比例函数?分析:反比例函数y=k(k≠0)的另一种表达式是y=kx-1(k≠0),后一种写法x中x的次数是-1,因此m的取值必须满足两个条件,即m-2≠0且3-m2=-1,特别注意不要遗漏k≠0这一条件,也要防止出现3-m2=1的错误。

人教版九年级数学下册第二十六章26.1.1反比例函数(教案)

人教版九年级数学下册第二十六章26.1.1反比例函数(教案)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《反比例函数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个变量的乘积为常数的情况?”(如:汽车以固定速度行驶,行驶时间与路程的关系)。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索反比例函数的奥秘。
举例:
-难点一:在绘制反比例函数图像时,学生可能难以理解为何x轴和y轴没有截距,需详细解释k值对图像的影响;
-难点二:在理解反比例函数性质时,学生可能对渐近线的概念模糊,需通过图像和实例明确渐近线的作用;
-难点三:针对实际问题,如“速度与时间的关系”,学生可能不知道如何将问题转化为反比例函数,需教授如何从问题中提炼关键信息,建立函数模型。
1.讨论主题:学生将围绕“反比例函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
三、教学难点与重点
1.教学重点
-函数表达式的理解与应用:重点讲解反比例函数的定义,即y=k/x(k≠0),使学生对函数表达式有清晰的认识,并能熟练运用;
-图像与性质的记忆与运用:强调反比例函数图像为双曲线,熟悉其对称性、渐近线、单调性等性质,并能应用于解题;
-实际应用问题求解:结合实际情境,教授如何建立反比例函数模型,求解实际问题。
举例:讲解如何利用反比例函数的性质解决图像交点、单调区间等问题。

六年级数学下册教案-第4单元:5反比例-人教版

六年级数学下册教案-第4单元:5反比例-人教版

六年级数学下册教案第4单元:5反比例人教版教案:六年级数学下册教案第4单元:5反比例人教版一、教学内容本节课的教学内容来自人教版六年级数学下册第4单元,主要包括反比例的概念、反比例函数的性质以及反比例函数的图像。

具体章节内容如下:1. 反比例的概念:引导学生理解反比例函数的定义,即当两个变量的乘积为常数时,这两个变量成反比例关系。

2. 反比例函数的性质:通过实例讲解反比例函数的性质,包括对称性、单调性以及在各个象限的符号特点。

3. 反比例函数的图像:引导学生绘制反比例函数的图像,并观察图像的形状、位置以及与坐标轴的交点。

二、教学目标通过本节课的学习,使学生能够掌握反比例函数的概念,理解反比例函数的性质,并能够绘制反比例函数的图像。

三、教学难点与重点重点:反比例函数的概念、性质和图像。

难点:反比例函数图像的绘制和性质的理解。

四、教具与学具准备教具:黑板、粉笔、反比例函数图像的示例图。

学具:学生用书、练习本、铅笔、橡皮。

五、教学过程1. 实践情景引入:创设一个实际情境,例如商场打折,商品的原价和折扣成反比例关系,让学生思考如何表示这种关系。

3. 性质讲解:通过示例和讲解,让学生了解反比例函数的性质,包括对称性、单调性以及在各个象限的符号特点。

4. 图像绘制:引导学生根据反比例函数的性质,绘制出反比例函数的图像,并观察图像的形状、位置以及与坐标轴的交点。

5. 例题讲解:选取几个典型例题,讲解如何利用反比例函数解决实际问题,如速度、路程和时间的关系。

6. 随堂练习:让学生独立完成课后练习题,巩固所学知识。

六、板书设计板书设计如下:反比例函数:y = k/x (k为常数)性质:1. 对称性2. 单调性3. 符号特点图像:1. 形状2. 位置3. 与坐标轴的交点七、作业设计1. 作业题目:(1)判断下列函数是否为反比例函数,并说明理由。

a. y = 2/xb. y = 5 x(2)绘制反比例函数y = 1/x的图像,并观察图像的形状、位置以及与坐标轴的交点。

人教版数学九年级下册26.1.2《反比例函数的图象和性质》教学设计

人教版数学九年级下册26.1.2《反比例函数的图象和性质》教学设计

人教版数学九年级下册26.1.2《反比例函数的图象和性质》教学设计一. 教材分析人教版数学九年级下册26.1.2《反比例函数的图象和性质》是反比例函数部分的重要内容。

