数系的扩充和复数的概念

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《》教学设计

1.了解解方程等实际需要也是数系发展的一个主要原因,数集的扩展过程以及复数的

分类表;

2.理解复数的有关概念以及符号表示;

3.掌握复数的代数表示形式及其有关概念;

4.在问题情境中了解数系得扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程求根)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系.

【教学重点】引进虚数单位i的必要性、对i的规定以及复数的有关概念.

【教学难点】复数概念的理解.

【教学过程】

1.对数集因生产和科学发展的需要而逐步扩充的过程进行概括(教师引导学生进行简

明扼要的概括和总结)

自然数整数有理数无理数实数

2.提出问题

我们知道,对于实系数一元二次方程,没有实数根.我们能否将实数集进行扩充,使得在新的数集中,该问题能得到圆满解决呢?

3.组织讨论,研究问题

我们说,实系数一元二次方程没有实数根.实际上,就是在实数范围内,没有一个实数的平方会等于负数.解决这一问题,其本质就是解决一个什么问

题呢?组织学生讨论,引导学生研究,最后得出结论:最根本的问题是要解决-1的开平方问题.即一个什么样的数,它的平方会等于-1.

4.引入新数,并给出它的两条性质

根据前面讨论结果,我们引入一个新数,叫做虚数单位,并规定:(1);

(2)实数可以与它进行四则运算,进行四则运算时,原有的加、乘运算律仍然成立.有了前面的讨论,引入新数,可以说是水到渠成的事.这样,就可以解决前面提出的问题(-1可以开平方,而且-1的平方根是).

5.提出复数的概念

根据虚数单位的第(2)条性质,可以与实数b相乘,再与实数a相加.由于满足乘法交换律及加法交换律,从而可以把结果写成这样,数的范围又扩充了,出现了形如的数,我们把它们叫做复数.

全体复数所形成的集合叫做复数集,一般用字母C表示,显然有:N* N Z Q R C.

【巩固练习】

下列数中,哪些是复数,哪些是实数,哪些是虚数,哪些是纯虚数?并分别指出这些复数的实部与虚部各是什么?

例1.实数m分别取什么值时,复数z=m+1+(m-1)i是

(1)实数?(2)虚数?(3)纯虚数?

分析:因为m∈R,所以m+1,m-1都是实数,由复数z=a+bi是实、虚数、纯虚数与零的条件可以确定实数m的值.

相关文档
最新文档