本节内容是在学生已经掌握了比例函数的知识基础上进行学习的,通过本节课的学习,使学生理解反比例函数的概念,会画反比例函数的图象,了解反比例函数的性质,并能运用反比例函数解决一些实际问题。

二. 学情分析九年级的学生已经具备了一定的函数知识,对于比例函数有一定的了解,但反比例函数作为一种新的函数形式,对学生来说还比较陌生。

因此,在教学过程中,需要引导学生通过观察、分析、归纳等方法,自主探究反比例函数的图象和性质,提高学生的动手操作能力和思维能力。

三. 教学目标1.知识与技能:使学生理解反比例函数的概念,会画反比例函数的图象,了解反比例函数的性质。

2.过程与方法:通过观察、分析、归纳等方法,培养学生自主探究的能力。

3.情感态度与价值观:激发学生学习函数的兴趣,培养学生的团队协作精神。

四. 教学重难点1.反比例函数的概念及其图象的画法。

2.反比例函数的性质及其运用。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究,培养学生的动手操作能力和思维能力。

六. 教学准备1.教学课件:制作反比例函数的图象和性质的课件,用于辅助教学。

2.学生活动材料:反比例函数图象和性质的练习题,用于巩固所学知识。

3.教学设备:投影仪、计算机等。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾比例函数的知识,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过课件展示反比例函数的图象和性质,引导学生观察、分析,并总结反比例函数的特点。

3.操练(10分钟)教师布置练习题,学生独立完成,巩固所学知识。

教师选取部分学生的作业进行讲解和点评。

4.巩固(5分钟)教师通过提问方式检查学生对反比例函数图象和性质的掌握情况,并对学生的回答进行指导和纠正。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十七章 反比例函数..反比例函数的意义一、 教学目标•使学生理解并掌握反比例函数的概念•能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式 •能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想 二、 重、难点•重点:理解反比例函数的概念,能根据已知条件写出函数解析式 •难点:理解反比例函数的概念 三、 例题的意图分析教材第页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发, 探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体 会函数的模型思想。

教材第页的例是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学 生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含 的 变化与对应”的思想,特别是函数与自变量之间的单值对应关系。

补充例、例都是常见的题型,能帮助学生更好地理解反比例函数的概念。

补充例是一道 综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但 能提高学生分析、解决问题的能力。

四、课堂引入•回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的? •体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的? 五、例习题分析例.见教材有()、()、()能写成定义的形式_3 m 2例.(补充)当取什么值时,函数y=(m-2)x是反比例函数?分析:反比例函数 y = k (旳的另一种表达式是 y 二kx* (旳,后一种写法中的次数是x―,因此的取值必须满足两个条件,即— 坦—=—,特别注意不要遗漏 方这一条件,也要防 止出现一=的错误。

解得=—例.(补充)已知函数=+,与成正比例,与成反比例,且当=时,=;当=时,= (1) 求与的函数关系式 (2)当=—时,求函数的值分析:此题函数是由和两个函数组成的,要用待定系数法来解答,先根据题意分别设出、 与的函数关系式,再代入数值,通过解方程或方程组求出比例系数的值。

这里要注意与和与 的函数关系中的比例系数不一定相同,故不能都分析:因为是的反比例函数,所以先设k-,再把=和=代入上式求出常数,即利用x了待定系数法确定函数解析式。

例.(补充) F 列等式中,哪些是反比例函数()y()2y()=()x()()y =1 3 x()= —分析:根据反比例函数的定义,关键看上面各式能否改写成这里()、()是整式,()的分母不是只单独含,()改写后是ky =-(为常数,旳的形式,x1 3x ,分子不是常数,只 x设为,要用不同的字母表示。

k2k2略解:设=(旳,y2=—(旳,贝U y=kix +——,代入数值求得=,x x (2)=,贝V y = 2x,当=—时,=—x六、随堂练习•苹果每千克元,花元钱可买千克的苹果,则与之间的函数关系式为2•若函数y =(3 • m)x8jm是反比例函数,则的取值是•矩形的面积为,一条边的长为,另一条边的长为,则与的函数解析式为•已知与成反比例,且当=—时,=,则与之间的函数关系式是,当=—时,=1•函数y 中自变量的取值范围是x +2七、课后练习已知函数=+,与+成正比例,与成反比例,且当=时,=;当=时,=,求当=—时的值答案:=课后反思:.•反比例函数的图象和性质(一)一、教学目标•会用描点法画反比例函数的图象•结合图象分析并掌握反比例函数的性质.体会函数的三种表示方法,领会数形结合的思想方法二、重点、难点•重点:理解并掌握反比例函数的图象和性质•难点:正确画出图象,通过观察、分析,归纳出反比例函数的性质三、例题的意图分析教材第页的例是让学生经历用描点法画反比例函数图象的过程,一方面能进一步熟悉作函数图象的方法,提高基本技能;另一方面可以加深学生对反比例函数图象的认识,了解函数的变化规律,从而为探究函数的性质作准备。

补充例的目的一是复习巩固反比例函数的定义,二是通过对反比例函数性质的简单应用,使学生进一步理解反比例函数的图象特征及性质。

补充例是一道典型题,是关于反比例函数图象与矩形面积的问题,要让学生理解并掌握k反比例函数解析式y=—(旳中k的几何意义。

x四、课堂引入提出问题:• 一次函数=+(、是常数,旳的图象是什么?其性质有哪些?正比例函数=( 旳呢?•画函数图象的方法是什么?其一般步骤有哪些?应注意什么?•反比例函数的图象是什么样呢?五、例习题分析例•见教材,用描点法画图,注意强调:()列表取值时,工,因为=函数无意义,为了使描出的点具有代表性,可以"为中心, 向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求值()由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确()连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线()由于艺艺所以艺函数图象永远不会与轴、轴相交,只是无限靠近两坐标轴例•(补充)已知反比例函数y =(m-1)x m"的图象在第二、四象限,求值,并指出在每个象限内随的变化情况?分析:此题要考虑两个方面,一是反比例函数的定义,即yukx-1(旳自变量的指数是―,二是根据反比例函数的性质:当图象位于第二、四象限时,v,则一v,不要忽视这个条件略解:••• y=(m-1)x m J是反比例函数••• — =―,且—丰又•••图象在第二、四象限•••一<解得m = 2且v 则m = - . 21例.(补充)如图,过反比例函数y (>)的图象上任意两点、分别作轴的垂线,垂足分别为、x,连接、,设△和△20 c D 1的面积分别是、,比较它们的大小,可得( )()> ()=()< ()大小关系不能确定k分析:从反比例函数y =一(旳的图象上任一点(,)向轴、轴作垂线段,与轴、轴所X1围成的矩形面积S= xy =|k,由此可得== 丄,故选六、随堂练习•已知反比例函数y = ”,分别根据下列条件求出字母的取值范围X()函数图象位于第一、三象限在第二象限内,随的增大而增大…a•函数=—+与y (旳在同一坐标系中的图象可能是( )X Array线段,与轴、轴所围成的矩形面积是,则函数解析式为七、课后练习2 — m•若函数y =(2m-1)x与y二匚巴的图象交于第一、三象限,则的取值范围是x2•反比例函数y ,当=一时,=;当<一时;的取值范围是;X当〉一时;的取值范围是a2 -63•已知反比例函数y =(a—2)x ,当X 0时,随的增大而增大,求函数关系式- ..5 -2答案:•x..反比例函数的图象和性质(二) 、教学目标•使学生进一步理解和掌握反比例函数及其图象与性质•能灵活运用函数图象和性质解决一些较综合的问题•深刻领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法 二、 重点、难点•重点:理解并掌握反比例函数的图象和性质,并能利用它们解决一些综合问题 •难点:学会从图象上分析、解决问题 三、 例题的意图分析教材第页的例一是让学生理解点在图象上的含义,掌握如何用待定系数法去求解析式, 复习巩固反比例函数的意义;二是通过函数解析式去分析图象及性质,由数”到 形”体会数形结合思想,加深学生对反比例函数图象和性质的理解。

教材第页的例是已知函数图象求解析式中的未知系数,并由双曲线的变化趋势分析函数 值随的变化情况,此过程是由 形”到 数”目的是为了提高学生从函数图象中获取信息的能力, 加深对函数图象及性质的理解。

补充例目的是引导学生在解有关函数问题时,要数形结合,另外,在分析反比例函数的 增减性时,一定要注意强调在哪个象限内。

补充例是一道有关一次函数和反比例函数的综合题,目的是提高学生的识图能力,并能 灵活运用所学知识解决一些较综合的问题。

四、 课堂引入复习上节课所学的内容 •什么是反比例函数?•反比例函数的图象是什么?有什么性质? 五、 例习题分析例.见教材k分析:反比例函数 y的图象位置及随的变化情况取决于常数的符号,因此要先求常X数,而题中已知图象经过点(,),即表明把点坐标代入解析式成立,所以用待定系数法能求 出,这样解析式也就确定了。

例.见教材k例.(补充)若点(一,)、(一,)、(,)在反比例函数y=—(V )图象上,则、、的大小X关系怎样?分析:由V 可知,双曲线位于第二、四象限,且在每一象限内,随的增大而增大,因为、 在第二象限,且,故>>;又在第四象限,则V,所以 >>>说明:由于双曲线的两个分支在两个不同的象限内,因此函数随的增减性就不能连续的 看,一定要强调 在每一象限内”否则,笼统说V 时随的增大而增大,就会误认为最大,则最 大,出现错误。

此题还可以画草图,比较、、的大小,利用图象直观易懂,不易出错,应学会使用。

()求反比例函数和一次函数的解析式()根据图象写出一次函数的值大于反比例函数的值的的取值 范围 分析:因为点在反比例函数的图象上,可先求出反比例函数的例.(补充)如图, 两点一次函数=+的图象与反比例函数y =—的图象交于(一,)、(,)x2解析式y = 一2,又点在反比例函数的图象上,代入即可求出的值,最后再由、两点坐标求出x一次函数解析式= —— ,第()问根据图象可得的取值范围V—或VV,这是因为比较两个不同函数的值的大小时,就是看这两个函数图象哪个在上方,哪个在下方。

随堂练习六、() ()•若直线=+经过第一、二、四象限,则函数y =竺的图象在(x第二、四象限第一、二象限第一、三象限第三、四象限()()•已知点(一,)、(,)、(n,)在双曲线k2 1上,则下列关系式正确的是(x() ()七、>>>>课后练习()>>()>>.已知反比例函数2k 1的图象在每个象限内函数值随自变量的增大而减小,且的x值还满足9 -2(2k -1) ,若为整数,求反比例函数的解析式.已知一次函数y8=kx b的图像与反比例函数y 的图像交于、两点,且点的横坐x标和点的纵坐标都是一,求()一次函数的解析式;()△的面积答案:• y =丄或y • () = —H,课后反思: =3或X()面积为•实际问题与反比例函数(一)、教学目标•利用反比例函数的知识分析、解决实际问题•渗透数形结合思想,提高学生用函数观点解决问题的能力、重点、难点.重点:利用反比例函数的知识分析、解决实际问题.难点:分析实际问题中的数量关系,正确写出函数解析式三、例题的意图分析教材第页的例,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。

相关文档
最新文档